
Research Article

Natalia Pavlovna Bondarenko*

Inverse Sturm-Liouville problem with
analytical functions in the boundary
condition

https://doi.org/10.1515/math-2020-0188
received February 13, 2020; accepted May 15, 2020

Abstract: The inverse spectral problem is studied for the Sturm-Liouville operator with a complex-valued
potential and arbitrary entire functions in one of the boundary conditions. We obtain necessary and
sufficient conditions for uniqueness and develop a constructive algorithm for the inverse problem
solution. The main results are applied to the Hochstadt-Lieberman half-inverse problem. As an auxiliary
proposition, we prove local solvability and stability for the inverse Sturm-Liouville problem by the Cauchy
data in the non-self-adjoint case.
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1 Introduction

The article aims to solve the inverse spectral problem for the following boundary value problem ( )L q :

− ″( ) + ( ) ( ) = ( ) ∈ ( )y x q x y x λy x x π, 0, , (1.1)

( ) = ( ) ′( ) + ( ) ( ) =y f λ y π f λ y π0 0, 0.1 2 (1.2)

Here (1.1) is the Sturm-Liouville equation with the complex-valued potential ∈ ( )q L π0,2 . The boundary
condition at =x π contains arbitrary functions ( )f λj , =j 1, 2, analytical by the spectral parameter λ in the
whole complex plane. The Dirichlet boundary condition ( ) =y 0 0 is chosen for definiteness. One can
similarly study the case of the Robin boundary condition ′( ) − ( ) =y hy0 0 0, which requires technical
modifications. The Sturm-Liouville equation (1.1) arises in investigation of wave propagation in various
media, heating processes, electron motion, etc.

The case of constant coefficients f1 and f2 has been studied fairly completely (see the classical
monographs [1–4] and references therein). There is also a number of studies concerning inverse problem
for Sturm-Liouville operators with linear [5–8] and polynomial [9–15] dependence on the spectral
parameter in the boundary conditions. Some properties of eigenvalues and eigenfunctions of the Sturm-
Liouville problems with entire functions in the boundary conditions were investigated in [16,17].

In this article, we study problem (1.1)–(1.2) with arbitrary entire functions in the boundary condition.
Let { } =

∞λn n 1 be a subsequence of the eigenvalues of the problem ( )L q . This subsequence may coincide with
the whole spectrum or not. Note that the behavior of the spectrum depends very much on the functions
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( )f λj , =j 1, 2. Since no additional restrictions are imposed on these functions, we cannot investigate
certain properties of the spectrum. Nevertheless, we can study the following inverse problem under some
additional restrictions on the subspectrum { } =

∞λn n 1.

Inverse Problem 1.1. Let the entire functions ( )f λj , =j 1, 2, be known a priori. Given the eigenvalues

{ } =
∞λn n 1 and the number ∫= ( )ω q x x: d

π1
2 0

, find the potential q.

Investigation of this problem is motivated by several applications. In recent years, the so-called partial
inverse problems have attracted much attention of scholars. In such problems, it is assumed that
coefficients of differential expressions (e.g., the Sturm-Liouville potential ( )q x ) are known a priori on a
part of an interval. Therefore, less spectral data are required to recover the unknown part of coefficients. A
significant part of those partial inverse problems can be reduced to Inverse Problem 1.1 for the operator
with analytical dependence on the spectral parameter in the boundary conditions. We provide an example
of such reduction for the Hochstadt-Lieberman problem [18] in Section 5. Recently, partial inverse
problems have been intensively studied for Sturm-Liouville operators with discontinuities (see [19–23]).
The latter operators arise in geophysics and electronics. Partial inverse problems have also been
investigated for differential operators on geometrical graphs (see [24–28]). Such operators model wave
propagation through a domain being a thin neighborhood of a graph and have applications in various
branches of science and engineering (see [29]). Another popular problem is the inverse transmission
eigenvalue problem arising in acoustics (see [30–33]). The results of the present article generalize many
known results on the mentioned inverse problems. Recently, the half-inverse problem on a time-scale has
been investigated in [34]. The latter problem is also a special case of Inverse Problem 1.1. Note that, in
certain applications, the constant ω can be obtained from the eigenvalue asymptotics (e.g., see Section 4).

The idea of reduction of partial inverse problems to the form with entire functions in the boundary
condition appeared in [35]. The authors of [35] considered Gestezy-Simon-type inverse problems [36] for
the Sturm-Liouville equation (1.1) with the potential given on ( )a π, , ∈ ( )a π0, , and represented those
problems in the form with the boundary condition ′( ) − ( ) ( ) =y a f λ y a 0, where ( )f λ is a Herglotz function.
However, the results of [35] are limited to specific uniqueness theorems in the self-adjoint case.

In this article, we obtain necessary and sufficient conditions for uniqueness of Inverse Problem 1.1
solution and develop a constructive algorithm for solving this inverse problem. This algorithm is used in
the sequel study [37] for investigation of solvability and stability for Inverse Problem 1.1. Further this
theory can be generalized to other types of differential operators and pencils.

Our method is based on completeness and basisness of special vector-functional sequences in
appropriate Hilbert spaces. This method allows us to reduce Inverse Problem 1.1 to the classical Sturm-
Liouville inverse problem with constant coefficients in the boundary conditions. In contrast to the majority
of the studies on inverse Sturm-Liouville problems, our analysis does not require self-adjointness of the
operator. We investigate the most general case, when the potential ( )q x is complex-valued and the given
eigenvalues can be multiple. For solving the inverse Sturm-Liouville problem with boundary conditions
independent of the spectral parameter, we rely on the inverse problem theory for non-self-adjoint Sturm-
Liouville operators developed in [4,38,39].

The article is organized as follows. In Section 2, we introduce the notations and formulate the main
results, in particular, necessary and sufficient conditions for uniqueness of solution (Theorems 2.2 and 2.3)
and Algorithm 2.4 for constructive solution of the inverse problem. We also provide some simple
conditions on the subspectrum { } =

∞λn n 1 sufficient for uniqueness and for constructive solution (see Theorem
2.5). The main theorems are proved in Section 3. In Section 4, we apply our results to the Hochstadt-
Lieberman problem. Section 5 is a conclusion, summarizing the results of the article. In Appendix,
Theorem 6.1 on local solvability and stability is proved for the inverse Sturm-Liouville problem by Cauchy
data. This result plays an auxiliary role in analysis of Inverse Problem 1.1. However, as far as we know,
Theorem 6.1 is new for the case of the complex-valued potential ( )q x and so can be treated as a separate
result.
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2 Main results

Let us start with some preliminaries. Denote by ( )S x λ, the solution of Equation (1.1), satisfying the initial
conditions ( ) =S λ0, 0, ′( ) =S λ0, 1. Here and below the prime stands for the derivative with respect to x.
For derivatives with respect to λ, we use the following notation:

( ) =
!

( ) ≥f λ
j λ

f λ j1 d
d

, 0.j
j

j

The spectrum of ( )L q consists of eigenvalues, which coincide with the zeros of the characteristic
function

( ) ≔ ( ) ′( ) + ( ) ( )λ f λ S π λ f λ S π λΔ , , .1 2 (2.1)

Clearly, the function ( )λΔ is entire in the λ-plane.
Consider a subsequence { } =

∞λn n 1 of the spectrum. Any multiple eigenvalue can appear in the sequence
{ } =

∞λn n 1 a number of times not exceeding its multiplicity. By the eigenvalue multiplicity, we mean the
multiplicity of the corresponding zero of the analytic function ( )λΔ . In other words, if for some μ we have

�#{ ∈ = } =n λ μ k: n , then ( ) =μΔ 0j , = −j k0, 1. We call such a sequence { } =
∞λn n 1 a subspectrum of ( )L q .

Let us add to the given subspectrum the value ≔λ 00 . Define

≔ { ≥ ≠ ∀ ≤ < } ≔ #{ ≥ = }I n λ λ k k n m k λ λ0: , : 0 , 0: ,n k n k n (2.2)

i.e., I is the index set of all the distinct values among { } =
∞λn n 0 and mn is the multiplicity of λn for ∈n I .

Without loss of generality, we assume that the equal eigenvalues are consecutive: = =⋯ =+ + −λ λ λn n n m1 1n

for all ∈n I .
Define the functions

( ) = ( ) ( ) = ( )s x λ λ λ x c x λ λ x, sin , , cos .

Obviously, the functions ( )−λ s x λ,1 and ( )c x λ, are entire by λ for each fixed ∈ [ ]x π0, . Define
( ) ≔ ( )η λ S π λ,1 , ( ) ≔ ′( )η λ S π λ,2 . Further we need the following standard relations, which can be obtained

by using the transformation operator (see [1,4,40]):

∫( ) =
( )

−
( )

+ ( ) ( )η λ s π λ
λ

ωc π λ
λ λ

K t c t λ t, , 1 , d ,
π

1

0

(2.3)

∫( ) = ( ) +
( )

+ ( ) ( )η λ c π λ ωs π λ
λ λ

N t s t λ t, , 1 , d ,
π

2

0

(2.4)

where ∈ ( )K N L π, 0,2 . The pair of functions { }K N, is called the Cauchy data of the potential q. Consider
the following auxiliary inverse problem.

Inverse Problem 2.1. Given the Cauchy data { }K N, and the number ω, find the potential q.

Using the Cauchy data { }K N, and ω, one can easily construct the Weyl function ( ) ≔
( )

( )
M λ η λ

η λ
2

1
. It is well

known that the potential q can be uniquely recovered from the Weyl function, e.g., by the method of
spectral mappings (see [4,38,39]).

Proceed to solution of Inverse Problem 1.1. Substituting (2.3) and (2.4) into (2.1), we get

∫ ∫( ) = ( ) ( ) + ( ) + ( ) ( ) + ( ) ( ) − ( ) + ( ) ( )λ λ f λ λc π λ ωs π λ N t s t λ t f λ s π λ ωc π λ K t c t λ tΔ , , , d , , , d .
π π

1

0

2

0





























(2.5)

Introduce the complex Hilbert space of vector functions:
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� ≔ ( ) ⊕ ( ) = { = [ ] ∈ ( ) = }L π L π h h h h L π j0, 0, , : 0, , 1, 2j2 2 1 2 2

with the following scalar product and the norm:

�� � �∫( ) ≔ ( ( ) ( ) + ( ) ( )) ‖ ‖ = ( ) ∈ = [ ] = [ ]g h g t h t g t h t t h h h g h g g g h h h, d , , , , , , , , .
π

0

1 1 2 2 1 2 1 2

Define the vector functions

( ) ≔ [ ( ) ( )] ( ) ≔ [ ( ) ( ) ( ) ( )]u t N t K t v t λ f λ s t λ f λ c t λ, , , , , , .1 2 (2.6)

Clearly, (⋅)u and (⋅ )v λ,ν for each fixed λ and ≥ν 0 belong to � . In view of our notations, relation (2.5) can
be rewritten in the form

�( ( ) ( )) = ( ) + ( ) ( ) ≔ − ( )( ( ) + ( )) − ( )( ( ) − ( ))u t v t λ λ λ w λ w λ f λ λc π λ ωs π λ f λ s π λ ωc π λ, , Δ , , , , , ,1 2 (2.7)

where t is the variable of integration in the scalar product. Since

( ( )) = ∈ = −| =λ λ n I ν mΔ 0, , 0, 1,λ λ
ν

nn
(2.8)

we get

�( ( ) ( )) = ( ) ∈ = −u t v t λ w λ n I ν m, , , , 0, 1.ν
n

ν
n n (2.9)

Denote

( ) ≔ ( ) ≔ ( ) ∈ = − + ≥+ +v t v t λ w w λ n I ν m n ν, , , , 0, 1, 1,n ν
ν

n n ν
ν

n n (2.10)

( ) ≔ [ ] ≔v t w ω0, 1 , .0 0 (2.11)

Finally, we get

�( ) = ≥u v w n, , 0.n n (2.12)

Relation (2.12) for ≥n 1 follows from (2.9). For =n 0, (2.12) follows from (2.3), since ( )S π λ, is analytical at
=λ 0. In view of (2.6), (2.7), (2.10) and (2.11), the vector functions { } =

∞vn n 0 and the numbers { } =
∞wn n 0 can be

constructed by the given data of Inverse Problem 1.1. The components of u can help to find the unknown
potential q.

Introduce the following conditions.

(COMPLETE) The sequence { } =
∞vn n 0 is complete in � .

(BASIS) The sequence { } =
∞vn n 0 is an unconditional basis in � .

Indeed, (BASIS) implies (COMPLETE).
Along with the problem ( )L q , we consider the problem ( )L q̃ of the form (1.1)–(1.2) with another

potential ∈ ( )q L π˜ 0,2 . The functions ( )f λj , =j 1, 2, are the same for these two problems. We agree that, if a
certain symbol γ denotes an object related to ( )L q , the symbol γ̃ with tilde denotes the analogous object
related to ( )L q̃ . Now we are ready to formulate the uniqueness theorem for Inverse Problem 1.1.

Theorem 2.2. Let { } =
∞λn n 1 and { } =

∞λ̃n n 1 be subspectra of the problems ( )L q and ( )L q̃ , respectively. Suppose that

( )L q and { } =
∞λn n 0 satisfy the condition (COMPLETE), and let =λ λ̃n n, ≥n 1, =ω ω̃. Then, =q q̃ in ( )L π0,2 .

The following theorem asserts that the condition (COMPLETE) is not only sufficient but also necessary for
uniqueness of solution of Inverse Problem 1.1.

Theorem 2.3. Let { } =
∞λn n 1 be a subspectrum of the problem ( )L q . Suppose that the sequence { } =

∞vn n 0 is
incomplete in � . Then, there exists a complex-valued function ∈ ( )q L π˜ 0,2 , ≠q q˜ such that =ω ω̃ and
{ } =

∞λn n 1 is a subspectrum of ( )L q̃ .
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Suppose that the condition (BASIS) holds. Then one can constructively solve Inverse Problem 1.1, by
using the following algorithm.

Algorithm 2.4. Let eigenvalues { } =
∞λn n 1 and the number ω be given. We need to find the potential q.

1. Using ( )f λj , =j 1, 2, { } =
∞λn n 0 and ω, construct the vector functions { } =

∞vn n 0 and the numbers { } =
∞wn n 0 via

(2.6), (2.7), (2.10) and (2.11).
2. For the basis { } =

∞vn n 0, find the biorthonormal basis { } =
∞vn n

⁎
0, i.e., �( ) =v v δ,n k nk

⁎ , ≥n k, 0, where δnk is the
Kronecker delta.

3. Construct the element �∈u , satisfying (2.12), by the formula

∑=
=

∞

u w v .
n

n n
0

⁎

4. Using the components of ( ) = [ ( ) ( )]u t N t K t, , solve Inverse Problem 2.1 and find q.

In certain applications, it can be difficult to check the conditions (COMPLETE) and (BASIS). Therefore, we
introduce some other conditions, sufficient for uniqueness and for constructive solution of Inverse
Problem 1.1.

(COMPLETE2) The sequence { ( )} ∈ = −c t λ,ν
n n I ν m, 0, 1n is complete in ( )L π0, 22 .

(BASIS2) The sequence { ( )} ∈ = −c t λ,ν
n n I ν m, 0, 1n is a Riesz basis in ( )L π0, 22 .

(SEPARATION) For every ≥n 0, we have ( ) ≠f λ 0n1 or ( ) ≠f λ 0n2 .
(SIMPLE) There exists an integer n0 such that =m 1n and ≠λ 0n for ≥n n0.

(ASYMPTOTICS) = ( )ρ OIm 1n , → ∞n and { } ∈−
≥ρ ln n n

1
20 , where ≔ρ λn n , )∈ −ρarg ,n

π π
2 2


 .

These conditions are natural for applications, such as the Hochstadt-Lieberman problem (see Section 4),
transmission inverse eigenvalue problem, inverse problems for quantum graphs (see [37, Section 4]), etc.

Theorem 2.5. (i) (SEPARATION) and (COMPLETE2) together imply (COMPLETE);
(ii) (SEPARATION), (SIMPLE), (ASYMPTOTICS) and (BASIS2) together imply (BASIS).

Thus, one can change the condition (COMPLETE) in Theorem 2.2 to (SEPARATION) and (COMPLETE2) and the
condition (BASIS) in Algorithm 2.4 to (SEPARATION), (SIMPLE), (ASYMPTOTICS) and (BASIS2). Those results remain
valid.

The condition (SEPARATION) plays an important role for investigation of Inverse Problem 1.1. If this
condition is violated, i.e., ( ) = ( ) =f λ f λ 0n n1 2 for some n, then, in view of (2.1), the eigenvalue λn carries no
information on the potential q. It is easy to check, that (SEPARATION) follows from (BASIS), so (SEPARATION) is
implicitly required in our constructive solution of the inverse problem. However, (SEPARATION) is not
necessary for the uniqueness theorem. The uniqueness holds even if the subspectrum { } =

∞λn n 1 contains
unnecessary eigenvalues. The only condition required for the uniqueness is (COMPLETE). It is worth
mentioning that this condition and Theorem 2.2 do not hold for polynomial functions ( )f λj , =j 1, 2. In the
case of polynomials, one spectrum is insufficient for recovering the potential, one needs additional data
(see, e.g., [11]).

Surely, it seems natural to exclude the common zeros of the functions ( )f λ1 and ( )f λ2 from
consideration and to assume that these functions are relatively prime. However, this approach is
inconvenient for some applications, e.g., for partial inverse problems for differential operators on graphs
(see [27,37]). For the problem considered in [37, Section 4], the functions ( )f λ1 and ( )f λ2 may have an
arbitrary number (finite or infinite) of common zeros. If we initially exclude those zeros, then it will be very
complicated to obtain estimates for ( )f λj , =j 1, 2, that are important for investigating local solvability and
stability of the inverse problem. Therefore, we suppose that the functions ( )f λ1 and ( )f λ2 may have
common zeros, but these zeros do not coincide with the given eigenvalues { } =

∞λn n 1 in a discussion of the
constructive solution.
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3 Proofs

The aim of this section is to prove Theorems 2.2, 2.3 and 2.5.

Proof of Theorem 2.2. Suppose that the problems ( )L q , ( )L q̃ and their subspectra { } =
∞λn n 1, { } =

∞λ̃n n 1 satisfy the
conditions of Theorem 2.2. By virtue of definitions (2.6), (2.7), (2.10) and (2.11), we have =v ṽn n in � and

=w w̃n n for all ≥n 0. Hence, relation (2.12) for L̃ has the form

�( ) = ≥u v w n˜, , 0.n n (3.1)

Subtracting (3.1) from (2.12) and using the completeness of the sequence { } =
∞vn n 0, we get =u ũ in � , i.e.,

=K K̃ , =N Ñ in ( )L π0,2 . Using the uniqueness of Inverse Problem 2.1 solution, we conclude that =q q̃ in
( )L π0,2 . □

Proof of Theorem 2.3. Let the problem ( )L q and the subspectrum { } =
∞λn n 1 be such that the sequence { } =

∞vn n 0
is incomplete in � . Then, there exists �∈û , ≠û 0, such that

�( ) = ≥u v nˆ, 0, 0.n (3.2)

Since relation (3.2) is linear by û, one can choose û satisfying the estimate �∥ ∥ ≤u εˆ for ε from Theorem 6.1.
Set ≔ [ ( ) ( )]u N t K t, , ≔ + = [ ( ) ( )]u u u N t K t˜ ˆ ˜ , ˜ and ≠u u˜ . By Theorem 6.1, there exists ∈ ( )q L π˜ 0,2 such
that =ω ω̃ and { }K N˜ , ˜ are the Cauchy data of q̃. Define the functions



∫

∫

( ) ≔
( )

−
( )

+ ( ) ( )

( ) ≔ ( ) +
( )

+ ( ) ( )

( ) ≔ ( ) ( ) + ( ) ( )

η λ s π λ
λ

ωc π λ
λ λ

K t c t λ t

η λ c π λ ωs π λ
λ λ

N t s t λ t

λ f λ η λ f λ η λ

˜ , , 1 ˜ , d ,

˜ , , 1 ˜ , d ,

Δ ˜ ˜ .

π

π

1

0

2

0

1 2 2 1

Clearly, ( )λΔ is the characteristic function of ( )L q̃ . Relations (2.12) and (3.2) yield (3.1). Consequently, the function ( )λ λΔ
has zeros { } ∈λn n I of the corresponding multiplicities { } ∈mn n I . Thus, { } =

∞λn n 1 is a subspectrum of ( )L q̃ , ≠q q˜ . □

In order to prove Theorem 2.5, we need several auxiliary lemmas.

Lemma 3.1. Suppose that (SEPARATION) is fulfilled. Then, there exist coefficients { }Cn k, such that the following
relations hold:

∑( ) = (− ) =−

=

−η λ C f j1 , 1, 2,j
ν

n
j

k

ν

n k j
ν k1

0
, (3.3)

for ∈ { }n I\ 0 , = −ν m0, 1n and for =n 0, = −ν m0, 20 .

Proof. Fix ∈ { }n I\ 0 . Relation (2.1) can be rewritten in the form

( ) ( ) + ( ) ( ) = ( )η λ f λ η λ f λ λΔ .1 2 2 1 (3.4)

The condition (SEPARATION) and the relation ( ) =λΔ 0n imply that

[ ( ) ( )] = [ ( ) − ( )]η λ η λ C f λ f λ, , ,n n n n n1 2 ,0 1 2

where Cn,0 is a nonzero constant, i.e., relation (3.3) holds for =ν 0.
Let us prove (3.4) for = −ν m1, 1n by induction. Assume that (3.3) is already proved for ( )η λj

k
n ,

= −k ν0, 1, =j 1, 2. Using (3.4) and the relation ( ) =Δ λ 0ν
n , we get

( ) ( ) = −( ) ( )η f λ η f λ .ν
n

ν
n1 2 2 1
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Differentiation of the products yields

∑ ∑= −
=

−

=

−η f η f .
k

ν
k ν k

k

ν
k ν k

0
1 2

0
2 1

Here and below the arguments ( )λn are omitted for brevity. Using (3.3) for ηj
k , = −k ν0, 1, we obtain

∑ ∑ ∑ ∑+ = − +
=

−

=

− −

=

−

=

− −η f C f f η f C f f .ν

k

ν

j

k

n j
k j ν k ν

k

ν

j

k

n j
k j ν k

1 2
0

1

0
, 1 2 2 1

0

1

0
, 2 1

Calculations show that

∑ ∑

∑ ∑ ∑

∑

+ = ( )

= −

= ( − )

=

−

=

−
− − −

=

−

=

− −

=

−
− −

=

−
− −

− −

η f η f C f f f

C f f f

C f f f f .

ν ν

j

ν

n j
k j

ν
k j ν k ν k

j

ν

n j
s

ν j
s f

s

ν j
s ν j s

j

ν

n j
ν j ν j

1 2 2 1
0

1

,

1

2 1 2

0

1

,
0

1

2
1

2 1

0

1

, 2 1 2 1

ν j s
1











Hence,

∑ ∑− = − +
=

−
−

=

−
−f η C f f η C f .ν

j

ν

n j
ν j ν

j

ν

n j
ν j

2 1
0

1

, 1 1 2
0

1

, 2




















In view of (SEPARATION), ≠f 01 or ≠f 02 . Consequently, there exists the constant Cn ν, such that

∑+ (− ) = (− ) =
=

−
−η C f C f i1 1 , 1, 2.i

ν i

j

ν

n j i
ν j i

n ν i
0

1

, ,

Thus, relation (3.3) is proved for ∈ { }n I\ 0 , = −ν m0, 1n . Obviously, the arguments above are also valid for
=n 0, = −ν m0, 20 . □

Introduce the vector functions

( ) ≔ [ ( ) ( ) − ( ) ( )] ( ) = [ ]

( ) ≔ ( ) ∈ = − + ≥+

g t λ η λ s t λ η λ c t λ g t
g t g t λ n I ν m n ν

, , , , , 0, 1 ,
, , , 0, 1, 1.n ν

ν
n n

1 2 0 (3.5)

Lemma 3.2. The sequence { } =
∞vn n 0 is complete in � if and only if so does { } =

∞un n 0.

Proof. Let an element �= [ ] ∈h h h,1 2 be such that

�( ) = ≥h v n, 0, 0.n (3.6)

Definitions (2.6), (2.10) and (2.11) imply that

( ) = ∈ = −V λ n I ν m0, , 0, 1,ν
n n (3.7)

where

∫( ) ≔ ( ( ) ( ) ( ) + ( ) ( ) ( ))V λ h t f λ s t λ h t f λ c t λ t, , d .
π

0

1 1 2 2
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Obviously,

∫∑( ) = ( ( ) ( ) ( ) + ( ) ( ) ( ))
=

− −V λ h t f λ s t λ h t f λ c t λ t, , d .ν
n

k

ν π
k

n
ν k

n
k

n
ν k

n
0 0

1 1 2 2 (3.8)

Consider the function

∫( ) ≔ ( ( ) ( ) ( ) − ( ) ( ) ( ))G λ h t η λ s t λ h t η λ c t λ t, , d .
π

0

1 1 2 2 (3.9)

Let us show that

( ) = ∈ = −G λ n I ν m0, , 0, 1.ν
n n (3.10)

Using Lemma 3.1, (3.7) and (3.8), we derive

∫

∫

∫

∑

∑ ∑

∑ ∑

∑

( ) = ( ( ) ( ) ( ) − ( ) ( ) ( ))

= ( ( ) ( ) ( ) + ( ) ( ) ( ))

= ( ( ) ( ) ( ) + ( ) ( ) ( ))

= ( ) =

=

− −

= =

− − − −

=

−

=

− −

=

−

G λ h t η λ s t λ h t η λ c t λ t

C h t f λ s t λ h t f λ c t λ t

C h t f λ s t λ h t f λ c t λ t

C V λ

, , d

, , d

, , d

0,

ν
n

k

ν π
k

n
ν k

n
k

n
ν k

n

k

ν

j

k

n j

π
k j

n
ν k

n
k j

n
ν k

n

l

ν

n ν l
j

l π
j

n
l j

n
j

n
l j

n

l

ν

n ν l
l

n

0 0

1 1 2 2

0 0
,

0

1 1 2 2

0
,

0 0

1 1 2 2

0
,

for all ∈n I , = −ν m0, 1n , except for ( ) = ( − )n ν m, 0, 10 . Let us consider the case ( ) = ( − )n ν m, 0, 10
separately. Note that

∫ ∫( ( ) ( ) ( ) + ( ) ( ) ( )) = ( ) ( ) = = −h t f s t h t f c t t f h t t ν m0 , 0 0 , 0 d 0 d 0, 0, 1,
π

ν ν ν
π

0

1 1 2 2 2

0

2 0 (3.11)

since ( ) =s t, 0 0, ( ) =c t, 0 1, = [ ]v 0, 10 and (3.6) holds for =n 0. Combining (3.7), (3.8) and (3.11), we
obtain

∑( ) = ( ( ) ( ) ( ) + ( ) ( ) ( )) = = −
=

−

− −V h t f s t h t f c t t ν m0 0 , 0 0 , 0 d 0, 0, 1.ν

k

ν
k ν k k ν k

0

1

1 1 2 2 0

By using analogous ideas and Lemma 3.1, we derive

∫

∫

∑

∑ ∑

∑ ∑

∑

( ) = ( ( ) ( ) ( ) − ( ) ( ) ( ))

= ( ( ) ( ) ( ) + ( ) ( ) ( ))

= ( ( ) ( ) ( ) + ( ) ( ) ( ))

= ( ) = = −

=

−

− −

=

−

=

− − − −

=

−

=

− −

− − − −

=

−

−

G h t η s t h t η c t t

C h t f s t h t f c t t

C h t f s t h t f c t t

C V ν m

0 0 , 0 0 , 0 d

0 , 0 0 , 0 d

0 , 0 0 , 0 d

0 0, 0, 1.

ν

k

ν
k ν k k ν k

k

ν

j

k

n j

π
k j ν k k j ν k

j

ν

n j
l

ν j π
l ν l j l ν l j

j

ν

n j
ν j

0

1

1 1 2 2

0

1

0
,

0

1 1 2 2

0

1

,
0

1

0

1 1 2 2

0

1

, 0

In particular, (3.10) holds for =n 0, = −ν m 10 .
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Relations (3.9) and (3.10) yield

�( ) = ≥h g n, 0, 0.n (3.12)

Thus, we have shown that (3.12) follows from (3.6). It can be proved similarly that (3.6) follows from (3.12).
Therefore, the completeness of the sequence { } =

∞vn n 0 is equivalent to the completeness of the sequence { } =
∞gn n 0. □

Furthermore, we need two auxiliary propositions. Proposition 3.3 is proved in Appendix of [41].

Proposition 3.3. Let { } =
∞θn n 0 be a sequence of complex numbers, satisfying the asymptotic formula

= + { } ∈ >θ πn
a

l aϰ , ϰ , 0.n n n 2 (3.13)

Define

≔ #{ ≥ = } ≔ { ≥ ≠ ∀ ≤ < }μ k θ θ J n θ θ k k n0: , 0: , : 0 .n k n n k (3.14)

Then, the sequence { ( )} ∈ = −c t θ,ν
n n J ν μ, 0, 1n

is a Riesz basis in ( )L a0,2 .

Proposition 3.4. Let ( )G λ be an entire function, satisfying the conditions:

�

�

∫( ) ≤ (| | ) ∀ ∈ ( ) < ∞G ρ C ρ a λ G ρ ρexp Im , , d .2 2 2

for some positive constants C and a. Let { } =
∞λn n 0 be arbitrary complex numbers, and let the set I and the

multiplicities { } =
∞mn n 0 be defined by (2.2). Suppose that

( ) = ∈ = −G λ n I ν m0, , 0, 1,ν
n n

and the sequence { ( )} ∈ = −c t λ,ν
n n I ν m, 0, 1n is complete in ( )L a0,2 . Then, ( ) ≡G λ 0.

Proof. By the Paley-Wiener Theorem, the function G can be represented in the form

∫( ) = ( ) ( ) ∈ ( )G ρ r t ρt t r L πcos d , 0, 2 .
a

2

0

2 (3.15)

Differentiating (3.15), we get

∫( ) = ( ) ( ) = ∈ = −G λ r t c t λ t n I ν m, d 0, , 0, 1.ν
n

a

ν
n n

0

Since the sequence { ( )} ∈ = −c t λ,ν
n n I ν m, 0, 1n is complete in ( )L a0,2 , we have =r 0 in ( )L a0,2 , so ( ) ≡G λ 0. □

Proof of Theorem 2.5(i). Suppose that the conditions (SEPARATION) and (COMPLETE2) are fulfilled. Let us show
that these two conditions imply the completeness of the sequence { } =

∞gn n 0. Let �∈h be such that (3.12) is
valid. We have to show that =h 0. Consider the function ( )G λ defined by (3.9). Relation (3.12) implies
(3.10). In view of (2.3), (2.4), (3.9), (3.10) and (COMPLETE2), the conditions of Proposition 3.4 are fulfilled for

=a π2 . Therefore, ( ) ≡G λ 0, i.e.,

∫ ( ( ) ( ) ( ) − ( ) ( ) ( )) ≡h t η λ s t λ h t η λ c t λ t, , d 0.
π

0

1 1 2 2 (3.16)

□

By virtue of Proposition 6.2, ( )η λ1 has a countable set of zeros { } =
∞θn n 1, counted with their multiplicities

and satisfying the asymptotic formula (3.13) with =a π . Add the value =θ 00 . Define the set J and the
multiplicities { } ∈μn n J by (3.14). It follows from (3.16) that
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∫ ( ) ( ) ( ) = ∈ = −

| =

h t η λ c t λ t n J ν μ, d 0, , 0, 1.
π

λ θ

ν

n

0

2 2

n















(3.17)

Note that ( ) ≠η θ 0n2 , ≥n 1. (Otherwise, we have ( ) = ′( ) =S π θ S π θ, , 0n n . Together with equation (1.1), this
yields the relation ( ) ≡S x λ, 0, which is wrong). Consequently, using (3.17) and the equality
∫ ( ) =h t td 0

π

0 2 , we obtain

∫ ( ) ( ) = ∈ = −h t c t θ n J ν μ, 0, , 0, 1.
π

ν
n n

0

2

According to Proposition 3.3, the sequence { ( )} ∈ = −c t θ,ν
n n J ν μ, 0, 1n

is complete in ( )L π0,2 . Hence, =h 02 in
( )L π0,2 . Returning to (3.16), we easily conclude that also =h 01 in ( )L π0,2 .
Thus, we have shown that (3.12) implies =h 0 in � , so the sequence { } =

∞gn n 0 is complete in � . By
Lemma 3.2, the sequence { } =

∞vn n 0 is also complete in � under the assumptions of the theorem. □

Lemma 3.5. Let { } ≥τn n 0 be arbitrary complex numbers such that ≠τ τn k and ≠τ τn k for all ≠n k, ≥n k, 0.
Suppose that the sequence { ( )} =

∞τ tcos n n 0 is a Riesz basis in ( )L π0, 22 . Then, the sequence { } =
∞gn n

0
0 is a Riesz

basis in � , where

( ) ≔ [ ( ) ( ) − ( ) ( )]g t τ π τ t τ π τ tsin sin , cos cos .n n n n n
0 (3.18)

Proof. In view of [42, Theorem 3.6.6], for the sequence { } =
∞gn n

0
0 to be a Riesz basis in � , it is sufficient to be

complete in � and to satisfy the two-side inequality

�

∑ ∑ ∑≤ ≤ | |
= = =

M b b g M b
n

N

n
n

N

n n
n

N

n1
0

2

0

0
2

2
0

2
0 0 0

(3.19)

for every sequence { } =
∞bn n 0, every integer ≥N 00 and some fixed positive constants M1 and M2, independent

of { }bn and N0.
First, we show that the sequence { } =

∞gn n
0

0 is complete in � . Let �= [ ] ∈h h h,1 2 be such that

�( ) =h g, 0n
0 for all ≥n 0. It means that the function

∫( ) ≔ ( ( ) ( ) ( ) − ( ) ( ) ( ))G λ h t λ π λ t h t λ π λ t tsin sin cos cos d
π

0

0

1 2

has zeros { } ≥τn n
2

0. Applying Proposition 3.4, we conclude that ( ) ≡G λ 00 . Then, one can easily show that
= =h h 01 2 in ( )L π0,2 , so { } =

∞gn n
0

0 is complete.
Second, we prove the two-side inequality (3.19). Calculations show that

� ∫

∫

( ) = ( ( ) ( ) ( ) ( ) + ( ) ( ) ( ) ( ))

=
( ( − ) )

( − )
= ( ) ( )

g g τ π τ t τ π τ t τ π τ t τ π τ t t

τ τ π
τ τ

τ t τ t t

, sin sin sin sin cos cos cos cos d

sin 2
2

cos cos d .

n k

π

n n k k n n k k

n k

n k

π

n k

0 0

0

0

2

Hence,

�

�∑ ∑ ∑ ∑= ( ) = ( )
= = = = ( )

b g b b g g b τ t, cos .
n

N

n n
n

N

k

N

n k n k
n

N

n n
L π0

0

0 0

0 0

0 0,2

0 0 0 0

2

Since the sequence { ( )} =
∞τ tcos n n 0 is a Riesz basis in ( )L π0, 22 , the two-side inequality similar to (3.19) is valid for

this sequence. Consequently, inequality (3.19) is also valid for { } =
∞gn n

0
0, so { } =

∞gn n
0

0 is a Riesz basis in � . □
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Proof of Theorem 2.5(ii). Suppose that the conditions (SEPARATION), (SIMPLE), (ASYMPTOTICS) and (BASIS2) are
fulfilled. First, let us show that { } =

∞gn n 0 is a Riesz basis in � . Since (BASIS2) implies (COMPLETE2), the
conditions of Theorem 2.5(i) hold, so the sequence { } =

∞gn n 0 is complete in � according to the previous
proof. Substituting (2.3) and (2.4) into (3.5), we get

( ) = [ ( ) ( ) − ( ) ( )] + ( ( | | )) | | → ∞−g t ρ ρπ ρt ρπ ρt O ρ ρ π ρ, sin sin , cos cos exp 2 Im , .2 1

Substituting =ρ ρn into the latter relation and taking the conditions (SIMPLE) and (ASYMPTOTICS) into account,
we conclude that �{∥ − ∥ } ∈≥g g ln n n

0
0 2, where gn

0 is defined by (3.18) for ≥n 0. Here, =τ ρn n for ≥n n0 and
{ } =

−τn n
n

0
10 are arbitrary complex numbers, such that ≠τ τn k and ≠τ τn k for all ≠n k, ≥n k, 0. Thus, the

sequence { } ≥τn n 0 satisfies the conditions of Lemma 3.5. The Riesz-basis property of the sequence
{ ( )} =

∞τ tcos n n 0 follows from (BASIS2). Applying Lemma 3.5, we conclude that { } =
∞gn n

0
0 is a Riesz basis in � .

Thus, the sequence { } =
∞gn n 0 is complete and l2-close to the Riesz basis { } =

∞gn n
0

0 in � . Hence, { } =
∞gn n 0 is also a

Riesz basis.
Second, let us show that the Riesz-basis property of { } =

∞gn n 0 implies that { } =
∞vn n 0 is an unconditional

basis in � , i.e., the normalized sequence �{ /∥ ∥ } =
∞v vn n n 0 is a Riesz basis. By Lemma 3.2, the sequence { } =

∞vn n 0
is complete in � . Recall that, by (SIMPLE), the eigenvalues { }λn are simple for sufficiently large n. Therefore,
by Lemma 3.1, we have =g k vn n n, ≥n n0, where { } ≥kn n n0 are nonzero constants. This fact together with the
completeness of { } =

∞vn n 0 yields the claim. □

4 Hochstadt-Lieberman problem

In this section, we show one of the applications of our main results. Consider the following eigenvalue
problem:

− ′′( ) + ( ) ( ) = ( ) ∈ ( )y x q x y x λy x x π, 0, 2 , (4.1)

( ) = ( ) =y y π0 2 0, (4.2)

with a complex-valued potential ∈ ( )q L π0, 22 . Denote by { } =
∞λn n 1 the eigenvalues of problems (4.1)–(4.2),

counted with their multiplicities and numbered according to their asymptotics

= + + ( ) → ∞−λ n Ω
πn

o n n
2

, ,n
1 (4.3)

where ∫≔ ( )Ω q x xd
π1

2 0

2
.

The Hochstadt-Lieberman problem, also called the half-inverse problem, is formulated as follows.

Inverse Problem 4.1. Suppose that the potential ( )q x is known a priori for ∈ ( )x π π, 2 . Given the spectrum
{ } =

∞λn n 1 (counting with multiplicities), find the potential ( )q x for ∈ ( )x π0, .

Inverse Problem 4.1 and its generalizations were studied in [15,18,36,40,43–45] and other studies. In
this section, we show that this problem can be treated as a special case of Inverse Problem 1.1.

Denote by ( )S x λ, and ( )ψ x λ, the solutions of equation (4.1), satisfying the initial conditions
( ) =S λ0, 0, ′( ) =S λ0, 1, ( ) =ψ π λ2 , 0 and ′( ) = −ψ π λ2 , 1. The eigenvalues of problem (4.1)–(4.2) coincide

with the zeros of the characteristic function

( ) = ( ) ′( ) − ′( ) ( )λ ψ π λ S π λ ψ π λ S π λΔ , , , , . (4.4)

Comparing (4.4) with (2.1), we conclude that the eigenvalue problem (4.1)–(4.2) is equivalent to (1.1)–(1.2) with

( ) ≔ ( ) ( ) ≔ − ′( )f λ ψ π λ f λ ψ π λ, , , .1 2 (4.5)
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Note that these functions ( )f λj , =j 1, 2, are entire in the λ-plane, and they can be constructed by the
known part of the potential ( )q x , ∈ ( )x π π, 2 . The constant ω can also be easily determined by the given
data of Inverse Problem 4.1. Indeed, we have

∫ ∫= ( ) = − ( )ω q x x Ω q x x1
2

d 1
2

d ,
π

π

π

0

2

and the constant Ω can be found from the eigenvalue asymptotics (4.3). Thus, Inverse Problem 4.1 is
reduced to Inverse Problem 1.1 by the whole spectrum { } =

∞λn n 1 of (4.1)–(4.2).

Proposition 4.2. Let ( )f λj , =j 1, 2, be entire functions defined by (4.5), and let { } =
∞λn n 1 be the eigenvalues of

problem (4.1)–(4.2) counted with their multiplicities, ≔λ 00 . Then, the conditions (BASIS2), (SEPARATION),
(SIMPLE) and (ASYMPTOTICS) are fulfilled.

Proof. The condition (BASIS2) follows from asymptotics (4.3) and Proposition 3.3. (SEPARATION) is fulfilled,
because the functions ( )ψ π λ, and ′( )ψ π λ, do not have common zeros. Indeed, if ( ) = ′( ) =ψ π μ ψ π μ, , 0
for some �∈μ , then ( )ψ x μ, is the solution of the initial value problem for equation (4.1) with the zero
conditions at =x π . Then ( ) ≡ψ x μ, 0, which is impossible. The conditions (SIMPLE) and (ASYMPTOTICS) easily
follow from the asymptotics (4.3). □

Thus, our main results can be applied to the Hochstadt-Lieberman problem. In particular, Theorem 2.2
implies the following corollary, which generalizes the Hochstadt-Lieberman uniqueness theorem [18] to
the case of complex-valued potentials.

Theorem 4.3. Let { } =
∞λn n 1 and { } =

∞λ̃n n 1 be the spectra of the boundary value problems in the form (4.1)–(4.2) for
potentials q and q̃, respectively. Suppose that ( ) = ( )q x q x˜ a.e. on ( )π π, 2 and =λ λ̃n n for all ≥n 1. Then,

( ) = ( )q x q x˜ a.e. on ( )π0, . In other words, the solution of Inverse Problem (4.1) is unique.

Algorithm 2.4 can be used for constructive solution of Inverse Problem 1.1. This algorithm generalizes
the methods, developed in parallel by Martinyuk and Pivovarchik [40] and by Buterin [45] for solving the
Hochstadt-Lieberman problem.

5 Conclusion

In this article, we began the analysis of Inverse Problem 1.1 for the boundary value problems (1.1) and (1.2)
containing arbitrary entire functions in the boundary conditions. We have provided necessary and
sufficient conditions for uniqueness of this problem solution. Necessity is contained in Theorem 2.3 and
sufficiency in Theorem 2.2. We have developed a constructive algorithm for the inverse problem solution
(Algorithm 2.4), based on reduction of Inverse Problem 1.1 to the classical inverse problem by Cauchy data
(Inverse Problem 2.1). We have also obtained some simple conditions sufficient for uniqueness and for
constructive solution of the inverse problem (see Theorem 2.5). Our results are illustrated by their
application to the Hochstadt-Lieberman inverse problem. We continue this research in the sequel paper
[37], which is devoted to global solvability, local solvability and stability of Inverse Problem 1.1.
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Appendix: inverse problem by Cauchy data

The goal of this section is to prove the following theorem on local solvability and stability of Inverse
Problem 2.1.

Theorem 6.1. Let q be a fixed complex-valued function from ( )L π0,2 , and let { }K N, be the corresponding

Cauchy data. Then, there exists >ε 0 (depending on q) such that, for any functions K N˜ , ˜ from ( )L π0,2
satisfying the estimate

{ }≔ ∥ − ∥ ∥ − ∥ ≤( ) ( )Ξ K K N N εmax ˜ , ˜ ,L π L π0, 0,2 2 (6.1)

there exists a unique function ∈ ( )q L π˜ 0,2 such that∫ ( ( ) − ( )) =q x q x x˜ d 0
π

0
and { }K N˜ , ˜ are the Cauchy data

for q̃. In addition,

∥ − ∥ ≤( )q q CΞ˜ ,L π0,2 (6.2)

where the constant C depends only on q and not on { }K N˜ , ˜ .
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Below the symbol C is used for various positive constants. In order to prove Theorem 6.1, we need
several auxiliary propositions. Applying the standard approach (see, e.g., [4, Theorem 1.1.3]), based on
Rouché’s Theorem, one can easily obtain the following result.

Proposition 6.2. Let ( )K t be an arbitrary complex-valued function from ( )L π0,2 . Then, the function ( )η λ1
defined by (2.3) has the countable set of zeros { } =

∞θn n 1 numbered according to their multiplicities so that
≤ +θ θn n 1 , �∈n , and satisfying the asymptotic formula

�≔ = + ( ) ∈−ν θ n O n n, .n n
1 (6.3)

In view of the asymptotic formula (6.3), we can find the smallest integer ≥n 21 such that the zeros { }θn
are simple for ≥n n1 and > −θ θn n 11 1 . Define the contour �≔ { ∈ | | = (| | + | |)/ }−γ λ λ θ θ: 2n n0 11 1 . Clearly,

∈θ γintn 0 for = −n n1, 11 and the eigenvalues { } =
∞θn n n1 lie strictly outside γ0.

Without loss of generality, we may assume that equal eigenvalues in the sequence { } =
∞θn n 1 are

consecutive. Introduce the notations

��

�

≔ { } ∪ { ≥ ≠ } ≔ #{ ∈ = }

( ) ≔
( )

( )
≔ ( − ) ( ) ∈ = −

−

+
=

n λ λ k k θ θ

M λ
η λ
η λ

M λ θ M λ n ν k

1 2: , : ,

, Res , , 0, 1.

n n n k n

n ν
λ θ

n
ν

n

1

2

1 n

Below we agree that, if a certain symbol γ denotes an object constructed by { }K N ω, , , then the symbol γ̃
with tilde denotes the analogous object constructed by { }K N ω˜ , ˜ , .

Lemma 6.3. Let K, N be fixed complex-valued functions from ( )L π0,2 , and let �∈ω . Then, there exists >ε 0
(depending on K, N, ω) such that, for any ∈ ( )K N L π˜ , ˜ 0,2 satisfying (6.1), the points { } =

−θ̃n n
n

1
11 lie strictly inside

γ0 and

( ) − ( ) ≤
∈

M λ M λ CΞmax ˜ .
λ γ0

(6.4)

For ≥n n1, we have =k̃ 1n and

∑ ( ) ≤
=

∞
/

nξ CΞ,
n n

n
2

1 2

1









 (6.5)

where ≔ − + −ξ ν ν M M˜ ˜
n n n n n n

1
2 . The constant C in estimates (6.4) and (6.5) depends only on { }K N ω, , .

Proof. Step 1. If the functions K, N, K̃ , Ñ and the number ω satisfy the conditions of the lemma for
sufficiently small >ε 0, then (2.3) and (6.1) yield the estimates

( ) ( ) ≥ > ∈ ( ) − ( ) ≤ ∈η λ η λ c λ γ η λ η λ CΞ λ γ, ˜ 0, , ˜ , .1 1 0 0 1 1 0 (6.6)

Consequently, for sufficiently small >ε 0, we have <
( ) − ( )

( )
1η λ η λ

η λ
˜1 1

1
on γ0. By Rouché’s Theorem, the function

( )η λ1̃ has inside γ0 the same number of zeros as ( )η λ1 . According to our notations, these zeros of ( )η λ1̃
are { } =

−θ̃n n
n

1
11 .

Using (2.3), (6.1) and (6.6), we obtain the estimate (6.4):

( ) − ( ) =
( ) ( ) − ( ) ( )

( ) ( )
≤ ∈M λ M λ

η λ η λ η λ η λ
η λ η λ

CΞ λ γ˜ ˜ ˜
˜

, .2 1 2 1

1 1
0

Step 2. For ≥n n1, consider the contours �≔ { ∈ | − | = }γ ρ ρ ν r:n r n, , where >r 0 is fixed and so small

that ≤
| − |+r ν ν

2
n n 1 , ≥n n1. The function ( )η ρ0

2 has exactly one zero ∈ν γintn n r, in the ρ-plane for every

≥n n1. Relations (2.3) and (6.1) yield the estimate
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( ) ≥ ∈ ≥η ρ c
n

ρ γ n n, , ,r
n r1

2
, 1 (6.7)

where the constant cr depends on r and not on ρ and n. For sufficiently small >ε 0, we obtain the estimate

( ) − ( ) ≤ ∈ ≥η ρ η ρ CΞ
n

ρ γ n n˜ , , .n r1
2

1
2

2 , 1 (6.8)

Using (6.7) and (6.8) and applying Rouché’s Theorem to the contour γn r, in the ρ-plane, we conclude that
( )η ρ1̃

2 has exactly one zero ∈ν γ˜ intn n r, for each ≥n n1.
Using the Taylor formula

( ) = ( ) + ( ) ( − ) ∈| =η ν η ν
ρ

η ρ ν ν ζ γ˜ d
d

˜ , int ,n n ρ ζ n n n n r1
2

1
2

1
2

,n

and (2.3), we derive the relation

∫( ) − ( ) = ( ) ( ) = ( ) ( − )| =η ν η ν
ν

K t ν t t
ρ

η ρ ν ν˜ ˜ ˜ 1
˜

ˆ cos ˜ d d
d

˜ ,n n
n

π

n ρ ζ n n1
2

1
2

2
0

1
2

n (6.9)

where ≔ −K K Kˆ ˜ . It is easy to check that

( ) ≥ ∈ ≥
ρ

η ρ C
n

ρ γ n nd
d

, int , .n r1
2

, 1 (6.10)

Using (6.3) and (6.1), we estimate the integral:

∫ ∫ ∫

∫

( ) ( ) ≤ ( ) ( ) + ( )( ( ) − ( ))

≤ + ≥ ≔ ( ) ( )

K t ν t t K t nt t K t ν t nt t

K CΞ
n

n n K K t nt t

ˆ cos ˜ d ˆ cos d ˆ cos ˜ cos d

ˆ , , ˆ ˆ cos d .

π

n

π π

n

n n

π
0 0 0

1

0

(6.11)

Combining (6.9), (6.10) and (6.11), we obtain

− ≤
| |

+ ≥ν ν C K
n

CΞ
n

n n˜
ˆ

, .n n
n

2 1 (6.12)

Bessel’s inequality for the Fourier coefficients { }K̂n and (6.1) imply that

∑ | | ≤
=

∞
/

K CΞˆ .
n n

n
2

1 2

1









 (6.13)

Combining (6.12) and (6.13), we arrive at the estimate

∑ | − | ≤
=

∞
/

n ν ν CΞ˜ .
n n

n n
2 2

1 2

1









 (6.14)

Step 3. Note that { } =
∞θn n n1 are simple poles of ( )M λ , so

= ( ) =
( )

( )
≥

=
M M λ

η θ
η θ

n nRes
̇

, ,n
λ θ

n

n

2

1
1

n

where ( ) = ( )f λ f λ̇
λ

d
d . If >ε 0 is sufficiently small, the analogous relation is valid for M̃n, ≥n n1. Hence,

− =
( − ) + ( − )

≥

=

M M
η η η η η η

η η
n n˜ ˜ ̇ ̇ ˜̇

̇ ˜̇
, .n n

λ θ

2 2 1 2 1 1

1 1
1

n

(6.15)
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Using (6.15) and the following estimates

( ) ≥ ( ) ≥ ( ) ≤ ( ) ≤

( ) − ( ) ≤
| |

+ ( ) − ( ) ≤
| |

+ ≥

η θ C
n

η θ C
n

η θ C
n

η θ C

η θ η θ C N
n

CΞ
n

η θ η θ C L
n

CΞ
n

n n

̇ , ˜̇ , ̇ , ,

˜
ˆ

, ̇ ˜̇
ˆ

, ,

n n n n

n n
n

n n
n

1 2 1 2 1 2 2

2 2 2 1 1 3 4 1

where

∫ ∫≔ ( ) ( ) ≔ − ≔ ( ) ( )N N t nt t N N N L tK t nt tˆ ˆ sin d , ˆ ˜ , ˆ ˆ sin d ,n

π

n

π

0 0

we arrive at the estimate

− ≤ ( + ) + ≥M M Cn N L CΞ n n˜ ˆ ˆ , .n n n n 1

Similar to (6.14), we obtain

∑ − ≤
=

∞

−

/

n M M CΞ˜ .
n n

n n
2 2

1 2

1









 (6.16)

Relations (6.14) and (6.16) together imply (6.5). □

In [39,46], the following inverse problem has been studied.

Inverse Problem 6.4. Given the data { } =
∞θ M,n n n 1, find q.

Clearly, Inverse Problem 6.4 is equivalent to Inverse Problem 2.1 by the Cauchy data. In addition, one
can uniquely construct ( )M λ by { } =

∞θ M,n n n 1 and vice versa. In [46], the following proposition on local
solvability and stability of Inverse Problem 6.4 has been proved.

Proposition 6.5. Let ∈ ( )q L π0,2 be fixed. Then, there exists >ε 0 (depending on q) such that, for any

complex numbers { } =
∞θ M˜ , ˜n n n 1 satisfying the estimate

∑≔ ( ) − ( ) ( ) ≤
∈

=

∞
/

Ω M λ M λ nξ εmax max ˜ , ,
λ γ n n

n
2

1 2

0 1
 

 

















there exists the unique complex-valued function ∈ ( )q L π˜ 0,2 being the solution of Inverse Problem 6.4 for

{ } =
∞θ M˜ , ˜n n n 1. Moreover, estimate (6.2) holds with the constant C depending only on q.

Lemma 6.3 and Proposition 6.5 together imply Theorem 6.1.
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