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Abstract: This article brings together miscellaneous formulas and facts on matrix expressions that are
composed by idempotent matrices in one place with cogent introduction and references for further study.
The author will present the basic mathematical ideas and methodologies of the matrix analytic theory in a
readable, up-to-date, and comprehensive manner, including constructions of various algebraic matrix
identities composed by the conventional operations of idempotent matrices, and uses of the block matrix
method in the derivation of closed-form formulas for calculating the ranks of matrix expressions that are
composed by idempotent matrices. The author also determines the maximum and minimum ranks of some
matrix pencils composed by the products of matrices and their generalized inverses and uses the ranks to
characterize algebraic performance of the matrix pencils.
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1 Introduction

Throughout this article, let C™" denote the set of all m x n complex matrices; AT, A", r(4), #(A), and
A (A) denote the transpose, the conjugate transpose, the rank, the range (column space), and the kernel
(null space) of a matrix A € C™", respectively; I, denote the identity matrix of order m; and [A, B] denote
a row block matrix consisting of A and B. The author next introduces the definition and notation of
generalized inverses of matrix. The Moore-Penrose inverse of A € C™", denoted by A', is defined to be the
unique matrix X € C™™ that satisfies the four Penrose equations

1) AXA =4, (2 XAX=X, (3) AX)'=AX, (4) (XA =XA. (1.1)

A matrix X is called a {i, ..., j}-generalized inverse of A, denoted by A® --J), if it satisfies the above
ith, ..., jth equations. The collection of all {i, ..., j}-generalized inverses of A is denoted by {A® -7}, In
particular, the generalized inverses A, AL3%, AL24 A1.23) 0 AL4) - AL3) - ALD and AD of A are called the
eight commonly used generalized inverses of A, which are widely used in dealing with singular matrices in
matrix and applications. Furthermore, let Py = AA', Ey = I, — AA', and F, = I, — A'A stand for the three
orthogonal projectors induced by A. In particular, a matrix X is called a {1}-inverse of A, denoted by A, if it
satisfles AXA = A; the collection of all A is denoted by {A"}. The Drazin inverse of a square matrix M,
denoted by X = MP, is defined to be the unique solution X to the three matrix equations M‘XM = M!,
XMX = X, and MX = XM, where t is the index of M, i.e., the smallest nonnegative integer t, such that
r (MY = r(M*1). When t = 1, X is also called the group inverse of M and is denoted by M#; see [6,10,25] for
more issues on generalized inverses of matrices.
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Recall that a square matrix A is said to be idempotent if A> = A. Examples of idempotent matrices of
the order m are the identity matrix I,, the null matrix 0, and the matrix (1/m);.,» among others. An
idempotent matrix is often called an oblique projector whose null space is oblique to its range, in contrast
to an orthogonal projector, whose null space is orthogonal to its range. Idempotent elements can be
defined accordingly in various general algebraic structures, which are also fundamental objects and
important tools in the investigation of the algebraic structures. As is known to all, idempotent matrices
have strikingly simple and interesting properties. Especially, the two numbers that satisfy the real
idempotent equation x? = x are nothing but 0 and 1. Thus, idempotent matrices are the simplest and
funniest objects in algebra in comparison with other issues.

The purpose of this study is to provide a good coverage of idempotent matrix mathematics, from the
development of the basic language to the collection of miscellaneous formulas and facts on matrix
expressions that are composed by idempotent matrices and their conventional algebraic operations in one
place with cogent introduction and references for further study. The remainder of this article is organized
as follows. In Section 2, the author revisits some simple and well-known formulas for calculating the ranks
of matrices in the literature and introduces the block matrix method (BMM) and its applications in
establishing expansion formulas for calculating the ranks of block matrices, products of matrices,
generalized inverses, etc. In Section 3, the author presents miscellaneous known and novel algebraic
matrix identities composed by two and three idempotent matrices and discusses the applications of these
identities in determining inverses and generalized inverses of matrix products. In Section 4, the author
establishes a series of closed-form formulas for calculating the ranks of matrix expressions composed by
idempotent matrices and uses the rank formulas to characterize a variety of fundamental properties of the
matrix expressions. In Section 5, the author derives the upper and lower bounds for the ranks of some
matrix pencils that involve the products of matrices and their generalized inverses. Some remarks and
open problems on idempotent matrices and related issues are addressed in Section 6.

2 How to establish matrix rank equalities by the BMM

The rank of a matrix is a quite basic concept in linear algebra, which can be defined by different manners
and can be calculated directly by transforming the matrix to certain row and/or column echelon forms. One
of the most important applications of the rank of matrix is to describe singularity and nonsingularity of the
matrix, as well as the dimension of the row or column space of the matrix. Thus, people would always be of
interest in establishing various nontrivial analytical formulas for calculating the ranks of matrices under
various assumptions. In fact, people have established a quite large number of equalities and inequalities for
the ranks of matrices and widely used them in matrix analysis and applications. The author starts with a
simple and best-known fact in linear algebra: the rank equalities r (A) = r (PA) = r (AQ) = r (PAQ) always
hold provided P and Q are two nonsingular matrices. Based on these fundamental formulas, people can
deduce numerous concrete rank formulas from different choices of A, P, and Q using the BMM and
elementary block matrix operations (EBMOs). The rank of a matrix is closely connected with other issues of
the matrix, such as nullity, singularity, nonsingularity, and number of singular values. One of the well-
known connections is concerned with the nullity of matrix and its rank, which claims that
A =0 & r(A) = 0. Also note the rule A = B & A — B = 0 for any two matrices A and B of the same sizes,
through which it is possible to transform the equality preserving the equivalence. Thus, we have the rule
A=B o A-B=0 o r(A - B) = 0. Furthermore, assume that S; and S, are two sets consisting of matrices
of the same size. Then, from the above discussion, the following theoretical results on the relationship
between the two matrix sets are obtained:
SiNnS#de min r(A-B)=0,
AeS1,BeS,

S¢S, ©max min r(4A - B) =0.
AeS; BeS,
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These results show that the rank of matrix has such an attractive feature that can be used to characterize
matrix equalities and matrix set inclusions under general situations. To speak precisely, if certain closed-
form formulas for calculating the rank of the difference A — B are obtained, we can utilize the formulas to
directly characterize the relationships between two matrices A and B as well as the relationships between
two given matrix sets. Since the seminal work by Marsaglia and Styan in 1974 [19], this matrix rank
method (MRM) has been identified to be a strong and available technique in the study of various
complicated matrix expressions that involve inverses and generalized inverses of matrices. Perhaps, no
methods in linear algebra and matrix theory, as described above, are more elementary and straightforward
than the MRM in characterizing the equalities of matrices and properties of the matrix expressions.

It has a long history in linear algebra to establish equalities and inequalities for the ranks of matrices
from theoretical and applied points of view. Especially, there is a major route to derive several simple
expansion formulas for calculating the ranks of matrix expressions by means of constructing various
specific block matrices. Here, the author presents several well-known simple and interesting examples:

r(ly-A)=r,+A) +r,-A) —m, 2.1)
rA+A) =rA)+r(,t A -m, (2.2)
rA+A)=r) +r, + A% -m, (2.3)
rR2+A)=r@ +r,+A) -m, (2.4)
rAc £ A =r(A) +r(y + A)-m, k>3, (2.5)
r[A(ly £ A2 =r(A) + r((In = A)?] - m, (2.6)
r(A+ABA)=r(A) +r(I, + BA)-n=r(A) + r(Il, + AB) — m, 2.7)
r(A — AXBYA) = r (B — BYAXB) + r(A) — r(B), (2.8)

where A, B, X, and Y are the matrices of appropriate sizes. These rank equalities seem quite neat in form
and are easy to understand. On the other hand, they can be used as matrix analytic tools to establish
various complicated equalities and inequalities for the ranks of matrices and to characterize various
fundamental properties of matrices, such as nullity, singularity, nonsingularity, idempotency, tripotency,
and involution. A strong method of establishing these rank equalities is to construct a series of block
matrices with the given matrices as follows:

I, I,+A I, I,+A I, I+ A I, I,+A I, I,+A (2.9)
I,-A o0 [ |A o [ |4 o | |42 o [ |a&4 o [ '
Iy (I, + A)? I, I, + BA In. A A AXB (2.10)
A 0 A o [ |I,+AB 0| |BYA B [ )

and then to do some routine calculations of the ranks of the block matrices. Apparently, some of (2.1)-(2.8)
occur in various textbooks in linear algebra and matrix theory [2,19,28,39]. The author hopes the above
discussion gives the reader a familiar view of analytical expansion formulas for calculating the ranks of
matrices, as well as the constructive use of the BMM that permits us to discover and prove these formulas.

In 1974, Marsaglia and Styan systematically approached in their study [19] a series of fundamental
problems on the ranks of matrices and their generalized inverses and established a wide range of
equalities and inequalities for the ranks of partitioned matrices and sums and products of matrices, and
presented many practical applications of the rank equalities and inequalities in matrix theory and other
fields. Here, the author presents several fundamental equalities and facts about the ranks of partitioned
matrices and generalized inverses of the matrices in [19], which will be used in the sequel.

Lemma 2.1. [19] Let A ¢ C™", B e C™k C e C*", and D € C*X, Then,
(a) the following rank equalities
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r{A,B] =r(A) +r(B-AAB) =r(B) + r(A - BB"A),

r{A =r(A)+r(C-CAA)=rC)+r(A-AC0C(),

{é‘ g =1(B) +1(C) + 1 [(In - BB)A(L, - CO)],

A B|_ 0 B-AAB
{c p|=T@ {c ~CAA D- CA‘B}

hold for all A, B~, and C~, and the following rank inequalities
max{r(A) +r(B) - r(AAB), r(A)+r(B)-rBBA)}<r(A,B] <r(A) +r(B),

A

max{r(4) + r(C) —-r(ACC), r(A) +r(C)-r(CAA}< {C

}S r(A) + r(C)

hold for all A~, B~, and C~.
(b) If Z(B) < #(A) and Z(C*) < #(A*), then

A B]_ B
{C D}_r(A)+r(D CA'B).

(©) r[A,B]=r(A) © #(B) < #(A) © AAB =B & F,B = 0.

@ r ﬂ —r(A) & R(C*) € R(A) & CA'A = C & CFy = 0.

() r[A, B] = r(A) + r(B) & Z(A) n Z(B) = {0} & R[(EsB)*] = #(B") & R[(EzA)*] = R (4.
® r ‘(ﬂ —r(A) + r(C) & RA) N A(CY) = {0} & R(CE,) = A(C) & RAF,) = A(A).

(@ r ‘é g} = r(4) > #(B) < #(A), #(C*) < #(A*), and CA'B = D.

Lemma 2.2. [19] Let A € C™", B € C™P, and C € CP*4, Then,
r(AB)=r(A) +r(B) - n+r[U, - BB, - A A)],
r(ABC) = r(AB) + r(BC) — r(B) + r[(I, - BC(BC))B(I, — (AB)"AB)]

hold for all A~, B~, (AB)", and (BC)".

It can be deduced from (2.18) and (2.19) that
min {r(4), r(B)} > r(AB) > max {0, r(A) + r(B) — n},

and

r(ABC) > max{0, r(AB)+r(BC)-r(B)} > max{0, r(A)+rB)+r(C)-n-p},

r(ABC) < min {r(AB), r(BC)} < min {r(4),r(B),r(C)},

DE GRUYTER

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
(2.19)

(2.20)

(2.21)
(2.22)

which encompass the two famous Sylvester’s law r (AB) > r(A) + r(B), — n and Frobenius inequality

r(ABC) > r(AB) + r(BC) — r(B), [18].

Lemma 2.3. [19] Let A, B € C™" and denote P = {g} and Q = [A, B]. Then,

r(A +B) = r[ﬂ +7[A,B] - r(A) - r(B) + r[(bm - Pp)k1 g}(bn - QQ)J

holds for all P~ and Q. In particular, the following rank inequalities hold

(2.23)
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r{’]ﬂ +7[A,B] - r(A) —r(B) <r(A +B) < mian}, r[A,B]} < min {m, n, r(A) + r(B)}; (2.24)

the following equivalent facts hold
rA+B)=r(A) +rB) & Z(A) N Z(B) = {0} and RA(A*) n #(B*) = {0} for A,B € C™", (2.25)

Two new equalities for the rank of the partitioned matrix [A, B] and their consequences are given below.
Lemma 2.4. [35] Let A € C™" and B € C™* and denote P, = AA" and Py = BB'. Then, we have the following

results:
(a) The range equality below holds

R(A) N R(B) = R(PaPg) N R(PPy). (2.26)

(b) The rank equalities below hold
r[A,B] =r(A) + r(B) — dim[Z2(PyPg) N #(PgPy)], (2.27)
r(A,B] =r(A) + r(B) — r(PyPg) — r (PgPy) + r [P4Pg, PgPy]. (2.28)

(c) r[A,B] =r(A) + r(B) © r[PyPg, PgPy] = r (P4Pg) + r(PgPy) & #(A) N #(B) = {0} & Z(P4Pp) N
R (PgPy) = {0}.

(d) r[A,B] =r(A) + r(B) — r (PaPg) & r[PaPg, PgPs] = 1 (PaPp) = 1 (PgPs) & R#(PaPg) = R(PgPy) & PyPg =
PgPy.

(e) r[A, B] = r[PyPg, PgPy] © r(A*B) = r(A) = r(B).

It can be imagined that one can derive many more nontrivial expansion formulas for calculating the
ranks of matrix expressions through use of the BMM. In other words, it seems more natural to consider
various specified block matrices and to extend (2.1)-(2.10) to general forms under various assumptions.
The principal issue dealt with here is to what extent these rank formulas generalize to cases with multiple
matrices. In the remaining part of this section, the author shows how to construct three block matrices
from the general solutions of some fundamental linear matrix equations and derive three rank equalities
associated with the solutions.

Theorem 2.5. Let M € C™™ be given, and assume that X, Y ¢ C™™ qre solutions of the following three
matrix equations:

MX=X, YM=Y, MY-=XM. (2.29)
Then,

r(X-Y) = rﬁf} +r[X, Y] - r(X) - r(Y). (2.30)

Proof. First construct a block matrix from X and Y as follows:

-X 0 X
N=|0 Y VY| (2.31)
X Y O
Then, it is easy to verify by EBMOs that
I, 0 O I, 0 I, -X 0 0
PNQ;={0 I, OIN|O I, -I,(=| 0 Y 0O | (2.32)
Iy -, I,| |0 0O I, 0 0 X-Y

and from (2.29) that
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I. 0 M| |, 0 O 0 0 X
P,NQ;=|0 I, OINJO I, O|=|0 O Y| (2.33)
0 0 I, 0 -M I XY O

Note that the block matrices P;, Q;, P,, and Q, in (2.32) and (2.33) are all nonsingular. Then, both (2.32) and
(2.33) imply that the rank of N satisfies the following two equalities

-X 0 0
rN)=r(PBNQ)=r{ 0 Y 0 |=rX-Y)+rX) +r(),
0 0 X-Y

0 0 X X
r(N)=r(PbNQ)=r|0 0 Y :r{y}+r[X,Y].
XY O

Combining these two expansion formulas leads to (2.30). O

Theorem 2.6. Let A, B € C™™ be given, and assume that X,Y € C™™ are solutions of the following
equations:

AX=X, YB=Y, AY=XB. (2.34)

Then,

r(X-Y) = {ﬂ +r[X, Y] = r(X) - r(Y). (2.35)

Proof. Let N be as given in (2.31). Then, a routine deduction by EBMOs shows that

-X 0 0
rN)y=rf 0 Y 0 |=rX-Y)+r&X) +r(),
0 0 X-Y
0 AY X 0 XB X 00X X
riNy=rf0 Y Y|=r1l0 YBY=r00Y={Y}+r[X,Y]
X Y O X Y O XY O
hold under (2.34). Combining these two expansion formulas leads to (2.35). O

Theorem 2.7. Let A, B € C™™ be given, and assume that X € C™" and Y € C™P are solutions of the
following equations:

AX=X,BY=Y, 2X)22%AY), R(Y)2R(BX). (2.36)
Then,
rfAY,BX] =r[X, Y] +r(AY) + r(BX) - r(X) - r(Y). (2.37)
X 0 AY O
Proof. Construct a block matrix from X, Y, AY, and BX as follows: N={0 Y 0 BX | Then, a routine
deduction by EBMOs shows that XY 0O O

X0 0 0
rM=rloYy o o
0 0 -AY -BX

=r[AY,BX] + r(X) + r(Y),

0 -AY AY O 0 0 AY O
=r
X Y 0O O XY 0 O

r(N)={—BX 0 0 BX 00 O BX]zr[X,Y]+r(AY)+r(BX)

hold under (2.36). Combining these two rank equalities leads to (2.37). O
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The preceding proofs of (2.30), (2.35), and (2.37) are elementary and straightforward by way of the
BMM and EBMOs, which incontrovertibly seem to have some magic features that link the ranks of different
matrices in a remarkable manner. Note that the matrix equations in (2.29), (2.34), and (2.36) are quite
fundamental in matrix analysis and have been widely studied in theory and applications [20]. Under the
assumptions of these equations, (2.30), (2.35), and (2.37) link the solutions of these matrix equations and
their algebraic operations. In this situation, there is a very strong intrinsic mathematical motivation to
establish concrete rank formulas from (2.30), (2.35), and (2.37) for various solutions of the matrix
equations. As demonstrated in Section 4, the above BMM which we advocate can be used to deduce many
interesting and delightful formulas and facts concerning the ranks of idempotent matrices and related
issues.

Recall that the dimension of a finite-dimensional vector space (linear subspace) over the complex
number field C, denoted by dim (), is the number of independent vectors required to span the vector space
(linear subspace). Tian [34] has recently shown that

(k - Ddim(M; +--+My) + dim(M; N---n My) = dim (M) +---+dim (M) (2.38)

holds for a family of linear subspaces M;, M5, ..., M in a finite-dimensional vector space over C, where
Mi= M ++Mis1+ Miq ++My, 1=1,2,..., k, which is an extension of the best-known dimen-
sion formula:

dim(M; + M,) + dim(M; N M;) = dim(M;) + dim(M,). (2.39)

Concerning the rank of the product of two matrices, we have the following results.

Lemma 2.8. Let A, B, P, Q € C™™, and assume that

AB=BA, PA+BQ=1I, r[A, B]=m. (2.40)

Then,
r(AB) =r(BA)=r(A) + r(B) - m, (2.41)
R(AB) = #(BA) = #(A) n #(B). (2.42)

Proof. It can be deduced from (2.40) and EBMOs that

r{l’" B} =r{1’" 0 }: m + r(AB),

A O 0 -AB
I, B| |I,-PA-BQ B|_ |0 B|_
{A O} _r{ A O}_r{A 0}_r(A)+r(B).

Combining these two rank equalities leads to (2.41). Also by (2.39) and (2.40),
r(AB) =r(BA) =r(A) + r(B) - r[A, B] = dim[Z2(A) N Z(B)], Z(AB) = #(BA) < Z(A) n Z(B).

Combining these two equalities leads to (2.42). O

We can finally prove a group of fundamental range equalities associated with the rank equalities
in (2.1)-(2.6).

Theorem 2.9. Let A € C™™ pe given. Then, the following matrix range equalities hold

Ry — A2) = BRIy + A) O R - A), (2.43)
RA + 2) = R(A) N Ry + A), (2.44)
RA + B) = RA) N Ry + A2) = RA) O By + A) 1 R, — A), (2.45)

RA2 + A) = R(A) N Ry + A), (2.46)



678 —— Yongge Tian DE GRUYTER

RA + A = AN BT, + A), k>3, (2.47)
RIAT, £ A)?] = Z(A) N B[, = A)?]. (2.48)

Proof. We readily see from the definition of the range of matrix that

Ry — A2) = R[(Iy + A) Iy — A)] € (I, + A) 0 R(I,, — A),
RA+ A) = R[AT, + A)] € Z(A) 0 AT, + A),
RA+A) = R[AIyn + A)] € Z(A) N R, + A2),
RA+ M) = R[Ay + AT, — A)] € Z(A) N Ry + A) 0 BRIy, - A),
R+ L) = R[A Iy + A)] € R(A) N R(Iy + A),
R(AK + Ay = RIA (I, + A)] € Z(A) N R, + A), k=3,
RA(Iy + A)?] € Z(A) N R[(I, + A)?].

Also by (2.39), we can rewrite (2.1)-(2.6) as

Aim[# Uy - A2)] = 1+ A) + r (I — A) = 1[Iy + A, Iy — Al = dim[2 I, + A) 0 B, - A)],
dim[2(A + A)] = r(A) + r(Iy + A) - r[A, I, + A] = dim[2(A) N Z(I, = A)],
dim[Z(A + A3)] = r(A) + r(Iy + A2) — r[A, I, = A2] = dim[2(4) N Z (I, = A)],
dim[2 (A2 + A)] = r(&) + r(Ip = A) — r[2, I, + A] = dim[Z(4) 0 (I, + A)],
dim[2(A¢ + AY)] = r (&) + r(In + A) - r[A5, I, + A] = dim[2(A&) 0 2, + A)], k>3,
dim[Z(A Iy + A)?)] = r(A) + r [y + A)?] - 1[4, Uy + A)?] = dim[Z(A) N Z[ (I + A?].

Applying Lemma 2.8 to the above range and dimension results leads to (2.43)—(2.48). O

The preceding results show that it is always possible to establish nontrivial rank formulas by means of
constructing certain specified block matrices and making two kinds of calculations of the ranks of the
block matrices by EBMOs. The author will present more specified rank equalities and their consequences
in Sections 4 and 5 using the BMM.

3 Miscellaneous algebraic identities associated with two and
three idempotent matrices

In this section, the author gathers a wide range of known or novel algebraic identities that are composed by
the conventional matrix operations of two and three idempotent matrices and gives a variety of meaningful
and interesting consequences and applications of these matrix identities. In the following, the notation

A=I1,-A4, B=1,-B, M=A+B

is used for two square matrices of the same sizes. The author starts with a list of equivalent facts for a
matrix to be idempotent, which were summarized by Trenkler [42,43] as follows:

Lemma 3.1. [42,43] Let A € C™™, Then, the following statements are equivalent:

(a) A is an idempotent.

(b) I, — A is an idempotent.

(c) A*is an idempotent.

(d) PAQ is idempotent for any matrices P € C™™ and Q € C™" of such that QP = I,.
(€) (In — 2A)* = In.

() A, -A) =Al, - A?=0.



DE GRUYTER Miscellaneous equalities for idempotent matrices with applications =— 679

(g) A=PQ,where P e C™", Qe C™, and QP = I,.
(h) A admits the decomposition A = P diag(I,, 0)P~L,

() A= PLI)’ ﬂp*, where PP* = P*P = I, and R € C™(m-7),

(G) #2A) < %Iy — A).
k) 2, - A) c N (A).
1) Ccm=2A4) & Z(I, - A).
(m) 2(A) n (L, — A) = {0}.
(n) r(A) = trace(4) and r (I, — A) = m — trace(4).
0) rpy—A) =m-r(A).

The above lemma gives a clearer picture that the idempotency of a square matrix can be characterized
in terms of other conventional matrix operations. On the other hand, there are a lot of opportunities to
encounter idempotent matrices in different branches of matrix theory and applications. Here, the author
refers a few of the examples that display the practical appearance of idempotent matrices:

(I) Idempotent matrices occur widely in the theory of generalized inverses of matrices, such as the two
products AA™ and A A are always idempotent matrices for any matrix A~ that satisfies AA"A = A; both
AA" and A'A are Hermitian idempotent matrices for the Moore-Penrose inverse A" of A; and the
products B(AB)'A, BC (ABC)'A, and C (ABC)'AB are all idempotent.

(II) Idempotent matrices play an important role in the theory of linear statistical models, in particular,
the idempotent matrix X (XTVX)XTV and its variations have extensively been used to solve least-
squares and weighted least-squares estimation problems in the statistical inferences of various
regression models [23,24,26,40,41].

(III) If A% = I, then (I, + A)/2 are idempotent; if A> = —I,, then (I, + iA)/2 are idempotent; if A2 = -A,
then — A is idempotent; if A3 = A, then (A + A?)/2 are idempotent.

(IV) Any square matrix A that satisfies a quadratic equation A’ + aA + bl, = 0 can be written as
[A + (a2, = (a®/4 — b)I,. If a*/4 — b + 0, then we can also construct an idempotent matrix from
this equality. Through these transformations, various results on idempotent matrices can be extended
to other types of quadratic matrices.

(V) Any singular square matrix over an arbitrary field can be written as a product of a finite number of
idempotent matrices [4,9,13,14]; there exist certain conditions under which a square matrix can be
written as the sums and differences of idempotent matrices [15,16].

These apparent facts show that idempotency is one of the fundamental and intrinsic properties associated
with matrices and their operations and thus can be used to describe algebraic performances of matrices under
various assumptions. Because the idempotency of a matrix can be used to simplify multiplication operations of
matrices, people can formulate various algebraic identities that involve idempotent matrices and use these
identities in the investigation of various specified matrix analysis problems.

Next, the author presents an integrated account of algebraic matrix identities that are composed by
two and three idempotent matrices and gives a variety of consequences and applications of these identities
in determining the nonsingularity and the standard inverses of the matrices involved. The following three
theorems are fundamental for establishing different kinds of matrix identities for two given idempotent
matrices of the same order and their algebraic operations.

Theorem 3.2. [5] Given two idempotent matrices A, B € C™™, and two scalars « and B with a # 0, B # O,
and a + B + 0, the following matrix equalities

aA + BB = Al + G AYM (I + 1,B) = Ay + i, BYM (I, + Y, A) (3.1)
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hold, where A =2aB(a + B, p, = 2B)(a - P), and u, = 2a)' (B - a), and the matrices I, + u,A and
In + u,B are nonsingular. In particular, ®A + BB is nonsingular if and only if M is nonsingular, in which case,
the following two reverse order laws hold

(@A + BB = 1 (I + A "M Iy + Y, B)Y = A7 (I + B M (I + p, A)7L (3.2)
Proof. Equation (3.1) can be verified by multiplying the matrices on the right-hand sides of the equalities.

(3.2) is a direct consequence of (3.1) by the well-known reverse order law (XYZ)™! = Z-1Y~1X! for the inverse
of the product of any three nonsingular matrices X, Y, and Z of the same size. |

Theorem 3.3. Given two idempotent matrices A, B € C™™  and two scalars « and B, the following four
groups of factorization equalities hold

aAB + BBA = (aA + BB)(M - I,,) = (M — L) (BA + aB), (3.3)

@ABA + BBAB = (aA + BBY(M ~ I,)> = (M — L) (BA + aB)(M — L) = (M — L2 (aA + BB),  (3.4)
a(AB)k + B(BA)X = (aA + BB)(M — I)*! = (M — I,)**1(BA + aB), (3.5)
a(ABAY* + B(BAB)* = (aA + BB)(M — L)% = (M - I,)* (aA + BB). (3.6)

In particular, aAB + BBA is nonsingular & a(AB)X + B(BA)* is nonsingular & aABA + BBAB is nonsingular
& a(AB) + B(BA)* is nonsingular < a(ABA)X + B(BAB)* is nonsingular < aA + BB and M - I,, are
nonsingular & BA + aB and M - I, are nonsingular, in which cases, the following reverse order laws hold

(aAB + BBAY! = (M ~ L)' (aA + BB)" = (BA + aB) (M — L)™', 3.7)
(@ABA + BBAB)' = (M ~ L) (aA + BB)™" = (M — L) (BA + aB)'(M ~ )™ 58)
= (aA + BB (M — In)?,
[@(AB)* + B(BAYI' = (M — I,y %V (aA + BB) = (BA + aB) \(M — I,y &Y, (3.9)
[a(ABA)* + B(BAB)X]! = (M - I,)%(aA + BBy = (aA + BB) 1 (M - I,y . (3.10)

Proof. Equations (3.3)—(3.6) can be verified by multiplying the matrices on the right-hand sides. Equations
(3.7)-(3.10) are direct consequences of (3.3)-(3.6) by reverse order laws for inverses of products of
nonsingular matrices. O

Obviously, substituting (3.1) into (3.3)-(3.6), and (3.2) into (3.7)—(3.10) will yield several groups of new
factorization equalities and new reverse order laws.

Theorem 3.4. [44] Given two idempotent matrices A, B € C™™, and two scalars a and B with a + -1, 0 and
B # —1,0, the following two identities hold

I, + aA + BB = (I, + aA) (I, — AAB)(I,, + BB) = (I, + BB) (I, - ABA)(I, + aA), (3.11)
where A =aB(1+a)'(1+pB), and I, + aA and I, + BB are nonsingular. In particular, I, — AAB is
nonsingular if and only if I, + aA + BB is nonsingular, and the following two reverse order laws hold

(In + aA + BB)! = (L + «A) Y (I, - ABAY ' (Iy + BB)™ = (Iy + BB) (I, - AAB) (I, + aA)l.  (3.12)

Proof. Multiplying the matrices on the right-hand sides of (3.11) yields the two equalities. (3.12) follows
directly from (3.11). O

Equations (3.1)—(3.12) show that there exist essential links among any two given idempotent matrices
of the same size. There is no doubt that (3.1)-(3.12) can be used to describe algebraic performances of the
matrix expressions on the left-hand sides of the equalities, such as the ranks, ranges, nullity, r-potency,
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nilpotency, nonsingularity, inverses, generalized inverses, and norms of these matrix expressions. Note, in
particular, that the term A + B occurs commonly in (3.1)-(3.12). Thus, more matrix identities can be
derived from the various possible combinations of (3.1)—(3.12) when various specific conditions are met. As
immediate consequences, we derive from (3.3)-(3.6) the following several groups of results for different
choices of @ and S.

Theorem 3.5. Given two idempotent matrices A, B € C™™, and a positive integer k, we have the following
results:
(a) The matrix identities below hold

AB-BA=(A-B)M -1I,) = (M - I,)(A - B), (3.13)

ABA - BAB = (A - BY(M - I, = (M - I,)*(A - B) = (A - B) - (A - BY, (3.14)

(AB — BA)X = (—-1)k&-D/2(A — B)X(M — L)k = (~1)k&D/2(M — L)k (A - B)¥, (3.15)
(ABA - BABY* = (A - B)X(M - I,)* = (M - I,)* (A - B)k, (3.16)
(AB)* — (BA)* = (A — BY(M — L)*! = - (M - I,)*1(4 - B), (3.17)
(ABAY* — (BAB)* = (A - BY(M - I)* = (M - I,)*(A - B). (3.18)

(b) The matrix identities below hold

AB+BA=MM - I,) = (M - I,)M, (3.19)

ABA + BAB = M (M - I,)* = (M — I,,’M, (3.20)

(AB + BA)X = MX(M — Ik = (M — Ip)*M¥, (3.21)
(ABA + BAB)* = M*(M - I,)* = (M — I,)*M¥, (3.22)
(AB)X + (BA)X = M (M — I,)*"! = (M - I,)*'M, (3.23)
(ABA)* + (BAB)X = M(M - I)* = (M — I,)*M. (3.24)

(c) The matrix identities below hold

AB - BA + (AB)? — (BA)? +---+ (AB)¥ — (BA)*
= (A= B)[(M — ) + (M = ;) +++ (M = )] (3.25)
= (M = ) + (M = )+ (M = L)) (B - A),

AB + BA + (AB)? + (BA)? +---+ (AB)X + (BA)X
=M[M - I) + (M — I3 +--+ (M — L)% (3.26)
=[(M = In) + M - Lp)? +---+ (M - L)* 1M,

ABA - BAB + (ABA)? — (BAB)? +---+ (ABA)X — (BAB)¥
= (A= B)[(M - 1) + (M = Lp)* +-+ (M = )] (3.27)
= [(M = I + (M = I)* +--+ (M - L)*](A - B),

ABA + BAB + (ABA)? + (BAB)? +---+ (ABA)* + (BAB)X
=M[(M = L) + (M = Lp)* ++++ (M — L) (3.28)
=[(M = Lp)? + (M = L)* +--+ (M - L)*] M.
(d) AB - BA is nonsingular & ABA — BAB is nonsingular < (AB)* — (BA)X is nonsingular < (ABA)X — (BAB)¥

is nonsingular & A — B and M — I, are nonsingular © A - B and I, — (A — B)? are nonsingular, in which
case, the following matrix identities hold
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(AB - BA)Y' = (M - I, (A - By = —(A - By'(M - L), (3.29)
(ABA — BAB)Y' = (A - BY''(M - )2 = (M - I,)2(A - B)}, (3.30)
[(AB = BA}T™ = (~DKD2(4 — Byb(M = L% = (-DF6D20 - Ly k(A - Byk, (33D

[(ABA - BABT! = (A - By *(M - L)% = (M - L) * (A - BY’%, (332
[(AB)k — (BAT! = (M - L)y @ V(A - By = —(A - B'(M — L), (3.33)
[(ABA) — (BABKI = (A — By'\(M - Ly ™ = (M - L,y *(A - B)"\. (3.34)

(e) AB + BA is nonsingular & ABA + BAB is nonsingular  (AB)X + (BA)X is nonsingular & (ABA)* + (BAB)*
is nonsingular & M and M - I, are nonsingular, in which case, the following matrix identities hold

(AB + BA)' = MY(M - I,)"' = (M - I,)'M™, (3.35)

(ABA + BAB)' = M\ [(M - I,y = (M — I,)2M, (3.36)
[(AB + BAX|Y = M™*(M — I,)* = (M - L,y *M*, (3.37)
[(ABA + BABY]t = M™% (M — I,y % = (M — I,) XMk, (3.38)
[(AB)* + (BAYXT' = MY (M — L)@V = (M - L,y @-Dp1, (3.39)
[(ABA)X + (BAB)¥]! = MY(M — I,y % = (M — I,y %M. (3.40)

(f) The following matrix identities hold

(AB — BA)® = (A - BY’(M - I,)? = ~(M - I,)’(A - B)®, (3.41)

(AB + BA)®? = MP(M - I,)? = (M - I,,)°MP, (3.42)

[(AB)¥ — (BAYI? = (A - B)P[(M — F)P P! = —[(M - L,)*" (A - B)?, (3.43)
[((AB)* + (BAYI” = MP[(M — L)P P! = [(M ~ L)P P MP, (3.44)
[(ABA)* — (BAB)X]” = (A - BY°[(M - I,)°1%* = [(M - I,,)’1* (A - B)?, (3.45)
[(ABA)* + (BAB)¥|P = MP[(M — I)P)%* = [(M - I,)P]%*MP, (3.46)

Proof. Equations (3.13)—(3.24) follow from (3.25)-(3.28) for a = 1 and 8 = +1. Equations (3.25)-(3.28) follow
from (3.13)—(3.24). Results (d) and (e) follow from (3.13)-(3.24). It follows from [31, corollary 5] that

MN = +NM = (MN)P = NPMP,
Applying this result to (3.13)—(3.24) yields Result (f). a

Theorem 3.6. Given two idempotent matrices A, B € C™™, the following matrix identities hold

(ABA)? = (ABA)? = (ABA)? = (ABA)? = 0, (3.47)
(BAB)? = (BAB)? = (BAB)? = (BAB)? = 0, (3.48)
ABA + ABA + ABA + ABA = 0, (3.49)

BAB + BAB + BAB + BAB = 0, (3.50)

AB + AB + AB + AB = I, (3.51)

BA + BA + BA + BA = I, (3.52)

ABA + ABA + ABA + ABA = 21, (3.53)

BAB + BAB + BAB + BAB = 2I,, (3.54)

(A - In)(A - B) + M — 1) (2B - I) = Iy, (3.55)
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(A-B)QA - I) + 2B - Ip)(M — I) = I, (3.56)
(B-A)Q2B-1,) + QA - L,)M - I,) = L, (3.57)
(2B - Ip)(B - A) + (M - I)(2A — I,) = I, (3.58)

(A =By + (In - M)? = I, (3.59)
(A - B)* + 2(AB - BA)? + (I, - M)* = I, (3.60)

and the following matrix identities hold

(A - B)* = 2M - M2, (3.61)

(A - B)? = 22, — M) — (2L, - M), (3.62)

(In- M) =2(A + B) - (A4 + B?, (3.63)

(I,- M2 =2(A+B) - (A +B)?, (3.64)
(AB-BAY = (A -B)? — (A - B)* = (Iy - M? — (I, - M), (3.65)
(2, - M? = 47T, + AB + BA, (3.66)
(27U, + A - B? =4I, + 2A - AB — BA, (3.67)
(2%, - A+ B2 =41, +2B - AB - BA, (3.68)
(3/2L, - M)? = 5/4I,, - 2M + AB + BA, (3.69)
7/45, — AB - BA = (2, + A- B? + 2, - A + BY? + (3/2I,, - M)2. (3.70)

Proof. Equations (3.47)—-(3.50) follow directly from the facts A + A = B + B = I, and AA = AA = BB = BB = 0.
Equations (3.51)-(3.58) are determined by expanding the left-hand sides of these equalities and the
corresponding deductive calculations. Adding (3.55) and (3.58) yields (3.59), which was first given in [17]; see
also [1,3,8,22,27]. Equation (3.60) follows from squaring both sides of (3.59) and (3.15). Equations (3.61)—(3.64)
follow from various variations of (3.59) (or direct expansions). The correctness of (3.66)—(3.70) can be verified
from direct expansions of both sides of the equalities. O

In addition, it is easy to prove the following identities for two idempotent matrices of the same size.

Theorem 3.7. Given two idempotent matrices A, B € C™™, and a positive integer k, we have the following results:
(a) The matrix identities below hold

A - ABA = A(A - B? = (A - B)4A, (3.71)
B - BAB=B(A - B)* = (A - B)’B, (3.72)
(A - ABA)X = A(A - B* = (A - B)*A, (3.73)
(B — BAB)* = B(A - B)* = (A - B)*B, (3.74)
ABA = A(M - I,)* = (M - I))?A, (3.75)

BAB = B(M - I,)> = (M - I,)B, (3.76)
(ABA)* = A(M — I,)%* = (M - I)%*A, (3.77)
(BAB)* = B(M — I)* = (M - I,,)*B, (3.78)
(BA)? = BAM - I, = B(M — I,)A, (3.79)
(AB)? = AB(M - I,,)> = A(M - I,)*B, (3.80)

(AB)¥ = A(M - I,)*B, (3.81)
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(BA)X = B(M - I,)*A. (3.82)
(b) The matrix identities below hold
(A - ABA)Y = A[(A - B)’}? = [(A - B)PP4, (3.83)
(B - BAB)? = B[(A - B)PP = [(A - B)P?B, (3.84)
(ABA? = A[(M - I,)PP? = [(M - L,)PPA, (3.85)
(BAB)? = B[(M - I,)P’> = [(M - L,)"]?B. (3.86)

In the remaining part of this section, the author constructs several general matrix identities composed
by three idempotent matrices and their algebraic operations.

Theorem 3.8. Given three idempotent matrices A, B, C € C™™ with S = A + B + C, three scalars a, B3, Y,
and a positive integer k, we have the following results:
(a) The matrix identities below hold

a(AB + AC) + B(BA + BC) + y(CA + CB) = (aA + BB + yC)(S - L), (3.87)
a(BA + CA) + B(AB + CB) + y(AC + BC) = (S - L)(aA + BB + yC), (3.88)

(@ + B)(AB + BA) + (a + y)(AC + CA) + (B + y)(BC + CB) (3.89)

=(aA + BB + yC)(S - Iy) + (S - L)) (@A + BB + yC), '
(a = B)(AB - BA) + (a — y)(AC - CA) + (B - y)(BC - CB) = (@A + BB + yC)S — S(aA + BB + y(),(3.90)
aB+C)AB+C)+BA+C)BA+C)+yY(A+B)CA+B) =S -I)@A+pB+yC)(S-1,. (3.91)

(b) The matrix identities below hold

A+B?+A+CP+B+CP?=SUy+S), (3.92)
(A-B?+(A-CP?+B-C?=S@Ly-S) =9/4L, — (S - 3/2L,), (3.93)
AB+BA +AC+ CA+BC+CB=S(S-1Iy) =(S-21,)> - &4, (3.94)

(AB + BA + AC + CA + BC + CB)* = SK(S - Ipk. (3.95)

(c) The equivalent facts below hold

a(AB + AC) + B(BA+BC)+y(CA+(CB)=0& (¢A + BB+ yC)(S-I,) = O,
a(BA + CA) + B(AB+ CB) + y(AC+BC) =0 (S-I,)(aA + BB + yC) = 0,
(a+B)(AB + BA) + (@ + y)(AC + CA) + (B+y)(BC + CB) =0

o (@A +BB+yC)(S -1y + (S—-Iy)(@A + B + yC) = 0,
(0 = BYAB - BA) + (a - y)(AC-CA) + (B-y)(BC-CB) =0

& (@A + BB + yC)S = S(aA + BB + yC),
aB+C)AB+C)+BA+C)BA+C)+y(A+B)CA+B)=0

o (S -Iy@A + BB +yC)(S - I, =0.

(d) The equivalent facts below hold

A+B?2+A+C2+B+C)2?=0e5+S=0,
A+B?+A+CP+B+CV’=I,o5+S=1I,

(A-BY?+(A-CP?+ (B-C?=0e (25 - 3I,)? =9I,

(A-B?+(A-C)*+ (B-C)?=9/8l, © (2S - 3I,)? = 9,
(A-B2+A-CP+B-CR2=3lo @S-35 = 3l
(A-BP2+(A-CP2+(B-CY2=9/4lyo @S -3 =0,

AB + BA + AC + CA + BC + CB = kI, & (I, - 25)? = (4k + )I,, k=0,1,...,6.
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(e) a(AB + AC) + B(BA + BC) + y(CA + CB) is nonsingular & a(BA + CA) + S(AB + CB) + y(AC + BC) is
nonsingular & a(B+ C)A(B+C) + B(A+ C)B(A+C) +y(A + B)C(A + B) © both aA + B + yC and
S - I, are nonsingular, in which cases, the following equalities hold

[a(AB + AC) + B(BA + BC) + y(CA + CB)]"! = (S - I,y ' (@A + BB + yC)!,
[a(BA + CA) + B(AB + CB) + y(AC + BC)I™' = (@A + BB + yC)1(S - L),
[@aB+C)AB+C)+BA+C)BA+C)+y(A+B)CA+B)!=(S-I)YaA + BB + yC)I(S - I)™L.

(f) (A4 + B)? + (A + C)? + (B + C)? is nonsingular if and only if S and I, + S are nonsingular, in which case,
[A+B?+A+CP+B+0 =811, + 95

(8) (A-B)2+ (A - C)*+ (B - C)?is nonsingular if and only if S and 3I,, — S are nonsingular, in which case,
[A-B?+A-CP?+B-07'=513L,-95".

(h) AB + BA + AC + CA + BC + CB is nonsingular if and only if S and I, — S are nonsingular, in which case,
(AB+BA+AC+CA+BC+CB)1'=8§11,-S"

Proof. Multiplying the matrices on the right-hand sides of (3.87), (3.88), and (3.91) yields the three
equalities. The sum and difference of (3.87) and (3.88) result in (3.89) and (3.90), respectively. Equations
(3.92)—(3.95) follow from direct expansions. Results (c)—(h) follow from (3.87)-(3.95). O

Apparently, the algebraic matrix identities in Theorem 3.8 can be extended without much effort to a
family of idempotent matrices of the same size. This fact demonstrates that all idempotent matrices are
undoubtedly linked to each other through a variety of nontrivial matrix equalities, which in turn can be
utilized to describe algebraic performance of matrix expressions that involve idempotent matrices.

4 Miscellaneous rank and range formulas for idempotent
matrices

People have posed and approached a large number of problems on idempotent matrices, one of which is to
establish various exact formulas for calculating the ranks of matrix expressions that are composed by
idempotent matrices. With the background material we have accumulated in the previous sections, it is
possible to establish a wide range of analytical formulas for calculating the ranks of matrix expressions
composed by idempotent matrices and obtain many meaningful consequences, including the
characterizations of relationships among given idempotent matrices and their operations and the
derivation of matrix range equalities.

The author begins with a group of fundamental rank equalities for two idempotent matrices and their
consequences that arise from Lemma 2.1.

Theorem 4.1. Given two idempotent matrices A, B € C™™, we have the following results:
(a) The rank equalities below hold

r[A,B] =r(A) + r(AB) = r (B) + r (BA), (4.1)
r[A,B] =r(AB) - r(A) + m = r(B) + r (BA), (4.2)
r[A, Bl =r(BA) —r(B) + m=r(A) + r(4B), (4.3)
rlA, B] = {ﬂ —r(A) - r(B) + m, (4.4)

r{‘;} — r(A) + r(BA) = r(B) + r (AB), (4.5)
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r 'g =r(BA) -r(A) + m=r(B) + r(4B), (4.6)
r ‘; =r(AB) - r(B) + m = r (A) + r (BA), (4.7)
r :; =r[A,B] -r(A) —-r(B) + m, (4.8)

and the rank inequalities below hold

r[A,B] > max {r(A) + r(B) - r(AB), r(4) + r(B) — r(BA)}, (4.9)
r[A, B] > max {r(4) + r(B) - r (AB), r (A) + r(B) - r (BA)}, (4.10)
r[A, B] > max {r(A) + r(B) - r(4B), r (A) + r(B) - r (BA)}, (4.11)
r[4, B] > max {r (A) + r(B) — r(AB), r (A) + r (B) — r (BA)}. (4.12)

(b) 7[A, B] = r(4) © #(A) 2 #(B)  AB = B.
© r ﬂ - r(A) & #(A) 2 #(B") & BA = B.

=m o r(AB) =r(A).

A,B
A =m & r(BA) = r(B).

’

(f) rl4, B =m®r{g}=r(A) +1r(B).

(g) r g =m o r(BA) =r(A).
(h) r g =m o r(4B) = r(B).
@G r ﬁ; =meo r[A, Bl =r(A) + r(B).

Proof. Choosing A~ = A in (2.11) and (2.12) results in (4.1) and (4.5). Replacing A and B with 4 and B in
(4.1) and (4.5), respectively, results in (4.2)-(4.4), and (4.6)—(4.8). It follows from the well-known rank
inequality r (A — B) > r(A) — r(B) that r(AB) > r(A) - r(AB) and r (BA) > r (A) — r (BA). Substituting these
two inequalities into (4.1) yields (4.9). Replacing A and B with A and B in (4.9), respectively, results in
(4.10)—(4.12). Results (b)—(i) are consequences of (4.1)—(4.8). O

Theorem 4.2. Given two idempotent matrices A, B € C™™, we have the following results:
(a) The rank equalities below hold

r(AB) = r(4) + r(B) - m + r (BA), (4.13)
r(BA) = r(A) + r(B) - m + r (4B), (4.14)
r(AB) + r(AB) = r (BA) + r (BA). (4.15)

(b) IfBA=0, thenr(AB) = r(In — M) + r(A) + r(B) - m = r (I, - M) — r (AB).
(c) IfAB =0, thenr(BA) =r (I, - M) + r(A) + r(B) — m = r (I, - M) — r (BA).
(d) IfAB=BA =0, thenr(Il, - M) =m - r(A) — r(B).

() rAB)=r(A) +r(B)—-me BA =0 4(A) < ZB) © R(A4*) > N (B).
() r(4B) = r(BA) & r(AB) = r (BA).
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Proof. Equations (4.13) and (4.14) follow from (2.18). Substituting (4.13) into (4.14) yields (4.15). Results
(b)—(f) are direct consequences of (4.13)—(4.15). O

Theorem 4.3. Given two idempotent matrices A, B € C™™, we have the following results:
(a) The rank equalities below hold

r(ABA) = r (ABA) = r[A, B] + r(BA) - r(A) - r(B) = r (BA) — dim[2(4) n #(B)], (4.16)
r(ABA) = r(ABA) = r{;‘} +r(AB) — r(A) - r(B) = r (AB) - dim[Z(A*) n #(B*)], (4.17)
r(BAB) = r (BAB) = r[A, B] + r(AB) — r(A) - r(B) = r (AB) - dim[%(4) n #(B)], (4.18)
r(BAB) = r (BAB) = r{‘]ﬂ +r(BA) - r(A) - r(B) = r (BA) — dim[Z%(&*) N Z#(B*)]. (4.19)

(b) The equivalent facts below hold

ABA =0 & ABA = 0 & #(BA) € 2(A) & R(BA) ¢ #(A)
& R(BA) = #(A) N ZB) & #(BA) = #(A) n Z2(B) (4.20)
o r[A,Bl=r(A) +rB) - r(BA) & r[A, Bl =r(4) + r(B) - r(BA),

ABA =0 & ABA =0 & 2[(AB)"] < 2(4&") & 2[(AB)*] < #(4")

o R[(AB)] = Z(A&) N #(B*) & R[(AB)] = (&) n #(B") 4.21)

o rm: r(4) +r(B) - r(AB) & rm =14 +1(B) - (4B),

BAB =0 @ BAB =0 & %(AB) < #(B) © #(AB) < #(B)
o R(AB) = 2(A) N #(B) © #(AB) = #(A) N #(B) (4.22)
o r[A,Bl=r(A) +r(B) -r(AB) & r[A,B] =r(4) + r(B) - r(4B),

BAB =0 © BAB = 0 & #[(BA)*] < #(B*) & #[(BA)] < #(B*)
o R[(BAY] = Z(A*) N Z#(B*) & R[(BA)] = 2(A") n #(B*)

o (4.23)
o r{ﬂ =r(4) + r(B) - r(BA) & {g} =r(A) + r(B) - r(BA).
(c) The equivalent facts below hold
R[(ABAY] = Z#[(BA)'] & #[(BAB)] = Z[(AB)"] & #(A) n #(B) = {0}, (4.24)
#(ABA) = #(AB) & #(BAB) = #(BA) & #(4*) n #(B*) = {0}. (4.25)

Proof. Note from Lemma 3.1(m) that #(BA) n #(BA) = {0}. Thus, we obtain from (2.11), Lemma 2.1(e), and
EBMOs that

r(ABA) =r[A, BA] — r(A) = r[BA, BA] — r(4) = r (BA) + r(BA) - r(A)
=r[A, B] + r(BA) - r(A) — r(B) = r (BA) — dim[#(A) n Z(B)] (by 2.39)),

establishing (4.16). Equations (4.17)—-(4.19) can be established by a similar approach. Setting both sides of (4.16)—
(4.19) equal to zero leads to the equivalent facts in (4.20)—(4.23). Setting both sides of (4.17)—(4.19) equal to r (AB) or
r(BA) and combining the rank equalities obtained with the following obvious facts R[(ABA)*] < #[(BA)),
R[(BAB)*] < #[(AB)*], #(ABA) < #(AB), and #(BAB) < #(BA) lead to the equivalent facts in (4.24) and
(4.25). O
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Next, the author gives some groups of known equalities and inequalities for the ranks of A + B and AB + BA
and their consequences with easy proofs.

Theorem 4.4. [36] Given two idempotent matrices A, B € C™™, we have the following results:
(a) The rank equalities below hold

r(A-B) = r{’]ﬂ +7[A, B] - r(A) - r(B) = {g} +r[A, B+ rd) + r(B), (4.26)

r(A - B) =r(AB) + r (AB) = r (BA) + r (BA). (4.27)

(b) If AB =0, thenr(A — B) = r(BA) + r(BA) = r(A) + r(B).

(c) IfBA=0, thenr(A - B) =r(AB) + r(AB) = r (4) + r(B).

(d) A=Bo %(A) = ZB) and #(A*) = #(B*) & A (A) = A (B) and N (&) = N (B*).

() rTA-B)=m e r(AB) =r(BA) =r(A) =r(B) & r(AB) = r (BA) =r(4) = r (B).

) A+B=I,om+r(AB) +r(BA)=r(A) + r(B) & #(A) = #(B) and #(&") = #(B*) & #(A) = #(B)
and R (&) = R(B).

(g) T(A-B)=r(A) - r(B) @ ABA =B & %(B) < #(A) and #(B*) < #(A").

h)rA-B=me r{g} =r(A,Bl=rA) +r(B)=m o ZA) o AB) = A(A*) ® #(B*) =C" & N (A) ® N (B) =
N (A) & N (B*) = C™.

Proof. Setting X = AandY = B,and X = AandY = B, respectively, in Theorem 2.6 leads to the two equalities in
(4.26). Applying (2.11) to (4.26) leads to (4.27). Results (b)—(h) are direct consequences of (4.26) and (4.27). O

Theorem 4.5. Given two idempotent matrices A, B € C™™ and a scalar A # 0, we have the following results:
(a) The rank equalities below hold

A, + A AB
- AL, + M), 28
{BA AIm+B} m 1 A+ M) (4.28)
My+AB A ]
r{ B Mm+BA}_m+r(AIm+AB+BA). (4.29)

(AL, +A AB

b m

®7 A A, 4B

(c) IfAB =0 or BA =0, thenr(Al, + M) = m.
[ AL, + AB A

d m

) r B Al, + BA

(AL, + AB A
(e) r_ B Mm+BA}-m@Mm+AB+BA-O.

}zch}r(Im+M):m.

}:Zm@»r(Mm+AB+BA):m.

Proof. Applying (2.7) to the two pairs of products A‘l{g}[A,B] and A! [A,B]{g}, /l‘{ﬂ[B,A] and
A1B, A]{g} leads to (4.28) and (4.29). Results (b)—(e) are direct consequences of (4.28) and (4.29). O

Theorem 4.6. Given two idempotent matrices A, B € C™™, we have the following results:
(a) The rank equalities below hold

r (I — M) = { A Aﬂ “m-= r{ 4 Aﬂ “m, (4.30)
BA B BA B
r(In— M)=r(AB) + r(BA) - r(A) - r(B) + m, (4.31)
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r(Ly - M) =r(AB) + r(BA) + r(A) + r(B) - m. (4.32)
(b)A+B=Im®r{A AF}=m<:>{f4~ AB
BA B

r(AB) + rAB)=m o AB=BA=0andr(A) + r(B) =m & %#(A) = A (B) and #(&*) = /' (B*) &
N (A) = Z(B) and N (A*) = R(B*).

}= meoerAB) +r(BA)=r(A)+r(B)-moerA)+rB) +

(c) r(Im—M)zmc»r{A A?}:Zm«:n{
BA B

RA)® N (B)=RA)® N(B)=C" o N (A) & RB)=NA)e RAB)=C"

1 =2m o r(AB)=r(BA)=r(A) =rB) &

Proof. Setting A = —1 in (4.28) leads to the first equality in (4.30); replacing A and B with A and B in the
first equality in (4.28) leads to the second equality in (4.30). Replacing A and B with A and B in (4.26) and
(4.27) and simplifying by (4.26) and (4.27) lead to (4.31) and (4.32). Results (b) and (c) are direct
consequences of (4.30)—(4.32). O

Next, the author presents some known closed-form formulas in [32,33,36,38] for calculating the ranks
of A + B and gives their proofs by the BMM.

Theorem 4.7. Given two idempotent matrices A, B € C™™, and two scalars a and  with « # 0, B + 0, and
a + B + 0, we have the following results:

(a) r(aA + BB) = r (A + B) holds.

(b) The rank equalities below hold

_|A B|_ _|B A|_
r(A+B)= {B O} r(B) = {A 0} r(4), (4.33)
r(A+B)=r[AB,B] =r[BA, A] = rﬁﬂ = r{iﬂ, (4.34)
r(A + B) = r(BAB) + r(B) = r (ABA) + r(4), (4.35)
A B
(A +B) = r{A B 0} _r[A,B] = r[B 0} - r{A}, (4.36)
B O A B
0 A
r(A +B) = r{E?A} + dim[2(A) n 2(B)] = r [AB, BA] + dim[2 (&) n #(B")], (4.37)
rA+B) =r(A)+r(B) -m+ r[{é}[/ﬁ,é]} (4.38)
I, + 2A I,
r(A+B) = r{ L, L+ 23} -m. (4.39)

B
(d) If AB=0or BA=0, thenr(A + B) =r(A) + r(B).

A B _
B 0}—r(A)+2r(B)<:>r{

(c) If AB = BA, thenr(A + B) = r[A, B] = r{A}.

B A

(e) r(A+B)=r(A)+r(B)<:>{ A0

}: r(A) + 2r(B) & r(BAB) = r(4)

A

s r(ABA)=rB) & rq }[A,B}J =me ZA) n #ZB) = {0} and Z(A) n #(B*) = {0}.

f) A+B=0=A=B=0.
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(g) rA+B) =me r(ABA) =r(A) & r(BAB) =r(B) & {g} =m and %{g} ﬂ?}’{g} ={0} ©r[A,B]l =m

al A~ 5 B _ B|_ 2 B Al _ _ B* Al
andﬁ{B*}ﬂj{o}—{O}@r{A}—mandﬂ{A}n_@{o}—{O}<:>r[A,B]—mand%{A*}n%{O}—

Al ~ « B I, +2A I, B
{O}@r[LJ[A,B]]+r(A)+r(B)—Zm@r{ L, Im+2B}_2m'

(h) r(A + B) > max {r(A), r(B), r (A — B)}. In particular, if r (A - B) = m, thenr (A + B) = m.

Proof. Result (a) follows directly from (3.1). It can be deduced by EBMOs that
A0 A A O 0
r'0 B B|=r{0 B 0 =r(A)+rB) +r(A + B).
A B O 0 0 -A-B

On the other hand, we obtain from A% = A, B2 = B, and EBMOs that

A0 A A 0 A 24 0 A 26482 A B
r'0O B B|=r{-BA 0 B|=r/0 0 B|=r 1 :{B 0}+r(A).
A B O A B O A B O OB_EA

Combining these two rank equalities yields (4.33). Applying (2.11)-(2.13) to the two block matrices in (4.33)
yields the equalities in (4.34) and (4.35), respectively. By (2.14) and EBMOs,

r{g ]g ,ﬂ = r{g’g +r(A) + r(B),

aBo|_[ a4 B-aBo|_ 0 B-4B 0
{BOA}_{B—BA -B A}_r(A)Jr{B—BA -B A}

_ 0 B-4B 0|_ 0 B-4B 0
7r(A)+{B—BA ~AB A}*'(A)”[B—BA 0 A}

—r(A) +r(B-AB)+r[B - BA, Al = [A, B] + r[ﬁ 'g} ~r(A)

=r[A,B] +r(A + B) (by (4.33))
=r(A+B)+r(A) +r(B) - dim[#(4) n Z(B)],

} r[AB, BA] + r(4) + r(B),

~
1
o
> O W

A B
r[B 0]:{;}}+r(A+B):r(A+B)+r(A)+r(B)—dim[%(A*)ﬂ%(B*)].
0 A

Combining these equalities leads to (4.36) and (4.37). By (2.13) and EBMOs,

“’" ﬂ [‘g g} I, 0 0 0

W A4 B =l _,la0]_, o o -aB|_ ,[40

B A0 00 0 B 0 -A-AO0 0 B
o B| |00 0O B 00

I, 0 0 O

_./]0O A O Bj|_ _ _ A B|_ _

=r 0 0 -4 0 2r (A) 2r(B)—m+r{B 0} r(A) - 2r(B)
10 B 0 O

=r(A+B)-r(A) -r(B) + m (by (4.33)),

and
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In In| |A O In/2 Tn/2] |A ©
In In| |0 B In/2 LJ2| |0 B

A0 00
0 B 00
[I/2+A  I,/2

:r_ 1/2 Im/2+B}+r(A)+r(B) (by (4.33)),

(I,+24 I,
= A B),
r_ L, Im+ZB}+r()+r()

establishing (4.38) and (4.39). Results (b)—(f) are direct consequences of (4.33)—(4.39).
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By (4.35), the two inequalities r (A + B) > r(A) and r (A + B) > r(B) hold, and by (2.24) and (4.26), the

inequality r (A + B) > r{g} +1[A,B] —r(A) - r(B) =r(A - B) holds. Combining these inequalities leads

to Result (g).

Theorem 4.8. Given two idempotent matrices A, B € C™™, we have the following results:
(a) The rank equalities below hold
r(lu,+A -B)=r(BAB) - r(B) + m,
r(In—A+ B)=r(ABA) - r(A) + m,
r (2L, - M) =r (I, - AB) = r (I, - BA) = r (I, - ABA) = r (I, - BAB)
=r(BAB) - r(B) + m =r(ABA) - r (4) + m,
r2L, - M) = r{AB
B

} +dim[4"(A) n A" (B)] = r[AB, BA] + dim [/ (&) n A (BY)],

rQ2L, - M) = r[{g}[A,B]] -r(A) -rB) + m,

FQly - M) = r[mm, B]] . r[ﬂ[& Elj ),
B

3, -24 I, } m

M) = _
@l ){ I, 3L,-2B

r(A+ABA)=r{, + BAB) + r(A) - m,
r(B + BAB) = r (I, + ABA) + r(B) - m.

(b)) ABA=0or(I,-A+B)=m-r(A).

(c) BAB=0or(,+A-B)=m-r(B).

d) rABA)=rA) or(l,-A+B)=m.

(e) r(BAB)=r(B) ©r(In+ A - B) =m.

f) ABA=AsrQ,-M)=m-r(A) © r(I, - BAB) =m - r(A).
(g BAB=Boer,-M)=m-rB) ©r(l, - ABA) =m - r(B).

(h) ABA=A and BAB=Ber(2y,-M)=m-r(A)=m-r(B) & r(l, - BAB) = r (I, - ABA)

=m-r(A) =m-r(B).
i) A+B=2, A=B-=1,.
Gr2dy-M)=mer(,-AB)=moer(,-BA)=meor(l,-ABA)=m s r(I, - BAB) =

& r(ABA) =r(A) & r(BAB) =r(B) & r{éﬁﬂ +dim[A4 (A) n & (B)] =m

O

(4.40)
(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)
(4.48)

m
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A
B

A Als & 3L, - 2A I B
S r({B}[A,B]J + r[{é}[A,B]J— m+rM) o r{ L, 3L, - ZB} = 2m.

}[A, E]].

& r[AB, BA] + dim[/ (&) n /' (B)] =m & rﬂ }[A,B]j =r(4) + r(B)

(K) r(A+B) = r[{ﬂm, B]J & 1y - M) = rﬂ

(1) r(I, + ABA) = m o r (B + BAB) = r(B).
(m) r(I, + BAB)=m o r(A + ABA) =r(A).

o0

Proof. By (4.33) and (2.13),
r(A+B) = r{g g —r(B) = r(BAB) — r(B) + m,

as required in (4.40). Equation (4.41) can be established similarly. Next, by (4.33) and (2.13),

rl,-M)=r(A+B) =r

O >

’(ﬂ —r(B) =r(BAB) - r(B) + m;

and by (2.14) and EBMO,

I _ )
y[ In AB|_ Jn O 4 Whn-ABA Of_ . BAB) — r(I, - ABA) + r(B).
BA B 0 BAB 0 B

Combining these equalities leads to the equalities in (4.42). Applying (4.37) to A + B leads to (4.43).
Applying (4.38) to A + B leads to (4.44). Substituting (4.38) to (4.44) leads to (4.45). Replacing A and B
with A and B, respectively, in (4.39) leads to (4.46). By (2.17) and EBMO,

| Im AB\ I O W+ ABA O B BAB) = r (I, + ABA) + r (B),
BA -B| |0 -B-BAB 0 -B

establishing (4.47). Equation (4.48) can be established similarly. Results (b)—(m) are direct consequences
of (4.40)—(4.48). O

More rank formulas for two idempotent matrices and miscellaneous consequences are given below.

Theorem 4.9. Given two idempotent matrices A, B € C™™_  we have the following results:

rM,I,+M]=rM,A+Bl=r[M,A +B]=r[M,I,- M] =m, (4.49)
r[A-B,I,+M]=r[A-B,A+B]=r[A-B,A+B]l=r[A-B,I,- M] =m, (4.50)

(M2, (I + M?] =1 [M2, (A + B)] = r [M?, (A + B?] = [M2, (I - M?] =m, (4.51)

r[(A- B2, (A+B? =r[(A-B? (A+B? =r[(4-B2 - M?=m. (4.52)

Proof. Follows from verifications by EBMOs. O

Theorem 4.10. Given two idempotent matrices A, B € C™™, we have the following results:
(a) The rank formulas below hold

r(AB-BA)=r(A-B) +r(I, - M) - m, (4.53)
Yy + M) = r(il, + M) + r(il, - M) — m, (4.54)
rly-M) =r(p,+M) +r(l, - M) - m, (4.55)
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rM+M)=rM +AB +BA) =r(M) + r(Il, + M) - m,
rAB+BA) =r(M-M)=rM) + r(I, - M) - m,
r(M+ M) =r(M) + r(ily, + M) + r(il, - M) - 2m,
rM-M)=rM) +r,+ M) + r(I, - M) - 2m,
rIn+A-B? =r({l,+A-B)+r(il,-A+B)-m,
r{In-M? =rly-(A-B?l=r(A+B)+r(A+B)-m,
r[(A-B)+(A-B?=rQA-AB-BA)=r(A-B)+r(A+B)-m,
r[A-B) -(A-B?*=r(2B-AB-BA)=r(A-B)+r(A+B)-m,
r[(A-B)+(A-B3 =r(A-B) +r(ily+A-B) +r(il, - A+ B) - 2m,

r(ABA -BAB) =r[(A-B)—-(A-B?|=r(A-B) +r[(In - M)?] - m
=rA-B)+r(A+B)+r +B) - 2m,

r[Im+(A+B)2]=r[(i—1)Im+A—B]+r[(i+1)Im+A—B]—m,
riln-(A+B?=r(A-B) +r(2[,-A+B)-m,
rfA+B) +(A +B?=r(A+B)+rQ,-A+B)-m,
r[A+B) - +B?=r(A-B)+r(A+B) -m,
rfA+B) +(A+B>=r(A+B)+r[(i- DIy +A-B]+r[(i+1)l,+A-B]-2m,
r{A+B) - (A+BPl=r(A-B)+r(A +B) +rQl, - A+ B) - 2m,
iy + Iy - M2 =r[(i — DIy + M] + r[(i + 1)L, + M] — m,

r[(A-B)Y?] =r(M - AB — BA) = 1[I, - (In - M)*] = r[(M/2)> - M/2]
rM) +rQ2l, - M) - m,

T {Up = M)+ Iy — M) =1y - M) + 12y — M) - m,
P n-M) + Uy -M3 =rp—M) +r[(i-DIp+M] +r[i+ DI, + M] -2m,
rIn-M) =y -M3=rM) +r(, - M) +rQ2L, - M) - 2m,

r(ABA + BAB) =r (M (I, - M) = r[Un - MP*M] =rM) + r [, - M)?] - m

=r(M)+r(A+B)+r( +B) - 2m,

rd[{(AB - BAY] =r[ln — (A - B)* - (In - M)*] =r[(A - B> - (A - B)*]
=1[(In—M)? = (In - M)*1=r[(A-B? +r[Un-M?*-m
rM)+rA+B)+r(A+B) +rQ2l,-M) - 3m,

r(In— AB — BA) =r[(\5 = 1)/2y + M] + 1 [(/5 + 1)/2I, - M] - m,
r2l, - AB - BA) =r(I, + M) + r 2L, - M) — m;
(b) The range formulas below hold
R(AB - BA) = #2(A - B) n (I, - M),
R(In + M?) = R(ily, + M) 0 R(il, — M),
Ry — M?) = B (L + M) 0 B(I, — M),
AM + M?) = #(2M + AB + BA) = Z(M) N (I, + M),
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(4.56)
(4.57)
(4.58)
(4.59)
(4.60)
(4.61)
(4.62)
(4.63)
(4.64)

(4.65)

(4.66)
(4.67)
(4.68)
(4.69)
(4.70)
(4.71)
(4.72)

(4.73)

(4.74)
(4.75)
(4.76)

(4.77)

(4.78)

(4.79)
(4.80)

(4.81)
(4.82)
(4.83)
(4.84)
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R(AB + BA) = #(M - M?) = Z(M) 0 R (L, — M),
AM + M2) = Z(M) 0 R(il, + M) 0 R(il,, - M),
RAM - M3) = Z(A + B) N ALy + M) 0 R (L, — M),
Ry + (A - BY?] = R(ily + A - B) n (il — A + B),
R Iy — M)?] = R[I, - (A - B?] = #(A + B) n #(A + B),
RA(A-B)+(A-B? =%A-B)n %A + B),
R[(A-B)-(A-B? =%A-B)n %A +B),
A(A-B) +(A-B3=%A-B)n (i, + A-B)n (i, - A +B),
R(ABA — BAB) = #[(A-B)-(A-B3|=2A-B n#A +B)n %A +B),
Rl + (A + B2 = R[( — Dy + A - Bl n R[(i + DI, + A - B],
Rlln- (A +B?=%A-B)n%Q2l,-A+B),
R[(A+B)+ (A +B)? =%A+B)n A2, - A+ B),
R[4 +B) - (A +B?] =%(A - B)n #(A + B),
RA+B) +A+B3=RA +B)nR[(i-Dlp+A-Bln2R[{i+Dl,+A-B],
R[(A+B)—(A+B3=%A-B)n%A +B)n#C2l,- A+ B),
Rl + Iy = M?] = R[(i - DIy + M] 0 2[( + 1], + M],
RU(A - Byl = Z[(M/2)? = M/2] = (M) N R (2 — M),
Ry — M) + Iy = M)} = (I, - M) N 22, — M),
Ry = M) + Iy = M)3] = BRIy — M) 0 R[( — DI + M] 0 R2[( + D, + M],
Ry = M) = (Iy = M)3] = Z2(M) 0 R (I — M) 0 R 2y — M),
A (ABA + BAB) = Z(M) N R[ (I, — M)?] = Z(M) n Z(A + B) n Z(4 + B),
Z(AB — BA)Y] = Z[(A - B)!] N Z[ (I, — M)?]
= AM) 0 ZA +B)n #A + B) n %2y - M),
R by — AB — BA) = Z[(\5 - 1)/2L, + M] 0 2[(/5 + 1)/2k, - M],
A2y — AB — BA) = % (I + M) N 2 (2L, — M);

(c) The equivalent facts below hold
DrA-B=merM-AB-BA)=mor[l,— I,-M?* =m
er[M/2?2-M/2l=merM)=rQl, - M) =m;
Qrn-M=merA+B) =r(A+B)=m
B3 rAB-BA)=moer(A-B*-A-B=moer(,-M"*-U,-M?=m
srA-B=ry-M)=morM)=rA+B) =r@+B) =rQ2,- M) =m;
Wy rIp+ M) =mer(il,+M)=r(@l,- M) =m;
SYrIp-M)=moerl,+M)=r, - M) =m;
&DriM+M)=moerM)=rl,+M) =m;
DrAB+BA)=merM-M)=moer(,-M -I,-M?=merM) =r,-M)=m;
By r(M+ M) =meo rM) =r(il, + M) =r(il, - M) = m;
DrM-M)=merM)=r,+M)=rl, - M)=m;
A0 r(In+(A-B¥l=mer(l,+A-B)=r(il,- A+ B) =m;

UYTER

(4.85)
(4.86)
(4.87)
(4.88)
(4.89)
(4.90)
(4.91)
(4.92)
(4.93)
(4.94)
(4.95)
(4.96)
(4.97)
(4.98)
(4.99)
(4.100)
(4.101)
(4.102)
(4.103)
(4.104)
(4.105)

(4.106)

(4.107)
(4.108)
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A rIp-A-B2l=mer(,-M)=mor(A+B) =r(A +B)=m;

ADr[A-B)+A-B?l=moer(A-B) =r(A+B)=m;

A3)r[A-B)-(A-B?l=meor(A-B)=r(4 + B) = m;

A4 r[A-B)+A-BP)l=moer(A-B)=r(l,+A-B)=r(il,-A+B) =m;

5 r[A-B)-(A-BPl=mer(A-B =r(A+B)=r(A +B)=m;

(16) r(ABA -BAB)=m o r[(A-B)-(A-BB3l=moer(A-B) +r[U,-M3?* =m
or(A-B +r(A+B)+r( + B) =2m;

(17>r[Im+(A+B)2]=m<:>r[(i—l)Im+A—B]+r[(i+1)Im+A—B]=m;

A8 rln-A+B?l=mer(A-B) =r(2,-A+B) =m;

A9 r[A+B)+(A+B2l=mer@+B) =rQ@l,-A+B)=m;

Q0Yr[A+B) -(A+B?=mor(A-B) =r(4 +B) =m;

QU rA+B +@A@+B3l=mor@+B =r((i-VI,+A-Bl=r[(i+1DI,+A-B]l=m

@ r(A+B -A+BPl=mer(A-B =r(A+B)=r@,-A+B)=m;

QD rp+Tn-M2=mor((i-Dlp+M =r[(i+1)l, + M =m;

QW rlly -y -M2=merA-B=moerM)=rQl,-M)=m;

O r(Ipn-M)+ Uy -M2=mer(,-M) =rQl,-M) =m;

26> r[Un-M) +Upn-MPl=merd,-M) =r[(i-DI,+ M =r[(i+ DI, + M] =m;
QD r[In-M) - I -MPl=merM) =ry- M) =12, - M) =m;

(28)r(ABA + BAB)=m o r(M)=r(A+B)=r(A + B) =m;

29 r(Iy —AB-BA)=m & r[(\5 - 1)/2n + M] = r[(\/5 + 1)/2L, - M] = m;
BOyrQL,-AB-BA)=mor(ly+M)=rQl, - M) =m;

(d) The equivalent facts below hold
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WMA-B?=0y-M?=I,o M/2?=M2e (I,-M/2*=1,-M2er(M)+r,-M)=m

o M) n 2L, - M) = {0};
(D A-B?=2"p & (In- M)? =27;
BYA-Bl=I, o U,-M2=05r(A+B)+r(,+B-A4)=m;

(YA -B)Y" =0 M*=4M — 4M? & 2(AB - BA? + (A + B - I)* = I, & (A — B)? = (AB - BA);

(5) (A = B)* = (In - M)*> & (A - B)* = (In - M)*%;
&Y —-MP=0s2A+B)=A+B?<2A4+B)={A + B2
D (Iy-MH4=0o (A-B* +2(AB - BA? =1, & (I, - M)? = (AB - BA)%;

(8 AB=BA o AA+B)=(A+B)AcBA+B =(A+BBo (A-B)(A+B) =(A+B)A-B)

osrA-B)+r,-M)=meo Z A -B)n I, - M) = {0}
DA+Bl=Ihyeor,+M) +r(,-M) =m;
10 (A + B)? = -I, & r (il + M) + r(il, — M) = m;

(MMYyAB+BA=0M=Mo Ih,-M?=I,-Me M-2L)Y=4"T,or(M) +r(,-M)=m

o AM) N R, - M) = {0};

A M=-MoeorM) +r(l, + M) = m;

WBYM=MecrM) +r,+ M) +rd, - M) =2m;

A4y MP=-MoerM) + r(il, + M) + r(il,, - M) = 2m;

A5 A-BP =Ihyor[,.-M?* =r(A+B)+r(A +B)=m;

(16) (A-B? =-Ip, o r(ily+A-B) +r(il,-A+B)=m;

(A7) (A-B?=A-Bor(A-B) +r(d +B) =m;

(18 (A-B2=-(A-B or(A-B +r(A+B) =m;

(19) ABA=BABo (A-BP=A-Bor(A-B) +r(A+B)+r(A +B)=2m
o RA-B)nRA+B)n %A + B) = {0}

(200 (A-B3=-(A-B)or(A-B) +r(ily+A-B)+r(il,-A+B) =2m;
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(e) The equivalent facts below hold

WD AB+Br=-Iyor[(i-DIy+A-Bl +r[(i+1I,+A-B]=m;

QD UAUA+B =, or(A-B) +rQ2l,-A+B) =m;

3YA+B2=-A+B)or(Ad+B)+rQ2,—A+B)=m

YA +B?=A+B) or(A-B)+r(A +B) =m;

GBYA+BP=-A+B or(A+B)+r[(i-1)lp+A-Bl +r[i+1)I,+A-B]=2m;

6YA+B3=A+Beor(A-B) +r(A+B)+rQl,-A+B)=2m;

D Un-MP=-Iyor[(i-DI+M]+r(i-DI,-M]=m;

(8 (In — M)? = —(In - M) & 1 (I — M) + 1 (2 — M) = m;

D Uy-MP=-U,-Meory,-M +r[(i-DI,+ M +r[({i+DIL, + M] =2m;

A0Y Iy -~ MPB =TIy - Mo r(M) + r(Iy — M) + r (2L, — M) = 2m;

(11) ABA+BAB=05rM)+r(A+B) +r(A +B) =2m & #(A + B) n Z[(I, - M)?] = {0}
o R A+B)nZA+B)n2A +B) = {0}

(12) (AB-BA)? =0 (A-B)*=(A - B? & (I, - M)* = (I, - M) (A — B)* + (I, - M)* = I,
SrM)+r(A+B) +r(A+B)+rQly,-M) =3me R[(A - B?] n 2[(I, - M)?] = {0}
o RM) N RA +B)n %A + B) n #Q2I, - M) = {0};

(13) AB + BA = -2I,, & (M - 27',)? = —%Im;

(14) AB + BA = -1, & (M - 27I,)% = —%Im;

(15) AB + BA = —4 [, & (M - 271I,,)? = 0;

(16 AB + BA = %Im & M- 21,2 = Iy

17y AB + BA = Iy & (M = 272 = 2l © r[(N5 = 1)/2y + M) + r[(/5 + 1)/2, — M] = m;

(18) AB + BA =2I,, & (27, - M)? = %Im or,+M) +rQl, - M) =m.

Proof. It can be deduced from (3.13), (3.59), and EBMOs that

Iy I,-M| [ 0
r =r =r(AB - BA) + m,
{A—B 0 } |0 (A-B)(In—- M) ( :

J o M :r_Im—(A—B)Z—(Im—M)Z In-M
A-B 0 A-B 0

0 Im_IM
= =r(A-B In — M).
"aB o } r( ) + 1 (In = M)

Combining these rank equalities leads to (4.53). Equations (4.54)—(4.60), (4.62)—(4.64), (4.66)—(4.72) and
(4.74)—(4.76) follow from applying (2.1)—(2.3) to the left-hand sides of the equalities. Equations (4.61) and (4.73)
follow from applying (2.1) to (3.59). Equation (4.65) follows from applying (2.1) and (4.61) to (3.14). Equation (4.77)
follows from applying (2.6) and (3.55) to (3.20). By (3.13), (3.59), and block elementary operations of matrices,

Im (Im - M)z _Im 0
r =r
(A-B? 0 | 0 (A - BY(Iy - M)

I b G- M?] _ = (A= BP =y~ M (b~ MY
(A - B)? 0 N (A - B? 0

}: r(AB — BA)? + m,

_ I 0 (Im_M)Z _ _ B2 _ 2
_r_(A_B)2 0 }—r[(A B)*] + r((, — M)~].

Combining these rank equalities with (3.60), (3.65), (4.61), and (4.73) leads to (4.78). Equations
(4.79)—(4.84) follow from applying (2.1) to (3.66)—(3.70). Results (b) follow from applying (2.43)—-(2.48) and
(4.49)—(4.52) to (4.53)—(4.84). Results (c) and (d) are direct consequences of (4.53)—(4.84). O
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Theorem 4.11. Given two idempotent matrices A, B € C™™, a + -1, 0 and B # -1, 0, we have the following
result:

r (I, — AAB) = r (I, — ABA) = r (I, + @A + 8B), (4.109)
where A = aB(1 + a)1(1 + B)L. In particular,
r(Iy + AB) = r (I, + BA) = r (\2I, + A - B) = r(J2I,, - A + B). (4.110)

Proof. Equation (4.109) follows from (3.11). Equation (4.110) follows from (4.109) by settinga = -8 = +1//2. O

Theorem 4.12. Given two idempotent matrices A, B € C™™, we have the following results:
(a) The rank equalities below hold

r[AB - (AB)?] = r(I, — AB) + r(AB) - m = r 2I, - M) + r (AB) - m, (4.111)
r[AB - (AB)®] =r(Iy + AB) + r(I, — AB) + r (AB) - 2m
=r(N2I+A - B) +r(2l, - M) + r(AB) — 2m (4.112)
=r(N2I, - A+ B) + r(2l, - M) + r(AB) - 2m,

r[ABA — (ABA)?] = r(ABA) + r(ly - ABA) ~-m=rQ2L, - M) + r(In — A + B) + r (A) - 2m, (4.113)

r[ABA - (ABAY] =r(I, + ABA) + r (I, — ABA) + r(ABA) - 2m

(4.114)
=r(In+ABA) +r2y, - M) +r(In—- A+ B) + r(4) - 2m.

(b) AB?) =AB o r(Iy,-AB)=m -r(4B) & r(2,, - M) = m - r(AB).
(c) AB® =AB & r (I, + AB) + r(I, - AB) + r(AB) = 2m & r(\2I, + A — B) + r(2l,, - M) + r (AB) = 2m.
(d) (ABA)? = ABA & r(ABA) + r(Iy-ABA) =m e rQl, - M) + r(Iu - A + B) + r(A) = 2m.

Proof. Applying (2.1) and (4.42) to AB — (AB)? yields (4.111). Applying (2.3), (4.42), and (4.111) to AB — (AB)?
yields (4.112). Applying (2.1), (4.41), and (4.42) to ABA — (ABA)? yields (4.113). Applying (2.3) and (4.113) to
ABA - (ABA)? yields (4.114). Results (b) and (c) are direct consequences of (4.111)—(4.114). O

We now go back to the cases of the k-powers (AB)X, (AB)¥, (AB)¥A, and (BA)*B for two idempotent matrices
A and B. From Theorems 2.5-2.7, we can easily obtain a group of nice rank formulas as follows.

Theorem 4.13. Given two idempotent matrices A, B € C™™, and an integer k > 1, we have the following results:
(a) The rank equalities below hold

r[(AB), (BA)] = r[A, B] + r [(AB}] + r [(BAX] - r(A) - r(B), (4.115)
r[(AB)*A, (BA)*B] = r[A, B] + r [(AB)*A] + r [(BA)*B] - r(A) - r (B), (4.116)
o 4B, A} + r[(AB)] + r[(BA)] - r(A) - r(B), (4.117)
(BA)k B
. ]
| ABVAT A} + r[(AB)*A] + r[(BA)B] - r(4) - 1 (B), (4.118)
(BA}B| |B
(AB)*
r[(AB) — (BA] = r Bax | r[(AB)\, (BAX] - r[(AB)¥] - r[(BA)], (4.119)
r[(AB)X — (BA)X] =r ﬂ +1[A, B] + [(AB)X] + r [(BA)*] - 2r(A) - 2r (B), (4.120)
[(AB)kA
r[(AB)*A — (BA)B] = r Bays| " [(AB)*A, (BA)B] - r [(AB)A] - r [(BA)B],  (4.121)
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r[(AB)XA — (BA)XB] = r

r[(AB)* + (BA)] =r

r[(AB)*A + (BA)*B] = r

(b)

DE GRUYTER
g} +1[A, B] + r[(AB)*A] + r[(BA)*B] - 2r (A) - 2r (B), (4.122)
(AB)* (BAY| K _ | (BAY (AB)| .
BAK 0 } r[(BA)] = {(AB)" o } r[(AB)], (4.123)

(AB)*A (BAY*B
(BAY¥B 0

(BA)XB (AB)*A

- r[(BA)B] =
} r[(BAY“B] {(AB)"A .

} — r[(AB)*A]. (4.124)

r[(AB), (BAY] = r[(AB)"] + r[(BA)¥] & r[A, B] = (A) + r(B)

& R[(AB)¥] n 2[(BA)¥] = {0} & #(A) n Z(B) = {0}.
(©)
(d)

r[(AB)X, (BA)X] = r[A, B] & Z[(AB)X] = #(A) and #[(BA)X] = #(B).
(AB)* = (BA) & R[(AB)¥] = #[(BA)X] and #[(A*B*)X] = #[(B*4*)]

o r[A,B]l =r(A) + r(B) - r[(AB)¥X] and {g} =r(4) + r(B) - r[(BA)].

& Z[(AB)‘A] n #[(BA)B] = {0} & Z(A) n #(B) = {0}.

r[(AB)XA, (BA)B] = r[(AB)XA] + r [(BA)*B] & r[A, B] = r(A) + r(B)

®
(g

r[(AB)XA, (BA)B] = r[A, B] & Z[(AB)XA] = #(A) and #[(BA)*B] = % (B).
(AB)¥A = (BA)B & Z[(AB)XA] = #[(BA)XB] and [ (A*B*)*A*] = % [(B*A*)¥B*]

& r[A, B] =r(4) + r(B) — r [(AB)¥A] and r{‘;} =r(A) + r(B) — r [(BA)*B].

(h) r[(AB)* + (BA)X] > max {r [(AB)¥], r [(BA)X], r [(AB)k — (BA)X]}.
In particular, if r [(AB)X — (BA)X] = m, then r [(AB)* + (BA)X] = m.

(i) r[(AB)*A + (BA)*B] > max {r [(AB)¥A], r [(BA)*B], r [(AB)*A — (BA)*B]}.
In particular, if r [(AB)XA — (BA)XB] = m, then r [(AB)XA + (BA)¥B] = m.

Proof. Let X = (AB)*'A and Y = (BA)*"!B as well as X = (AB)* and Y = (BA)X. Then, they satisfy (2.36). In such
cases, (2.37) becomes (4.115) and (4.116), respectively. Equations (4.117) and (4.118) are established by taking
transpose of (4.115) and (4.116), respectively. Let M = A, X = (AB)¥, and Y = (BA)X. Then, they satisfy (2.34), thus
(2.35) becomes (4.121). Let X = (AB)A and Y = (BA)B. Then, they satisfy (2.34), thus (2.35) becomes (4.121).
Substituting (4.115)—(4.118) into (4.119) and (4.121) yields (4.120) and (4.122), respectively. We next can deduce
from A% = A, B2 = B, B(AB)* = (BA)¥B, and EBMOs that

[(AB)* 0 (AB)|
0 (BA)k (BA)
|(AB)k (BAY 0 |
[(AB 0 (AB)X]

0 (BAX (BA)
|(ABX (BA¥ 0 |

-

e

(AB¥ 0 0
0 (BAX 0 = r[(AB)¥] + r[(BA)*] + r [(AB)* + (BA)"],
o 0 —(AB)X — (BA)X
[ (AB) 0 ABX| [24Bk 0 (AB)
“B(ABX 0 (BAX|=r1| 0 0 (BA)
| Bk (BA¥ 0 | | 4Bk (BAX 0
2B 0 o | . .
0 0 (BAX | =y (AB)k (BA) + r[(AB)¥].
0  (BA) —%(AB) L(BAY® 0

Combining these two rank equalities leads to (4.123). Further by A2 = A, B? = B, B(AB)* = (BA)*B, and EBMOs,

(AB)*A
rr 0

0

(AB)*A (BA)'B

(BA)B (BA)B|=r

(AB)kA (AB¥4A 0 0
0 (BA)XB 0
0 0 0 —(AB)*A — (BA)*B

=r[(AB)A] + r[(BA)*B] + r [(AB)*A + (BA)XB],
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(AB¥A 0 (AB)4 [ (AB)kA 0 (AB)¥A
rl 0 (BAXB (BAYB|=r|-B(AB)* A0 (BA)B
(ABA (BAB 0 | (ABA (BA¥B 0
[2(4BkA 0  (AB)A
=r 0 0 (BA)XB
| (ABXA (BA¥B 0
[24BFA 0 0
. O 0 (BA)*A
0 (BA)*B —%(AB)’(A
r k k
_ | AB)A (BA) B}L r [(AB)*A].
| (BA}B 0

Combining these two rank equalities leads to (4.124). Results (b)—(g) follow directly from (4.115), (4.116), and
(4.119)-(4.122). By (4.123), the two inequalities 7 [(AB)* + (BA)X] > r [(AB)¥] and r [(AB)* + (BA)¥] > r [(BA)X]

k
hold, and by (2.24) and (4.119), the inequality r [(AB)XA + (BA)¥B] zrﬁgj;k} + 1 [(AB)X, (BA)X] - r [(AB)X] -
r[(BA)X] = r[(AB)XA — (BA)¥B] holds. Combining these inequalities leads to Result (h). Result (i) can be
established by a similar way. O

Some results in Theorem 4.13 were established in the literature [33,36—38,45,46].

We next derive from Theorem 3.8 some rank and range formulas for expressions composed by three
idempotent matrices and their consequences.

Theorem 4.14. Given three idempotent matrices A, B, C € C™™ and S = A + B + C, we have the following
results:
(@) The following rank formulas hold

rfA+B?>+A+CP+B+C*=rS+8=rS)+r(y+S)-m, (4.125)
rfA-B?+A-CP+B-C?1=rBS-)=r(S) +rGL,-S) - m, (4.126)
r(kl, — AB — BA — AC — CA — BC — CB) = r[(\J4k + 1 + 1)/2I,, - S] (4.127)
+r[(Vak +1 - 1)/2L, + S] - m
fork=0,1, ..., 6.
(b) The following range equalities
RAA+B?+A+CP?+B+CP2=RS+85)=20S)n 2RI+ S), (4.128)
R[A-B?+(A-CP?+B-C?1=23S-5)=28)n 23, -S), (4.129)
2 (kl,, - AB — BA — AC - CA - BC - CB) (4.130)

=R[(Nak +1 +1)/2L,, - S] n R[(N4k +1 - 1)/2,, + S]

hold for k =0,1, ..., 6.

© A+B2+A+CP+B+CP2=0S+S2=0rS)+r(,+S) =m.

d A-B2?+A-CP+B-C?=0e(5/32=S3rS)+rBl,-S) =m.

(e) AB+BA +AC+CA+BC+CB=kl,er[(Nak+1 +1)/2L,, - S] +r[(N4k +1 - 1)/2[,, + S] = 0,
k=0,1,..., 6.
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Proof. Applying (2.1) to (3.92)—(3.94) leads to (4.125)—(4.127). Results (b)—(e) follow from (4.125)—(4.127). O

Furthermore, it is desired to deduce various expansion formulas for calculating the ranks of matrix expressions
composed by a family of idempotent matrices. Next, the author presents some general rank equalities associated
with a family of idempotent matrices.

Theorem 4.15. Given a family of idempotent matrices A, A,,..., Ax € C™™, and denote S = A; + Ay +---+ Ay,
A = diag(4y, Ay,..., Ay), and A; = I, - Ay, i = 1, 2,..., k, we have the following results:
(a) The rank equalities below hold

4] [k + DI, - kA; - In
il (AL Ad | =T : : +1(A) - km, (4.131)
L Ak | i In o (k + DIy — kA
_Al_ _Im + kAl Im
rl| A, LA = -1 (4), (4.132)
_Ak_ B Im Im + kAk
"4
rfA-| @ |[A, ..., Al |=1rAQ) +r(l, - S) — m, (4.133)
_Ak_
A
rl = A) = | ¢ (A, ., A | =r[(k = DIy - S)] - r(A) + (k- hm. (4.134)
| Ak
[ A [k + DI, - kA; - I,
() ri| ¢ |[A, .., Al|l=mer : : =(k+1m-r(A).
_Ak L Im (k + I)Im - kAk
_A~1 _Im + kAl Im
©rl| : |[A, ... Al|l=mer =m +r(4).
_Ak B Im Im + kAk
A
(d A=|: |[A, ..., Al © AA =0, i#]), i,j=i=1,2.., ke =S and r(S) =r(4)
Ay

o r(ly,-S)=m-r().

Proof. Let J = [In,..., I,]. Then, JTJ/k)? = JTJ/k. By (2.13) and (4.33),

el I JT] A Ik A
ri| ¢ [[A, ..., Akl =r{A O}—Zr(A)zr{ A 0}—2r(A)

Ay
=r(JTJ/k+ A) +r(A) =rJ7J + kA) + r (A),

establishing (4.132), this proof was first given in [39]. Replacing A; with 4; in (4.132) leads to (4.131). By JAJT = S,

~In 0 Iy -I, O 0 0 0 In
o A AT|=rf 0 A 0 |=rl0 A-A]TJA O
I, JA 0 0 0 I,-S In 0 0

=rQ) +rU,-S)+m=r( - AJTJA) + 2m,

establishing (4.133). Replacing A; with A; in (4.133) leads to (4.134). Results (b)—(d) follow from (4.131)-(4.133). O
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Theorem 4.16. Given a family of idempotent matrices Ay, A,, ..., Ax € C™™, we have the following results:
(@) The rank equality below holds

rlAAy, Ahy, .y AAr] = 1 (AA) + 1 (A A) + -+ 1 (Ahy) + 1 (A) = 1(A) - T(4) ——r(A), (4.135)

where A = [A, Ay, ..., Al and A; = [A,y, ..., Aii1, 0, Aise, ..., Arl.
(b) r[Aid;, AA,, ..., AAr] = 1 (AA)) + 1 (Ahy) ++-+ 1 (AAr) © r(A) = 1 (A1) + 1 (A) +-+ 1 (Ap).
(©) rlAA, LA, ..., AlA) =r(A) © Z(AA) = #(4), i1=1,2, ..., k.
@A) r(Aid;, A4, ..., A =m e r(A) =mand ZAA) = 24;), i=1,2, ..., k.
(&) If MA = AAy =..=A Ay =0, thenr(A) = 1 (A1) + 1 (A) +--+ 1 (Ap).
() r(A) = r(A) +r(A) ++ 1A — r(AA) — r(Ah) —---— r (AAx) holds.

Proof. A much trickier block matrix composed by the family of idempotent matrices is given by

A O - 0 A4A O - O
0 A - 0 0 AhA - 0
X=|: ¢ o0
0 0 - A, O 0 - A
A A - Ax O 0 - O

It is easy to verify that the above construction leads to the following two rank equalities:

A O - 0 O 0 - 0
0 A - 0 O 0 - 0
rX) =rl v b oo
0 0 - A 0 0 0
0 0 - 0 -AA -AA - -AA

=1 (A) + 1 (4y) +-+ 1 (AK) + T[AAL Ahy, ..., AAy],

0 -AA, - -AA AA O - 0 0 0 - 0 AA O - 0

A 0 - —AA 0 A4 - O 0 0 - 0 0 AA - 0

rX)=r oo : A 5 EE T U A oo
“AA -Ah, - O 0 0 - A 0 0 - 0 0 0 - A

A A e Ay 0O 0 - 0 A A - A O 0 - 0

=1 (AA) + 1 (Ahy) +-+ 1 (AcAr) + 1 (A).
Combining these two equalities leads to (4.135). Results (b)—(f) follow directly from (4.135). O

It is easy to see that (4.135) for k = 2 and (4.115) for k = 1 are the same. Choosing k = 3 in (4.135), this
allows us to obtain the following result.

Corollary 4.17. Given three idempotent matrices A, B, C € C™™, we have the following results:
(a) The rank equality below holds

r(A,B,C]=r(A) +r(B) +r(C) - r[AB, AC] - r[BA, BC] - r[CA, CB] + r[AB, AC, BA, BC, CA, CB].
(b) If AB=BA, AC = CA, and BC = CB, then
r(A,B,C]=r(A) +r(B) +r(C) - r[AB, AC] - r[BA, BC] — r[CA, CB] + r[AB, AC, BC].

(c) r[AB,AC,BA, BC,CA,CB] =r[AB,AC] + r[BA,BC] + r[CA,CB] & r[A,B,C] =r(A) + r(B) + r(C).
(d) r[AB, AC,BA,BC,CA,CB] =r[A,B,C] & Z[AB, AC] = #(A), Z[BA, BC] = Z(B),

and #[CA, CB] = #(C).
(e) r[AB,AC,BA,BC,CA,CB]=m o r[A,B,C] =m, Z[AB,AC] = Z(A), Z#[BA, BC] = Z(B),

and #[CA, CB] = #(C).
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(f) fAB=BA=AC=CA=BC=CB=0,thenr[A,B,C] =r(A) + r(B) + r(C).
(g) r[A,B,Cl >r(A) +r(B) + r(C) — r[AB, AC] - r [AB, BC] - r[AC, BC] holds.

Finally, we deduce from Theorem 4.13(a) the following result on the ranks of a partitioned matrix and
generalized inverses of its submatrices.

Corollary 4.18. Given A € C™" and B € C™?, the following rank equality

r[[A, B] - [A, B]{g_}[A, B]j =r(AAB) + r(BBA) +r[A,B] - r(A) - r(B) (4.136)

holds for all A~ and B~. In particular, the following results hold.
(@) The maximum and minimum ranks of (4.136) with respect to A~ and B~ are given by

?%X{[A,B] - [4, B]B_}[A,B]] =r1[A,B] - |r(4) - r(B)I, (4.137)
jniBnr[[A, B] - [A, B]{g:}[A, B]J =r(A) +r(B) - r[A, B]. (4.138)

A

() {[4,BI'} n {{B}} + @ o r[A, Bl =r) +rB) o Z(A) n 2(B) = {0}.

(c) {[A,B]"} 2 {{g:} or[A,Bl=r(A)-r(B)J]©A=00rB=0.

Proof. By definition, B

other hand, it is easy to verify that

A} is a generalized inverse of [A, B] if and only if [A, B]{g_}[A, B] = [A, B]. On the

[4, B] - [4, B]{g:}[A, B] =[A,B] - [(AA" + BB)A, (AA + BB")B] = —-[BB"A, AA B] (4.139)

holds for all A~ and B~. Note that both AA~ and BB~ are idempotent. Applying (4.115) to (4.139), we obtain

r[BB A, AA'B] =r[AA BB~, BB"AA™]
=r(AABB™) + r(BBAA") + r[AA",BB] - r(AA") - r(BB") (4.140)
=r(AAB) + r(BB"A) + r[A,B] - r(A) — r(B),

as required for (4.136). Applying the following two known rank formulas

oy B A B|_
nz@xr(D - CAB) —mln{r [C, D], {D}’ {C D} r(A)},

A O
. o B A B| |AOB|_
Irillnr(D—CAB)—r(A)+r[C,D]+r{D}+r{C D} {0 c D} r[g g}

in [30] to AA'B and BB A gives
maxr (AA B) =max r (BB A) = min {r (A), r (B)},
A B
rrii_nr(AA‘B) = n};i-n r(BBA)=r(A) +r(B) -rlA,B].

Substituting these two results into (4.140) yields

maxr [AA"BB-, BB-AA'] = 2min {r (4), r (B)} + r[A, B] - r(A) - r (B)
ma (4.141)
=r[A,B] - [r(A) - r(B)|,
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minr[AA BB ,BBAA ]| =2r(A) + 2r(B) - 2r[A,B] + r[A,B] — r(A) — r(B)
A B (4.142)
=r(A)+r(B) - r[A, B].

Combining (4.136) with (4.141) and (4.142) leads to (4.137) and (4.138), respectively. Setting the both sides
of (4.137) and (4.138) equal to zero leads to Results (b) and (c). O

5 Bounds of ranks of some matrix pencils composed by two
idempotent matrices

Since the rank of a matrix expression is a function of the variable entries in the expression, which may
vary with respect to the different choices of the entries, people wish to know the exact upper and lower
bounds of the ranks (maximum and minimum ranks) of the matrix expression under various assumptions.
By the definitions of generalized inverses, both AA™ and A" A are always idempotent for any A of a singular
matrix A. In this case, people are interested in the performance of idempotent matrices associated with the
generalized inverses and their operations [7,11,12,21,29]. It has been realized since the seminal work in [19]
that matrix rank formulas are the powerful tool to characterize matrix equalities that involve generalized
inverses. In this section, the author approaches the ranks of the following four characteristic matrices:

My + AA" + BB~, Al + AA + CC (5.1)

associated with the idempotent matrices A, B-, and C~, where A is a scalar. It is obvious that the ranks of
the four matrix expressions in (5.1) are all functions of A, A-, B~, and C~. Thus, we are interested in the
maximum and minimum ranks as well as rank distributions of the four matrix expressions. To determine
the two ranks, the following results will be used.

Lemma 5.1. [30] The maximum and minimum ranks of the linear matrix-valued function A — B1X,C; — B,X G,
with respect to the two variable matrices X; and X, are given by

A
A B A B
maxr(A - BX,C, — B,XG) = min{r[A, By, B,], r| Ci |, r Yy a1 (5.2)
X,% C C2 0 C1 0
2
A
minr (A - BiX,C; - B,XG) =r| G |+ r[A, By, B] + max {s, S»}, (5.3)
X% G
where
- 4 r ~ [A B
S rAB1 rABlB2 r| C 01
1= - - 1 )
0 0 O
G 0} G Il o
- - - [A B
S rAB2 rABlB2 r| C 02
2= - - 1 .
C, O c, 00
R 1 ]le o

Lemma 5.2. [6,10,25] Let A € C™™, Then, the general expressions of A-, AA", and A" A can be written as
A =A" + FU + VE,, AA =AA"+ AVE,, AA=AA+ FUA, (5.4)

where U, V € C™™ are arbitrary.
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Theorem 5.3. Let A € C™" and B € C™P be given.
(a) If A # 0, -1, -2, then the following two formulas hold

AL, + AA~ + BB™) = m,

Egg{ r( + + )=m (5.5)
minr (AL, + AA~ + BBY) =max{m +r(4) - r[A,B],m + r(B) - r[A, B]}. (5.6)
A B

In particular, the following results hold.
(i) There always exist A~ and B~, such that AL, + AA”~ + BB~ is nonsingular.
(ii) AL, + AA" + BB~ is nonsingular for all A~ and B~ . The rank of Al,, + AA~ + BB~ is invariant for all
A and B- o r[A,B] =r(A) =r(B) © %Z(A) = Z(B).
(iii) There do not exist A~ and B~, such that Al,, + AA~ + BB~ = 0.

(b) The following two formulas hold

gl,%)} r(AA  + BB") =r[A, B], (5.7)
E‘l’gl r(AA" + BB") = max {r (A), r (B)}. (5.8)

In particular, the following results hold.
(i) There exist A~ and B~, such that AA~ + BB~ is nonsingular & r[A, B] = m.
(ii) AA™ + BB is nonsingular for all A and B~ & r(A) = m orr(B) = m.
(iii) There exist A~ and B~, such that AA~ + BB- =0 & AA" + BB =0 forall A and B~ & [A, B] = 0.
(iv) The rank of AA~ + BB~ is invariant for all A~ and B~ & Z(A) 2 Z(B) or Z#(A) < %(B).

(c) The following two formulas hold

2{1,%¥r(—lm +AA +BB)=m-|r(4A) -r(B)I, (5.9)
E%r}r(—lm +AA +BB)=m+r(A) + r(B) - 2r[A, B]. (5.10)

In particular, the following results hold.
(i) There exist A~ and B~, such that —I,, + AA~ + BB~ is nonsingular © r (A) = r (B).
(ii) -I, + AA" + BB~ is nonsingular for all A~ and B~ & #(A) = Z(B).
(iii) There exist A~ and B-, such that AA~ + BB~ =1, ©r[A,B] =r(A) + r(B) = m.
(iv) The rank of I, + AA~ + BB~ is invariant for all A~ and B~ & #(A) 2 Z(B) or Z(A) < Z(B).

(d) The following two formulas hold

Lpzlaa{(r(—ZIm +AA +BB)=m+7r[A,B] -r(Ad) - r(B), (5.11)
Elg}r(_ﬂm +AA + BB") = max {m - r(4), m - r(B)}. (5.12)

In particular, the following results hold.
(i) There exist A~ and B~, such that -2I,, + AA~ + BB~ is nonsingular & #(A) n %Z(B) = {0}.
(ii) -2I,, + AA" + BB~ is nonsingular for all A~ and B- < A =0o0r B=0.
(iii) There exist A~ and B~, such that AA~ + BB~ = 2I,, & AA" + BB~ =2, for all A~ and B~ & r(A) =
r(B) =m.
(iv) The rank of -2I,, + AA" + BB~ is invariant for all A~ and B~ & #Z(A) 2 #(B) or #(A) < #(B).

Proof. By (5.4),
AL, + AA~ + BB~ = AL, + AA" + BB + AV,E4 + BLEp, (5.13)

where V; € C™™ and 15 € CP*™ are arbitrary. Applying (5.2) and (5.3) to (5.13) and simplifying gives
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max r (AL, + AA" + BB' + AVE, + BV, Ep)

1£8%
AL, + AA" + BBY
=min< r[Al, + AA" + BB",A,B], r E, ,
Ep
. AL, + AA" + BBt A . AL, + AA" + BB' B (5.14)
Ep o/ Ey 0
A+ 21,
. A+1DI, A A+ 1L, B

= M > A, B > ) ) ’

mins r [AL, ] r E, r{ Ey 0 r E, 0

Ep

and

min r (AL, + AA" + BB + AVE; + BV, Ep)
158%

AL, + AA" + BBf

=r Ex + 7[Aly + AA" + BB', A, B]
Ep
u T
M+ AA' + BB" A [Aly+Ad" + BBt A B] |Amt A4 +BB A
+ max{r £ ol E S ol E ol
‘B ‘B EB 0
u T
AL, + AA" + BB" B AL, + AA" + BB* A B Aln + AA" + BB' B (5.15)
' E ol " E 00| Ey 0
i 4 Eg 0
A+ 21, A+1L, A
=r E, + r[Al,, A, Bl + max<r @A+ Dl A —-r Aln A B _ E, 0],
Ep 0 Eg 0 O
Ep Eg O

Ey 0

{(}Hl)lm B} {/\Im A B
r —-r
EE 0

A+1DI, B
E. o '|E o 0} o7
Substituting different values of A into the formulas in (5.14) and (5.15) and simplifying yield the rank
formulas in (5.5)—(5.12), respectively. The facts in (a)-(d) follow from setting the rank formulas in
(5.5)-(5.12) equal to m and O and applying Lemma 2.1, respectively. O

Theorem 5.4. Let A € C™" and B € C™P be given.
(a) If A # 1,0, -1, then the following two formulas hold

?,?r(/um +AA -BB)=m, (5.16)
?gr_lr(/\Im +AA - BB) =max{m +r(A) - r[A,B], m + r(B) - r[A, B]}. (5.17)

In particular, the following results hold.
(i) There always exist A~ and B, such that AL, + AA~ — BB~ is nonsingular.
(ii) AL, + AA~ — BB~ is nonsingular for all A~ and B~& the rank of Al, + AA~ — BB~ is invariant for all
A and B- o r[A,Bl =r(A) =r(B) & %#(A) = Z(B).
(iii) There do not exist A~ and B~, such that AL, + AA- — BB~ = 0.

(b) The following two formulas hold

E}%{(r(lm + AA" - BB") = min {m,m + r (A) - r(B)}, (5.18)
minr(I, + AA- - BB ) =m+r(A) - r[A, B]. (5.19)

A B
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In particular, the following results hold.
(i) There exist A~ and B, such that I, + AA~ — BB is nonsingular < r (A) = r (B).
(ii) I, + AA" — BB~ is nonsingular for all A~ and B- & ©%(A) 2 Z(B).
(iii) There exist A~ and B~, such that BB~ — AA" = I, & BB~ — AA" =1, holds for all A and B- & A =0
andr(B) = m.

(iv) The rank of I, + AA~ — BB~ is invariant for all A~ and B~ & %#(A) 2 #(B) or #(A) < %(B).
(c) The following two formulas hold

maxr(AA - BB") =min{r[A4,B],m+r[A,B] -r(A) - r(B)}, (5.20)
A LB :
minr(AA- - BB) =max {r[A,B] - r(4),r[A, B] - r(B)}. (5.21)
A LB :

In particular, the following results hold.

(i) There exist A~ and B, such that AA~ — BB~ is nonsingular & r[A, B] =r(4) + r(B) = m.

(ii) AA - BB is nonsingular for all A~ and B- & r(A) =mand B =0, or A = 0 and r (B) = m.
(iii) There exist A~ and B, such that AA- = BB~ & Z(A) = #(B).
(iv) AA = BB~ holds for all A~ and B~ & [A,B]=0 orr[A,B] =r(A) + r(B) - m.
(v) The rank of AA~ — BB~ is invariant for all A and B- < A=00rB=0 r(A) =morr(B) = m.
Proof. By (5.4),

M, + AA — BB~ = A, + AA" — BB' + AV;E, — BV,E;, (5.22)

where V; € C™™ and 1, € CP*™ are arbitrary. Applying (5.2) and (5.3) to (5.22) and simplifying give

AL, + AA" - BB'
max r(AL, + AA" - BB" + AVEE, — BV,Eg) =minqr[Al, + AA" - BB', A, B], r E, ,
A7
EB

AL, + AA" - BB' A] {MMAA*—BB* B}
r , 7

E; 0] E, 0
/Um_
-, A DI, B
=min{ r[AL,, A, B], 1| E, ,r(/1 M ,r(/1+ M s
E, © E, O
EB_
and
min r(Al, + AA" — BB" + AV,Es — BV;Ep)
A%
AL, + AA" — BB
=r Ex + r[AL, + AA" — BB, A, B]
Ep
AA" - BB A
AL, + AA" - BB' A AL, + AA" - BB A B Al +
+ maxyr E o -r E 0 ol E, 0
B B Ey 0

} AL, + AA" - BB" B

AL, + AA' — BB* B| [Al,+AA' —BB' A B
g E ol " E 00 Ea 0
A A E o
AL, . A-1DI, A
=r| Ey |+ r[Aly A, B] + max{r A= Dl A —r Aln A B -rl E 0,
Ep 0 Eg 0 O
Ep - Ep 0

Ey 0

E 0 E, 00
‘A ‘A B 0

{()Hl)[m B} {/\Im A B} @A+ Dl B
r -r -r
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Substituting different values of A into the above formulas and simplifying yield the rank formulas required. O

Theorem 5.5. Let A € C™" and C € CP*™ be given.
(@) If A # 0, -1, -2, then the following two formulas hold

maxr (Al, + AA + CC) = m,
A,C

E‘lié‘l)’(ﬂm +AA + CC)=max{m -r(CA),r(A) +r(C) - r(CA)}.
In particular, the following results hold.
(i) There always exist A~ and C~, such that AL, + AA~ + CC is nonsingular.
(i) AL, + AA" + CC is nonsingular for all A~ and C~& the rank of AL, + AA~ + CC is invariant for all
AandC or[A,Cl=r(A)=r(C) @ CA=0andr(A) +r(C) = m.
(iii) There do not exist A~ and C-, such that AL, + AA~ + CC = 0.

(b) The following two formulas hold
maxr(AA” + CC) =min {m, r(A) + r(C)},
A,C
gpigr(AA‘ + CC)=r(A) +r(C) - r(CA).

In particular, the following results hold.

(i) There exist A~ and C~, such that AA~ + CC is nonsingular & r(A) + r(C) > m.

(ii) AA + CC is nonsingular for all A~ and C~ & r(CA) =r(A) + r(C) - m.

(iii) There exist A~ and C-, such that A A + CC=0© AA +CC=0 forall A and C ©A=0

and C = 0.
(iv) The rank of AA~ + CC is invariant for all A~ and C- < CA =0 orr(CA) =r(4) + r(C) - m.
(c) The following two formulas hold

m%xr(—lm +AA + C°C) =min {m + r(CA) - r(A),m + r(CA) - r(C)},
e
glicr}r(—lm +AA + CC) =max{m + r(CA) — r(A) - r(C), r (CA)}.

In particular, the following results hold.
(i) There exist A~ and C~, such that - I, + AA~ + CC is nonsingular & r(CA) =r(A) = r(C).
(ii) -In + AA" + CC is nonsingular for all A~ and C- © A=0and C =0, orr(A) =r(C) =m.
(iii) There exist A~ and C-, such that AA- + CC=1,© CA=0andr(A) + r(C) = m.
(iv) AA" + CC = I, cannot hold for all A~ and C~.
(v) The rank of -1, + AA + CC is invariant for all A~ andC~ & A=00orC=0o0orr(A) =morr(C) = m.
(d) The following two formulas hold
maxr (-2, + AA" + C°C) =min {m,2m - r(4) - r(C)},
A,C
miélr(—ZIm +AA + CC) =m - r(CA).
oy
In particular, the following results hold.
(i) There exist A~ and C~, such that —-2I, + AA~ + CC is nonsingular & r (A) + r(C) < m.
(ii) -2I, + AA" + CC is nonsingular for all A~ and C- & CA = 0.
(iii) There exist A~ and C~, such that AA~ + CC = 2I,& the rank of — I, + AA~ + CC is invariant for all
A andC o r(A) =r(C)=m.
(iv) The rank of -2I,, + AA~ + CC is invariant for all A~ and C- & CA = 0 orr(CA) =r(A) + r(C) — m.

Proof. By (5.4),
My + AA + CC =AMy, + AA" + C'C + AVE, + F:LC, (5.23)
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where 1} € C™™ and 1, € C™? are arbitrary. Applying (5.2) and (5.3) to (5.23) and simplifying give

max r(Al, + AA" + C'C + AVE, + F:5C)

|Z8%]
M, + AA" + C'C
=min< r[Al, + AA" + C'C, A, F;], r Ej ,
C
o Al + AAT + C'CA| Ay + AA" + C'C ¢
c o/ Ej 0
A+ 1)L,
=minir[A + DIy, A, Fcl,r| Ey | A, A r A+, F ’
c c o0 Ey 0

and

min r (AL, + AA" + C'C + AVE, + FW0)
158%}

A, + AA" + C'C

=r E, + r[Al, + AA" + C'C, A, F]
C
t o, Ct
My + AA +C'C A] [Mn+Ad+cic 4 F| |MnrAd+CC A
+ max{r -r -r Ey 0l
C 0 C 00

C 0

t ot B
r{Mm'FAAT‘*CTC FC}_{Mm+AA*+C*C A Fﬂ_r Al + AA" + C'C

E, 0
E 0 E, 00
A A c 0]
A+ DIy AL, Al
AL, A AL, A F
=r +7[A+ VD A, Fo] + maxsr| "™ —r|m Clor ,
JZA [( VIn cl {c o} {C 0 o} E, 0

c o]

r[(/\ + 2, FC} . {(A + Dl A FC} @ " D
E 0 E 0 0 4
‘A ‘A C 0
Substituting different values of A into the above formulas and simplifying yield the rank formulas required. O

Theorem 5.6. Let A € C™" and C € CP*™ be given.
(@) If A # 1, 0, -1, then the following two formulas hold
max r (AL, + AA - CC) =m,
A,C
Irqr_lig} r(AL, + AA — CC) =max {m — r(CA), r(A) + r(C) — r(CA)}.
In particular, the following results hold.
(i) There always exist A~ and C-, such that Al, + AA~ — CC is nonsingular-
(ii) AL, + AA” - CC is nonsingular for all A~ and C~ & the rank of Al,, + AA~ — CC is invariant for all
A and C- & CA =0 and r(A) + r(C) = m.
(iii) There do not exist A~ and C-, such that AL, + AA~ — CC = 0.

(b) The following two formulas hold
max r(AA -CC)=m-1r(A) +r(C) - m|,
A,C

g_licn_ r(AA - CC)=r(A) +r(C) - 2r(CA).
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In particular, the following results hold.
(i) There exist A~ and C~, such that AA~ — CC is nonsingular & r(A) = r(C) = m.
(ii) AA™ — CC is nonsingular for all A~ and C- & CA = 0 and r(A) + r(C) = m.
(iii) There exist A~ and C~, such that AA- = CC & r(CA) =r(A) =r(C).
(iv) AA" = CC holds for all A~ and C- & r(A) =r(C) = m.
(v) The rank of AA~ — CC is invariant for all A and C- & CA=0orr(A) + r(C) =m.
(c) The following two formulas hold
m%x r(-I,+AA —CC)=m-r(A) + r(CA),
e
g}icr} r(-I, + AA - C°C) =max {m - r(A), r(C)}.
In particular, the following results hold.
(i) There exist A~ and C-, such that -1, + AA~ — CC is nonsingular  r(A) = r (CA).
(ii) -I, + AA~ — CC is nonsingular for all A~ and C- & A=0orr(C) = m.
(iii) There exist A~ and C-, such that AA -CC=1I,o AA - CC=1, holds for all A and
Coer(A)=mandC=0.
(iv) The rank of - I, + AA~ — CC is invariant for all A~ and C- & CA =0 orr(CA) =r(A) + r(C) - m.

Proof. By (5.4),
My + AA — CC = M, + AA" - C'C + AVKE, - F:,C, (5.24)

where 1} € C™™ and 15 € C™? are arbitrary. Applying (5.2) and (5.3) to (5.24) and simplifying give

AL, + AA" - C'C|
max r(Al, + AA" — C'C + AVE; — F:V,C) = min< r [Al, + AA" - C'C, A, F, r E, ,
", Vs
1L, V2 C |
| A + AAT - C'C A| Ay + AA" - C'C F |
c o/ E, 0|
A + DI,
. AL, A AL, F¢
= /\_1 I ’AyF ’ ’ m ’ " ’
min<r [( Vm clir| By r[c 0} {EA 0}
C
and

min r (AL, + AA" — C'C + AVE; — F-1,5C)

Wl
A, + AAY - C'C
=T Ey +r[Al, + AA" - C'C, A, F(]
C
My, + AAT - C'C A
F— Ct t _ t m
+ max {AI,,,+A? c'c ‘(ﬂ_{/umﬁLA? Cc‘glzﬂ—r Ey ol
C 0
t_
{Mm+AA*—C*C Fc}_{ﬂ,,ﬁAA*—C*C A FC}_r Mm+A;4 ctc IE)C
E, 0 E 0 0 ‘A
! N C 0
A+ 1)L, AL, A
=r|  E |+r[A-Dly A, F] + maxyr M A\ A A Fo| E Ol
c C 0 C 00 A

{Mm FC}_{M," A FC}_ Aln Fe

r"E, O
E, O E, 0 O
A ‘A c o
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Substituting different values of A into the above formulas and simplifying yield the rank formulas required. [

Setting C = A in Theorems 5.5 and 5.6 leads to the following corollaries.

Corollary 5.7. Let A € C™™ pe given.
(@ IfA#0, -1, — 2, then the following two formulas hold

max r (AL, + AA~ + A A) =m,
a

min r (AL, + AA~ + A A) =max {m - r(42), 2r (A) - r(4?)}.
e

In particular, the following results hold.
(i) There always exists an A", such that AL, + AA”~ + A A is nonsingular-
(ii) AL, + AA~ + A°A is nonsingular for all A~ & the rank of AL, + AA~ + A°A is invariant for all
A oA =0and2r(A) =m.
(iii) There does not exist an A", such that A, + AA~ + A"A = 0.

(b) The following two formulas hold
max r(AA" + A A) =min {m, 2r (A)},
e

rrilip r(AA + A A) =2r(A) - r(4?).

In particular, the following results hold.
(i) There exists an A", such that AA~ + A" A is nonsingular & 2r (A) > m.
(ii) AA™ + A A is nonsingular for all A~ & r(A%) = 2r(A) - m.
(iii) There exists an A", such that AA- + AA=0 AA + AA=0forall A~ & A=0.
(iv) The rank of AA + A A is invariant for all A~ & A% =0 or r(A%) = 2r (A) — m.

(c) The following two formulas hold
max r(-I, + AA + AA) =m+r(4%) - r(A),
e
min r(-I, + AA + A A) = max {m + r(42) - 2r(4), r (4%)}.
e

In particular, the following results hold.
(i) There exists an A-, such that -1, + AA~ + A"A is nonsingular & r(4%) = r(A).
(ii) -I, + AA + A A is nonsingular for all A~ < A =0 orr(A) = m.
(iii) There exists an A, such that AA + AA =1, @ A2 =0 and 2r (A) = m.
(iv) AA + A A = I, cannot hold for all A".
(v) The rank of I, + AA~ + A"A is invariant for all A~ & A =0 orr(A) = m.

(d) The following two formulas hold
max r (-2, + AA + A A) =min {m, 2m - 2r (4)},
e
min r(=2L, + AA + AA) =m - r(4?).
e
In particular, the following results hold.
(i) There exists an A", such that -2I,, + AA~ + A"A is nonsingular & 2r (A) < m.
(ii) —2I, + AA~ + A A is nonsingular for all A~ & A? = 0.
(iii) There exists an A", such that AA~ + A"A = 2, & the rank of -1, + AA + AA is invariant for

al A~ r(4) =m.
(iv) The rank of =21, + AA~ + A"A is invariant for all A~ & A> = 0 or r (4?) = 2r (A) - m.

Corollary 5.8. Let A € C™™ be given.
(@) If A # 1, 0, -1, then the following two formulas hold

max r (AL, + AA - A A)=m,
o

n}}n r(A, + AA — AA) = max {m — r(42), 2r (A) - r (A»)}.
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In particular, the following results hold.
(i) There always exists an A", such that AL, + AA~ — A"A is nonsingular.
(ii) AL, + AA~ — A" A is nonsingular for all A~ the rank of AL, + AA — AA is invariant for all
A oA =0and 2r(4) = m.
(iii) There does not exist an A", such that A, + AA~ - A A =0.

(b) The following two formulas hold

max r(AA - AA)=m-|2r(4A) - m|,
.

n}}n r(AA- - AA) =2r(A) - 2r(A%).

In particular, the following results hold.
(i) There exists an A", such that AA~ — A" A is nonsingular & 2r (A) = m.
(ii) AA - A A is nonsingular for all A~ & A2 = 0 and 2r (A) = m.
(iii) There exists an A-, such that AA~ = A A o r(4A%) =r(A).
(iv) AA" = A A holds for all A~ & r(A) = m.
(v) The rank of AA~ — A A is invariant for all A~ < A = 0 or 2r(A) = m.

(c) The following two formulas hold
maxr (I, + AA — A A)=m —r(A) + r(4%),
e
minr (-1, + AA — A A) =max {m - r(4),r(A)}.
e

In particular, the following results hold.
(i) There exists an A", such that I, + AA~ — A A is nonsingular & r (A%) = r (A).
(ii) -L, + AA~ — A A is nonsingular for all A~ & A=0orr(A) =m.
(iii) There exists an A, such that AA - AA=I,AA —-AA=1I, holds for all A A=0
andr(A) = m.
(iv) The rank of - I, + AA~ — AA is invariant for all A~ & A?> = 0 orr (4%) = 2r(4A) - m.

Finally, the author presents a group of rank formulas associated with the products of two block matrices
and their generalized inverses.

Corollary 5.9. Let A € C™", B e C™k, (CeC™" and D e C*" be given, and denote M = k‘l lﬂ and

N = {A O}. If A +1,0, -1, then the following two formulas hold

0 D
Irwr}ixvygr(/uml + MM - NN)=m+ 1, (5.25)
minr (AL, + MM~ — NN°) =m + 1 - r[A, B] — r[C, D] + max{r (M), r(A) + r(D)}. (5.26)
M ,N-

In particular, the following formulas hold

maxr (lng + MM = NN°) = min {m + 1, m + L+ (M) - r (4) - r (D)}, (5.27)
Nrjp}\lr}r(lml + MM~ — NN°) =m + L+ r(M) - r[A, B] - r[C, D], (5.28)
A??Vgr(MM‘ ~ NN°) =r[A, B] + r[C, D] + min {0, m + [ - r(M) — r(A) - r(D)}, (5.29)
ﬁqu(MM* - NN°) =r[A, B] + r[C, D] - min {r (M), r(A) + r(D)}. (5.30)

Setting the both sides of (5.26)—(5.30) equal to m + [ or equal to zero will lead to a group of interesting
facts on the singularity, the non-singularity, the rank invariance, and the equalities associated with the
matrix expressions, which I leave as exercises for the reader.
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6 Concluding remarks

The author has presented a large number of known and novel algebraic identities that are composed by
idempotent matrices and established many explicit formulas for calculating the ranks and ranges of idempotent
matrices by means of the BMM and EBMOs. The author has also presented a variety of applications of these
identities and formulas in dealing with a variety of issues associated with idempotent matrices under various
assumptions. Note that all the preceding results and facts are presented in elementary and analytical forms that fall
in the scope of elementary linear algebra and matrix theory, so that the work is accepted easily for all readers with
a background of college mathematics, and thus, the author hopes that they can be used in the teaching and
research of idempotent matrix problems and also hopes that part of the contents in this survey paper can be
chosen as constructive materials in the compilation of new textbooks and handbooks on linear algebra and matrix
mathematics. Furthermore, this work shows that the equalities and inequalities of matrices have been one of the
most attractive and fruitful research topics in linear algebra and also demonstrates that there still exist many simple
and interesting problems on fundamental objects in linear algebra for which we can make deeper exploration and
find out various novel and intrinsic conclusions.

It is expected that more algebraic identities composed by idempotent matrices and more analytical
formulas for calculating the ranks of matrix expressions can be established by using various tricky block
matrix constructions, which we believe will bring a great increase of classic knowledge in linear algebra
and will also provide useful tools to deal with various challenging problems in matrix analysis and
applications. As a continuation of this research, the author proposes some problems for consideration:

(I) Establish analytical formulas for calculating the ranks of the following general matrix expressions:
AA] £ HA;, £ - AAL,
[AA] (A oy Akl ooy ACAL (A, ...y Akl
(A, Ao, ..y Al [A1, A,y oy Akl — AAT — A Ay —— AdAr,
Ar
Ay

[Al’ AZ) ceey Ak] - [Al’ AZ) ceey Ak] [Aly AZ) ceey Ak]

Ay
= [(AzAi +-ot AkAl;)Als veey (A]Af +-t Ak_lA];,l)Ak]

with respect to the multiple generalized inverses in them.
(II) Establish necessary and sufficient conditions for the following reverse order laws to hold for
generalized inverses of matrix products associated with (3.1), (3.3)-(3.6), (3.11), and (3.87)-(3.91):

(@A + BB)E ) = AV (Ly, + u Ay YA + B)S O (I, + w,B)Y,
(@A + BB)& ) = AN (Ly + o, BY (A + B)S O (I, + u,A)7Y,
(aAB + ﬁBA)(i’ o)) = (A+B- Im)(sl, ...,tl)(aA + BB)(Sz, u.,tz)’
((XAB + ﬁBA)(i’ I ) - (BA + (XB)(S3' . B) (A +B- Im)(sz" u.,u),
(aABA + BBAB)® ) = [(A + B = L)? ]S > 0 (@A + BB)S> - ),
(aABA + BBAB)% D) = (A + B — L)) 5 (BA + aB)S» > W (A + B — [,)l ),
(aABA + BBAB): D) = (aA + BB)Se @ [(A + B — [))?]c7 8,
[a(AB)k + ﬁ(BA)k](i’ v ) = [(A +B - Im)zk—l](sl, o ty) (OLA + BB)(SZ, ...,tz)’
[a(AB)x + ﬁ(BA)k]('F o)) = (BA + aB)S» 5 B [(A + B — L) 1]66 s to)
[a(ABA)* + B(BAB)K]® ) = [(A + B — Ly)*]®v 0 (aA + BB)S> - ),
[ (ABA)X + B(BAB)K]® ) = (@A + BB)S» = B [(A + B — Ly)*]6w -+ ),
(In — AAB) ) = (L, + BB)(Iy + aA + BB)S - O (L, + aA),
(In = ABA)® D) = (Iy + aA) (In + @A + BB)S O (I, + BB),

and
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[a(AB + AC) + B(BA + BC) + y(CA + CB)|t 1) = (§ = L) >0 (aA + BB + yC)s» -+ &),
[@(BA + CA) + B(AB + CB) + y(AC + BO)[& 1) = (@A + BB + yC)S - 0 (S — L) ),
[a(B+ C)AB+C)+B(A+C)BA+C)+y(A+B)C(A+B)&-D

— (S _ Im)(sl’ o t) (aA + BB + yc)(sz, ., b) (S _ Im)(53, t3),

where A, B, C € C™™ are three idempotent matrices, and S=A + B + C.

On the other hand, it is well known that idempotents and generalized inverses of elements can
symbolically be defined in rings and operator algebras, which have been recognized as important tools in
the investigation of issues in these disciplines. Much to his regret, the author has nothing to say in this
paper about idempotents and generalized inverses of elements in general algebraic structures.
Nevertheless, it would be very attractive to be able to generalize by algebraic and deductive calculations
of the preceding formulas, results, and facts to the problems that are somehow close to the complex matrix
case, as they also encode more interesting issues on idempotents in general algebraic structures.

Acknowledgments: The author is grateful to an anonymous referee for his/her helpful comments and
suggestions on this paper.
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