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recent years. In this paper, we investigate the analytic properties of nonnegative tensors and give some
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1 Introduction

In recent years, problems related to tensors have drawn much people’s attention. As a generalization of
matrix theory, fruitful research achievements have been made in topics such as tensor decomposition,
tensor eigenvalues and structured tensors [1-3]. Tensors also have wide applications in quantum
entanglement, higher order Markov chains, magnetic resonance imaging, machine learning, data
analysis, polynomial optimization, nonlinear optimization, hypergraph partitioning, etc. [4-19].

In 2005, Qi [20] and Lim [21] independently defined the concept of eigenvalues of tensors. In 2008,
Chang et al. established the Perron—Frobenius theorem for nonnegative tensors [22]. In 2010, Yang and
Yang introduced the definition of spectral radius of tensors [23]. Some bounds on the spectral radius of
nonnegative tensors are given in [24-28].

In the proof of Theorem 2.3 in [23], the authors considered the sequence of nonnegative tensors and
gave the limit formula regarding the spectral radius. Note that the result holds when the sequence is
monotonic. We want to know whether the result still holds when the sequence is not monotonic and try to
investigate the continuity of the spectral radius of nonnegative tensors by some inequalities. Recently,
Sun et al. generalized some inequalities on the spectral radius of the Hadamard product of nonnegative
matrices to nonnegative tensors [29]. Their beautiful results make us interested in the further study of the
Hadamard product of tensors.

In this paper, we mainly investigate the analytic properties of the spectral radius of nonnegative
tensors. We discuss the continuity of the spectral radius by means of limit formulas as well as tensor
inequalities involving norms. We also give some inequalities on the spectral radius of the Hadamard
product of nonnegative tensors. These results can be seen as a generalization of the existing inequalities
on the spectral radius of nonnegative matrices.
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The paper is organized as follows. In Section 2, we collect some definitions, notations and helpful
lemmas. In Section 3, we discuss the continuity of the spectral radius. In Section 4, we give some
inequalities on the spectral radius involving the Hadamard product.

2 Preliminaries

A real mth order n-dimensional tensor (hypermatrix) A = (a;;,...i,) is @ multiarray of real entries a;j,..i,»
where i; € {1, 2,...,n} for j € {1, 2,...,m}. When m = 2, A is a matrix of order n. The set of all mth order
n-dimensional real tensors is denoted as T, . Throughout this paper, we assume that m, n > 2.

A tensor is said to be nonnegative (positive) if each of its entry is nonnegative (positive). Denote by O
the zero tensor, and by J the tensor with each entry equal to 1. For a tensor A, A > (>)O implies that A
is nonnegative (positive). For two tensors A and 8, A = B or B < A implies that A — B is nonnegative.
Let |A| be the tensor obtained from A by taking the absolute values of the entries. Then, |A| is
nonnegative and A < [A|. A = (aji,.i,) € Tm,n is said to be reducible, if there is a nonempty proper index
subset I c {1, 2,...,n} such that

Aijiy iy = 0, A4 i] S I, Y iz, i3, ,lm ¢ 1.

A tensor is said to be irreducible if it is not reducible.
The inner product of A = (ajiy-i,)> B = Biyiy-i,) € Tm,n, denoted by (A, B), is defined as follows:

n
<ﬂ, B> = z ailiz,,.imbilizmim.
ity .. im=1
The Frobenius norm of A is defined and denoted as ||Al|r = {A, A). Denote by R" the set of real
vectors of dimension n. R"(R",) represents the cone {X = (x, X%,...,xp)T € R"|x; > (>)0, i =1,2,...,n}.
Let A = (aiiy-i,,) € Tm,n, and let x = (x;, Xa,.,X) T be a complex vector of dimension n. Then, Ax™!is a
vector of dimension n with its ith component as

n
(AX™Y); = Z iyt Xip*** Xiy
iy im=1
fori=1, 2,...,n. Denote by 0 the zero vector. A complex number A is called an eigenvalue of A if it together
with x # 0 forms a solution to the following system of homogeneous polynomial equations:

Axm-1 = Axlm-1,

where x!m-1l = (x{"’l, x{"’l,...,x,',”’l)T. The nonzero vector x is called an eigenvector of A corresponding to

the eigenvalue A. The spectral radius of A is defined and denoted as

p(A) = max{|A|: A is an eigenvalue of A}.

It is well known that the Perron-Frobenius theorem is a fundamental result for nonnegative matrices
[30, p. 123]. Chang, Pearson and Zhang generalized this theorem to nonnegative tensors. Yang and Yang
gave some further results on the Perron-Frobenius theorem for nonnegative tensors. We summarize some
of their results as follows.

Lemma 2.1. [22] Let A € T,,, be nonnegative. Then, there exists Ao >0 and X, € R} such that
AXP = Aoxml,
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Lemma 2.2. [22] Let A € T, , be irreducible nonnegative. Then, there exists Ay > 0 and X, € R}, such that
AXIL = 2ox™Y, Moreover, if A is an eigenvalue with a nonnegative eigenvector, then A = A,. If A is an
eigenvalue of A, then |A| < A,.

Lemma 2.3. [23] Let A, B € T, , be nonnegative. Then,

(i) p(A) is an eigenvalue of A with a nonnegative eigenvector corresponding to it;
(ii) If A is an eigenvalue of A with a positive eigenvector, then A = p (A);
(iii) If A < B, then p(A) < p(B);

(AX™Y; |

(iv) p(A) = maxyer?\ (o) MiNyr0-— s

(v) If x e RY,, then p(A) < maxlgignmxf‘T":l)i;

(Vi) Let Ay = A + T, k = 1, 2,... Then, limy_oop (Ax) = p(A).

3 Continuity of the spectral radius of nonnegative tensors

Suppose A € Ty, and {Ail2, is a set of mth order n-dimensional tensors. limy_ ., Ax = A means
limkﬁm(ﬂk)iliz...im = (ﬂ)hiz-“im for any il, iz,...,im.

Lemma 3.1. Let A € T, , be nonnegative, and let {E}2, be a set of mth order n-dimensional nonnegative
tensors with limy_,.,& = O. If A has an eigenvalue with a positive eigenvector corresponding to it, then
limy, o0 (A + &) = p(A).

Proof. By Lemma 2.3 (ii), there exists X = (X, X%,...,x;)" € R", such that Ax™ ! = p(A)xI™-U, Then, by
Lemma 2.3 (iii) and (v),

& m-1y, S, xm-1).
PA) < p(A + &) < max% =p(A) + max%
1<i<n X; 1<i<n X;
Since limy_,o, & = O, limk%omaxlggn(ai’:nmj)" = 0. Thus, limy_,,p (A + &) = p(A). O

Lemma 3.2. Let A ¢ T, be nonnegative, and let {E}i2; be a set of mth order n-dimensional nonnegative
tensors such that &, < A for k = 1, 2,... with limy_, &y = O. Then, limy_,,p (A — E) = p(A).

Proof. By Lemma 2.3 (i), there exists nonzero y = (y;, 5,...,),)’ € R” such that Ay™! = p (A)y™ . Then,
by Lemma 2.3 (iii) and (iv),

_ m-1y, m-1y.
p(A) = p(A - &) = min =GV _ )y BV
¥#0 Y ¥#0 Y
Since limy_,o,&x = O, limy_, maxyx_#o(‘g’j:l)" = 0. Thus, limy_,c,p (A - E) = p(A). O

Theorem 3.3. Let A € T, , be nonnegative, and suppose A has an eigenvalue with a positive eigenvector
corresponding to it. Let {A}>; be a set of mth order n-dimensional nonnegative tensors with
limy_, o Ax = A. Then, limy_,,,p (Ay) = p(A).

Proof. Let A — Ay = E; - &, k =1, 2,..., where
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. (A = Ay I (A = Adiyiyiyy > 05
(Eniyim = .
0, otherwise.
Then, Ef > 0, E =20, A - E; =2 0, limy_&Ef = 0, limy_,,E; = 0. Since Ay = A + E - Ef < A + &, by
Lemma 2.3 (iii), p (Ax) < p(A + Ep). Then, by Lemma 3.1, limy_,op (Ax) < limy_eop (A + E) = p(A). Since
A =2 A — E = A — Ef, by Lemma 2.3 (iii), p(Ax) = p(A — &F). Then, by Lemma 3.2, limy_, .0 (Ax) =
limy_,op (A — EF) = p(A). This completes the proof. O

Let A = (aiiy-i,) € Tmn. If the entries a;,;,...;, are invariant under any permutation of their indices, then
A is called a symmetric tensor. The set of all mth order n-dimensional real symmetric tensors is denoted
as Sy Let X = (Xy, Xo,...,X) . Define

n
AX™ = Z ity iy Xy Xiy*** X

i,12, .., im=1

m*

Lemma 3.4. Let A€ T,, be positive, and let X = (X, X,....xn)] € R",, U= (W, Up,...,u)" € R",
V = (V1, Va,...,V)T € R". Then,

n Aiyip--imXiyXiy " Xim n

axm [ (awy-w,)  wm  <vi@Awm) [T (axg

l’],iz,u,l‘m=l ilvinwim—l

digip- lm"ll"lz Xim
m
le)

Proof. Since the function f(t) = log t is concave on (0, +o0), we have

n n
log Z Ay iy Xiy Xiy "+ Xi, .viluiz---uim S z Ay iy Xiy Xiy "+ Xii, log Vi Ui, " -+ Ui,
AxX™ Xi Xy -+ X AX™ Xiy Xy -+ X

m m

i,02, .., im=1 i1, .., im=1

Then,

iyiy---imXiy iy Xim

vT(ﬂum‘l) n Vi Up, - Uj AxM
log————=>1lo 4= _m
& Ax™ 8 H

1,12, .., im=1
which implies
iy iy---imXig iy Xim

_ n
vT(ﬂu’" 1) . 1_[ Vi Us, -+ Ui, AxM
AxX™M B Xi Xiy X

i1, I3, .., im=1 m

This completes the proof. O

Lemma 3.5. Let A € Sy, be nonnegative, and let X = (X, X,...,xp)" € R". Then, AX™ < p (A) Zle x".

Proof. By Lemma 2.3 (vi), it suffices to consider the case when A is positive. First suppose
X = (X, %,...,X,)T € R",. Note that Lemma 2.2 implies that p(A) is an eigenvalue of A with a positive
eigenvector corresponding to it. Let u = (uy, Uy,...,u,)’ € R, be the eigenvector corresponding to p(A),

. xm . . . .
and let v = (v, Vy,...,v)T € R", with v; = ﬁ, i=1, 2,..,n. Since A is symmetric,
i

n ml)

n
iy lm"u"lz Xim i
m 1
[T awwg) ™ % = [T i)
i=1

it B3, .., im=1
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n

Ajyiy- xmxllxxz Xim n
H (Xilxiz"'xim) H
i=1

i1, .., im=1

xl(ﬂxm 1

Thus,

n n

H (viyusy ulm)am2 e H (i X, le)“mz e
iz im=1 ity im=1
By Lemma 3.4, Ax™ < v/ (Aw"™) = vip(A)u" Y = p(A) Y1, v/ = p(A) Y1 X"
Next suppose X = (X, X, ...,X,)T € R™. For k =1, 2,..., let x(") =X+ Ee, where e is the vector with each
component equal to 1. Then, x©¥ ¢ R", and lim;_.,x% = x. By what we have proved above, A (x®)" <
pA) YL, (xi + %)m for k = 1, 2,.... The conclusion holds when k — oo, O

Theorem 3.6. Let A, B € S, , be nonnegative. Then, p(A + B) < p(A) + p(B).

Proof. By Lemma 2.3 (i), let X = ()3, %, ...,x,) € R” be the eigenvector of A + B corresponding to p (A + B)
with Y, x™=1. Then, by Lemma 3.5 p(A+B)=pA+B)Y, x"=Y", (A +B)x™7); =
(A + B)X" = AX™ + BX" < p(A) Y x" + p(B) YL, 6" = p(A) + p(B). O

Let X = (x4, %, ...,X;)T € R™ Denote by x®" the tensor in Ty, ,, With its (iy, izye..,iy) €Ny aS X3, X5, X;

m*

Lemma 3.7. Let X = (X, %,...,%)T € R} with ¥, x/" = 1. Then, ||x®*™||p < n>~.

Proof. Since )! x"=1 with m > 2 by the power mean inequality (31, p. 203], we have

1 1

2 2 2 m m m L
Xi+X3 + 4 Xy 2 X +Xy e+ Xg \M _ 1 m om|12 _ n 2 2_” 2 _ 2 2 2\m
( . ) < ( - ) = (n) . Then, [[X®M[F =% o i o3 XiXi X, = 04 + X5 ++ X3) " <

n™-2, This completes the proof. O

Lemma 3.8. Let A € T, be nonnegative. Then, p(A) < nz Y Allg.

Proof. Let X = (x, %,...,X,)T € R" be the eigenvector of A corresponding to p (A) with Z = 1. By Lemma
3.7 and the Cauchy-Schwarz inequality, p (A) = p (A) Zi:l x" Z L X (AXMY); = Zl b =1 a,,z..,mxlxl2 X, =
(A, X8y < || Alp |1X®M[p < 07 Y[ Allp. O

Theorem 3.9. Let A, B € S, be nonnegative. Then, |p (A) — p(B)| < n? YA - B|g.

Proof. Since A — B < |A - B|, A < |A - B| + B. By Theorem 3.6, p(A) < p(|A - B| + B) <p(|A - B|) +
p(8B). Thus, p(A) - p(B) < p(|A - B]). Similarly, p(B) - p(A) < p(|A — B|). Then, by Lemma 3.8, [p (A) -
pB)| <p(A - B|) <n> YA - Bl|p. O

4 Some inequalities involving the Hadamard product

Let A = (ayiy-i,)> B = (byiy-i,) € Imn. The Hadamard product of A and B is defined and denoted
as AoB = (Qiiy-i,biiy-i,) € Imn. Let A = (ay;,.;,,) be nonnegative, and let a be a positive real number.
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The ath Hadamard power of A is the tensor A = (ag,.,)- Similarly, for two vectors X = (x3, Xa,.. Wx)T
and V = (1, VayeesVn) ' let Xoy = AV XaYps- - XnYy)" s for X € R” and a > 0 let x1¥ = (%, x§, ...,x3).

Theorem 4.1. Let A ¢ Ty, , be nonnegative. Then, (p (A™)) < (p(AS))s, withr > s > 0.
Proof. By Lemma 2.3 (vi), we may suppose A is positive. Let A = 8 = (b;;,.;) > O, and let t = % > 1.1t

suffices to prove that p(8) < (p(8))!. By Lemma 2.2, there exists X = (x, X%,...,x,)7 € R", such that
Bx"1 = p(B)xI™-U, Then, fori=1, 2,..,n,

n
(B (xlIym1); = Z Blipei X Xy S| D BijyeiyXiyr e X,

Sip=1 1.0 50m=1

= ((me‘l)i)‘ = ((p(B)xIm-1))t = (p(B)) (x/)™1.
By Lemma 2.3 (v),

p(81) < max @BUeY
" 1<izn (xtym-1

< (p®).

This completes the proof. O
Theorem 4.2. Let Ay, Aj, ..., A € Ty be nonnegative. Then, p (A M oA oo AD) <(p (A))4 (p (A))% -
(p (A with a;>0 and Z,{il a; > 1.

k

Proof. By continuity of the spectral radius, we may suppose Aj, Ay, ..., A are all positive. Let a = }

a; > 1, and let A; = (@? ), i=1,2,..,k By Theorem 4.1,

a a g\ ai a aj a
p(ﬂ[lﬂdoﬂ[zﬂz]o...oﬂ[lgk]) — p[(ﬂg“]oﬂga]omoﬂ[’(“]) ] < [p(ﬂg“]oﬂga]o...oﬂ[k“]jj . 1)

By Lemma 2.2, for i = 1, 2,..,k, there exist x® = (xV, x{V,... x{))T € R", such that A;xD)y"! =p(A;)

(xOYm-1, Lot A = ﬂ[ ', Eﬂo o{ﬂ[ I and let x = ) 2o @)% oo )] = (5, 1507 eR",. For
i=1, 2,.,n,

n

N a® Ve (gl ) MYZ .. (xR)& WYa .. (y0O)E
(AX™Y; = Z ( 1,iy zm) ;. im) ) ((Xiz ) (Xiz ) (Xim ) (Xi,,,
iZy»»;im=
n ax
_ @ D, MYa (k) k), (k) Ya
- Z (al iy lmx xim (al i lmxl "Xi,,,
iy, ..., im=1
al 3
n @ n “
6] @... 4@ (k) &), ..y )
s Z @iy Xy | Z iy iy " Xy
O I

= (DD (A = (o (AN o (o (AN Y™
= (p ()% (p (A)* ()2 )" = (A (o (A,

Then, by Lemma 2.3 (v), p(A) < MaXizicr "o < (p(A)*-+ (p(A)¥ . Thus, by (1),

a

p (Ao oA < [p[ Ak oﬂ[“m = (P(A)* < (p(AD)%(p(A)*. O
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5 Conclusion

In this paper, we focus on the analytic properties of the spectral radius of nonnegative tensors. First, we
discuss the continuity of the spectral radius. Then, we give some inequalities on the spectral radius
involving the Hadamard product. These results generalize some existing results on the spectral properties
of nonnegative matrices to nonnegative tensors.
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