
Research Article

Wieslaw A. Dudek* and Robert A. R. Monzo

Pentagonal quasigroups,
their translatability and parastrophes

https://doi.org/10.1515/math-2021-0004
received August 21, 2020; accepted November 16, 2020

Abstract: Any pentagonal quasigroup Q is proved to have the product = ( ) + − ( )xy φ x y φ y , where ( +)Q, is
an Abelian group, φ is its regular automorphism satisfying − + − + =φ φ φ φ ε 04 3 2 and ε is the identity
mapping. All Abelian groups of order <n 100 inducing pentagonal quasigroups are determined. The variety
of commutative, idempotent, medial groupoids satisfying the pentagonal identity ( ⋅ ) ⋅ =xy x y x y is proved
to be the variety of commutative, pentagonal quasigroups, whose spectrum is { = …}n11 : 0, 1, 2,n . We
prove that the only translatable commutative pentagonal quasigroup is = ( + )( )xy x y6 6 mod 11 . The para-
strophes of a pentagonal quasigroup are classified according to well-known types of idempotent transla-
table quasigroups. The translatability of a pentagonal quasigroup induced by the group �n and its auto-
morphism ( ) =φ x ax is proved to determine the value of a and the range of values of n.
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1 Introduction

A latin square ×n n is k-translatable if it is obtained by the following rule: if the first row is …a a a, , , n1 2 ,
then the qth row is obtained from the ( − )q 1 -st row by taking the last k entries in the ( − )q 1 -st row and
inserting them as the first k entries of the qth row and by taking the first −n k entries of the ( − )q 1 -st row
and inserting them as the last −n k entries of the qth row, where ∈ { … }q n2, 3, , . An algebraic interpreta-
tion of translatable latin squares is translatable quasigroups.

Pentagonal quasigroups are medial idempotent quasigroups with a beautiful geometric interpretation.
Any identity in the pentagonal quasigroup can be interpreted as a theorem of the Euclidean geometry which
can be proved directly, but the theory of pentagonal quasigroups gives a better insight into the mutual
relations of such theorems.

This paper was inspired by the work of Vidak in [1]. It is also a continuation of the ideas appearing
in [2]. All results here follow from the main result, Theorem 2.1, which gives a new characterization of
a pentagonal quasigroup ( ⋅)Q, in terms of a regular automorphism φ on an Abelian group ( +)Q, , where

= ( ) + − ( )xy φ x y φ y , − + − + =φ φ φ φ ε 04 3 2 and ε is the identity mapping onQ. We say then that ( +)Q,
induces the pentagonal quasigroup ( ⋅)Q, .

Notice that = ( − )( ) + − ( − )( )xy ε φ y x ε φ x . The characterization of a pentagonal quasigroup ( ⋅)Q,
given by Vidak in [1] is that = ( ) + − ( )xy ψ y x ψ x for some automorphism ψ on an Abelian group ( +)Q, ,
where − + − + =ψ ψ ψ ψ ε3 4 2 04 3 2 . Now since, when − + − + =φ φ φ φ ε 04 3 2 , ( − ) − ( − ) +ε φ ε φ34 3

( − ) − ( − ) + =ε φ ε φ ε4 2 02 , we can think of ψ as equal to −ε φ.
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In Theorem 3.3, we prove that a pentagonal quasigroup induced by the group �n has the form
= ( + ( − ) )( )xy ax a y n1 mod , where ( − + − + ) = ( )a a a a n1 0 mod4 3 2 . Vidak’s identity gives the second

component, namely, ( ) = ( − ) ( )ψ x a x n1 mod .
As a consequence of our characterization, all Abelian groups of order <n 100 that induce pentagonal

quasigroups are determined. Also, the variety of commutative, idempotent, medial groupoids satisfying the
pentagonal identity ( ⋅ ) ⋅ =xy x y x y is proved in Corollary 3.10 to be the variety of commutative, pentagonal
quasigroups, whose spectrum is { = …}n11 : 0, 1, 2,n . The form of commutative pentagonal quasigroups is
determined in Proposition 3.9 and as a corollary we prove that the only translatable commutative pentagonal
quasigroup is = ( + )( )xy x y6 6 mod 11 . In Theorem 4.2, we prove that the translatability of a pentagonal quasi-
group induced by the group �n and its automorphism ( ) =φ x ax determines the value of a and all the possible
values of n. This characterizes translatable latin squares isotopic to the Cayley table of the cyclic group of order n.

Using results from [3] in the last table we classify the parastrophes of pentagonal quasigroups in terms
of well-known types of idempotent translatable quasigroups and indirectly latin squares conjugates with
an idempotent translatable latin square of certain types.

2 Existence of pentagonal quasigroups

All considered quasigroups are finite and have form = { … }Q n1, 2, , with the natural ordering, which is
always possible by renumeration of elements. For simplicity, instead of ( + ) ≡ ( )x y z nmod we write
[ + ] = [ ]x y zn n. Also, in calculations modulo n we identify 0 with n.

According to [1] a quasigroup ( ⋅)Q, is called pentagonal if it satisfies the following three identities:
=xx x, (1)

⋅ = ⋅xy zu xz yu, (2)
( ⋅ ) ⋅ =xy x y x y. (3)

Let us recall that a mapping φ of a group ( +)Q, onto ( +)Q, is called regular if ( ) =φ x x holds only
for =x 0.

Below we present a full characterization of pentagonal quasigroups.

Theorem 2.1. A groupoid ( ⋅)Q, is a pentagonal quasigroup if and only if onQ one can define an Abelian group
( +)Q, and its regular automorphism φ such that

⋅ = ( ) + ( − )( )x y φ x ε φ y , (4)

− + − + =φ φ φ φ ε 0,4 3 2 (5)
where ε is the identity automorphism.

Proof. By the Toyoda theorem (see, for example, [4]), any quasigroup ( ⋅)Q, satisfying (1) and (2) can be
presented in the form (4), where ( +)Q, is an Abelian group andφ is its automorphism. Applying this fact to (3)
and putting =y 0 we obtain (5). From (5) it follows that the automorphism φ is regular.

Conversely, a groupoid ( ⋅)Q, defined by (4), where φ is a regular automorphism of an Abelian group
( +)Q, , is a quasigroup satisfying (1) and (2). Applying (5) to = −z x y and using (4), after simple calcula-
tions, we obtain (3). □

This means that pentagonal quasigroups are isotopic to the group inducing them. Thus, pentagonal
quasigroups are isotopic if and only if they are induced by isomorphic groups.

Example 2.2. Let �( +), be the additive group of complex numbers. Then ( ) =φ z ze iπ
5 is a regular auto-

morphism of �( +), satisfying (5). Thus, by Theorem 2.1, the set of complex numbers with multiplication
defined by (4) is an infinite pentagonal quasigroup.
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As a consequence of the aforementioned theorem we obtain:

Corollary 2.3. On a pentagonal quasigroup ( ⋅)Q, one can define an Abelian group ( +)Q, and its regular auto-
morphism φ such that (4) holds and

+ = ≠ − = − ( +) =φ ε and φ ε or φ ε and Q0 exp , 5,5

where ε is the identity automorphism.

Corollary 2.4. A finite Abelian group inducing a pentagonal quasigroup is the direct product of cyclic groups
of order 5 or has a regular automorphism of order 10.

The converse statement is not true. The automorphism ( ) = [ ]φ x x4 25 of the group �25 is regular and
satisfies the aforementioned condition, but �25 with the multiplication ⋅ = [ + ]x y x y4 22 25 is not a penta-
gonal quasigroup.

The following lemma is obvious.

Lemma 2.5. The direct product of pentagonal quasigroups is also a pentagonal quasigroup.

Corollary 2.6. For every t there is a pentagonal quasigroup of order 5t.

Proof. For =t 0 it is trivial quasigroup. For =t 1 it is induced by the additive group �5 and has the form
⋅ = [ + ]x y x y4 2 5. For >t 1 it is the direct product of t copies of the last quasigroup. □

Proposition 2.7. If finite Abelian groups G1 and G2 have relatively prime orders, then any pentagonal quasi-
group induced by the group ×G G1 2 is the direct product of pentagonal quasigroups induced by groups G1

and G2.

Proof. If G1 and G2 have relatively prime orders, then, according to Lemma 2.1 in [5], ( × ) ≅G GAut 1 2
( ) × ( )G GAut Aut1 2 . So, each automorphism φ of ×G G1 2 can be treated as an automorphism of the form

= ( )φ φ φ,1 2 , whereφ φ,1 2 are automorphisms ofG1 andG2, respectively. Obviously,φ is regular if and only if
φ1 and φ2 are regular. Moreover, φ satisfies (5) if and only if φ1 and φ2 satisfy (5). Thus, a pentagonal
quasigroup induced by ×G G1 2 is the direct product of pentagonal quasigroups induced by G1 and G2. □

To determine Abelian groups that induce pentagonal quasigroups, we will need the following theorem
proved in [5].

Theorem 2.8. The Abelian group � � �= × × ⋯×G p p pα α αm1 2 has

( ) ( ) ( )∏ ∏ ∏∣ ( )∣ = −

=

−

=

−

=

− + −G p p p pAut ,
k

m
d k

j

m
α m d

i

m
α m c

1

1

1 1

1 1k j j i i

where = { = }d l α αmax :k l k and = { = }c l α αmin :k l k .

3 Construction of pentagonal quasigroups

We start with the characterization of pentagonal quasigroups induced by �n.

Theorem 3.1. A groupoid ( ⋅)Q, of order >n 2 is a pentagonal quasigroup induced by the group �n if and only
if there exist < <a n1 such that ( ) = ( − ) =a n a n, 1, 1, ⋅ = [ + ( − ) ]x y ax a y1 n and

[ − + − + ] =a a a a 1 0.n
4 3 2 (6)
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Proof. Automorphisms of the group �n have the form ( ) =φ x ax, where ( ) =a n, 1. Since −ε φ also is
an automorphism, ( − ) =a n1, 1. Moreover, the equation ( − ) = ( )a x n1 0 mod has = ( − )d a n1, solutions
(cf. [6]). So, ( − ) =a n1, 1 means that the automorphism ( ) =φ x ax is regular. Theorem 2.1 completes
the proof. □

Theorem 3.2. If a regular automorphism φ of an Abelian group ( +)Q, satisfies (5), then ( ∗)Q, , ( ∘ )Q, and
( ◇)Q, with the operations

∗ = ( − ) + ∘ = ( − ) + = ( − ) +◇x y φ y x y x y φ x y y x y φ y x y, ,2 3 4

are pentagonal quasigroups.

Proof. If φ and ( +)Q, are as in the assumption, then, by Theorem 2.1, ( ⋅)Q, with the operation ⋅ =x y
( − ) +φ x y y is a pentagonal quasigroup. From Vidak’s results presented in [1] it follows that also ( ∗)Q, ,

( ∘ )Q, and ( )◇Q, , where ∗ = ⋅( ⋅ )x y y yx x x, ∘ = ( ⋅ )x y yx y x and = ( ⋅ )◇x y xy x y, are pentagonal quasi-
groups. Applying (4) and (5) to these operations we obtain our thesis. □

Theorem 3.3. A pentagonal quasigroup induced by the group �n has one of the following forms:

⋅ = [ + ( − ) ]

⋅ = [− + ( + ) ]

⋅ = [ + ( − ) ]

⋅ = [− + ( + ) ]

x y ax a y
x y a x a y
x y a x a y
x y a x a y

1 ,
1 ,

1 ,
1 ,

n

n

n

n

2 2

3 3

4 4

where < < −a n1 1 satisfy (6) and ( ) = ( − ) =a n a n, 1, 1.
When = −a n 1 there is only one pentagonal quasigroup. It is induced by �5 and has the form ⋅ =x y

[ + ]x y4 2 5.

Proof. Equation (6) has no more than four solutions, so �n induces no more than four pentagonal qua-
sigroups. Theorems 3.1 and 3.2 complete the proof for < < −a n1 1. The case = −a n 1 is obvious. □

Note that for [ + ] ≠a 1 0n the equation (6) implies [ + ] =a 1 0n
5 . Since it is also valid for = −a 1 in

a pentagonal quasigroup with ⋅ = [ + ( − ) ]x y ax a y1 n we have

[ ] = −a n 1.n
5 (7)

Proposition 3.4. Let ( ⋅)Q, be a pentagonal quasigroup induced by the group �n, where >n 5. If ∣m n, then
( ⋅)Q, contains a pentagonal subquasigroup of order m.

Proof. If ∣m n, then the group �n contains a subgroup isomorphic to �m. Let ⋅ = [ + ( − ) ]x y ax a y1 n.
Since < < −a n1 1, ( ) = ( − ) =a n a n, 1, 1, also ( ) = ( − ) =a m a m, 1, 1 and [ − + − + ] =a a a a 1 0m

4 3 2 . Let
′ = [ ]a a m. Then, as it is not difficult to see, �m with the multiplication ⋅ = [ ′ + ( − ′) ]x y a x a y1 m is a penta-

gonal quasigroup. □

Proposition 3.5. If an Abelian group G inducing a pentagonal quasigroup has an element of order >k 1, then
the number of such elements is greater than 3.

Proof. An automorphism preserves the order of elements of G. So, if only one ∈x G has order >k 1, then
( ) =φ x x, which contradicts to the assumption on φ. If only two elements ≠x y have order >k 1, then
( ) =φ x y and ( ) =φ x x2 . Using (5) we get =x y3 2 and =y x3 2 . Therefore, = = +x y y x2 3 3 , which implies

that = −x y. But ( ) = ( ) =k x kx2 2 0. Also ≠x2 0 or else = − =x x y, a contradiction. Thus, x2 has order k.
Then =x x2 or =x y2 . The first case is impossible. In the second = =x y y2 3 implies =y2 0, so = − =y y x,
a contradiction. Therefore, G has at least three elements of order k.
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If G has three distinct elements x y z, , of order >k 1, then ( ) =φ x y, ( ) = ( ) =φ x φ y z2 , ( ) = ( ) =φ x φ z x.3

Obviously, ( ) ≠ −φ x x, because ( ) = −φ x x implies = ( ) =x φ x z2 , which is impossible. Thus, by Corollary 2.3,
= ( ) + = +φ x x z x0 5 and = ( ) + ( ) = +φ z φ x x y0 . So, + = +x z x y, a contradiction. Hence, G has more

than three elements of order >k 1. □

Corollary 3.6. Abelian groups of order n, where
(i) ∣n2 and ∤n4 or
(ii) ∣n3 and ∤n9 or
(iii) ∣n4 and ∤n8 ,
do not induce pentagonal quasigroups.

Proof. In the first case, a group has one element of order 2; in the second – two elements of order 3; in third
case – one or three elements of order 2. □

Theorem 3.7. A finite pentagonal quasigroup has order s5 or +s5 1.

Proof. Suppose that a pentagonal quasigroup ( ⋅)Q, is induced by the group ( +)Q, , where = {Q e0, ,2
… }e e, , n3 . Each automorphism ψ of this group can be identified with a permutation φ of the set

{ … }e e e, , , n2 3 . Each such permutation is a cycle or can be decomposed into disjoint cycles. Since, by
Corollary 2.3, =φ ε2 or =φ ε10 , a permutation φ can be decomposed into disjoint cycles of the length
2, 5 or 10. If φ contains a cycle of the length 2, then for some ∈e Qi we have ( ) = ≠φ e e ei j i and

( ) =φ e ei i
2 . If ≠ −e ej i, then by Corollary 2.3, − = ( ) = ( )e φ e φ ei i i

5 , a contradiction. Thus, = −e ej i and conse-
quently =e5 0i , by (5). So, in this case 5 is a divisor of n. Hence, if φ is decomposed into k cycles of the
length 2, then ( +)Q, has the order = + =n k t2 1 5 . Since t must be odd, we see that in this case = +n s10 5.

If φ contains a cycle of the length 5, then for some ∈e Qi we have ( ) =φ e ei i
5 and ( ) ≠ −φ e ei i. This, by

Corollary 2.3, implies =e2 0i . Thus, 2 is a divisor of n and >n 5. Moreover, each element of this cycle has
order 2. Therefore, in the case when φ is decomposed into disjoint cycles of the length 5, the group ( +)Q,
has +s5 1 elements and all non-zero elements have order 2. So, ( +)Q, is the direct product of copies of �2.
Thus, = = +n t2 5 1k . So, t is odd and, as in the previous case, = +n s10 6. If φ is decomposed into cycles of
the length 10, then obviously = +n s10 1.

Now, if φ is decomposed into cycles of the length 2 and 5, then 10 divides n. Thus, =n s10 . If φ is
decomposed into >p 0 cycles of the length 2 and >q 0 cycles of the length 10, then = + +n p q2 10 1 and 5
divides n. Hence, = +n s10 5. If φ is decomposed into >p 0 cycles of the length 5 and >q 0 cycles of the
length 10, then = + +n p q5 10 1 and 2 divides n. Hence, = +n s10 6. Finally, if φ is decomposed into >p 0
cycles of the length 2, >q 0 cycles of the length 5 and r cycles of the length 10, then = + + +n p q r2 5 10 1
and 5 divides n. Hence, = +n s10 5. □

Corollary 3.8. The smallest pentagonal quasigroup is induced by the group �5 and has the form ⋅ =x y
[ + ]x y4 2 5.

Proof. Indeed, by Theorem 3.7,�5 is the smallest group that can be used in the construction of a pentagonal
quasigroup. In this group only =a 4 satisfies (6). Thus, the multiplication of this quasigroup is defined by

⋅ = [ + ]x y x y4 2 5. □

Proposition 3.9. A groupoid ( ⋅)Q, is a commutative pentagonal quasigroup if and only if there exists
an Abelian group ( +)Q, of exponent 11 such that ⋅ = +x y x y6 6 for all ∈x y Q, .

Proof. By Theorem 2.1 for a commutative pentagonal quasigroup there exists an Abelian group ( +)Q, and
its automorphism φ such that = −φ ε φ. Thus, =ε φ2 . This, by (5), gives ( − + + ) =φ φ φ φ ε 03 2 . There-
fore, ( − + ) =φ φ φ ε3 02 , and consequently, + =φ φ5 02 , so + =φ ε5 0. Hence, =φ11 0. Thus, =x11 0 for
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each ∈x Q. Moreover, from =φ11 0 we obtain ( ) = − ( ) = − =φ x φ x x x10 5 6 and ( − )( ) = − = − =ε φ x x x x x6 5 6 .
So, exp ( +) =Q, 11 and ⋅ = +x y x y6 6 for all ∈x y Q, .

The converse statement is obvious. □

Corollary 3.10. The variety of commutative, idempotent, medial groupoids satisfying the pentagonal identity
is the variety of commutative, pentagonal quasigroups, whose spectrum is { = …}n11 : 0, 1, 2,n .

Proof. It follows from Proposition 3.9 that the spectrum of the variety of commutative pentagonal qua-
sigroups is { = …}n11 : 0, 1, 2,n . So, we need to only prove that a commutative, idempotent, medial
groupoid ( ⋅)Q, satisfying the pentagonal identity is a quasigroup. Let ∈a b Q, . Then the pentagonal identity
ensures that the equations =xa b and =ax b have a solution = ( ⋅ )x ab a b. Suppose that =za b. Then

= ( ⋅ ) ⋅ = ( ⋅ ) = ( ⋅ )⋅ = ( ⋅ ) =z az a z a ba z a ab z aa ab a b x and the solution is unique. □

4 Translatable pentagonal quasigroups

Recall a quasigroup ( ⋅)Q, , with = { … }Q n1, 2, , and ⩽ <k n1 , is k-translatable if its multiplication table is
obtained by the following rule: if the first row of the multiplication table is …a a a, , , n1 2 , then the q-th row is
obtained from the ( − )q 1 -st row by taking the last k entries in the ( − )q 1 -st row and inserting them as the
first k entries of the q-th row and by taking the first −n k entries of the ( − )q 1 -st row and inserting them as
the last −n k entries of the qth row, where ∈ { … }q n2, 3, , . The multiplication in a k-translatable qua-
sigroup is given by the formula ⋅ = [ + ] ⋅ [ + ] =

− +
i j i j k a1 n n k ki jn (cf. [2,7] or [3]). Moreover, Lemma 9.1 in [7]

shows that a quasigroup of the form ⋅ = [ + ]x y ax by n is k translatable only for k such that [ + ] =a kb 0n .
Thus, a pentagonal quasigroup induced by �n can be k-translatable only for ∈ { … − }k n2, 3, , 2 .

Theorem 4.1. Every pentagonal quasigroup induced by �n is k-translatable for some >k 1 such that ( ) =k n, 1.
If it has the form ⋅ = [ + ( − ) ]x y ax a y1 n, then is k-translatable for = [ − − ]k a a1 n

3 .

Proof. Indeed,byTheorem3.3, ⋅ = [ + ( − ) ]x y ax a y1 n and[ − + − + ] =a a a a 1 0n
4 3 2 . Thus,[ + (− − + )a a a 13

( − )] =a1 0n , which, by Lemma 9.1 from [7], means that this quasigroup is k-translatable. Since
+ = − ( + ) = − ( + )k nt a a a a1 1 12 2 2 and ( ) =a n, 1, each prime divisor of k and n is a divisor of a, which is

impossible. So, ( ) =k n, 1. □

Theorem 4.2. A groupoid ( ⋅)Q, of order n is a k-translatable pentagonal quasigroup, >k 1, if and only if
it is of the form ⋅ = [ + ( − ) ]x y ax a y1 n, where

∣ = − + − + = [− + − + ]n m k k k k and a k k k2 4 3 1 3 1 .n
4 3 2 3 2 (8)

Proof. Suppose that ( ⋅)Q, is a k-translatable pentagonal quasigroup of order n. By Theorem 4.2 of [3] and
Lemma 9.1 of [7] it is of the form ⋅ = [ + ( − ) ]x y ax a y1 n and [ + ( − ) ] =a a k1 0n , where < <a n1 , ( ) =a n,
( − ) =a n1, 1. Thus,

[ + ] = [ ] = [( − ) ]a k ka k k aand 1 .n n n (9)

By Theorem 4.1, = [ − − ]k a a1 n
3 . Therefore, [ ] = [ − − ]a a k1n n

3 . So,

[ ] = [ − − ] = [− − ]ka k ka k a k .n n n
3 2 2 (10)

By (7), we also have [ ] = [− ]a 1n n
5 . Thus,

[ ] = [( − ) ] [ ] = [ − ] [ ] = [( − ) ] [ ] = [( − ) ]

( )ka k a ka k ka k a ka k a1 , 1 , 1 , 1 .n n n n n n n n
3 9 4 4 2 2 3
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Therefore, using pentagonality and the aforementioned identities, we obtain

= [( − )( − + − + )]

= [( − ) − ( − ) + ( − ) − ( − ) + ( − )]

= [ − − ] = [− − − − ]

( )

k a a a a
k a k a k a k a k

ka a a k a

0 1 1
1 1 1 1 1

1 1 .

n

n

n n

4 3 2

4 3 2

3 2 9 2 2

Hence, [ ] = [− − − ]a a k 1n n
2 2 , and as a consequence

[ + ] = [ ] = [( − ) ] = [( − )(− − − )] = [− + − + ]a k ka k a k a k k k k1 1 1 2 1 ,n n n n n
2 2 3 2

which implies the second equation of (8).
The first equation follows from the fact that

= [ + − ] = [ − − − + ]a k ka k k k k0 2 4 3 1 .n n
4 3 2

Conversely, let ( ⋅)Q, be a groupoid of order >n 1 with ⋅ = [ + ( − ) ]x y ax a y1 n, where n and a are
as in (8). Then ( ) = ( − ) =a n a n, 1, 1. Indeed, each a prime divisor p of a and n is a divisor of − =m a

( − + )k k k 32 2 . If ∣p k, then, by (8), ∣p 1, a contradiction. So, ∣( − + )p k k 32 and ∤p n, but then ∣ ( − + ) =p k k k 32

− a1 . This is also impossible. Hence, ( ) =a n, 1. Similarly, ( − ) =a n1, 1. Thus, < <a n1 and, as a conse-
quence, ( ⋅)Q, is a quasigroup. Since [ + ( − )] =a k a1 0n , by Lemma 9.1 from [7], it is k-translatable.
This implies (9).

Now, using (9) and (8), we obtain

[ ] = [ ( )] = [ ( + )] = [ + + ] = [− + − + ]

( )k a k ka k k a k k a k k k2 2 1n n n n n
2 2 8 3 2 (11)

and

[ ] = [( ) ] = [− ( + ) + ( + ) − + ]

= [− − + + ] = [− − − − + + ]

= [− + − ]

( )

( )

k a k a a k k a k k a ka a

k k a k a k k k a k a
k k k

2 2

2 2
.

n n n

n n

n

2 2 2 11 2

3 2 2 11 3 2 2

3 2

That is,

[ ] = [− + − ] [ ] = [− + − ]k a k k k k a k k kand .n n n n
2 2 3 2 3 2 4 3 2

Then

[ ] = [− + − + ]

= [( − + − ) + (− + − + ) + (− − + )]

= [− − − ] = [ − + − ]

( )

( ) ( )

( ) ( )

a kk a k a ka a

k k k k k k k k a a

k k a k k k

3

2 2 2 2 1 3 3

3 2 2 3 2 .

n n

n

n n

2 8 2 2

10 , 9 4 3 2 3 2

8 3 8 3 2

Consequently,

[ ] = [ − + − ] = [− + − ]

( )ka k k k k k k2 3 2 1 .n n n
2 4 3 2 8 2

Now, using the aforementioned identities, we obtain

[ ] = [− + − + ] = [ − + ] = [ − − ]

( )a k a k a ka a k k k a k3 2 1 .n n n n
3 3 2 2 2 2 2 3 2 8

Therefore, [ ] = [ − − ]a a a akn n
4 2 and

[ − + − + ] = [ − − ] = [ + ( − )] =a a a a ak a a k a1 1 1 0,n n n
4 3 2 3

which, by Theorem 3.3, shows that ( ⋅)Q, is a pentagonal quasigroup. □

Corollary 4.3. For every >k 1 there exists at least one k-translatable pentagonal quasigroup.
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Proof. One k-translatable pentagonal quasigroup is defined by Theorem 4.2. In this quasigroup a and n are
as in (8). If m is a divisor of n and = [ ]a b n, then = [ ]a b m. Thus, �( ⋅),m with ⋅ = [ ′ + ( − ′) ]x y a x a y1 m,

′ = [− + − + ]a k k k3 1 m
3 2 , also is a k-translatable pentagonal quasigroup. □

According to Theorem 4.2 for =k 2, we have = =n m 11 and =a 2. So for =k 2 there is only one
k-translatable pentagonal quasigroup induced by �n. It has the form ⋅ = [ + ]x y x y2 10 11. For =k 3,

=m 55, = [ ]a 29 n and ∣n m, there are three k-translatable pentagonal quasigroups induced by �n. They
have the form: ⋅ = [ + ]x y x y29 27 55, ⋅ = [ + ]x y x y7 5 11 and ⋅ = [ + ]x y x y4 2 5. Other calculations for ⩽k 20
are presented as follows:

k ⋅x y
2 [ + ]x y2 10 11

3 [ + ]x y4 2 5, [ + ]x y7 5 11, [ + ]x y29 27 55

4 [ + ]x y122 60 181

5 [ + ]x347 115 461

6 [ + ]x y794 198 991

7 [ + ]x y27 5 31, [ + ]x y52 10 61, [ + ]x1577 315 1891

8 [ + ]x y190 472 661, [ + ]x y2834 472 3305

9 [ + ]x y8 4 11, [ + ]x y308 184 491, [ + ]x y4727 675 5401

10 [ + ]x y6 6 11, [ + ]x y593 169 761, [ + ]x y7442 930 8371

11 [ + ]x y29 3 31, [ + ]x362 40 401, [ + ]x y11189 1243 12431

12 [ + ]x y14 58 71, [ + ]x y138 114 251, [ + ]x y16202 1620 17821

13 [ + ]x y25 17 41, [ + ]x y24 32 55, [ + ]x y112 10 121, [ + ]x y189 17 ,205

[ + ]x y354 252 605, [ + ]x y189 2067 2255, [ + ]x y2895 2067 4961, [ + ]x22739 2076 24805

14 [ + ]x y472 2590 3061, [ + ]x y31082 2590 33671

15 [ + ]x y4 38 41, [ + ]x y79 1013 1091, [ + ]x y41537 3195 44731

16 [ + ]x y54434 3888 58321

17 [ + ]x y42 90 131, [ + ]x y465 107 571, [ + ]x y70127 4675 74801

18 [ + ]x y13350 5562 18911, [ + ]x y88994 5562 94555

19 [ + ]x y111437 6555 117991

20 [ + ]x y17 85 101, [ + ]x y70 62 131, [ + ]x y118 994 1111, [ + ]x y987 455 ,1441

[ + ]x y5572 7660 13231, [ + ]x y137882 7660 145541

Let �∗

11 be the pentagonal quasigroup with the multiplication ⋅ = [ + ]x y x y6 6 11. By the aforementioned
result, a finite commutative pentagonal quasigroup is the direct product of m copies of �∗

11 but for >m 1, as
it is shown below, they are not translatable.

Theorem 4.4. �∗

11 is the only translatable commutative pentagonal quasigroup.

Proof.
Let ( ⋅)Q, be a commutative pentagonal quasigroup. By definition, an infinite quasigroup cannot be

translatable. So, ( ⋅)Q, must be finite. By Proposition 3.9 its order is =n 11m.
If =m 1, then, by Proposition 3.9, the multiplication of ( ⋅)Q, has the form ⋅ = [ + ]x y x y6 6 11. From the

multiplication table of this quasigroup, it follows that it is k-translatable for = = −k n10 1. So, for =m 1,
our theorem is valid.

Now let >m 1 and ( ⋅)Q, be ( − )n 1 -translatable. According to Lemma 2.7 in [2], we can assume thatQ is
ordered in the following way: …

( ) ( ) ( ) ( )x x x x, , , , n1 2 3 , where = ( … )

( )x 1, 0, 0, , 01 . Then the multiplication table
of ( ⋅)Q, has the following form:
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⋅ ( )x 1 ( )x 2 ( )x 3 …… ( )x n

( )x 1
⋅

( ) ( )x x1 1
⋅

( ) ( )x x1 2
⋅

( ) ( )x x1 3 ……

⋅

( ) ( )x x n1

( )x 2
⋅

( ) ( )x x2 1
⋅

( ) ( )x x2 2
⋅

( ) ( )x x2 3 ……

⋅

( ) ( )x x n2

( )x 3
⋅

( ) ( )x x3 1
⋅

( ) ( )x x3 2
⋅

( ) ( )x x3 3 ……

⋅

( ) ( )x x n3

…… …… …… …… …… ……

…… …… …… …… …… ……

Since ( ⋅)Q, is ( − )n 1 -translatable, ⋅ = ⋅

( ) ( ) ( ) ( + )x x x xt t2 1 1 for all �∈t n.
Let = ( … )

( )x a a a, , , m
2

1 2 . We will prove by induction that

�= ( − ( − ) … ) ∀ ∈

( + )x ta t ta ta ta t1 , , , , .t
m n

1
1 2 3

The induction hypothesis is clearly true, by definition, for =t 1. Assume that the induction hypothesis is
true for all ⩽s t. Then

= (( − ) − ( − ) ( − ) ( − ) … ( − ) )

( )x t a t t a t a t a1 2 , 1 , 1 , , 1 .t
m1 2 3

Suppose that = ( … )

( + )x z z z z, , , ,t
m

1
1 2 3 . Since ⋅ = ⋅

( ) ( ) ( ) ( + )x x x xt t2 1 1 , we have + = +

( ) ( ) ( ) ( + )x x x x6 6 6 6t t2 1 1 .
The last expression means that

( + ( − ) − ( − ) … ) = ( + … )

( ) ( ) ( ) ( )a t a t ta ta ta z z z z6 6 1 6 2 , 6 , 6 , , 6 6 6 , 6 , 6 , , 6 .m
t t t

m
t

1 1 2 3 1 2 3

Hence, = ( − ( − ))

( )z ta t6 6 1 ,t
1 1 which implies = − ( − )

( )z ta t 1t
1 1 . Also =

( )z tas
t

s for all = …s m2, 3, , . So,
= ( − ( − ) … )

( + )x ta t ta ta ta1 , , , ,t
m

1
1 2 3 , as required.

Now, = ( − … ) = (− … ) =

( ) ( )x a a a a x11 10, 11 , 11 , , 11 10, 0, 0, , 0m
12

1 2 3
1 , a contradiction because all ( )x ,1

…

( ) ( ) ( )x x x, , , n2 3 are different. So, for >m 1 a quasigroup ( ⋅)Q, cannot be ( − )n 1 -translatable. □

Suppose that ( ⋅)G, is a commutative pentagonal quasigroup and a b, are two distinct elements of G.
Then it is straighforward to prove that a and b generate the subquasigroup

⟨ ⟩ = { ⋅ ⋅ ⋅ ⋅ ( ⋅ ) ( ⋅ ) }a b a b ab aba bab aba a aba b bab a bab b aba a b bab b a, , , , , , , , , , ,

and that ⟨ ⟩a b, is isomorphic to �∗

11. Then we take ∉ ⟨ ⟩c a b, , if c exists.

Lemma 4.5. ⟨ ⟩ ∩ ⟨ ⟩ = { }a b b c b, , .

Proof. From the multiplication table of �∗

11 we see that any two distinct elements generate �∗

11. Hence,
⟨ ⟩ ∩ ⟨ ⟩a b b c, , cannot contain b and another element of⟨ ⟩ ∩ ⟨ ⟩a b b c, , , or else ∈ ⟨ ⟩ = ⟨ ⟩c a b b c, , , a contra-
diction. □

Theorem 4.6. = ⟨ ⟩⟨ ⟩H a b b c, , is a commutative pentagonal subquasigroup of ( ⋅)G, isomorphic to � �×

∗ ∗

11 11.

Proof. Since ( ⋅)G, is medial, (⟨ ⟩⟨ ⟩)(⟨ ⟩⟨ ⟩) ⊆ ⟨ ⟩⟨ ⟩a b b c a b b c a b b c, , , , , , . Note that⟨ ⟩ ⊆ ⟨ ⟩ ⊆ ⟨ ⟩⟨ ⟩a b a b b a b b c, , , ,
and ⟨ ⟩ ⊆ ⟨ ⟩ ⊆ ⟨ ⟩⟨ ⟩b c b b c a b b c, , , , . Hence, the commutative pentagonal quasigroup = ⟨ ⟩⟨ ⟩⊇H a b b c, ,
⟨ ⟩ ∪ { }a b c, has more than 11 elements and less than or equal to 121 elements. Therefore, as we have already
seen, H has 121 elements and is isomorphic to � �×

∗ ∗

11 11. This completes the proof. □

Corollary 4.7. � �×

∗ ∗

11 11 is generated by three distinct elements.

Corollary 4.8. If = ∈ ⟨ ⟩⟨ ⟩xy zw a b b c, , , then =x z and =y w.

Corollary 4.9. If ∉ ⟨ ⟩⟨ ⟩d a b b c, , , then (⟨ ⟩⟨ ⟩)⟨ ⟩a b b c b d, , , is a commutative pentagonal quasigroup of order
113 and is isomorphic to � � �× ×

∗ ∗ ∗

11 11 11.
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Corollary 4.10. � � �× ×

∗ ∗ ∗

11 11 11 is generated by four distinct elements.

Corollary 4.11. The direct product of n copies of �∗

11 is generated by +n 1 distinct elements.

5 Groups inducing pentagonal quasigroups

Pentagonal quasigroups are very large. Using Theorem 4.2 we can determine all pentagonal quasigroups
induced by �n. Below we present several such quasigroups. For =a 3 there is only one such quasigroup. It
is induced by the group �61. Its multiplication is defined by ⋅ = [ − ] = [ + ]x y x y x y3 2 3 5961 61. This qua-
sigroup is 32-translatable. For =a 4 there are three such quasigroups. They are induced by�5,�41,�205 and
are 3-, 15-, 138-translatable, respectively.

a 2 3 4 5 6 7 8 9

n 11 61 5, 41, 205 521 11, 101, 1111 11, 191, 2101 11, 331, 3641 1181, 5905
k 2 32 3, 15, 138 392 10, 82, 890 3, 33, 1752 9, 143, 3122 444, 5168

a 10 11 12 13 14 15 16

n 9091 13421 19141 2411 71, 101, 355, 505, 7171, 35855 31, 1531, 47461 61681
k 8082 12080 17402 202 83, 71, 83, 273, 4414, 33098 21, 1204, 44072 57570

a 17 18 19 20

n 71, 101, 781, 1111, 7171, 78881 9041, 99451 55, 2251, 11255, 24761, 123805 152381
k 41, 19, 538, 625, 2242, 73952 3192, 93602 53, 2127, 4378, 17884, 116928 144362

a 21 22 23 24

n 185641 224071 31, 41, 211, 1271, 6541, 8651, 268181 55, 5791, 28955, 63701, 318505
k 176360 213402 25, 28, 48, 521, 893, 5113, 255992 13, 2267, 15108, 49854, 304658

The aforementioned table shows that from groups �n for <n 24 only groups �5 and �11 determine
pentagonal quasigroups. To determine other groups of order <n 100 inducing pentagonal quasigroups
observe that from Corollary 2.3 and Theorem 3.7 it follows that an Abelian group inducing a pentagonal
quasigroup is the direct product of several copies of the group �5 or has a regular automorphism ≠φ ε of
order 10. Observe that from Proposition 2.7, Corollary 3.6, Theorem 3.7 and the above table the possible
values of <n 100 are ∈ { }n 5, 11, 16, 25, 31, 40, 41, 45, 55, 56, 61, 71, 80, 81 .

For =n 5 we have one pentagonal quasigroup, and for =n 11 there are four such quasigroups (see the
aforementioned table). For =n 16 we have five Abelian groups of order 16: �16, � �×2 8, � � �× ×2 2 4,
� �×4 4 and �2

4. From the aforementioned table it follows that the group �16 does not induce any penta-
gonal quasigroup. Groups � �×2 8, � � �× ×2 2 4, � �×4 4 do not have automorphisms of order 10
(Theorem 2.8), so they cannot be considered as a group inducing pentagonal quasigroups. The group �2

4

can be treated as a vector space V over �2. Then, by Corollary 2.3, automorphisms φ interesting for us are
linear endomorphisms of V for which = −λ 1 is an eigenvalue of φ5. From these endomorphisms we select
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those satisfying (5). There is 1,344 such endomorphisms, so the group �2
4 induces 1,344 pentagonal quasi-

groups.
The group�25 has four elements of order 5, namely, 5, 10, 15 and 20. Thus, ( ) ∈ { }φ 5 10, 15, 20 . Therefore,

φ restricted to the set { }5, 10, 15, 20 has the form ( ) =φ x ax, where ∈ { }a 2, 3, 4 , but such φ does not satisfy
(5). Hence, �25 does not induce a pentagonal quasigroup. The group � �×5 5 induces 24 pentagonal
quasigroups. These quasigroups are induced by matrices

∈A 0 1
4 3 , 0 2

2 3 , 0 3
3 3 , 0 3

1 2 , 0 4
1 3 , 4 0

1 4










































and − −A A A, ,2 3 4.
Pentagonal quasigroups of order 31 are induced by the group �31. They are determined by an auto-

morphism ( ) =φ x ax, where ∈ { }a 15, 23, 27, 29 (see table below).
From Abelian groups of order 40 the groups �40, � �×2 20 and � �×4 10 have one or three elements

of order 2, so they cannot induce pentagonal quasigroups. In the group � � �× ×2 2 10 only elements
( )0, 0, 2 , ( )0, 0, 4 , ( )0, 0, 6 , ( )0, 0, 8 have order 5. Thus, ( ) ∈ {( ) ( ) ( )}φ 0, 0, 2 0, 0, 4 , 0, 0, 6 , 0, 0, 8 . But
then ( ) + ( ) ≠ ( )φ 0, 0, 2 0, 0, 2 0, 0, 05 , a contradiction. Therefore, there are no pentagonal quasigroups of
order 40.

Pentagonal quasigroups of order 41 can be calculated by solution of the equation (6) or (7). The solu-
tions are =a 4, 23, 25, 31. So there are four such quasigroups.

For =n 45 there are two Abelian groups: �45 and � �×3 15. The first group has two elements of order 3,
so by Proposition 3.5 it cannot induce pentagonal quasigroups. The second group has four elements of order
5. The smallest is ( )0, 3 . Thus, ( ) = ( )φ a0, 3 0, 3 for =a 2, 3, 4. But then ( ) + ( ) ≠ ( )φ 0, 3 0, 3 0, 05 . Thus,
pentagonal quasigroups of order 45 do not exist.

For =n 55 there exists only one Abelian group: �55. Its automorphisms have form ( ) =φ x ax, where
( ) =a, 55 1. The automorphisms inducing pentagonal quasigroups should satisfy (7). It is easily to see, that
for = …k 0, 1, 2, , 9 the last digit of k5 is k. So, for =a mk the last digit of a5 is also k. Since +a 15 must be
divided by 5, =a m4 or =a m9. The aforementioned table shows that the smallest possible value of a is 19.
Because 44 is divided by 11, +44 15 cannot be divided by 11. Thus, 44 should be omitted. Also,

= (− )( )54 1 mod 55 should be omitted. By direct calculation we can see that from other <a 54 acceptable
are 24, 29 and 39. Hence, there are four pentagonal quasigroups of order 55. They are isomorphic to the
direct product of pentagonal quasigroups induced by �5 and �11.

From Abelian groups of order 56 groups �56, � �×2 28, � �×4 14 have one or three elements of order 2.
Thus, they cannot induce pentagonal quasigroups. The group � � �× ×2 2 14 has six elements of order 7.
In the same manner as in the case of groups of order 45, we can prove that this group cannot induce
pentagonal quasigroups.

Pentagonal quasigroups of prime orders 61 and 71 can be calculated in the same way as for =n 41.
Results are presented in the table below.

An Abelian group G of order 80 can be decomposed into the direct product of two groups H and �5,
where H is a group of order 16. From groups of order 16 only �2

4 induces pentagonal quasigroups. So, by

Proposition 2.7, from groups of order 81 only� �×2
4

5 induces pentagonal quasigroups. We have 1,344 such
quasigroups.

The group �81 has only two elements of order 2, so, by Proposition 3.5, this group cannot be inducing
group for a pentagonal quasigroup. Theorem 2.8 shows that from other Abelian groups of order 81 only the
group �3

4 can have an automorphism of order 10. Using a computer software we calculate 303,264 of such

automorphisms satisfying (5). So, �3
4 induces 303,264 pentagonal quasigroups.

In this way, we have proved the following:

Theorem 5.1. The groups of order <n 100 that induce pentagonal quasigroups are �5, �11, �2
4, �5

2, �31, �41,
�55, �61, �71, � �×2

4
5 and �3

4.
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For <n 100 pentagonal quasigroups induced by �n are as follows:

=n 5 +x y4 2
=n 11 +x y2 10 +x y6 6 +x y7 5 +x y8 4
=n 31 +x y15 17 +x y23 9 +x y27 5 +x y29 3
=n 41 +x y4 38 +x y23 19 +x y25 17 +x y31 11
=n 55 +x y19 37 +x y24 32 +x y29 27 +x y39 17
=n 61 +x y3 59 +x y27 35 +x y41 21 +x y52 10
=n 71 +x y14 58 +x y17 55 +x y46 26 +x y66 6

6 Parastrophes of pentagonal quasigroups

Each quasigroup ( ⋅)Q, determines five new quasigroups = ( ∘ )Q Q,i i with the operations ∘i defined as follows:

∘ = ↔ ⋅ =

∘ = ↔ ⋅ =

∘ = ↔ ⋅ =

∘ = ↔ ⋅ =

∘ = ↔ ⋅ =

x y z x z y
x y z z y x
x y z z x y
x y z y z x
x y z y x z

,
,
,
,
.

1
2
3
4
5

Such defined (not necessarily distinct) quasigroups are called parastrophes or conjugates of Q.
Parastrophes of each quasigroup can be divided into separate classes containing isotopic parastrophes.

The number of such classes is always 1, 2, 3 or 6 (cf. [8]). In some cases (described in [9]), parastrophes of
a given quasigroup Q are pairwise equal. Parastrophes do not save properties of the initial quasigroup.
Parastrophes of an idempotent quasigroup are idempotent quasigroups, but parastrophes of a pentagonal
quasigroup are not pentagonal quasigroups, in general.

Let ( ⋅)Q, be a pentagonal quasigroup induced by the group �n. Then ⋅ = [ + ( − ) ]x y ax a y1 n and
[ − + − + ] =a a a a 1 0n

4 3 2 . Such quasigroup is k-translatable for = [ − − ]k a a1 n
3 . Since [ ( − + − )] =a a a a1 n

2 3

= [( − )( + )]a a a1 1 n
3 , fromTheorems5.1 and5.3 in [3]weobtain the followingcharacterizationofparastrophes

of pentagonal quasigroups.

Proposition 6.1. If ( ⋅)Q, is a pentagonal quasigroup with multiplication ⋅ = [ + ( − ) ]x y ax a y1 n, then its
parastrophe

∘ = [( − − ) + ( + ) ] - =

∘ = [− + ( + ) ] - = [ + ]

∘ = [( + ) + (− ) ] - = [ − ]

∘ = [( + ) + ( − − ) ] - = [− ]

∘ = [( − ) + ( ) ] - = [ + ]

x y a a x a a y is k translatable for k a
x y a x a y is k translatable for k a a
x y a x a y is k translatable for k a
x y a a x a a y is k translatable for k a
x y a x a y is k translatable for k a

1 ,
1 ,

1 1 ,
1 ,

1 1 .

n

n n

n n

n n

n n

1
3 3

2
4 4 3

3
4 4

4
3 3 4

5
4

Using Proposition 6.1 we can show for which values of a and n parastrophes of a pentagonal quasigroup
with the multiplication ⋅ = [ + ( − ) ]x y ax a y1 n are pentagonal, quadratical ( ⋅ = ⋅xy x zx yz), hexagonal
( ⋅ =x yx y), GS-quasigroups ( ( ⋅ )⋅ =x xy z z y), ARO-quasigroups ( ⋅ = ⋅xy y yx x), Steinquasigroups ( ⋅ =x xy yx),
right modular ( ⋅ = ⋅xy z zy x) and C3 quasigroups (( ⋅ ) =xy y y x).

We start with the lemma that is a consequence of our results proved in [3].

Lemma 6.2. Let ( ⋅)Q, be a quasigroup of the form ⋅ = [ + ( − ) ]x y ax a y1 n. Then
[ − + ] =a a2 2 1 0n

2 if it is quadratical (Theorem 4.8 in [10]),
[ − + ] =a a 1 0n

2 if it is hexagonal,
[ − − ] =a a 1 0n

2 if it is a GS-quasigroup,
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[ ] =a2 1n
2 if it is an ARO-quasigroup,

[ − + ] =a a3 1 0n
2 if it is a Stein quasigroup,

[ + − ] =a a 1 0n
2 if it is right modular,

[ ] =a 1n
3 if it is a C3 quasigroup.

Using the aforementioned characterization and the fact that a quasigroup of the form ⋅ = [ +x y ax
( − ) ]a y1 n is k-translatable if and only if [ + ( − ) ] =a a k1 0n (cf. [2,7] or [3]) we obtain:

Lemma 6.3. A quasigroup of the form ⋅ = [ + ( − ) ]x y ax a y1 n is
[ − ]a1 2 n-translatable if and only if it is quadratical,
[ − ]a1 n-translatable if and only if it is hexagonal,
[ + ]a 1 n-translatable if and only if it is a GS-quasigroup,
[− − ]a2 1 n-translatable if and only if if it is an ARO-quasigroup,
[ − ]a 1 n-translatable if and only if it is a Stein quasigroup,
[− − ]a1 n-translatable if and only if it is right modular.
A C3 quasigroup is k-translatable for k such that [( − ) ] =a k1 1n

2 .

Using these two lemmas we can determine properties of parastrophes of pentagonal quasigroups
induced by �n. We start with Q1.

• Suppose that Q1 is pentagonal. Then = [ − ( − − ) − ( − − )]a a a a a1 1 1 n
3 3 3 , from translatability, and

[( − − ) ] = [− − − ]a a a a1 1n n
3 2 2 , from (6). Then we have [( − − ) ] = [(− − − )( − − )] =a a a a a a1 1 1n n

3 3 2 3

[ + − ] = [ − + − ]

( )a a a a a2 2 3 3n n
4 3 6 3 2 . Therefore, = [ − ( − − ) − ( − − )] = [− + + ]a a a a a a a1 1 1 2 3n n

3 3 3 3 2 ,
whence, multiplying by a2, we obtain[ − ] = [− − ]a a a3 2n n

4 3 2 . This, by (6), shows that[ + + ] =a a2 1 0n
2 .

Multiplying this equation by a3 and applying (6) we get [ + ] =a a 2n
4 3 . Adding this equation to [ − ] =a a n

4 3

[− − ]a3 2 n
2 we obtain[ ] = [− ]a a2 3n n

4 2 . Thus,[ ] = [− ]a2 3n n
2 and consequently,[ − ] = [− − − ] =a a a a2 2n n

4 3 2 2

[− + ]a 1 n
2 . Hence, [ − + ] =a a a 1n

4 3 2 , which by (6) implies =a 2 and =n 11.
• Suppose that Q1 is quadratical. Then, = [ − ( − − )]a a a1 2 1 n

3 by Lemmas 6.2 and 6.3. Hence, [ ] =a2 n
3

[ − ]a1 n. Also = [ ( − − ) − ( − − ) + ] = [ − − ]a a a a a a0 2 1 2 1 1 2 2 1n n
3 2 3 4 . So, [ + ] = [ ] = [( − ) ] =a a a a a2 1 2 1n n n

3

[ − ]a a n
2 . Consequently, [ ] = [− − ]a a 1n n

2 and = [ − + − + ] = [( + ) − ( − ) + (− − )a a a a a a a0 2 2 2 2 2 2 1 1 2 1n
4 3 2

− + ] = [− ]a a2 2 n n, a contradiction. So, Q1 cannot be quadratical.
• Q1 is never hexagonal. Indeed, Q1 is a-translatable and [ + ]a a n

3 -translatable as a hexagonal quasigroup.
Hence, = [ + ]a a a n

3 , which implies [ ] =a 0n
3 . Thus, = [ ] = [− ]a0 1n n

5 , a contradiction.
• If Q1 is a GS-quasigroup, then = [( − − ) + ]a a a1 1 n

3 . Hence, [ ] = [ − ]a a2 2n n
3 , [ ] = [ − ]a a a2 2n n

4 2 , [− ] =1 n

[ ] = [ − ] = [ + − ]a a a a a2 2 2 4 4n n n
5 2 3 2 , [ ] = [ − ]a a2 3 4n n

2 , [ ] = [ − ]a a6 3n n
4 . Then = [ − + −a a a a0 2 2 2 24 3 2

+ ] = [ − ]a2 10 5n n. So, [ ] = [ ] = [ − ]a a a5 10 15 20n n n
2 , i.e., [ ] = [ ]a25 15n n. Thus, [ ] =a5 5n and = [ ] =a5 10 n

[ + ] = [ ]a a5 5 10n n. Therefore, =n 5 and ⋅ = [ + ]x y x y4 2 5.
• IfQ1 is an ARO-quasigroup, then [ ( − − ) ] =a a2 1 1n

3 2 , so [ ] = [− − ]a a2 2 3n n
2 . Also = [− ( − − ) − ]a a a2 1 1 n

3 .
Thus, [ ] = [ − ]a a2 3n n

3 , [ ] = [ − ]a a a2 3n n
4 2 and = [ − + − + ] = [− − ]a a a a a0 2 2 2 2 2 4n n

4 3 2 2 , i.e., [ ] = [− ]a 4n n
2 .

Hence,[− ] = [ ] = [− − ]a a8 2 2 3n n n
2 which gives[ ] =a2 5n . So,[− ] = [ ] = [ ]a16 4 25n n n

2 . Therefore, =n 41, =a 23.
• IfQ1 is a Stein quasigroup, then = [( − − )−]a a a1 n

3 . So,[ ] = [− ]a a2n n
3 ,[ ] = [− ]a a2n n

3 ,[ ] = [− ]a a2n n
4 2 ,[− ] =1 n

[ ] = [− ]a a2n n
5 3 , = [ ]a a2 n

4 ,[ ] = [− ]a 2n n
2 , = [ ] = [ ]a a2 8n n

4 ,[ ] = [− ] = [− ]a a4 16n n n
3 4 . Thus, by (6), we obtain

[ ] =11 0n . Hence, =n 11 and =a 8.
• If Q1 is right modular, then = [− − ( − − )]a a a1 1 n

3 . Hence, [ ] =a 2n
3 , [ ] = [ ]a a2n n

4 , [− ] = [ ] = [ ]a a1 2n n n
5 2 ,

= [− ] = [− ]a a2 4n n
3 . This by (6) implies =n 11, =a 7.

• If Q1 is a C3 quasigroup, then = [( − ( − − ) ) ]a a a1 1 1 n
3 2 . Hence, [ + + − ] =a a a2 1 0n

3 2 , which, by (6),
gives [ + + ] =a a a2 0n

4 2 . So, [− + + ] =a a1 2 0n
3 2 . Comparing this equation with [ + + − ] =a a a2 1 0n

3 2

we obtain[ ] = [ ]a a2n n
3 . So,[− ] = [ ] = [ ]a a1 2 4n n n

3 and = [ + ] = [− + ]a a a1 2 1n n
3 2 2 . Thus,[ ] =a 2n

2 and[− ] =a n

[ ] =a4 8n
2 . Therefore, = [ ] = [ ]a2 64n n

2 . Consequently, =n 31, =a 23.
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In other cases the proof is very similar, so we omit it.

The result of calculations is presented in the table below. In this table, the intersection of the ARO-row
with theQ3-columnmeans that for a pentagonal quasigroupQ its parastropheQ3 is an ARO-quasigroup only
in the case when ⋅ = [ + ]x y x y14 58 71.

Q Q1 Q2 Q3 Q4 Q5

pentaq. [ + ]x y2 10 11 always never [ + ]x y6 6 11 [ + ]x y6 6 11

quadrat. [ + ]x y4 2 5 never [ + ]x y4 2 5 [ + ]x y4 2 5 never [ + ]x y4 2 5

hexag. never never never never never never
GS [ + ]x y8 4 11 [ + ]x y4 2 5 [ + ]x y7 5 11 [ + ]x y7 5 11 [ + ]x y4 2 5 [ + ]x y8 4 11

ARO [ + ]x y27 5 31 [ + ]x y23 19 41 [ + ]x y23 9 31 [ + ]x y14 58 71 [ + ]x y25 17 41 [ + ]x y66 6 71

Stein [ + ]x y4 2 5 [ + ]x y8 4 11 never [ + ]x y8 4 11 [ + ]x y7 5 11 [ + ]x y7 5 11

r. mod. [ + ]x y7 5 11 [ + ]x y7 5 11 never [ + ]x y4 2 5 [ + ]x y8 4 11 [ + ]x y4 2 5

C3 never [ + ]x y23 9 31 never [ + ]x y23 9 31 [ + ]x y27 5 31 [ + ]x y27 5 31
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