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Abstract: Let >T 1 be an integer, � ��≔ [ ] = { … } ≔ { … + }T T T1, 1, 2, , , ˆ 0, 1, , 1 . In this article, we are
concerned with the global structure of the set of sign-changing solutions of the discrete second-order
boundary value problem

�( − ) + ( ) ( ( )) = ∈

( ) = ( + ) =

u x λh x f u x x
u u T
Δ 1 0, ,

0 1 0,
2




where >λ 0 is a parameter, � �∈ ( )f C , satisfies ( ) = ( ) >f sf s0 0, 0 for all ≠s 0 and � → [ +∞)h: ˆ 0, . By
using the directions of a bifurcation, we obtain existence and multiplicity of sign-changing solutions of the
above problem for λ lying in various intervals in � . Moreover, we point out that these solutions change
their sign exactly −k 1 times, where ∈ { … }k T1, 2, , .

Keywords: sign-changing solutions, bifurcation, Sturm-type comparison theorem, boundary value problem,
difference equation

MSC 2010: 39A70, 39A28, 47A75

1 Introduction

In this article, we are concerned with the discrete second-order boundary value problem

�( − ) + ( ) ( ( )) = ∈

( ) = ( + ) =

u x λh x f u x x
u u T
Δ 1 0, ,

0 1 0,
2




(1.1)

where � �≔ [ ] = { … }T T1, 1, 2, , , >T 1 is an integer, � ≔ { … + }Tˆ 0, 1, , 1 , >λ 0 is a parameter and h f,
satisfy the following assumptions.

(A1) � → [ +∞)h: ˆ 0, with < ≤ ( ) ≤h h t h0 ⁎
⁎ on �̂ for some ∈ ( ∞)h h, 0,⁎

⁎ .

In assumption (A2) and throughout the article, we use the following well-known conceptions of a
generalized zero and a simple generalized zero at �∈t .

Definition 1.1. Suppose that a function � �→y: ˆ . If ( ) =y t 00 , then t0 is a zero of y. If ( ) =y t 00 or
( ) ( + ) <y t y t 1 00 0 for some ∈ { … − }t T1, , 10 , then y has a generalized zero at �∈t0 .
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Definition 1.2. A function � �→y: ˆ is said to have a simple generalized zero at �∈t0 provided that one of
the following conditions is satisfied:
(i) ( ) = ( − ) ( + ) <y t y t y t0, 1 1 00 0 0 ;
(ii) ( ) ( + ) <y t y t 1 00 0 .

It is well-known that the eigenvalue problem

�( − ) + ( ) ( ) = ∈

( ) = ( + ) =

u x μh x u x x
u u T
Δ 1 0, ,

0 1 0

2



(1.2)

has a finite sequence of simple eigenvalues

< < < ⋯ <μ μ μ0 ,T1 2

and the eigenfunction ϕk corresponding to μk has exactly −k 1 simple generalized zeros in � (see [1], and
for other spectral results of related problems we refer to [2]). Let

= < < ⋯ < < = +−t t t t T0 1k k0 1 1

be the generalized zeros of ϕk.

In the special case ( ) ≡h x 1, the mth eigenvalue and eigenfunction corresponding to it are characterized by

= −

+

( ) =

+

η mπ
T

ψ t m
T

πt2 2 cos
1

, sin
1

,m m 






respectively. Let

= < < ⋯ < < = +−τ τ τ τ T0 1m m0 1 1

be the generalized zeros of ( )
+

πtsin m
T 1 in �̂ . Then,

�− ∈ ∈
+ −

≤ ≤
+

∈ { … − }+τ τ t T m
m

t T m
m

j m2 , 0, 1, , 1 .j j1








We assume that

(A2) there exist two constants ∈ { … }m m T, 1, 2, ,1 2 , such that

�≤ ( )
( )

≤ ∈

∈( ∞)

η μ h t f s
s

η tmax , ˆm k s m0,1 2
(1.3)

for some �∈k .
From (1.3) and the Sturm-type comparison theorem, see Aharonov, Bohner and Elias [3], there exists

�= ∈ ≤ ≤
+ − +c t tmin T m

m
T m

m⁎
2 2

2

2

2








, such that

− ≥ ∈ { … − }+t t c j k, 0, 1, , 1 .j j1 ⁎

Let χ1 be the principal eigenvalue of the eigenvalue problem

�( − ) + ( ) = ∈ [ − ]

( ) = ( ) =

w x χw x x c
w w c
Δ 1 0, 1, ˆ 1 ,

0 ˆ 0,

2



(1.4)

where �∈ĉ satisfies ≤ ≤
+ĉc c

2
1

2
⁎ ⁎ , and let w1 be an eigenfunction corresponding to χ1.

Furthermore, we assume that

(A3) there exist > >α f0, 00 and >f 01 such that

( ) −

| |

= −

| |→

f s f s
s s

flim ;
s α0

0
1
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(A4) � �∈ ( ) ( ) = ( ) >f C f sf s, , 0 0, 0 for ≠s 0 and ≔ =∞

| |→∞

( )f lim 0
s

f s
s ;

(A5) there exist >s 00 and < <σ0 1 such that

( )
≥

| |∈

f s
s

f
μ h

χmin .
s s σ s k, 1

0

⁎
1

0 0





In order to state our main result, we first recall some standard notations to describe the properties of sign-
changing solutions. Let � �= { | → }Y u u: with the norm

�
‖ ‖ = ( )

∈

u u tmaxY
t

. Let � �= { → | ( ) =X u u: ˆ 0

( + ) = }u T 1 0 with the norm
�

‖ ‖ = ( )

∈

u u tmax
t ˆ

. For ≥k 1, ∈ {+ −}ν , , let Sk
ν denote the set of functions in X

such that
(i) u has exactly −k 1 simple generalized zeros in � ;
(ii) ( ) >νu 1 0.

Define = ∪
− +S S Sk k k . They are disjoint and open in X. Finally, let �= ×

± ±Φ Sk k and �= ×Φ Sk k. A Sk
ν

solution of (1.1) is a function ∈u Sk
ν satisfying (1.1).

Our main result is the following.

Theorem 1.3. For each fixed integer ∈ { … }k T1, 2, , and each fixed ∈ {+ −}ν , , let (A1)–(A5) hold. Then,
there exist ∈ ( / )λ μ f0, k⁎ 0 and > /λ μ fk

⁎
0, such that

(i) (1.1) has at least one Sk
ν solution if =λ λ⁎;

(ii) (1.1) has at least two Sk
ν solutions if < ≤ /λ λ μ fk⁎ 0;

(iii) (1.1) has at least three Sk
ν solutions if / < <μ f λ λk 0

⁎;

(iv) (1.1) has at least two Sk
ν solutions if =λ λ⁎;

(v) (1.1) has at least one Sk
ν solution if >λ λ⁎.

Existence and multiplicity of positive solutions for discrete boundary value problems have been
extensively studied by several authors. We refer to Agarwal et al. [4,5], Cheng and Yen [6], Rachunkova
and Tisdell [7], Ma [8], Rodriguez [9] and references therein. However, the methods in [4–9] are analytic
techniques and various fixed point theorems, which cannot be used to prove the existence of Sk

ν solutions.
By using the global bifurcation theory [10,11], Davidson and Rynne [12] and Luo and Ma [13] studied

second-order Dirichlet boundary value problems on measure chain. It is well-known that measure chain �̃

denotes an arbitrary closed subset of real numbers �, and we can regard the equations in [12,13] as
difference equations when � �=˜ . They showed that unbounded continua of nontrivial solutions
prescribed nodal properties emanated from the trivial branch at the eigenvalues of the linearization
problems. However, they only showed that for each fixed integer ≥k 1 and ∈ {+ −}ν , , there exists at least
one nodal solution.

Remark 1.4. Existence of ĉ in (1.4) can be guaranteed by (A2). For example, let = =T m100, 52 . By using
Mathematica 9.0, the distance between two consecutive generalized zeros of ( )ψ tm2

was found to be 20,

which means =c 20⁎ . Thus, it is easy to check that =ĉ 10 by the definition of ĉ.

The rest of the article is organized as follows. In Section 2, we show the existence of bifurcation from
some eigenvalues for the corresponding problem according to the standard argument and the rightward
direction of bifurcation. In Section 3, the change in direction of bifurcation is given. The final section is
devoted to show an a priori bound of solutions for (1.1) and complete the proof of Theorem 1.3.
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2 Rightward bifurcation

We study the global behavior from the trivial branch with the rightward direction of bifurcation under
suitable assumptions on h and f.

Lemma 2.1. Suppose that ( )λ u, is a nontrivial solution of (1.1). Then, there exists ∈ { … }k T1, 2, ,0 , such that

∈u S .k
ν
0

Proof. Suppose on the contrary that for every ∈ { … }k T1, 2, , ,

∉u S .k
ν

Then, there exists �∈t0 such that

( ) = ( − ) ( + ) ≥u t u t u t0, 1 1 0.0 0 0 (2.1)

Since u ≢ 0 on �̂ , we may assume that

( − ) + ( + ) >u t u t1 1 0.0 0 (2.2)

On the other hand, it follows from equation (1.1) and ( ) =f 0 0 that

− ( − ) = ( ) ( ( )) =u t λh t f u tΔ 1 0,2
0 0 0

which implies that

( + ) − ( ) + ( − ) =u t u t u t1 2 1 0.0 0 0

However, by (2.2) and the fact ( ) =u t 00 , we get

( + ) ( − ) <u t u t1 1 0,0 0 (2.3)

which contradicts (2.1). □

Next following the similar arguments in Gao and Ma [14], with obvious changes, we may get the following.

Lemma 2.2. Assume that (A1), (A3) and (A4) hold. Let (A2) be satisfied for some �∈k . Then for each
∈ {+ −}ν , , there exists an unbounded subcontinuum �k

ν which is branching from ( / )μ f , 0k 0 for (1.1). Moreover,
if �( ) ∈λ u, k

ν , then u is a Sk
ν solution of (1.1).

Lemma 2.3. Assume that (A1), (A3) and (A4) hold. Let (A2) be satisfied for some �∈k . Let u be a Sk
ν solution

of (1.1). Then, there exists a constant >C 0 independent of u such that

�( ) ≤ ‖ ‖ ∈ [ ]u x λC u x TΔ , 0, . (2.4)

Proof. According to discrete Rolle’s theorem (see [1]), there exists �∈x0 , such that ( ) =u xΔ 00 or
( − ) ( ) <u x u xΔ 1 Δ 00 0 . Then by a direct computation, it is easy to see that

�∑( ) = ( ) + ( ) ( ( )) ∈

= +

u x u x λ h s f u s xΔ Δ , .
s x

x

0
1

0

(2.5)

Noting that (A3) and (A4) imply that

�( ) ≤ ∈f s f s s,⁎ (2.6)

for some >f 0⁎ , it follows from (2.5) that
(i) if ( ) =u xΔ 00 , then
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∑ ∑ ∑( ) = ( ) ( ( )) ≤ ‖ ‖ ( ) ≤ ( )‖ ‖

= + = + =

+

u x λ h s f u s λf u h s λf h s uΔ ;
s x

x

s x

x

s

T

1

⁎

1

⁎

0

10 0

(ii) if ( − ) ( ) <u x u xΔ 1 Δ 00 0 , then

∑ ∑( ) = ( ) + ( ) ( ( )) ≤ + ( ) ‖ ‖

= + =

+

u x u x λ h s f u s λf h s uΔ Δ 2 . □
s x

x

s

T

0
1

⁎

0

10 









Lemma 2.4. Assume that (A1), (A3) and (A4) hold. Let (A2) be satisfied for some �∈k . Let {( )}λ u,n n be a
sequence of Sk

ν solutions to (1.1), which satisfies ‖ ‖ →u 0n and → /λ μ fn k 0. Let ( )ϕ xk be the kth eigenfunction
of (1.2), which satisfies ‖ ‖ =ϕ 1k . Then, there exists a subsequence of { }un , again denoted by { }un , such that

/‖ ‖u un n converges uniformly to ϕk on � .

Proof. Set ≔ /‖ ‖v u un n n . Then, it is easy to see that ‖ ‖ =v 1n . It follows from Lemma 2.3 that ‖ ‖vΔ n is
bounded, so there is a subsequence of vn uniformly convergent to a limit v. Furthermore, there exists a
subsequence of it such that ( )vΔ 0n converges to some constant c. We again denote by vn the subsequence.
We note that ∈ ( ) = ( + ) =v Y v v T, 0 1 0 and ‖ ‖ =v 1. Rewriting equation (1.1) with ( ) = ( )λ u λ u, ,n n , we
obtain

∑( ) = ( ) − ( ) ( ( ))

=

u x u λ h t f u tΔ Δ 0 .n n n
t

x

n
1

(2.7)

Dividing both sides of (2.7) by ‖ ‖un , we get

∑( ) = ( ) − ( )
( ( ))

( )

( ) ≔ ( )

=

v x v λ h t f u t
u t

v t w xΔ Δ 0 .n n n
t

x
n

n
n n

1
(2.8)

Noting that ( ) →u x 0n for all �∈x ˆ , so for each fixed �∈t ˆ , one has →
( ( ))

( )

ff u t
u t 0

n

n
. It follows from (2.6) that

( )w xn converges to

∑( ) ≔ − ( ) ( )

=

w x c μ h t v tk
t

x

1
(2.9)

for each fixed �∈x ˆ . Therefore, by recalling (2.8), one has

∑( ) = ( )

=

−

v x w s .n
s

x

n
1

1

The fact coupled with (2.9) yields that ( )v xn converges to

∑ ∑( ) = − ( ) ( )

=

−

=

v x c μ h t v t ,
s

x

k
t

s

1

1

1











which implies that v is a nontrivial solution of (1.2) with =λ μk, and hence ≡v ϕk. □

Lemma 2.5. Assume that (A1), (A3) and (A4) hold. Let (A2) be satisfied for some �∈k . Let �k
ν be as in

Lemma 2.2. Then there exists >δ 0 such that for �( ) ∈λ u, k
ν and − / + ‖ ‖ ≤λ μ f u δk 0 , one has > /λ μ fk 0.

Proof. Suppose on the contrary that there exists a sequence {( )}λ u,n n such that �( ) ∈λ u,n n k
ν, which

satisfies → / ‖ ‖ →λ μ f u, 0n k n0 and ≤ /λ μ fn k 0. According to Lemma 2.4, there exists a subsequence of { }un ,

for convenience denote it by { }un , such that
‖ ‖

u
u

n

n
converges uniformly to ϕk on �̂ , where ( ) ∈ϕ x Sk k

ν is the

kth eigenfunction of (1.2) with ‖ ‖ =ϕ 1k . Multiplying the equation of (1.1) with ( ) = ( )λ u λ u, ,n n by un and by
a direct computation, one has
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∑ ∑( ) ( ( )) ( ) = ( )

= =

λ h x f u x u x u xΔ ,n
x

T

n n
x

T

n
0 0

2

and accordingly

∑ ∑( )
( ( ))

‖ ‖

( )

‖ ‖

=
( )

‖ ‖
= =

λ h x f u x
u

u x
u

u x
u

Δ .n
x

T
n

n

n

n x

T
n

n0 0

2

2 (2.10)

It follows from Lemma 2.4 that after taking a subsequence and relabeling if necessary,
‖ ‖

u
u

n

n
converges to ϕk in Y.

∑ ∑( ) = ( ) ( )

= =

ϕ x μ h x ϕ xΔ ,
x

T

k k
x

T

k
0

2

0

2

then coupled with (2.10), one has

∑ ∑( ) ( ( )) ( ) = ( ) ( ) − ( )‖ ‖

= =

λ h x f u x u x μ h x u x ζ n un
x

T

n n k
x

T

n n
0 0

2 2

with a function � �→ζ : satisfying

( ) =

→∞

ζ nlim 0.
n

That is,

∑ ∑( )
( ( )) − ( )

( ) ( )

( )

‖ ‖

=

‖ ‖

( − ) ( )
( )

‖ ‖

− ( )

=

+ +

=

+

h x f u x f u x
u x u x

u x
u λ u

μ f λ h x u x
u

ζ n1 .
x

T
n n

n
α

n

n

n

α

n n
α k n

x

T
n

n0

1
0

2

0
0

1 2











From condition (A3), we have

∑ ∑( )
( ( )) − ( )

( ) ( )

( )

‖ ‖

→ − ( ) ( ) <

=

+ +

=

+

+h x f u x f u x
u x u x

u x
u

f h x ϕ x 0,
x

T
n n

n
α

n

n

n

α

x

T

k
α

0

1
0

2

1
0

1
2

and

∑ ∑( )
( )

‖ ‖

→ ( ) ( ) >

=

+

=

+

h x u x
u

h x ϕ x 0.
x

T

n x

T

k
0

1 2

0

1
2

This contradicts ≤ /λ μ fn k 0. □

3 Direction turn of bifurcation

In this section, we show that the connected components grow to the left at some point under (A5) condition.

Lemma 3.1. Assume that (A2) holds for some �∈k . Let u be a Sk
ν solution of (1.1). Then there exist two

generalized zeros αu and βu, such that

− ≥β α c ,u u ⁎

�
> ∈ [ + − ]u x α β0, 1, 1 ,u u

�
‖ ‖ = | ( )| ∈ [ ]u u t for some t α β, .u u0 0

Moreover,

�‖ ‖ ≤ ( ) ≤ ‖ ‖ ∈ ∈

+

≤ ≤

+

≔σ u u x u x t
α β

t
α β

J, :
3

4
3

4
,u u u u

u







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where { }=
−

−

−

σ min ,J
β α

β J
β α

min maxu

u u

u u

u u
.

Proof. It is an immediate consequence of the fact that u is concave down in �̂ . □

Lemma 3.2. Assume that (A1) and (A5) hold. Let σ be as in Lemma 3.1 and u be a Sk
ν solution of (1.1) with

‖ ‖ =u sσ
1

0. Then < /λ μ fk 0.

Proof. Let u be a Sk
ν solution of (1.1). It follows from Lemma 3.1 that

‖ ‖ ≤ ( ) ≤ ‖ ‖ ∈σ u u x u x J, .u

We note that u is a solution of

( ) + ( )
( ( ))

( )

( ) = ∈u x λh x f u x
u x

u x x JΔ 0, .u
2

Suppose on the contrary that ≥ /λ μ fk 0. Then for ∈x Ju, we have from (A5) that

( )
( ( ))

( )

≥ =λh x f u x
u x

μ
f

h f
μ h

χ χ .k

k0
⁎

0

⁎
1 1

Choose >b 0, such that �[ + ] ⊂b b c J, ˆ u. Set

�( ) = ( − ) ∈ [ + ]y x w x b x b b c, , ˆ ,1

then

�( − ) + ( ) = ∈ [ ]

( ) = ( + ) =

y x χ y x x a b
y b y b c
Δ 1 0, , ,

ˆ 0.

2
1




Combine this with a generalized version of the Sturm-type comparison theorem [3]. We deduce that u has
at least one generalized zero on Ju. This contradicts the fact that ( ) >u x 0 on Ju. □

4 Second turn and proof of Theorem 1.3

The main ingredient of this section is an a priori estimate and finally we shall give a proof of Theorem 1.3.

Lemma 4.1. Assume that (A3) and (A4) hold. Let ( )λ u, be a Sk
ν solution of (1.1). Then, there exists >λ 0⁎ such

that ≥λ λ⁎.

Proof. From Lemma 2.3, there exists a constant >C 0, which is independent of u such that (2.4) holds. Let
‖ ‖ = ( )u u x0 , then it follows from (2.4) that

∑ ∑‖ ‖ = ( ) = ( ) ≤ ‖ ‖ ≤ ‖ ‖

=

−

=

−

u u x u s λC u λCT uΔ ,
s

x

s

x

0
0

1

0

10 0

(4.1)

that is, ≥ ( )
−λ CT 1. □

Lemma 4.2. Assume that (A1) and (A4) hold. Let (A2) be satisfied for some �∈k . Let u be an Sk
ν solution of (1.1).

Then, there exists a constant >C 0 independent of u such that for ( ) = ( )/≤ ≤f s f t tminσs t s , one has (∥ ∥) ≤λ f u C̲ .

Proof. Let

= < < ⋯ < = +t t t T0 1k0 1

be the generalized zeros of u. Then, by (A2) we may get
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− ≥ ∈ { … − }+t t c j k, 0, 1, , 1 .j j1 ⁎

We may assume that

�
= ( ) ∈ [ ]+

u u x x t t, , ,l l0 0 1 (4.2)

or

�
= − ( ) ∈ [ ]+

u u x x t t, , .l l0 0 1 (4.3)

We only deal with case (4.2) since case (4.3) can be treated by the similar way.
Let

�{ }= ∈
+

≤ ≤
++ +J t t t t t t: 3

4
3

4
.l

l l l l1 1

Let �∈t̂ satisfy ≤ ≤
− − ++ +t̂t t t t

2
1

2
l l l l1 1 and

≔ [ ] ≔ [ ]J J t J t Jmin , ˆ , ˆ, max .l l1 2

If ( ) = ( ) =+u t u t 0l l 1 , then it follows from (4.2) that

∑

∑

∑

∑

‖ ‖ ≥ ( ) = [ ( ) ( ) ( ( ))]

= ‖ ‖ ( ) ( )
( ( ))

‖ ‖

≥ ‖ ‖ ( ) ( )
( ) ( )

∥ ∥

≥ ‖ ‖ [ ( ) ( ) (∥ ∥)]

≥ ∥ ∥ (∥ ∥) ( − ) { ( ) ∈ }

=

=

∈
∥ ∥≤ ≤∥ ∥

∈

+

∈

+

+

u u t λ G t s h s f u s

λ u G t s h s f u s
u

λ u G t s h s f r
r

u s
u

σλ u G t s h s f u

σλ u f u h t t G t s s J

ˆ ˆ,

ˆ,

ˆ, min

ˆ,

min ˆ, : ,

s t

t

s t

t

s J σ u r u

s J

l l
s J

l⁎ 1

l

l

l

l

l

l

l

1

1 













where

( ) =

+

( + − ) ≤ ≤ ≤ +

( + − ) ≤ ≤ ≤ +

G t s
T

T t s s t T
T s t t s T

ˆ, 1
1

1 ˆ , 0 ˆ 1,
1 ˆ, 0 ˆ 1.









If ( ) = ≠ ( ) = ≠+u t A u t B0, 0l l 1 , then it follows from (4.2) again that

∑

∑

∑

‖ ‖ ≥ ( ) = ( ) + [ ( ) ( ) ( ( ))]

≥ [ ( ) ( ) ( ( ))] − ( )

≥ [ ( ) ( ) ( ( ))] − ‖ ‖

=

=

=

+

+

+

u u t u t λ G t s h s f u s

λ G t s h s f u s u t

λ G t s h s f u s u

ˆ ˜ ˆ ˆ,

ˆ, ˜ ˆ

ˆ, ,

s t

t

s t

t

s t

t

l

l

l

l

l

l

1

1

1

where ( )u t˜ ˆ is the solution of ( − ) =u tΔ ˜ ˆ 1 02 with boundary value condition ( ) = ( ) =+u t A u t B˜ , ˜l l 1 . Then by
the similar argument as above, we complete the proof. □

Lemma 4.3. Assume that (A1) and (A3) hold, (A2) be satisfied for some �∈k . Let J be a compact interval in
( ∞)0, . Then, there exists a constant >M 0J such that for all ∈λ J and given ∈ {+ −}ν , , one has all possible
Sk

ν solutions u of (1.1) satisfy ‖ ‖ ≤u MJ .
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Proof. Suppose on the contrary that there exists a sequence { }un of Sk
ν solutions of (1.1) with

{ } ⊂ ≜ [ ]λ J a b,n and ∥ ∥ → ∞un as → ∞n . Then by the same argument used in the proof of Lemma 4.2,
with obvious changes, we may get

�
= ( ) ∈ [ ]+

u u x x t t, , .n n m m0 0 1

Let

∈ρ
bQ

0, 1 ,







where = ∑ ( ) ( )
=

Q G t s h s,s
T

1 . Then by (A3), there exists >u 0ρ such that >u uρ implies ( ) <f u ρu.
Let ≜ ( )

∈[ ]

m f umaxρ
u u0, ρ

and let �≜ { ∈ [ ] ( ) ≤ }+A t t t u t u, :n m m n ρ1 and �≜ { ∈ [ ] ( ) > }+B t t t u t u, :n m m n ρ1 .

Then we have,

∑

∑ ∑

( ) = ( ) + ( ) ( ) ( ( ))

= ( ) + ( ) ( ) ( ( )) + ( ) ( ) ( ( ))

= +

∈ ∈

+

u δ u δ λ G δ s h s f u s

u δ λ G δ s h s f u s λ G δ s h s f u s

˜ ,

˜ , ,

n n n
s t

t

n n n

n
s A

n n n
s B

n n n

1m

m

n n

1

for ≤ ≤s δ0 n. Thus,

∑≤
( )

‖ ‖

+

‖ ‖

+
( ) ( ) ( ( ))

‖ ‖
∈

λ
u δ

λ u
m Q

u
G δ s h t f u t

u
1 ˜ , .
n

n

n n

ρ

n s B

n n

nn

On Bn, ( ) >u s un ρ implies ≤ ≤
( ( ))

∥ ∥

( ( ))

( )

ρf u s
u

f u s
u s

n

n

n

n
. Accordingly,

≤
( )

∥ ∥

+

∥ ∥

+

λ
u δ

λ u
m Q

u
ρQ1 ˜ .

n

n

n n

ρ

n

Since < < ≤a λ b0 n for all n, we have ≤ ≤b λ a
1 1 1

n
for all n and

<
( )

∥ ∥

+

∥ ∥

+

b
u δ
a u

m Q
u

ρQ1 ˜ .n

n

ρ

n

According to the fact ∥ ∥ → ∞un as → ∞n , we get

< <

b
ρQ

b
1 1 .

This contradiction completes the proof. □

Lemma 4.4. Assume that (A1), (A3) and (A4) hold. Let (A2) hold for some �∈k . Then there exists {( )}λ u,n n
such that �( ) ∈λ u,n n k

ν, → ∞λn as → ∞n and ∥ ∥ → ∞un .

Proof. We only deal with the case = +ν .
It follows from Lemma 2.2 that �k

ν is unbounded, so there exists a sequence {( )}λ u,n n of solutions of
(1.1) such that �{( )} ⊂ ×

+ +λ u S,n n k and | | + ∥ ∥ → ∞λ un n . Moreover, Lemma 4.1 implies that >λ 0n .
Suppose on the contrary that there exists a bounded subsequence {( )}λ u,n nk k . Then from Lemma 4.3, ∥ ∥unk

is bounded, which contradicts the fact that | | + ∥ ∥ → ∞λ un n . So, → ∞λn . Then, Lemma 4.2 implies that
(∥ ∥) →f u 0n . It deduces from (A4) that ∥ ∥ → ∞un . □

Proof of Theorem 1.3. Let �k
ν be as in Lemma 2.2. In order to simplify the proof, we only deal with the

case �
+

k.
It follows from Lemma 2.5 that �

+

k is branching from ( / )μ f , 0k 0 and goes rightward. Let {( )}λ u,n n be as

in Lemma 4.4. Then, there exists �( ) ∈
+λ u, k0 0 such that ∥ ∥ =u sσ0

1
0. By Lemma 3.2, one has < /λ μ fk0 0.
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Coupled with Lemmas 2.5, 3.2 and 4.3, �
+

k passes through some points ( / )μ f v,k 0 1 and ( / )μ f v,k 0 2 with

‖ ‖ < < ‖ ‖v
σ

s v1 .1 0 2

By Lemmas 2.5, 3.2 and 4.3 again, there exist λ and λ̄, which satisfy < < / <λ μ f λ0 ¯
k 0 and

(i) if ∈ ( / ]λ μ f λ, ¯
k 0 , then there exist u and v such that �( ) ( ) ∈

+λ u λ v, , , k and

‖ ‖ < ‖ ‖ <u v
σ

s1 ;0

(ii) if ∈ [ / ]λ λ μ f, k 0 , then there exist u and v such that �( ) ( ) ∈
+λ u λ v, , , k and

‖ ‖ < < ‖ ‖u
σ

s v1 .0

Define

= { ( )} = { ( )}λ λ λ λ λ λsup ¯: ¯ satisfies i , inf ̲: ̲ satisfies ii .⁎
⁎

Then by the standard argument, (1.1) has a +Sk solution at =λ λ⁎ and =λ λ⁎, respectively. Lemma 3.2
implies that there exists w such that for each > /λ μ fk 0, one has �( ) ∈λ w, k

ν and ‖ ‖ >w sσ
1

0. This completes
the proof. □
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