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1 Introduction

Let b € L} .(R™. We say that b belongs to the mean oscillation space BMO(R") if b satisfies

1
IBlsmo = Sup — f Ib(y) - bldy < oo,
o a1

where Q denotes any cube of R" and bg = ﬁfob(x)dx.

The commutator [b, M](f)(x), which is generated by the maximal function and the BMO function, can
be stated as follows:

(b, M](f)(x) = bM(f)(x) — M(bf)(x).

Here, M(f)(x) is the classical Hardy-Littlewood maximal function defined as

1
M) = sup - [ IF»ldy,
Q>x |Q|
Q
where the supremum is taken over all cubes Q containing x.
For the study of [b, M], one may see [1-4] for more details. Here, we would like to point out that in [2],
Bastero, Milman and Ruiz gave the sufficient and necessary conditions for the boundedness of [b, M] on
LP(R™). Precisely, they proved the following theorem.
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Theorem A. [2] Let b be a real valued, locally integrable function in R". Then, the following three assertions
are equivalent.
(i) The commutator [b, M] is bounded on L? for1 < p < co.
(ii) b is in BMO and b~ belongs to L™ with b~ = —min{b(x), 0}.
(iii) For p € (1, co), there is

sup ﬁgw(x) ~ Mo(b)()Pdx < oo,

1 1/p
where My(b)(x) = sup (Q—j |b(t)|l’dt> .
Qoox,Q0cq \ @M

Later, Xie [4] extended Theorem A to the Morrey space. Here the Morrey space LPA(R™) is defined by
1/p

1
LPAR™ = <f € LER™) = |flpagny = sup | — I lf»IPdy | < ooy,
xeR™t>0 t
B(x,t)
where0 <A<nand1<p < oo.
Similarly, the weak Morrey space WLPA(R™) can be stated as follows:

WLPAR™ = <f € LE.R™ : |Iflyprign = Sup %I{t € Qx, t) : IfOI>BHMP < cof.
xe[R”,t>0,ﬁ>Ot p

In 1938, Morrey [5] obtained the Holder regularity of the solutions of elliptic equations by applying new
technique. Here, the new technique was based on the estimates of the integrals over balls of the gradient of
the solutions via the radius of the same ball. The classical Morrey spaces LP/(R"), usually attributed to him,
were introduced in the 1960s by Campanato, Peetre and Brudneii, independently. Readers may refer to [6]
for more details.

Later, the boundedness of Hardy-Littlewood maximal function on Morrey space can be found in [7] and
the maximal inequality in generalized Morrey-type spaces can be found in [8].

Obviously, if we choose A = 0, then LPA(R™) becomes the classical LP(R") space.

On the other hand, the multilinear theory was also developed a lot in the past 20 years and readers may
refer to [9,10]. for more details. Moreover, Pérez and Torres [11] introduced the commutators of multilinear
Calderén-Zygmund operators defined as

T30 = YTLUH® (B = (brr.... b)),

i=1

where
T = BOOTU)X) = Tirewesfiots bifis fietseeesfi) 0,

E) = (by,..., by) and 7 is the multilinear Calderén-Zygmund operator which was first studied by Grafakos
and Torres [9].

Later, Lerner et al. [10] introduced a new type of multiple weight classes Az which is very adopted to
the weighted norm estimates for the commutators of multilinear Calderén-Zygmund operators. Moreover, in
order to give the characterization of Ay, Lerner et al. [10] introduced the following multilinear maximal

function M()?) (x) defined as

- mn 1
MP0 = sup[ [ [1hpldy
Q3x =1 IQI
Q
where f = (fi,....fm) withm € Z*(m > 1) and the supremum is taken over all cubes Q containing x.
Obviously, it is easy to see M(f)(x) < [T, M(f)(x).
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For any cube Q, we write Q™ = Q x ---x Q. In 2015, Zhang [12] studied the commutator generated by
[ —)

m

the BMO function and the multilinear maximal functions [5, M] (f) (x) and M;(f) (x) as follows:

MIFI0 = YIB, M), My = Y M ).

j=1 j=1
Here

(b, M3;(F) (%) = OOMP)X) = Mfisoos fi1s Bifis fiits oo firn) )

and

MB(F) () = sup —— f|b]~(x) - B! ] 10147
Q3x |Q|

where y = (V5.5 V)-
Zhang [12] proved the weighted boundedness of [3, M] (7) (x) and M;(j?) (x) on the product L? spaces.

Motivated by the above backgrounds, in this paper, we would like to extend Theorem A with [5, M] (7) (x)
on Morrey-type spaces. The first result of this paper can be regarded as follows.

Theorem 1.1. Let b; be a real valued, locally integrable function in R" withi = 1,..., m. Then, the following
three assertions are equivalent.
(I) The commutator[b, M](f)(x) is bounded from LPrAR™) x --- x LPmARM) to LPAR™M) for1 < p; < oo and
1/p=Y"1/piwithp >1and0 <A< n.
() b; is in BMO and b; belongs to L*°.
(IIT) For p € (1, co), there is

sup—jw (x) — Mq(by) () Pdx < oo,

where Mo(b)(x) = sup o Ij bi()|dt.
Qo3x,Q0cQ

Remark 1.2. Obviously, our results improve the main results of [2, 4].

On the other hand, in 1995, Pérez [13] gave a counter example that the commutator [b, T] is not of weak
type (1, 1) and he proved that [b, T] satisfies the weak L log L-type estimates. For the study of the commu-
tators on the endpoint case, one may see [10,12,14,15] for more details. Particularly in [12], Zhang proved
the weak weighted L log L estimates for M ;(]?) (x). Recently, Wang [16] proved that the commutator gener-
ated by some integral operators is bounded from Lz’l‘gg L(RM to WL-?(R") in some sense and the definitions
of WL-*(R") and L2, (R™) will be given in Sections 1 and 2, respectively.

Thus, it is natural to ask whether we can prove the endpoint estimates of the commutators generated by

the multilinear maximal functions and BMO functions on Morrey-type space.
Before giving the second result of this paper, we introduce the generalized Morrey space LP-“(R")
proposed by Nakai [8].

Definition A. [8] Let w : R" x R - R*, 1 < p < oo and Q(a, r) be the cube
xeR": |x;—aj|l <r/2, i=1,2,...,n}

whose edges have length r and are parallel to the coordinate axes. For Q = Q(a, r), we denote kQ = Q(a, kr)
and w(Q) = w(a, r). Moreover, we suppose that w satisfies
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w(a, 2t) < Cow(a,t) 1.1)

with 1 < Cy < 2.
Then, the generalized Morrey space L”“(R") (1 < p < oo) is defined as
1/p
Jlf(x) [Pdx| < oof.

Lp’w(Rn) f € Lloc IRn) : "f"Lp'wﬂRn) = sup
Q

w(Q)

Similarly, the weak generalized Morrey space WLP-?(R™) (1 < p < oo) is defined by

WLP-“R") = {f € WLE R") : |fllromn = sup sup lix € Q: IfCOl>BHIMP < oo}

B
w(Q)P
Obviously, if we choose w(Q) = |Q|% with 0 < A < n, there is

w(2Q) = [2Q" = 2Ql < 2"w(Q). 1.2)

In this case, LP“(R") and WLP-“(R") become LPA(R™ and WLP-A(R™) with O < A < n, respectively.
The second result of this paper can be stated as follows.

Theorem 1.3. Let b; € BMO (R") and w satisfy (1.1) with1 < Co < 2 forany O < y < n. Then, for any > 0 and
cube B = B(x, t) with center x € R" and radius t > 0, there is
(wj
B

N
where ®(x) = t(1 + log™ t), || b lsmo = supllbillemo and C is a positive constant depending on the dimension n.
1<i<m

——lz e B(x, t) : M*(f)(z) > pmm < Clb Ilsmo]_[

i=1

s

Lo R

(B)'"

Remark 1.4. By the definition of WLm“(R"), we may roughly say that M ;»(f) (x) is bounded from Lﬁ’lﬁgL([R")
X Lpw log(R™) to WLm“(R") in some sense.

2 Orlicz space, generalized Holder inequalities, weak L? spaces
and another kind of multilinear maximal function

First, we introduce some facts and theory related to the Orlicz spaces. For more information about Orlicz
spaces, one may refer to [17].

Suppose that @ : [0, c0) — [0, c0) is a continuous, convex, increasing function with ®(0) = 0 and @
satisfies d(t) — oo if t — oo. Then, we say that @ is a Young function.

For a function f defined on a cube Q, we define

_ 1 f(y)
Iflp,g = infsA >0 : Q _([CD(—)l jdy <1,

which is called the mean Luxemburg norm of f on Q.
Obviously, if ® < ¥, then

Iflo.o < Ifllw.q-
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For a Young function ®, we may define its complementary function @(s) as

d(s) = sup{st — D(t)}.
t>0

Obviously, ®(t) = t(1 + log* t) is a Young function and its complementary function ®(s) = e (see [17]).
From [18], we know that if E, F, G are Young functions and satisfy

EW(t)GY(t) < Fi(t) (vt > 0).
Then, the following generalized Holder inequality holds.
I8lF,0 < 2IflE,ollgls,q-

In this case, we have

ijv(y)g(yndy < Iflo.olghs,o.

Q|
Q
When ®(t) = t(1 + log* t), we write [|fllL10g1,0 = Ifllo,o and Ifllexpr,o = Ifll®,q- Thus, we get
a Ilf(y)g(y) 1Ay < Wl tos.0lglexs o 21)

By the definition of ||flle,¢, it is easy to see that

a j FO0IAX = Il < Iflzogt.0- 2.2)

Moreover, forb € BMO(R"), using the John-Nirenberg inequality, we have||b — bgllexpr,o < Clibllsmo - Thus,
(2.1) can be written as follows:

|Q|J|f(Y)(b(Y) bo)ldy < ClifllLiogr,ollPllBmo - 2.3)

Next, following [16], we introduce the generalized Morrey space L;* log (R™ related to L log L type associa-
ted with w, that is,

L} LiogRY = {f € LiocR™ : Iflike, ,wmy = sup (%"f Iz logLQJ < 00}

Obviously, it is easy to see that Lg’l‘gg LR™ ¢ LY?(RM from (2.1) (see [16]).
Now, we introduce the definition of the weak L? space (see [19]).

Suppose that X is a measure space and has the normal Lebesgue measure. For O < p < co, the weak
LP(X) is defined as the set of all Lebesgue measurable functions f, such that
Ifllreoxy = supfAdp(A)/P : A > 0} < oo,
where the definition of df(y) is
dr(A) = {x € X = [f(x)[>A}].

Finally, we introduce another kind of multilinear maximal function Mc(j?) (x) as follows:

N 1 m
M. _ || (ydy
(N =010, o I )m,-zllfj(y’)' g
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Moreover, we define the commutator of Mff(f)(x) as

B iy = 1 (v) — Bl . 1
MUFY) = sup =t ) j )mlbl(X) bopIl Tif0iay
Then, it is easy to see [12]
MFY0) ~MPIx) and  MEIF)x) ~MBE) (). (2.4)

3 Some useful lemmas

In this section, we would like to give some lemmas, which is very useful throughout this paper. For some
techniques to deal with commutators of operators on Morrey-type spaces, one may see [4,12,16,20-22] for
more details.

Lemma 3.1. Suppose that f € BMO(R") and n, , € R*, then for any1 < p < co and j € Z*, we have

0 {1 [ e —fQ<x0,,2>|dx] < ¢ (1+ og 1) Iflavo-

1Q(xo, n)|
Q(xo,n)

1/p
(ii) Iflsmo ~ sup [gl J1re0 - fo |de] :
Q Q
(i) Ifg = fr+ql < C(G + Dfllemo-
The proof of Lemma 3.1 is very standard and can be found in many papers.

Lemma 3.2. Suppose that1/p = Z;le/pi with p; > 1. Ifb; € BMO withi = 1, ..., m, we obtain thatM;(f)(x) is
bounded from LPrAR"™) x .- x LPmARM) to LPARM with 0 < A < n. That is,

m
IM F(f)”LP-"([R") < Clb "BMOH”ﬁ”LPi-"(R")
i=1

with |Ib |lemo = sup [Ib; lemo-
1

Proof. By the definition of M;(F)(x) and the fact Mff(]?)(x) ~M bi(f)(x), it suffices to consider Mfl(f)(x).
For any cube B = B(x, t), we split each f; = f? + f° where f? = fixog and 2B = B(x, 2t). Then, we get

> —
IMECF)rmy < IMEOXgIe + D IMECFR, ..o fm )X lor =1 + 1.

where a, ..., &, € {0, 0o} and each term in the sum )’ contains at least one a; = co and one a; = 0.

For I, by the boundedness of Mfl(f) (x) on the product L? spaces (see [12]), it is easy to see
m
I< Clbyliswo] JIfilppiat?/P. 3.1
i=1

To estimate I, first, we consider the case oy = ---= a,,, = 0o. For any cube Q = Q(z, r) with z € B(x, t) and
using the fact y; € B(x, 2t)° and z € B(x, t), we have

: ol = sup— L )
o 1 )] .[ Ib1(2) = bryllfs (yl)ldyl—srljg TR J bi(2) = bi(WIIfi(yldy;
aen Qz.r) N Bx,20°¢
< Csup j b12) -~ IO
ly, — 2"

2t
Q(z,r)(B(x,2t)°
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1b1(z) — bi(yIlfi(W)l dy

< Csup | " A
- X
>t Q(z,r)(B(x,2t)° h
b -b
< Csup |b1(z) = bi(y)Ilfi(y)l dy,
r>2t |y1 - Xln
B(x,2t)°
< J‘ LA(IIbi(2) = bi(y) dy,
[y, — xI?
B(x, 20
< J‘ Li(y)lIbi(2z) — (by)gl dy, + I LA()IIb1(y;) — (by)sl dy,
ly, — x| ly, — xI"
B(x,2t)¢ B(x,2t)¢
= A1 + Az.
For A;, we decompose it as
<y Lfi(y)lIbi(2) ; (by)gl dy,
ly, -«

J=1 jup\ 2ip
with 2+1B = B(x, 2*1t).

.. 2t 2+t
As it is easy to see T~ < [x - yj| < n

2

, which implies

G < 1 < G
|2*1B] ~ Ix - yI" T 12B]’

where C; and G, are positive constants depending on the dimension n and 2*!B = B(x, 2*!t). Thus, we
conclude that there exists a constant C depending on the dimension n, such that

1 _cC (3.2
- yl" 2B B
Then, we have
LA
A < |by(2) ~ (by)gl Lh )
vy — x|
B(x,2t)¢
S Iilyl
< |b1(Z) - (bl)B|z | fl_yidn dyl
j=1 2*1B\ 2B h
> C
< |bi(2) - (bl)B|Z 2718 LAi(ypldy,
j=1 Jj+1g
1/;
<biz) - (by)sl Y. ZE I iy IPrdy, | 12*1BI= 7
j=1 Jj+1

< CIby(2) — bpsllfilpma Y 127181 ()

j=1
< Clbi(2) - (bslIfill 1Bl ()

with the constant C depending on the dimension n.
For the estimates of A,, we decompose it as

A<y | IROMIBOL - Goslly - xidy,
J=1511p\ B
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Then, using Lemma 3.1, the H6lder inequality and (3.2) again, there is

MYy |21+1B| | i) - Bosidy,
j=1 2+
1/p1 -5
oo o
<Y lsz' Jirworan| | [ i - @osiniay,
j=1 2+1B 2+1B

< CliA IILpl,AZ|2f+1B|31(ﬁ-1)

j=1

1(A
< Clfill 1y llsaio 1BIA (A1)

where the positive constant C is depending on the dimension n.
Thus, we obtain

1 1 (A
ilop Q)] j [b1(2) = b (ldy; < C(lIbillsmo + 1b1(2) - (bl)Bl)llﬁllLPlr"lB|p1(" 1),

Q(z,r)
Moreover, for Mdy‘ withi =2, 3,..., m, there is
B(x, 261y, — " 71
J‘ If(y,)l i ()l dy,
ly; - i ly; — xI"
B(x,2t)¢ 21+IB\2IB
i (y)ldy;
i |21+IB| 2]_[3 i i
1/pi
1pN-1
< Z 21*1B| IIf(yl Pidy| 2B A
2*1B
< Clfillma Y1218 (1)
j=1
< Clflla B (1),
which implies
e A
M) e) = sup IQ( f £ () 1dy; < Il B (). (3.3)
Combining the aforementioned estimates, we may obtain
1/p
IIM”I(f‘*’) @Pxp@dz| = Clbylawo [ [Ifil B jdz
i=1
1/p
+ Huf Nl Bl | 1Bl 1f|b1<z> (bpldz
i=1
< Clb, ||BM01'[||ﬁ Ippiat /P,
i=1
Finally, for the case that aj =---= aj, = O for some {ji, ..., j;} ¢ {1,...,m} where 1 < [ < m, we only con-
sider the case ¢y = 00, &, = co and a3 =---= a,, = 0 since the other cases follow in a similar way. Using (2.4)

with m = 1, the Holder inequality and the aforementioned estimates, there is
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IMPCER, £5°, £5 s oo X Ir < My (FE)xgllm IMCF50)xglle IM(FS)xgllees - IM(f) Xl
1/;m

< Cllfy v |BIA/™1 |BI I(Ilb1 lemo + 1b1(2) — (b1)sl)dz
B

m

1A
X B2 f oo B2 BIYP [Tl 1B
i=3

m
< Clibyllswo [ [Ifi lmiat?'®,

i=1

where M(f)(x) is the commutator generated by the M(f)(x) and the symbol b, that is,

My(f)(x) = sup ﬁ IbG) — BO)IF(y)ldy.
Q3x
Q

Combining the estimates of I and II, we finish the proof of Lemma 3.2 from the definition of LP-A(R").
O

Using the similar ideas and estimates in the proof of Lemma 3.2, we can easily get the boundedness of

M(f) (x) on LPAR™ and we still give a sketch and simple proof of the following lemma for the sake of
completeness.

Lemma 3.3. Let 1/p = Y"1/ p; with p; > 1. Then, M(F) () is bounded from LPPAR™) x ---x LPmAR") to
LPARM with0 < A < n.

Proof. We only give some main steps of this proof. It suffices to study Mc(f) (x). Following the proof of
Lemma 3.2, we split each f; = f0 + f*° with f = fiX,5- Then, we decompose Mc(f) (z) as

M@ = MFO) @) + Y M f3) @) = b + D

where ay, ..., &, € {0, co} and each term in the sum )’ contains at least one a; = co.
Thus, it suffices to show the following three inequalities:

m
IMSLs s il < C I lpmiat /2, (3.4)
i=1
m
IMCFRs s fi iy < CT I NppiatAr? (3.5)
i=1
and
m
IMCFE 52, s fr Yy < CT [Wfillpmeat?/P, (3.6)
i=1

where each term in (3.6) contains at least one a; = co and one a; = 0.

By checking the proof of Lemma 3.2, we know that (3.4) follows from the boundedness of M(f) (x)
on product L? spaces (see [10]) and (3.5) follows from (3.3) and the multilinear Hoélder inequality on L?
spaces.

For (3.6), without loss of generality, using (3.3) and the similar estimates of | M 21(f°, £5°, f3°, ooy f,?l )Xg llzr in
the proof of Lemma 3.2, we know that (3.6) is also true. O

Lemma 3.4. [12] Let b= (by,..., by) and F = (fi,...,fm) be two collections of locally integrable functions,
then

I, MIF)| < M3(F(x) + 2(Zb,-<xﬂM(7>(x>.

i=1
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Lemma 3.5. [22] Let 1 < p < co and 0 < A < n. Then for any B(xo, t;), we have

n-A
Xpoco,to) 7wy < Ctv,

where C is a positive constant only depending on the dimension n.

4 Proof of Theorem 1.1.

In this section, we will give the proof of Theorem 1.1. First, using Lemmas 3.2-3.4, we know that (II)
implies (I).

Next, we show (I) = (III) and we only prove the case for b;. Choose f;(x) = x,(x) € LPiA with any cube Q.
Then, using Lemma 3.5, we have

m m
Itb, MOl < C[ I < CTTe = ¢t = clar,
i=1 i=1

where C is a positive constant depending on the dimension n.
From [12, p. 991], we have

M(biXg» Xg» -+ Xg) (%) = Mq(by) (x)

for x € Q and

1
Mo(b)(x) = sup —j|b1<x>|dx.
Q0p3x,QpcQ |Q0| o

From [2], we know that My(b;) > b; withi =1, 2,..., m. Then, for f = (X, -5 Xo (X)), we have
1/p 1/p

o d i = n-A
ﬁfma(bl)(x) ~boPdx| < ﬁ j Y IMa(b) ) - Bie)I| dx| < CIIB, MI(Plpa < ClQI.
n 0 n 0 i=1

Thus, we obtain
1/p

1
@QMQ(bo(x) I

which implies (I) = (III).
Finally, (II[) — (II) can be found in [2].

5 Proof of Theorem 1.3.

Proof of Theorem 1.3. Obviously, it suffices to consider Mfl(f) (x). As in the above section, for any cube
B = B(x, t), we split each f; as f; = f0 + f> with f° = fiXog- Thus, for any > 0, there is

m

L Bt MBP @) > prym <

. AqbiyFO B
w(B" w(B)" {ZEBOC B : M2(f0) (@) > 4}

m

{z € B(x, £) : MP(F)(2) > Tm}

1
+
w(B)™

m

1
!
+
z w(B)™
= I+ I + I,

2

{z € B(x, t) : ME(f3, .. fam) (@) > —m}
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where a;, ..., &y € {0, 0o} and each term in the sum )" contains at least one a; = co and a; = 0.
For I, using [12, Theorem 1.9] and (2.2), we have

1 & 12
I<C|b o L |dy.
<ql 1||BMow(B)m11jlu£ [ ; Jyl

oty @B B 1 q{lﬁ(yi)ljd‘
il 2T ]| 2o |ZB|2—|I; 5o

i=1

48

To give the estimates of II, for any Q = Q(z, r) with z € B(x, t), we show the following decomposition:

m
< Clbyllsmo] |

i=1 LI}’IH(;gL([Rn)

1 (o)
1 I 1B1(2) = Ba(nlf (yl)'dyﬂmu ) J = 0pldy,
b b (y)|d d
< supoo s j bi2) - BBl ) yﬂ G jm (idy,
bip = b dy[] = | Ii*Gpdy, = F+ H.
- sup j|( D8 = BV ylll‘g o !r)m (pldy; = F +
First, we have
1/m m

SuP\Q(z i LSLY

Q/(; . |bi(z) — (by)plt/™mdz

a)(B)

i=1

fzes: F>—}

As y; € (2B)° [ Q(z, r) and z € B(x, t). Following the discussion in Section 3 and using (3.2), we get

J Il dy, < C sup J Ifi (%) d
ly; — 2"
(2B)* N Q(z,r)

_C [ AW
B Elyi—xl"

w(B)™

sup A
r>0 | Q(Z r)l !

i

iyl d

— X|n

» i
ZJ*IB\ZIB Vi

| hray,

2+1B

iyl
=t |21+1B| I ( j G

2+1B

|2”1B|

8 TM@ W'Mg

Moreover, as w satisfies (1.1), there is

w(2*B)  w(2*'B) w(?B)  w(2B) P 5.1)
w(B)  w@B) w@'B) w2B) - °° ’
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Recall the condition of Theorem 1.3 and the fact 1 < Cy < 2¥ with 0 < y < n. Thus, using the Holder
inequality and (2.2), we obtain

1/m \M
1 B 1 ,[ | |fi (%)
€B:F ——— | |bi(2) = (by)g/™ ! dz
B {z > 8} o) ] 121 — sl q[z ] [ dy;
B = = ]+lB
. 1/m\m
1 < ()l
<C —jb ~ (bysldz I g
{IBI bi(z) — (by)s] 1‘! le,ﬂBlw(B) [ Jy,
A -
1/m\m
m )
|Blw(2*'B) |2+1B| I ()
< Clb - - o} dy:
b1 llzmo H lel“Blw(B) w@" BBl ) g
2+B
m . 1/m\m
|Blw(2*'B) Ifi]
< Cllb:llsmo ‘ [_]
111 z |2}+1B|CU(B) ﬁ LlogL,2*'B
s Ifi]
< Cllbillemo [ | ‘D[?lj ,
i=1 LLl'laong(IRn)
where C is a positive constant depending on y and the dimension n.
For H, we have
1/m
m) |m b -b 3 00
{z <B:H> _} <C 1 J‘ sup 1 J‘ [(by)s — b1 () dy,
w(B)" 4 wB)J | 150 1Q(z, 1) B
B Q(z,r)
1/m m

If y,)l
dz
I iy IQ(Z ) I b

i=2

Using (3.2) again, we know that there exists a positive constant C depending on the dimension n,
such that

1/m 1/m
sup [(bos — bW ()ﬁ)l dy| < [(bo)s — b1 ay,
r>0 |Q(Z9 B . BlX - Y1|n
(2B)
1/m
< 'z": |b1(yl)ﬁ|_ (b1)3||r!f1(y1)| dy,
J=15js1p\ 2iB X~ h
1/m
« C [by(yp) — (bl
<|2 12+1B] I = BIB —
=1 2+1B\ 2B
1/m
< z |2jﬁB I |(b1)21'+1B —lgbl)B”fl()ﬁ)l dyl
J=1 218\ 2B
1/m
« C [(b1)yi+15 = bi(yIIi(yy)l
z j+1 dyl
- 124'B| B

2+1B\ 2B
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Thus, we obtain

1 m) ™
ze€B:H>— <H + H,,
w(B)™ 4

where

1/m 1/m m

m b " _ b m
| L[5 [CORRPECAPIT VAT I o (. Ilﬁ 0l gl
w®B)J|3127Bl _ J B i2| >0 |Q(z, r)
B 2+1B\ 2B

and

1/m 1/m M

1o(le ¢ |(B)1s — AR " i £
H, = - d dy| dz
’ w(B)! L J B s iae J g

2+1B\ 2B - Q(z,r)

For H;, using Lemma 3.1, we have

1/m
200 4
- ‘U(B||ll_! r>0 IQ(,)| _[ A
1/m\™Mm
> A 4
Z 2B z,lgl(bl)f" byl =y
1/m
Iy
(l)(B | |ll_! = |2}+1B| [ del
1/m m
Z |2”1B| '[ [(by)s — (b1)2,+1B||f1(y1)|

2J+1B

1/m

m .
|Blw(2+'B)  |2*B| 1 f I ()
<C . (o) dy;
H .Z|21+1B|w(B) w(@*'B) |27B| J g )
2+B

) 1/m\™m
v w@*B)( + 1B LA()!
Y — “—[|b1llsmo dy,
- w(Z*'B)w(B)|2*'B] : B
J= Ji+1B
1 j1 Hm
Blw(2*'B 2+B :
< Clib1lismo H Z |2]|+1; B) | 2].+11|; HCD(If—le
i=2 |\ j= 1 lwB)  wl ) B LlogL,2*'B
1/m\m

iw(zf“B)(h DBl |2*'B] 1 q)[lfl(ymj d,

= w(B)|2+1B| w(2*1B) |2+1B| . B
]= 2}+IB

m
< Clbilswo [ | @[V—"j ,

i=1 B Lpigg R™)

where C is a positive constant depending on y and the dimension n.
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For H,, there is

1/m 1/m\™
Bl 1 I If? 0l 4 i j |f1(y1)|
H < b by),i+t
< e L5 IQ(z, i ¢ z|21+1B| 1D1(0) = (B
Then, using (2.3), we have
3 Al 4
Z 21+1B| J-lbl(}ﬁ (by)yiigl 2= dy,

2J+1g

<C lelh(-) = (b)y+glexpr, 2+
j=1

o

o

LlogL,2*'B

LlogL,2*'B

[ee]

< Clib:llBmo Z

Thus, we obtain

—

/m

o

1/m
m | 1Bl |f<y»| {f w@"B)B| [2B]

<Clb j j
b1 1lBmo ll—! w(B) |Q| [21B||w(B)| w(2"'B)

1/m
B If; (x)l 3
H, < Clb1llsmo w(B) []jsup |Q(z )l -[ [Z

i=2| >0 j=1 LlogL,2*B

1/m
B LlogL,2*'B

j=1
Similar to the estimates of Hj, it is easy to see

m
H, < Clibillsmo [ |

i=1

q)(lf‘_ilj ,
ﬁ LI}‘luo)gL([Rn)
where C is a positive constant depending on y and the dimension n.
Combining the estimates of H; and H,, we get
B

m
{ €B:H> B }
For III, without loss of generality, we only consider ¢y = &, = 0O and a3 = a4 = a5 =---= @y = co.
Recall the definition of My(f)(x) and M(f)(x). Then, using the Holder inequality for weak L? space (see
(19, p. 16]) and (2.4) with m = 1, we obtain

m

m
< Clibillemo [ |

i=1

w(B)™
(B) Liog R")

1 1
S |z eB s |b1(y1)—b1<z>||f1°(y1)|dy1@£|f2°<y2)|dyz

m

! 3 L > L ) m
X @j”} (y3)ldys |Q|.[|f4 (y)ldy, |Q|,[|fm ,ldy,, > B

IN

(B)ml{z € B : My(fP)M(f2)M(f5°) -+ M(f) > BmI™

IN

(B),,, " WM FOIMUDIMUFS) - MU, o
1

I|Mb1(f1 Mzzeog) 1Moy IMUfS®) -+ MUt oo -
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According to the endpoint estimates of M, (see [1]), (2.2) and the definition of Lﬁ’l‘gg L([RM, it is easy to get

ot

For [|[M(f? )lIp1os), noting the fact M(f)(x) is bounded from L(R™) to L"*(R"), it is easy to see

G

Finally, using the fact LY(B) — L>*°(B) and adopting some similar estimates in the proof of II, we can
easily obtain
B

Combining the estimates of I, II and III, we finish the proof of Theorem 1.3.

1
w(B)B

IMp,(FO)lIpreoy < Clibrllemo

1
mi@(mndyl < Clbylsmo

1, n
Liog 1R

1
WHM(sz)"LW(B) <C

LLl’lucig L([Rn)

1 (o] (o] “
@ MU MUl < ]

LLl'laojg L([Rn)
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