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Abstract: In this paper, we study the following generalized Kadomtsev-Petviashvili equation
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the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without
Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish
the existence of ground state solutions in �N .
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1 Introduction

This article is concerned with the following generalized Kadomtsev-Petviashvili equation:

+ + ( ( )) =
−u u h u D uΔ ,t xxx x x y

1 (1.1)

where � � �( ) ∈ × ×
+ −t x y, , N 1, ≥N 2, ∫( ) = ( )
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To find a solitary wave for (1.1), it needs us to get a solution u of the form ( ) = ( − )u t x y u x τt y, , , , with
≥τ 0. Hence, equation (1.1) can be rewritten as:

�− + + ( ( )) =
−τu u h u D uΔ in .x xxx x x y

N1 (1.2)

If we choose ( ) =h s s2 in (1.1), then equation (1.1) is a two-dimensional generalization of the Korteweg-
de Vries equation, which describes long dispersive waves in mathematical models, see [1]. When ( ) = ∣ ∣h s s sp

with =p m
n , where m and n are relative prime numbers, and n is odd, Bouard and Saut [2,3] proved that

there is a solitary wave for (1.1) with ≤ <p1 4, if =N 2, or ≤ <p1 4
3 , if =N 3, via the concentration com-
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pactness principle from [4,5]. In [6], Willem proved the existence of solitary waves of (1.1) as =N 2 and
� �∈ ( )h C ,1 . In [7], Xuan extended the results obtained by [6] to higher dimension. In [8], ( )h u was replaced

by ( )∣ ∣
−Q x y u u, p 2 , and Liang and Su had obtained nontrivial solutions of (1.1). In [9], Xu and Wei studied

infinitely many solutions for + ( ( )) =
−u h u D uΔxxx x x y

1 with the Ambrosetti-Rabinowitz condition in bounded
domain. For related contributions to study of solitary waves of the generalized Kadomtsev-Petviashvili equa-
tions, we refer to previous studies [10,11].

The aim of this paper is to prove the existence of multiple solutions of (1.3) in bounded domain without
condition (AR), which is to ensure the boundedness of the (PS) sequences of the corresponding func-
tional, and obtain the ground state solutions of (1.2) in �N . In what follows, we assume that the function

� �→h : satisfies the following conditions:
(h1) ��∈ ( )h , ( ) =h 0 0;
(h2) for some ∈ ( − )p N1, ¯ 1 , where =

−

−

N̄ N
N

4 2
2 3 , = =∣ ∣→+∞

( )

∣ ∣
→

( )

∣ ∣

lim lim 0t
h t
t t

h t
t0p ;

(h3) ( ) = − (− )h t h t , = +∞∣ ∣→+∞

( )

∣ ∣

lim t
H t

t 2 , where ∫( ) = ( )H t h r rd
t

0
;

(h4) there exist > >μ κ2, 0 such that ( ) ≤ ( ) +μH t th t κt2;
(h5) there exists >μ 2 such that ≤ ( ) ≤ ( )μH t h t t0 .

Consider the following system,

− + + ( ( )) =

= ∂

−τu u h u D u
u

Δ , in Ω,
0, on Ω,

x xxx x x y
1




(1.3)

where �⊂Ω N is a bounded domain.

Now, we can state our first result.

Theorem 1.1. Assume that ( )h1 –( )h4 are satisfied, then equation (1.3) possesses infinitely many nontrivial solu-
tions in Ω, where �⊂Ω N is a bounded domain.

Our second result is as follows.

Theorem 1.2. Assume that ( )h1 –( )h2 and ( )h5 are satisfied, then equation (1.2) has a ground state solution.

Notations. Throughout the paper, we denote by ∥⋅∥p the usual norm of Lebesgue space �( )L p N . ∗X is
the dual space of X . The symbol C denotes a positive constant and may vary from line to line.

2 Preliminary

In this section, we want to introduce the functional setting and some main results. At first, we present
the functional setting (see [7,11]).

Definition 2.1. [7] On ��= { ∈ ( )}
∞Y g g:x

N
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�
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− −u v u v D uD v τuv V τ, d , 0,x x x y x y

1 1

N
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where ( )∇ = …
∂
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, ,y y yN1 1
and =V x yd d d .

If there exists a sequence { } ⊂u Yn such that →u un a.e. on �N , and ∥ − ∥ →u u 0j k as → ∞j k, , then

we say that � �→u : N belongs to X .

Definition 2.2. [7] On ��= { ∈ ( )}
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where ( )∇ = …
∂

∂

∂

∂
−

, ,y y yN1 1
and =V x yd d d .

If there exists a sequence { } ⊂u Yn such that →u un a.e. on�N , and∥ − ∥ →u u 0j k 0 as → ∞j k, , then we

say that � �→u : N belongs to X0.

Lemma 2.1. [7,11,12] The following continuous embeddings hold.
(i) the embeddings ↪X X0 are continuous;
(ii) the embeddings �↪ ( )X Lq N , for ≤ ≤q N1 ¯ are continuous;

(iii) the embeddings �↪ ( )X L q N
loc , for ≤ <q N1 ¯ are compact;

(iv) the embeddings �↪ ( )X LN N
0

¯ are continuous.

Lemma 2.2. [14] Let X be an infinite dimensional Banach space, and there exists a finite dimensional spaceW
such that = ⊕X W V . �∈ ( )I C1 satisfies the ( )PS condition, and
(i) ( ) = (− )I u I u for all ∈u X, ( ) =I 0 0;
(ii) there exist >ρ 0, >α 0 such that ∣ ∩ ≥∂I V αBρ ;

(iii) for any finite dimensional subspace ⊂Y X , there is = ( ) >R R Y 0 such that ( ) ≤I u 0 onY B\ R.
Then I possesses an unbounded sequence of critical values.

Lemma 2.3. [7] Assume that { }un is a bounded sequence in X . If

�
∫ ∣ ∣ =

→+∞
( )∈

(( ))

u Vlim sup d 0,
n x y

B x y

n
,

,

2
N

r

then →u 0n in �( )Lq N for all ∈ ( )q N2, ¯ .

Lemma 2.4. [13] Let ( ∥⋅∥)X, be a Banach space and �⊂
+T be an interval. Consider a family of C1 functionals

on X of the form

( ) = ( ) − ( ) ∀ ∈I u A u λB u λ T,λ

with ( ) ≥B u 0 and either ( ) → +∞A u or ( ) → +∞B u as ∥ ∥ → +∞u . If there are two points ∈v v X,1 2 such that

= ( ( )) > { ( ) ( )} ∀ ∈

∈ ∈[ ]

c I γ t I v I v λ Tinf max max , ,λ
γ t

λ λ λ
Γ 0,1

1 2

where

�= { ∈ ([ ] ) ( ) = ( ) = }γ X γ v γ vΓ 0, 1 , : 0 , 1 .1 2

Then, for almost every ∈λ T , there exists a bounded ( )PS cλ sequence in X , and the mapping →λ cλ is non-
increasing and left continuous.
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3 Proof of Theorem 1.1

In this section, we consider the boundary value problem (1.3). The energy functional �→I X: given by

∫( ) = ∥ ∥ − ( )I u u H u V1
2

d2

Ω

and

∫ ∫′( )[ ] = ( + ∇ ∇ + ) − ( )
− −I u v u v D uD v τuv V h u v Vd d .x x x y x y

Ω

1 1

Ω

Lemma 3.1. Suppose h satisfies ( )h1 –( )h4 . If { } ⊂u Xn satisfies
(i) { ( )}I un is bounded;
(ii) ⟨ ′( ) ⟩ →I u u, 0n n ,

then { }un is bounded in X .

Proof. If { }un is unbounded in X , we can find a subsequence still denoted by { }un such that { } → +∞un .
Let =
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vn
u
u

n

n
, we have ∥ ∥ =v 1n . Thus, we may assume that ⇀v vn in X . As the embedding �↪ ( )X L N

loc
2 is

compact, we have →v vn in ( )L Ω2 . By ( )h4 and ( )i , there exists >c 0 such that
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which is a contradiction. Hence, { }un is bounded in X . □

Lemma 3.2. Suppose h satisfies ( )h1 –( )h4 . Then the functional I satisfies the (PS) condition.

Proof. To prove that I satisfies the (PS) condition, we only need to prove { } ⊂u Xn has a convergent sub-
sequence, where { }un obtained by Lemma 3.1. As { }un is bounded in X , there exists a subsequence still
denoted by { }un and ∈u X0 such that ⇀u un 0 in X and →u un 0 in ( )L Ωq for ≤ <q N1 ¯ . From ( )h2 , we have
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It follows from ⇀u un 0 in X and ′( ) ∈
∗I u X0 that ⟨ ′( ) − ⟩ →I u u u, 0n0 0 . And as ′( ) →I u 0n in ∗X , it is easy to

obtain

⟨ ′( ) − ⟩ ≤ ∥ ′( )∥ ∥ − ∥ →( )
∗I u u u I u u u, 0.n n n X n X0 0 Ω

Therefore,

⟨ ′( ) − ′( ) − ⟩ = ⟨ ′( ) − ⟩ − ⟨ ′( ) − ⟩ →I u I u u u I u u u I u u u, , , 0,n n n n n0 0 0 0 0

as → +∞n .
Thus, we have

∫∥ − ∥ = ⟨ ′( ) − ′( ) − ⟩ + (( ( ) − ( ))( − )) →u u I u I u u u h u h u u u V, d 0,n n n n n0
2

0 0

Ω

0 0

as → +∞n . □

Proof of Theorem 1.1. We have verified that I satisfies the (PS) condition. It follows from ( )h5 that I is
an even function. As X is a separable space, X has orthonormal basis { }ei . Define �≔X ej j, ≔ ⊕

=
W Xk j

k j1 ,

≔ ⊕
= +

∞V Xk j k j1 . Let =W Wk, =V Vk, clearly = ⊕X W V and < ∞Wdim .

Next, we verify that I satisfies (ii) in Lemmas 2.2. By Lemma 2.1, for all ∈u V , we have

∫( ) = ∥ ∥ − ( ) ≥ ∥ ∥ − ∥ ∥ + ∥ ∥ ≥ ∥ ∥ − ( ∥ ∥ + ∥ ∥ )
+

+ +I u u H u V u ε u C
p

u u C ε u C u1
2

d 1
2 2

1
2

.ε
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1
1 2 2 1
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




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Then, there exists >ρ 0 small enough, >α 0 such that ( ) ≥ >I u α 0 as ∥ ∥ =u ρ.
Now, we verify that I satisfies (iii) in Lemma 2.2. For any finite dimensional subspace ⊂Y X , since

= +∞∣ ∣→+∞

( )

∣ ∣

lim t
H t

t 2 , for ≠u 0,

∫ ∫( ) = ∥ ∥ − ( ) = ∥ ∥ −

( )

( )

→ −∞I ru r u H ru V r u H ru
ru

u V
2

d
2

2 d ,
2

2
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2
2

Ω
2

2
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
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
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as → +∞r . Thus, there exists >r 00 such that ( ) <I ru 0 for all ≥ >r r 00 . So, we can conclude that there
exists a ( ) >R Y 0 such that ( ) ≤I u 0 on ( )Y B\ R Y .

Hence, according to Lemma 2.2, equation (1.3) possesses infinitely many nontrivial solutions. □

4 Proof of Theorem 1.2

In this section, the weak solutions of (1.2) are the critical points of the energy functional I , where

�
∫( ) = ∥ ∥ − ( )I u u H u Vd1

2
2

N . As h satisfies ( )h1 –( )h2 and ( )h5 , it is clear that I is of class �( )C X,1 . To apply

Jeanjean’s trick [ ]13 , we give a family of energy functions

�

∫( ) = ∥ ∥ − ( ) ∀ ∈I u u λ H u V λ1
2

d , 1
2

, 1 .λ
2

N







Lemma 4.1. Suppose that h satisfies ( )h1 –( )h2 and ( )h5 . Then

(i) there exists ∈ ⧹{ }v X 0 such that ( ) <I v 0λ for all ∈λ , 11
2




;

(ii) = ( ( )) > { ( ) ( )}
∈ ∈[ ]

c I γ t I I vinf max max 0 ,λ γ t λ λ λΓ 0,1 for all ∈λ , 11
2




, where

�= { ∈ ([ ] ) ( ) = ( ) = }γ X γ γ vΓ 0, 1 , : 0 0, 1 .
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Proof. (i) By ( )h5 , we have = +∞→+∞

( )lims
H s

s2 . Furthermore, for some ∈u X

� �

∫ ∫( ) = ∥ ∥ − ( ) ≤ ∥ ∥ −

( )
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Thus, there exists >t 00 such that ( ) <I t u 0λ 0 . By taking =v t u0 , we have ( ) <I v 0λ .

(ii) By virtue of ( )h2 , for any >ε 0 and some ∈ ( − )p N1, ¯ 1 , there exists >C 0ε such that

�∣ ( )∣ ≤ ∣ ∣ + ∣ ∣ ∀ ∈
+H t ε t C

p
t t

2
.ε p2 1

By Lemma 2.3, we have

�
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2 2
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1
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Then, there exists >ρ 0 small enough such that

≔ ( ) > = ( ) > ( )

∥ ∥=

b I u I I vinf 0 0 .
u ρ

λ λ λ

Therefore, > { ( ) ( )}c I I vmax 0 ,λ λ λ . □

Combining Lemma 4.1 with Theorem 2.6, we have the following conclusion.

Lemma 4.2. Supposeh satisfies( )h1 –( )h2 and ( )h5 . For almost every ∈λ , 11
2




, there is a bounded sequence { }vm ,

such that ( ) →I v cλ m λ in X and ′ ( ) →I v 0λ m in the dual ∗X of X .

Lemma 4.3. If { }vm is a bounded sequence in X and � ∫ ∣ ∣ =→+∞ ( )∈
(( ))

v Vlim sup d 0m x y B x y m, ,
2N

1
, then

�
∫ ( ) =

→+∞
G vlim 0m mN , where ( ) = ( ) − ( )G v h v v H vm m m m

1
2 .

Proof. On one hand, by simple calculations, we derive

�

∫ ( ) ≤ ∥ ∥ +

+

∥ ∥
+

+H v V ε v C
p

vd
2 1

,m m
ε

m p
p

2
2

1
1

N

�

∫ ( ) ≤ ∥ ∥ + ∥ ∥
+

+h v v V ε v C vd .m m m ε m p
p

2
2

1
1

N

On the other hand, by Lemma 2.3, we have →v 0m in �( )Lq N for all ∈ ( )q N2, ¯ . Hence, we can conclude that

�

∫ ( ) =

→+∞

H v Vlim d 0,
m

m
N

�

∫ ( ) =

→+∞

h v v Vlim d 0.
m

m m
N

Thus,
�

∫ ( ) =
→+∞

G v Vlim d 0m mN . □

Lemma 4.4. If { } ⊂v Xm is the sequence obtained by Lemma 4.2, then for a.e. ∈λ , 11
2




, there exists a se-

quence of points � �{( )} ⊂ ×
−x y,m m

N 1, ( ) ≔ ( − − )u x y v x x y y, ,m m m m , such that
(i) ⇀ ≠u u 0m λ in X;
(ii) ′ ( ) =I u 0λ λ in ∗X ;
(iii) ( ) ≤I u cλ λ λ in X; and
(iv) there exists >M 0 such that ( ) ≥I u Mλ λ .
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Proof. By Lemma 4.2, we know that for almost every ∈λ , 11
2




, there exists a bounded sequence { }vm that

satisfy ( ) →I v cλ m λ in X and ′ ( ) →I v 0λ m in ∗X as → +∞m . Furthermore,

�

∫ ( ) = ( ) − ⟨ ′ ( ) ⟩ → > → +∞G v I v I v v c m1
2

, 0 as .m λ m λ m m λ
N

By Lemma 4.3, there exist a sequence of points � �{( )} ⊂ ×
−x y,m m

N 1 and >α 0, such that

∫ ≥ >

( )

v V αd 0.
B x y

m

,

2

m m1

Let ( ) ≔ ( − − )u x y v x x y y, ,m m m m . By the invariance translations of Iλ, as → +∞m , we have that ( ) →I u cλ m λ
in X and ′ ( ) →I u 0λ m in ∗X . Since { }um is bounded, there exists ∈u Xλ such that ⇀u um λ in X .

In the following, we complete the proof of this lemma.
(i) It follows from Lemma 2.1 that

∫ ∫∥ ∥ ≥ ∥ ∥ ≥ = ≥ >

( )

→+∞

( )

C u u u V u V αd lim d 0,λ λ

B

λ
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B

m
2

2
2

0

2

0

2

1 1

and thus obtain ≢u 0λ in X .
(ii) As �( )

∞C N
0 is dense in X , we only need to check that ⟨ ′ ( ) ⟩ =I u φ, 0λ λ for any ∈φ X . We have

�

∫⟨ ′ ( ) ⟩ − ⟨ ′ ( ) ⟩ = ( − ) − [ ( ) − ( )] →I u φ I u φ u u φ λ h u h u φ V, , , d 0,λ m λ λ m λ m λ
N

since ⇀u um λ in X , →u um λ in �( )L p N
loc for ≤ ≤p N1 ¯ . It follows from ′ ( ) →I u 0λ m that ′ ( ) =I u 0λ λ .

(iii) By ( )h5 and Fatou’s Lemma, we get
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∫

∫

= ( ) − ⟨ ′ ( ) ⟩ = ( )

≥ ( ) = ( ) − ⟨ ′ ( ) ⟩ = ( )

→+∞ →+∞

c I u I u u λ G u V

λ G u V I u I u u I u

lim 1
2

, lim d

d 1
2

, .

λ
m

λ m λ m m
m

m

λ λ λ λ λ λ λ λ

N

N







(iv) Combining (ii) with ( )h2 and Lemma 2.1, we obtain that for any >ε 0, there exists >C 0ε such that

� �

∫ ∫∥ ∥ = ( ) ≤ ( ) ≤ ( ∥ ∥ + ∥ ∥ )
+u λ h u u V h u u V C ε u C ud d .λ λ λ λ λ λ ε λ

p2 2 1

N N

Then, there exists >β 0 such that ∥ ∥ ≥ >u β 0λ . Therefore,

�

∫

( ) = ( ) − ⟨ ′ ( ) ⟩

= − ∥ ∥ + ( ) − ( )

≥ − ∥ ∥ ≥ − ≔ >

I u I u
μ

I u u

μ
u

μ
h u u H u V

μ
u

μ
β M

1 ,

1
2

1 1 d

1
2

1 1
2

1 0.

λ λ λ λ λ λ λ

λ λ λ λ

λ

2

2 2

N































This completes the proof. □

Now, according to Lemmas 4.2 and 4.4, there exists a sequence {( )} ⊂ ×λ u X, , 1n λ
1
2n




 , such that

(i) →λ 1n as → +∞n ; (ii) ≢u 0λn , ≤ ( ) ≤M I u cλ λ λn n n and ′ ( ) =I u 0λ λn n .

Lemma 4.5. (Pohozaev identity, [7]) Suppose h satisfies ( )h1 –( )h2 . If ∈u X is a weak solution of the equation:

�− + + ( ( )) =
−τu u λ h u D uΔ in ,x xxx x x y

N1
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then we have the following Pohozaev identity:

�

� ∫( ) ≔

−

∥ ∥ + ( − ) − ( ) =u N u N τ u λH u V2 3
2

2 1
2

d 0.λ 0
2 2

N








Proof of Theorem 1.2. By Lemma 4.5, if { }uλn is nontrivial solution of equation

�− + + ( ( )) =
−τu u λ h u D uΔ in ,x xxx n x x y

N1

then { }uλn satisfies the following equation:

� �

� ∫ ∫( ) =

−

∥ ∥ +

( − )

− ( − ) ( ) =u N u N τ u V N λ H u V2 3
2

2 1
2

d 2 1 d 0.λ λ λ λ n λ0
2 2

n n n

N
n

N

n

Remember that

�≥ ( ) −

−

( ) =

−

∥ ∥c I u
N

u
N

u1
2 1

1
2 1

.λ λ λ λ λ λn 0
2

n n n n n

So,

∥ ∥ ≤ ( − ) ≤ ( − )u N c N c2 1 2 1 ,λ λ0
2

n n
1
2

it follows from Lemma 2.1 that { }uλn is bounded in X0 and also in LN̄ .
Since ′ ( ) =I u 0λ λn n , we have

�

∫⟨ ′ ( ) ⟩ = ∥ ∥ − ( ) =I u u u λ h u u V, d 0.λ λ λ λ n λ λ
2

n n n n

N

n n

Moreover, by Lemma 2.1, for any >ε 0, there exists >C 0ε such that

�

∫∥ ∥ = ( ) ≤ ∥ ∥ + ∥ ∥u λ h u u V εC u C ud .λ n λ λ λ ε λ N
N2 2
¯
¯

n

N

n n n n

Then, for ε small enough, there exists a constant >C 0 such that ∥ ∥ ≤u Cλ
2

n , since { }uλn is bounded in LN̄ .
Thus, { }uλn is bounded in X . By the facts that for any ∈φ X,

�

∫⟨ ′( ) ⟩ = ⟨ ′ ( ) ⟩ + ( − ) ( )I u φ I u φ λ h u φ V, , 1 d ,λ λ λ n λn n n

N

n

�

∫( ) = ( ) + ( − ) ( )I u I u λ H u V1 d ,λ λ λ n λn n n

N

n

and { }uλn is bounded in X , it follows that ≤ ( ) ≤→+∞M I u climn λ 1n and ′( ) =→+∞I ulim 0n λn . Up to a sub-
sequence, there exists a subsequence still denoted by { }uλn and ∈u X0 such that ⇀u uλ 0n in X . By using
the method in Lemma 4.4, we can obtain the existence of a nontrivial solution u0 for I such that ′( ) =I u 00
and ( ) ≤I u c0 1. Thus,u0 is a nontrivial solution of (1.2). Define ≔ { ( ) ≠ ′( ) = }m I u u I uinf : 0, 0 . Let { }un be a se-
quence such that ′( ) =I u 0n and ( ) →I u mn . Similar to arguments in Lemma 4.4, we can prove that there exists

∈u X¯ such that ′( ) =I ū 0 and ( ) ≤I u m¯ . By the definition of m, we have ≤ ( )m I ū . Hence, ( ) =I u m¯ ¯ , which
shows that ū is a ground state solution of (1.2). □
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