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Abstract: Let K be an imaginary quadratic field of discriminant dK with ring of integers �K , and let τK be an
element of the complex upper half plane so that � = [ ]τ , 1K K . For a positive integer N, let � ( )dN K be the set of
primitive positive definite binary quadratic forms of discriminant dK with leading coefficients relatively
prime to N. Then, with any congruence subgroup Γ of �( )SL2 one can define an equivalence relation ∼Γ on
� ( )dN K . Let ��Γ, denote the field of meromorphic modular functions for Γ with rational Fourier coefficients.
We show that the set of equivalence classes � ( )/∼dN K Γ can be equipped with a group structure isomorphic
to ��( ( )/ )K τ KGal KΓ, for some Γ, which generalizes the classical theory of form class groups.
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1 Introduction

For a negative integer D such that ≡D 0 or ( )1 mod4 , let �( )D be the set of primitive positive definite binary
quadratic forms �( ) = + + ∈ [ ]Q x y ax bxy cy x y, ,2 2 of discriminant − =b ac D42 . Themodular group �( )SL2
(or �( )PSL2 ) acts on the set �( )D from the right and defines the proper equivalence ∼ as











�∼ ′ ⇔ ′ = = ∈ ( )Q Q Q Q Q γ x
y γfor some SL .γ

2

In his celebrated work Disquisitiones Arithmeticae of 1801 [1], Gauss introduced the beautiful law of com-
position of integral binary quadratic forms. It seems that he first understood the set of equivalence classes

�( ) = ( )/∼C D D as a group, so called the form class group. However, his original proof of the group structure
is long and complicated to work in practice. Several decades later, Dirichlet [2] presented a different
approach to the study of composition and genus theory, which seemed to be definitely influenced by
Legendre (see [3, Section 3]). On the other hand, in 2004 Bhargava [4] derived a wonderful general law
of composition on × ×2 2 2 cubes of integers, from which he was able to obtain Gauss’ composition law on
binary quadratic forms as a simple special case. Now, in this paper we will make use of Dirichlet’s composi-
tion law to proceed the arguments.

Given the order � of discriminant D in the imaginary quadratic field �= ( )K D , let �( )I be the group
of proper fractional � -ideals and �( )P be its subgroup of nonzero principal � -ideals. When = +Q ax2

+bxy cy2 is an element of �( )D , let ωQ be the zero of the quadratic polynomial ( )Q x,1 in � �= { ∈  |τ
( ) > }τIm 0 , namely,
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=

− +ω b D
a2

.Q (1)

It is well known that � �[ ] = +ω ω, 1Q Q is a proper fractional � -ideal and the form class group ( )DC under
the Dirichlet composition is isomorphic to the � -ideal class group � � �( ) = ( )/ ( )C I P through the isomorphism

�( ) → ( ) [ ] ↦ [[ ]]

∼

C D C Q ω, , 1 .Q (2)

On the other hand, if we let �H be the ring class field of order � and j be the elliptic modular function on
lattices in �, then we attain the isomorphism

� ��( ) → ( / ) [ ] ↦ ( ( ) ↦ ( ))

∼

C H K j jGal , ¯a a (3)

by the theory of complex multiplication ([3, Theorem 11.1 and Corollary 11.37] or [5, Theorem 5 in Chapter
10]). Thus, composing two isomorphisms given in (2) and (3) yields the isomorphism

��( ) → ( / ) [ ] ↦ ( ( ) ↦ ([− ]))

∼

C D H K Q j j ωGal , ¯ , 1 .Q (4)

Now, let K be an imaginary quadratic field of discriminant dK and �K be its ring of integers. If we set









=

/ ≡ ( )

(− + )/ ≡ ( )

τ
d d

d d
2 if 0 mod 4 ,

1 2 if 1 mod 4 ,
K

K K

K K
(5)

then we get � = [ ]τ , 1K K . For a positive integer N and �= N Kn , let ( )IK n be the group of fractional ideals of K
relatively prime to n and ( )PK n be its subgroup of principal fractional ideals. Furthermore, let

� �

�

( ) = {  |  ∈ ≡ ( ) }

( ) = {  |  ∈ ≡ ( )}

∗ ∗

∗ ∗

P ν ν K ν m m N
P ν ν K ν

such that mod for some integer prime to ,
such that 1 mod ,

K K

K K

,

,1

n n

n n

which are subgroups of ( )PK n . As for the multiplicative congruence≡

∗ modulo n, we refer to [6, Section IV.1].
Then the ring class field �H of order � with conductor N in K and the ray class field Kn modulo n are defined
to be the unique abelian extensions of K for which the Artin map modulo n induces the isomorphisms

� �( )/ ( ) ≃ ( / ) ( )/ ( ) ≃ ( / )I P H K I P K KGal and Gal ,K K K K, ,1n n n n n

respectively ([3, Sections 8 and 9] and [6, Chapter V]). And, for a congruence subgroup Γ of level N in
�( )SL2 , let ��Γ, be the field of meromorphic modular functions for Γ whose Fourier expansions with respect

to =

/ /q eN π τ N1 2 i have rational coefficients and let

� �� �( ) = ( ( ) |  ∈ )K τ K h τ h τis finite at .K K KΓ, Γ,

Then it is a subfield of the maximal abelian extension Kab of K ([7, Theorem 6.31(i)]). In particular, for the
congruence subgroups





























� �

� �

( ) = ∈ ( ) |  ≡

∗ ∗

∗

( ( ))

( ) = ∈ ( ) |  ≡

∗

( ( ))

N γ γ NM

N γ γ NM

Γ SL 0 mod ,

Γ SL 1
0 1 mod ,

0 2 2

1 2 2

we know that

� �� �� = ( ) = ( )
( ) ( )

H K τ K K τandN K N KΓ , Γ ,0 1n (6)

([8, Corollary 5.2] and [9, Theorem 3.4]). On the other hand, one can naturally define an equivalence
relation ∼Γ on the subset

� �( ) = { + + ∈ ( ) |  ( ) = }d ax bxy cy d N agcd , 1N K K
2 2 (7)

of �( )dK by

∼ ′ ⇔ ′ = ∈Q Q Q Q γfor some Γ.γ
Γ (8)
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Observe that Γ may not act on � ( )dN K . Here, by Qγ we mean the action of γ is an element of �( )SL2 .
For a subgroup P of ( )IK n with ( ) ⊆ ⊆ ( )P P PK K,1 n n , let KP be the abelian extension of K so that

( )/ ≃ ( / )I P K KGalK Pn . In this paper, motivated by (4) and (6) we shall present several pairs of P and Γ for
which
(i) ��= ( )K K τP KΓ, ,

(ii) � ( )/∼dN K Γ becomes a group isomorphic to ( / )K KGal P via the isomorphism

�

�

�

( )/∼ → ( / )

[ ] ↦ ( ( ) ↦ (− ) |  ∈ )

∼

d K K
Q h τ h ω h τ

Gal
¯ is finite at

N K P

K Q K

Γ

Γ,
(9)

(Propositions 4.2, 5.3 and Theorems 2.5, 5.4). This result would be a certain extension of Gauss’ original
work. We shall also develop an algorithm of finding distinct form classes in � ( )/∼dN K Γ and give a concrete
example (Proposition 6.2 and Example 6.3). To this end, we shall apply Shimura’s theory which links the
class field theory for imaginary quadratic fields and the theory of modular functions ([7, Chapter 6]). And,
we shall not only use but also improve the ideas of our previous work [10]. See Remark 5.5.

2 Extended form class groups as ideal class groups

Let K be an imaginary quadratic field of discriminant dK and τK be as in (5). And, let N be a positive integer,
�= N Kn and P be a subgroup of ( )IK n satisfying ( ) ⊆ ⊆ ( )P P PK K,1 n n . Each subgroup Γ of �( )SL2 defines an

equivalence relation ∼Γ on the set � ( )dN K described in (7) in the same manner as in (8). In this section, we
shall present a necessary and sufficient condition for Γ in such a way that

� ( )/∼ → ( )/

[ ] ↦ [[ ]]

ϕ d I P
Q ω

:
, 1

N K K

Q

Γ Γ n

becomes a well-defined bijection with ωQ as in (1). As mentioned in Section 1, the lattice � �[ ] = +ω ω, 1Q Q
is a fractional ideal of K.

The modular group �( )SL2 acts on � from the left by fractional linear transformations. For each
�∈ ( )Q dK , let IωQ denote the isotropy subgroup of the point ωQ in �( )SL2 . In particular, if we let Q0 be

the principal form in �( )dK ([3, p. 31]), then we have =ω τQ K0 and







=

{± } ≠ − −

{± ± } = −

{± ± ±( ) } = −

I
I d
I S d
I ST ST d

if 4, 3,
, if 4,
, , if 3,

ω

K

K

K

2

2

2
2

Q0
(10)

where 





=

−S 0 1
1 0 and 





=T 1 1
0 1 . Furthermore, we see that

�= {± } ( )I I w wif is not equivalent to under SLω Q Q2 2Q 0 (11)

([11, Proposition 1.5 (c)]). For any 





�= ∈ ( )γ a b
c d

SL2 , let

�( ) = + ( ∈ )j γ τ cτ d τ, .

One can readily check that if ′ =Q Qγ, then

= ( ) [ ] =

( )

[ ]
′

′

′
ω γ ω ω

j γ ω
ωand , 1 1

,
, 1 .Q Q Q

Q
Q

Lemma 2.1. Let �= + + ∈ ( )Q ax bxy cy dK
2 2 . Then �([ ]) = /

/
N ω a, 1 1K Q and

�[ ] ∈ ( ) ⇔ ∈ ( )ω I Q d, 1 .Q K N Kn

Proof. See [10, Lemma 2.3 (iii)]. □
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Lemma 2.2. Let �= + + ∈ ( )Q ax bxy cy dN K
2 2 .

(i) For �∈u v, not both zero, the fractional ideal �( + )uω vQ K is relatively prime to �= N Kn if and only
if ( ( − )) =N Q v ugcd , , 1.

(ii) If ∈ ( )/C P PK n , then

��= [( + ) ] ∈ ( ( − )) =C uω v for some u v not both zero such that N Q v u, gcd , , 1.Q K

Proof.
(i) See [10, Lemma 4.1]
(ii) Since ( )/P PK n is a finite group, one can take an integral ideal c in the class C ([6, Lemma 2.3 in Chapter

IV]). Furthermore, since � = [ ]aω , 1K Q , we may express c as

��= ( + ) ∈kaω v k vfor some , .Q Kc

If we set =u ka, then we attain (ii) by (i). □

Proposition 2.3. If the map ϕΓ is well defined, then it is surjective.

Proof. Let

� �( )/ → ( )/ ( )ρ I P I P: K K K K Kn

be the natural homomorphism. Since ( )/ ( )I PK Kn n is isomorphic to � �( )/ ( )I PK K K K ([6, Proposition 1.5 in
Chapter IV]), the homomorphism ρ is surjective. Here, we refer to the following commutative diagram.

Let

�… (∈ ( ))Q Q Q d, , , h K1 2

be reduced forms which represent all distinct classes in �( ) = ( )/∼C d dK K ([3, Theorem 2.8]). Take …γ γ, , ,1 2
�∈ ( )γ SLh 2 so that

′ = ( = … )Q Q i h1, 2, ,i i
γi

belongs to � ( )dN K ([3, Lemmas 2.3 and 2.25]). Then we get

� � �( )/ ( ) = {[ ] ( ) |  = … } [ ] ∈ ( )
′ ′

I P ω P i h ω I, 1 1, 2, , and , 1K K K K Q K K Q Ki i n

by the isomorphism given in (2) (when = )D dK and Lemma 2.1. Moreover, since ρ is a surjectionwith ( ) =ρKer
( )/P PK n , we obtain the decomposition

( )/ = ( ( )/ )⋅{[[ ]] ∈ ( )/  |  = … }
′

I P P P ω I P i h, 1 1, 2, , .K K Q Kin n n (12)

Now, let ∈ ( )/C I PK n . By the decomposition (12) and Lemma 2.2(ii) we may express C as













=

+

[ ]

′

′
C

uω v
ω1 , 1

Q
Q

i
i (13)

for some ∈ { … }i h1, 2, , and �∈u v, not both zero with ( ′( − )) =N Q v ugcd , , 1i . Take any 





�=

∗ ∗

∈ ( )σ u v˜ ˜ SL2

such that 



 �≡

∗ ∗

( ( ))σ u v NMmod 2 . We then derive that

Figure 1: A commutative diagram of ideal class groups.
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



































�=

+

+

 

+

+

≡ ( ) ( ) ⊆

=

+

[ ] ( )

=

( )

[ ]

= [[ ( ) ]]

∼

′

′

′

′

′

′

∗

′

′

′

C
uω v
uω v

C
uω v
uω v

P P

uω v
ω

j σ ω
ω

σ ω

˜ ˜
because

˜
1 mod and

1
˜ ˜

, 1 by 13

1
,

, 1

, 1 .

Q

Q
K

Q

Q
K

Q
Q

Q
Q

Q

,1
i

i

i

i

i
i

i
i

i

n n

Thus, if we put = ′

−

Q Qi
σ 1
, then we obtain

= [[ ]] = ([ ])C ω ϕ Q, 1 .Q Γ

This proves that ϕΓ is surjective. □

Proposition 2.4. The map ϕΓ is a well-defined injection if and only if Γ satisfies the following property:

�� �

�

∈ ( ) ∈ ( ) ∈ ( )

( ) ∈   ⇔   ∈ ⋅

−Let Q d and γ such that Q d
Then j γ ω P γ I

SL .
, , Γ .

N K
γ

N K

Q K ω

2

Q

1

(14)

Proof. Assume first thatϕΓ is a well-defined injection. Let �∈ ( )Q dN K and �∈ ( )γ SL2 such that �∈ ( )

−Q dγ
N K

1
.

If we set ′ =

−Q Qγ 1
, then we have = ′Q Q γ and so

[ ] = [ ( ) ] =

( )

[ ]
′

ω γ ω
j γ ω

ω, 1 , 1 1
,

, 1 .Q Q
Q

Q (15)

And, we deduce that

�

�

( ) ∈ ⇔ [[ ]] = [[ ]] ( )/ ( )

⇔ ([ ]) = ([ ′]) 

⇔ [ ] = [ ′] ( )/∼

⇔ ′ = ∈

⇔ = ∈ ′ =

⇔ ∈ ∈

⇔ ∈ ⋅

′

−

j γ ω P ω ω I P
ϕ Q ϕ Q ϕ
Q Q d ϕ

Q Q α
Q Q α Q Q
αγ I α
γ I

, , 1 , 1 in by Lemma 2.1 and 15
by the definition of

in since is inective
for some Γ
for some Γ because
for some Γ

Γ .

Q K Q Q K

N K
α

αγ γ

ω

ω

Γ Γ Γ

Γ Γ

Q

Q

1

n

Hence, Γ satisfies the property (14).
Conversely, assume that Γ satisfies the property (14). To show that ϕΓ is well defined, suppose that

� �[ ] = [ ′] ( )/∼ ′ ∈ ( )Q Q d Q Q din for some , .N K N KΓ

Then we attain = ′Q Q α for some ∈α Γ so that

[ ] = [ ( ) ] =

( )

[ ]
′

ω α ω
j α ω

ω, 1 , 1 1
,

, 1 .Q Q
Q

Q (16)

Now that �= ′ ∈ ( )

−Q Q dα
N K

1
and ∈ ⊆ ⋅α IΓ Γ ωQ, we achieve by the property (14) that �( ) ∈j α ω P, Q K . Thus,

we derive by Lemma 2.1 and (16) that
[[ ]] = [[ ]] ( )/

′
ω ω I P, 1 , 1 in ,Q Q K n

which claims that ϕΓ is well defined.
On the other hand, in order to show that ϕΓ is injective assume that

�([ ]) = ([ ′])   ′ ∈ ( )ϕ Q ϕ Q Q Q dfor some , .N KΓ Γ

Then we get
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�[ ] = [ ] ∈ ∈
′

∗ω λ ω λ K λ P, 1 , 1 for some such that ,Q Q K (17)

from which it follows that

�= ′ ∈ ( )Q Q γfor some SLγ
2 (18)

by the isomorphism in (2) when =D dK . We then derive by (17) and (18) that

[ ] = [ ( ) ] =

( )

[ ] =

( )

[ ]
′ ′

ω γ ω
j γ ω

ω λ
j γ ω

ω, 1 , 1 1
,

, 1
,

, 1Q Q
Q

Q
Q

Q

and so �/ ( ) ∈

∗λ j γ ω, Q K . Therefore, we attain

� �( ) = ∈j γ ω λ P, ,Q K K

and hence ∈ ⋅γ IΓ ωQ by the fact �= ′ ∈ ( )

−Q Q dγ
N K

1
and the property (14). If we write

= ∈ ∈γ αβ α β Ifor some Γ and ,ωQ

then we see by (18) that

= = = ′

− −Q Q Q Q .β γ αα1 1

This shows that

�[ ] = [ ′] ( )/∼Q Q din ,N K Γ

which proves the injectivity of ϕΓ. □

Theorem 2.5. The map ϕΓ is a well-defined bijection if and only if Γ satisfies the property (14) stated in
Proposition 2.4. In this case, we may regard the set � ( )/∼dN K Γ as a group isomorphic to the ideal class
group ( )/I PK n .

Proof. We achieve the first assertion by Propositions 2.3 and 2.4. Thus, in this case, one can give a group
structure on � ( )/∼dN K Γ through the bijection � ( )/∼ → ( )/ϕ d I P: N K KΓ Γ n . □

Remark 2.6. By using the isomorphism given in (2) (when =D dK) and Theorem 2.5, we obtain the com-
mutative diagram shown in Figure 2.

Therefore, the natural map � ( )/∼ → ( )d C dN K KΓ is indeed a surjective homomorphism, which shows that the
group structure of � ( )/∼d ΓN K is not far from that of the classical form class group ( )dC K .

3 Class field theory over imaginary quadratic fields

In this section, we shall briefly review the class field theory over imaginary quadratic fields established by
Shimura.

For an imaginary quadratic field K, let �K
fin be the group of finite ideals of K given by the restricted

product

Figure 2: The natural map between form class groups.
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















� �

�

∏

∏

=

= = ( ) ∈  |  ∈

∗′

∗ ∗

K

s s K s

where runs over all prime ideals of

for all but finitely many .

K K

K

fin p

p

p

p

p

p

p p p

As for the topology on �K
fin one can refer to [12, p. 78]. Then, the classical class field theory of K is explained

by the exact sequence

�→ → → ( / ) →

∗K K K1 Gal 1,K
fin ab

where ∗K maps into �K
fin through the diagonal embedding ↦ ( …)ν ν ν ν, , , ([12, Chapter IV]). Setting

��� �= ⊗ pfor each primeK p K p,

we have

� �∏≃

|

K p
p

K,
p

p

([13, Proposition 4 in Chapter II]). Furthermore, if we let ��= ⊗K Kˆ ˆ with � �= ∏
ˆ

p p, then

















�

� �

�

� �

∏

∏

= ( ⊗ )′

= = ( ) ∈ ( ⊗ )  |  ∈ ≃

∗
∗

∗ ∗

K K p

s s K s p

ˆ where runs over all rational primes

for all but finitely many

p
p

p
p

p p K p K,
fin

([3, Exercise 15.12] and [13, Chapter II]). Thus, we may use
∗K̂ instead of �K

fin when we develop the class field
theory of K.

Proposition 3.1. There is a one-to-one correspondence via the Artin map between closed subgroups J of
∗K̂ of

finite index containing ∗K and finite abelian extensions L of K such that

/ ≃ ( / )

∗K J L Kˆ Gal .

Proof. See [12, Chapter IV]. □

Let N be a positive integer, �= N Kn and = ( ) ∈

∗s s K̂p . For a prime p and a prime ideal p of �K lying

above p, let ( )n sp be a unique integer such that �∈

( ) ∗sp
n s

Kp p
p
. We then regard �s K as the fractional ideal

� �∏ ∏= ∈ ( )

|

( )s I .K
p p

n s
K Kp

p

p

By the approximation theorem ([6, Chapter IV]) one can take an element νs of ∗K such that

�∈ + |ν s N p N1 for all .s p K p, (19)

Proposition 3.2. We get a well-defined surjective homomorphism

�

→ ( )/ ( )

↦ [ ]

∗ϕ K I P
s ν s

: ˆ K K

s K

,1n nn

with kernel









� �∏ ∏= ( + ) ×

∗

| ∤

∗J K N1 .
p N

K p
p N

K p, ,n

Thus, Jn corresponds to the ray class field Kn.
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Proof. See [3, Exercises 15.17 and 15.18]. □

Let �N be the field of meromorphic modular functions of level N whose Fourier expansions with respect
to /q N1 have coefficients in the Nth cyclotomic field �( )ζN with =

/ζ eN
π N2 i . Then �N is a Galois extension of

�1 with � �� �( / ) ≃ ( / )/{± }N IGal GLN 1 2 2 ([7, Chapter 6]).

Proposition 3.3. There is a decomposition















� � � � � �( / )/{± } = ±  |  ∈ ( / ) /{± }⋅ ( / )/{± }

∗N I
d

d N I N IGL 1 0
0

SL .2 2 2 2 2

Let ( )h τ be an element of �N whose Fourier expansion is given by

�∑( ) = ( ∈ ( ))

≫−∞

/h τ c q c ζ .
n

n
n N

n N

(i) If 





=α
d

1 0
0 with � �∈ ( / )

∗d N , then

∑( ) =

≫−∞

/h τ c q ,α

n
n
σ n Nd

where σd is the automorphism of �( )ζN defined by =ζ ζN
σ

N
dd .

(ii) If � �∈ ( / )/{± }β N ISL2 2 , then

( ) = ( ( ))h τ h γ τ ,β

where γ is any element of �( )SL2 which maps to β through the reduction � � �( ) → ( / )/{± }N ISL SL2 2 2 .

Proof. See [7, Proposition 6.21]. □

If we let � � ��= ⊗
ˆ ˆ and � �= ⋃

=

∞

N
N

1
, then we attain the exact sequence

� � ��→ → ( ) → ( / ) →

∗1 GL ˆ Gal 12 (20)

([5, Chapter 7] or [7, Chapter 6]). Here, we note that













� �

� �

∏

∏

( ) = ( )

= = ( ) ∈ ( ) |  ∈ ( )

′ p

γ γ γ p

GL ˆ GL , where runs over all rational primes

GL GL for all but finitely many

p
p

p
p

p p p

2 2

2 2

([3, Exercise 15.4]) and �∗ maps into �( )GL ˆ2 through the diagonal embedding. More precisely, let �( ) ∈h τ N

and �∈ ( )γ GL ˆ2 , and then =γ αβ with �= ( ) ∈ ( )α α GL ˆp p 2 and �∈ ( )

+β GL2 ([3, Theorem 15.9 (i)] and [5,
Theorem 1 in Chapter 7]). By using the Chinese remainder theorem, one can find a unique matrix α̃ in

� �( / )NGL2 satisfying ≡ ( )α α N˜ modp for all primes p such that |p N . Letting � ��� ( ) → ( / )σ : GL ˆ Gal2 be
the third homomorphism in (20), we obtain

�
( ) = ( ( ))

( )h τ h β τσ γ α̃ (21)

([5, Theorem 2 in Chapter 7 and p. 79]).
For �∈ ∩ω K , we define a normalized embedding

�→ ( )

∗ +q K: GLω 2

by the relation













= ( ) ( ∈ )

∗ν ω q ν ω ν K1 1 .ω (22)
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By continuity, qω can be extended to an embedding

� ��( ⊗ ) → ( )

∗q K p: GL for each primeω p p p, 2

and hence to an embedding

�→ ( )

∗q K: ˆ GL ˆ .ω 2

Let �( ) = + +τ x b x cmin ,K K K
2 ( �∈ [ ]x ). Since � � ��⊗ = +K τp p K p for each prime p, one can deduce that

if = ( ) ∈

∗s s K̂p with = +s u τ vp p K p ( �∈u v,p p p), then









( ) = ( ) =

− −q s γ γ v b u c u
u vwith .τ p p

p K p K p

p p
K (23)

By utilizing the concept of canonical models of modular curves, Shimura achieved the following remark-
able results.

Proposition 3.4. (Shimura’s reciprocity law) Let ∈

∗s K̂ , �∈ ∩ω K and �∈h be finite atω. Then ( )h ω lies in
Kab and satisfies

�
( ) = ( ) |

[ ] ( ( ))

=

−h ω h τ ,s K σ q s
τ ω

, ω
1

where [⋅ ]K, is the Artin map for K.

Proof. See [7, Theorem 6.31(i)]. □

Proposition 3.5. Let S be an open subgroup of �( )GL ˆ2 containing �∗ such that �/

∗S is compact. Let

�

� � ��

� �

= ∩ ( )

= { ∈  |  = ∈ }

= { ∈  |  = ∈ ( ) ⊆ }

+

[ ] ∗

∗

S
h h h for all γ S

k ν ν ν for all s S

Γ GL ,
,

det ˆ ,

S

S
γ

S
s

2

ab ,

where �[⋅ ], is the Artin map for �. Then,
(i) �/

∗ΓS is a Fuchsian group of the first kind commensurable with �( )/{± }ISL2 2 .
(ii) ��S is the field of meromorphic modular functions for �/

∗ΓS .
(iii) kS is algebraically closed in �S.

(iv) If �∈ ∩ω K , then the subgroup ( )

∗ −K q Sω
1 of

∗K̂ corresponds to the subfield

� �( ) = ( ( ) |  ∈ )K ω K h ω h is finite at ωS S

of Kab in view of Proposition 3.1.

Proof. See [7, Propositions 6.27 and 6.33]. □

Remark 3.6. In particular, if �=kS , then �� �=S Γ ,S ([7, Exercise 6.26]).

4 Construction of class invariants

Let K be an imaginary quadratic field, N be a positive integer and �= N Kn . From now on, let T be a sub-
group of � �( / )

∗N and P be a subgroup of ( )PK n containing ( )PK,1 n given by

� �

�

= 〈  |  ∈ − { } ≡ ( ) ∈ 〉

= {  |  ∈ ≡ ( )   ∈ }

∗ ∗

P ν ν ν t t T
λ λ K λ t t T

0 such that mod for some
such that mod for some .

K K

K

n

n

Let ( )PCl denote the ideal class group
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( ) = ( )/P I PCl K n

and KP be its corresponding class field of K with ( ) ≃ ( / )P K KCl Gal P . Furthermore, let















� �= ∈ ( ) |  ≡

∗

( ( )) ∈

−

γ γ t
t

NM t TΓ SL
0

mod for some ,2
1

2

where −t 1 stands for an integer such that ≡ ( )

−tt N1 mod1 . In this section, for a given ��∈h Γ, we shall define
a class invariant ( )h C for each class ∈ ( )/C I PK n .

Lemma 4.1. The field KP corresponds to the subgroup









� �∏ ∏⋃ ( + ) ×

∈

∗

| ∤

∗K t N
t T p N

K p
p N

K p, ,

of
∗K̂ in view of Proposition 3.1.

Proof.We adopt the notations in Proposition 3.2. Given ∈t T , let −t 1 be an integer such that ≡ ( )

−tt N1 mod1 .

Let = ( ) = ( ) ∈

∗s s t s K̂p be given by





=

|

∤

−

s t p N
p N

if ,
1 if .p

1

Then one can take =ν ts so as to have (19), and hence

� �( ) = [ ] = [ ]ϕ s ts t .K Kn (24)

Since P contains ( )PK,1 n , we obtain ⊆K KP n and ( / ) ≃ / ( )K K P PGal P K,1 nn . Thus, we achieve by Proposition 3.2
that the field KP corresponds to































�

� �

� �

∏ ∏

∏ ∏

( / ( )) = ⋃ [ ] ( )

= ⋃ ( ) ( ) = ( )

= ⋃ ( + ) ×

= ⋃ ( + )×

− −

∈

∈

∈

∗

|

−

∤

∗

∈

∗

| ∤

∗

ϕ P P ϕ t P P

s t J J ϕ

K t N

K t N

by the definitions of and

by 24 and the fact Ker

. □

K
t T

K K

t T

t T p N
K p

p N
K p

t T p N
K p

p N
K p

1
,1

1
,1

1
, ,

, ,

n n
n n

n n n

Proposition 4.2. We have ��= ( )K K τP KΓ, .

Proof. Let �=

∗S W ( �⊆ ( )GL ˆ2 ) with























� �∏= ⋃ = ( ) ∈ ( ) |  ≡

∗ ∗

( ( ))

∈

W γ γ γ t NM pGL 0 mod for all .
t T

p
p

p p p2 2

Following the notations in Proposition 3.5 one can readily show that







� � � �
{ }

= ∈ ( ) |  ≡

∗ ∗

( ( )) ∈ ( ) =

∗

∗γ γ t NM t T WΓ SL 0 mod for some and det ˆ .S 2 2

It then follows that �/ ≃ /{± }

∗ IΓ ΓS 2 and �=kS , and hence

�� �=S Γ, (25)
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by Proposition 3.5(ii) and Remark 3.6. Furthermore, we deduce that



































�

�

�

�

� �

�

�

� �

� �∏ ∏

( ) = { = ( ) ∈  |  ( ) ∈ }

= { = ( ) ∈  |  ( ) ∈ } ( ) = ∈ ( )

= { = ( ) ∈  |  = +   ∈

=

− −

∈ ( )

= ⋃ { = ( ) ∈  |  = + ∈

∈ ( ) ≡

∗ ∗

( ( ))

= ⋃ { = ( ) ∈  |  = + ∈

( ) = ( + )( + ) ∈

≡ ( ) ≡ ( ) }

= ⋃ ( + ) ×

∗ − ∗

∗

∗

∗

∗

∗

∗

∗

∈

∗

∗

∈

∗

∗

∗

∈

∗

| ∤

∗

K q S K s s K q s W

K s s K q s W q r rI r

K s s K s u τ v u v

γ v b u c u
u v W p

K s s K s u τ v u v

γ γ t NM p

K s s K s u τ v u v

γ u τ v u τ v
u N v t N p

K t N

ˆ

ˆ since for every by 22
ˆ with , such that

for all by 23

ˆ with , such that

GL and 0 mod for all

ˆ with , such that

det ¯ ,
0 mod and mod for all

.

τ p τ

p τ τ

p p p K p p p p

p
p K p K p

p p

t T
p p p K p p p p

p p p p

t T
p p p K p p p p

p p K p p K p p

p p p p

t T p N
K p

p N
K p

1

2

2 2

, ,

K K

K K

Therefore, we conclude by Proposition 3.5(iv), (25) and Lemma 4.1 that

��= ( )K K τ . □P KΓ,

Let ∈ ( )C PCl . Take an integral ideal a in the class C, and let ξ1 and ξ2 be elements of ∗K so that

�= [ ] = ∈

− ξ ξ ξ
ξ
ξ

, and .1
1 2

1

2
a

Since � = [ ] ⊆

−τ , 1K K
1a and �∈ξ , one can express















 �= ∈ ( )

+

τ A
ξ
ξ

A M1 for some .K 1

2
2 (26)

We find by taking determinant of



















=

τ τ A
ξ ξ
ξ ξ

¯
1 1

¯
¯

K K 1 1

2 2

that





































= ( )

τ τ A
ξ ξ
ξ ξ

det ¯
1 1

det det
¯
¯ ,K K 1 1

2 2

and so obtain by squaring both sides

�= ( ) ( )
/

−d A ddet NK K K
2 2a

([15, Chapter III]). Hence, �( ) = ( )
/

Adet NK a which is relatively prime to N. For �∈ ( )α M2 with ( ( ))N αgcd , det
= 1, we shall denote by α̃ its reduction onto � �( / )/{± }N IGL2 2 ( � �≃ ( / )Gal N 1 ).

Definition 4.3. Let ��∈h Γ, ( �⊆ N). With the notations as above, we define

( ) = ( ) |
=

h C h τ A
τ ξ

˜

if it is finite.
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Proposition 4.4. If ( )h C is finite, then it depends only on the class C regardless of the choice of a, ξ1 and ξ2.

Proof. Let ′a be also an integral ideal in C. Take any ′ ′ ∈

∗ξ ξ K,1 2 so that

�′ = [ ′ ′] ′ =

′

′

∈

− ξ ξ ξ
ξ
ξ

, and .1
1 2

1

2
a (27)

Since � ⊆ ′

−

K
1a and �′ ∈ξ , we may write



















�= ′

′

′

  ′ ∈ ( )

+

τ A
ξ
ξ

A M1 for some .K 1

2
2 (28)

Now that [ ] = [ ′] = Ca a , we have

′ = ∈ ≡ ( ) ∈

∗ ∗λ λ K λ t t Twith such that mod for some .a a n

Then it follows that

′ = = [ ] =

− − − − −

−

−

λ λ ξ λ ξ
λ ξ
λ ξ

ξ, and .1 1 1 1
1

1
2

1
1

1
2

a a (29)

And, we obtain by (27) and (29) that

























�
′

′

= ∈ ( )

−

−

ξ
ξ

B
λ ξ
λ ξ

Bfor some SL1

2

1
1

1
2

2 (30)

and

′ = ( )ξ B ξ . (31)

On the other hand, consider t as an integer whose reduction modulo N belongs to T. Since �′ = ⊆λ, Ka a a ,
we see that ( − )λ t a is an integral ideal. Moreover, since ≡ ( )

∗λ t mod n and a is relatively prime to n, we get
�( − ) ⊆ =λ t N Ka n , and hence

�( − ) ⊆

−λ t N .K
1a

Thus, we attain by the facts � = [ ]τ , 1K K and = [ ]

− ξ ξ,1
1 2a that















 �

( − )

−

= ″ ″ ∈ ( )

+
λ t τ

λ t
A

Nξ
Nξ

A Mfor some .K 1

2
2 (32)

We then derive that









 





















































″ = − ( )

= ′

′

′

− ( ) ( )

= ′ − ( )

NA
ξ
ξ

λ τ t τ

λA
ξ
ξ

tA
ξ
ξ

A B
ξ
ξ

tA
ξ
ξ

1 1 by 32

by 26 and 28

by 30 .

K K1

2

1

2

1

2

1

2

1

2

This yields �′ − ≡ ( ( ))A B tA O NMmod 2 and so

�′ ≡ ( ( ))

−A tAB NMmod .1
2 (33)

Therefore, we establish by Proposition 3.3 that
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

































� �

( ) | = ( ) | ( )

 ⋅  ( / )/{± }

= ( ) |

= ( ) | ( )

= ( ) | ( )

= ( ) |

= ( ) | ( )

′

= ′ = ′

= ′

= ′

= ′

= ( ′)

=

−

−

−

−

−

−

−

h τ h τ
N I

h τ

h τ h t

h τ h t

h τ

h τ

by 33
where means the reduction onto GL

because has rational Fourier coefficients

since is modular for Γ

by 31 .

A
τ ξ

tAB
τ ξ

t
t

t
AB

τ ξ

t
t

AB
τ ξ

AB
τ ξ

A
τ B ξ

A
τ ξ

2 2

1 0
0

0
0

0
0

˜

˜

1

2 1
1

1
1

1

1

This proves that ( )h C depends only on the class C. □

Remark 4.5. If we let C0 be the identity class in ( )PCl , then we have ( ) = ( )h C h τK0 .

Proposition 4.6. Let ∈ ( )C PCl and ��∈h Γ, . If ( )h C is finite, then it belongs to KP and satisfies

( ) = ( ′) ′ ∈ ( )

( ′)h C h CC for all C Cl P ,σ C

where ( ) → ( / )σ P K K: Cl Gal P is the isomorphism induced from the Artin map.

Proof. Let a be an integral ideal in C and ∈

∗ξ ξ K,1 2 such that

�= [ ] = ∈

− ξ ξ ξ
ξ
ξ

, with .1
1 2

1

2
a (34)

Then we have















 �= ∈ ( )

+

τ A
ξ
ξ

A M1 for some .K 1

2
2 (35)

Furthermore, let ′a be an integral ideal in ′C and ″ ″ ∈

∗ξ ξ K,1 2 such that

�( ′) = [ ″ ″] ″ =

″

″

∈

− ξ ξ ξ
ξ
ξ

, with .1
1 2

1

2
aa (36)

Since ⊆ ( ′)

− −1 1a aa and �″ ∈ξ , we get























�=

″

″

∈ ( )

+

ξ
ξ

B
ξ
ξ

B Mfor some ,1

2

1

2
2 (37)

and so it follows from (35) that



















=

″

″

τ AB
ξ
ξ1 .K 1

2
(38)

Let = ( )s sp be an ideal in
∗K̂ satisfying







 �

= |

= ′ ∤

s p N
s p N

1 if ,
if ,

p

p K p p, a
(39)

where ��′ = ′ ⊗p pa a . Since ′a is relatively prime to �= N Kn , we obtain by (39) that

� = ′

− −s pfor all .p K p p
1

,
1a (40)
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Now, we see that





























( ) = ( ) = =

− − − −q s
ξ
ξ

ξ q s ξ ξ s ξ s
ξ
ξ1 1

,ξ p p ξ p p p p,
1 1

2
2 ,

1
2

1 1 1

2

which shows by (34) and (40) that








( )

−q s
ξ
ξξ p p,

1 1

2
is a �p-basis for ( ′)

−

p
1aa . Furthermore,









−B

ξ
ξ

1 1

2
is also a �p-

basis for ( ′)

−

p
1aa by (36) and (37). Thus, we achieve

�( ) = ∈ ( )

− −q s γ B γfor some GL .ξ p p p p p,
1 1

2 (41)

Letting �= ( ) ∈ ∏ ( )γ γ GLp p p2 we get

( ) =

− −q s γB .ξ
1 1 (42)

We then deduce that

�

�

�

�

( ) = ( ( ) | )

= ( ( ) ) |

= ( ( ) ) | ( )

= ( ) | ( ) ( )

≡ ( ( )) |

= ( ) | ( ) |

= = ( ) ( )

= ( ′) ( )

[ ]

=

[ ]

( ( ))

=

( )

=

= ( )

= ″

−

−

−

−

h C h τ

h τ

h τ

h τ G M
G γ NM p N

h τ p N
s γ B I

h CC

by Definition 4.3

by Proposition 3.4

by 42

by 21 , where is a matrix in such that
mod for all

by 37 and the fact that for each ,
1 and so owing to 39 and 41

by Definition 4.3 and 38 .

s K A
τ ξ

s K

A σ q s
τ ξ

A σ γB
τ ξ

AG
τ B ξ

p p

AB
τ ξ

p p

, ˜ ,

˜

˜

˜ ˜
2

2

˜ ˜

1
2

ξ
1

1

1

In particular, if we consider the case where ′ =

−C C 1, then we derive that

( ) = ( ′) = ( ) = ( )

[ ] [ ] [ ]

− − −h C h CC h C h τ .s K s K
K

s K,
0

, ,1 1 1

This implies that ( )h C belongs to KP by Proposition 4.2.
For each ∤p N and p lying above p, we have by (39) that = ′sord ordp ap p , and hence

[ ]| = ( ′)s K σ C, .KP

Therefore, we conclude

( ) = ( ′)

( ′)h C h CC . □σ C

5 Extended form class groups as Galois groups

With P, KP and Γ as in Section 4, we shall prove our main theorem which asserts that � ( )/∼dN K Γ can be
regarded as a group isomorphic to ( / )K KGal P through the isomorphism described in (9).

Lemma 5.1. If �∈ ( )Q dK and ∈γ IωQ, then �( ) ∈

∗j γ ω, Q K .

Proof. We obtain from =Q Qγ that

[ ] = [ ( ) ] =

( )

[ ]ω γ ω
j γ ω

ω, 1 , 1 1
,

, 1 .Q Q
Q

Q

This claims that ( )j γ ω, Q is a unit in �K . □

1928  Ho Yun Jung et al.



Remark 5.2. This lemma can also be justified by using (10), (11) and the property

� �( ) = ( ( )) ( ) ( ∈ ( ) ∈ )j αβ τ j α β τ j β τ α β τ, , , , SL ,2 (43)

([7, (1.2.4)]).

Proposition 5.3. For given P, the group Γ satisfies the property (14).

Proof. Let �= + + ∈ ( )Q ax bxy cy dN K
2 2 and �∈ ( )γ SL2 such that �∈ ( )

−Q dγ
N K

1
.

Assume that �( ) ∈j γ ω P, Q K . Then we have

� � �( ) = ∈ − { }j γ ω ν
ν

ν ν, for some , 0Q K K K
1

2
1 2

satisfying

≡ ≡ ( ) ∈ν t ν t t t T, mod with ,1 1 2 2 1 2n (44)

and hence

�( ) = ∈

∗ζj γ ω ν
ν

ζ, for some .Q K
1

2
(45)

For convenience, let = ( )j j γ ω, Q and ′ =

−Q Qγ 1
. Then we deduce

( ) =
′

γ ω ωQ Q (46)

and

[ ] = [ ( ) ] = [ ] = [ ]
′ ′

ω j γ ω j ω ζj ω, 1 , 1 , 1 , 1 .Q Q Q Q

So there is 





�= ∈ ( )α r s
u v GL2 , which yields

















=

′
ζ jω

ζ j
α

ω
1

.Q Q (47)

Here, since �/ = ∈
′ ′

ζ jω ζ j ω ω,Q Q Q , we get �∈ ( )α SL2 and

= ( )
′

ω α ω .Q Q (48)
Thus, we attain ( ) = = ( )

′
γ ω ω α ωQ Q Q by (46) and (48), from which we get = ( )( )

−ω α γ ωQ Q
1 and so

∈ ⋅γ α I .ωQ (49)
Now that �∈aj K, we see from (44), (45) and (47) that

( ) ≡ ≡ ( )

( ) ≡ ( + ) ≡ ( ) + ( )

aν ζ j aν at
aν ζ j aν uω v ut aω at v

mod , and
mod .Q Q

2 1 1

2 2 2 2

n

n

It then follows that

≡ ( ) + ( )at ut aω at v modQ1 2 2 n

and hence

( ) + ( − ) ≡ ( )ut aω a t v t 0 mod .Q2 2 1 n

Since �= = [ ]N N aω , 1K Qn , we have

≡ ( ) ( − ) ≡ ( )ut N a t v t N0 mod and 0 mod .2 2 1

Moreover, since ( ) = ( ) = ( ) =N t N t N agcd , gcd , gcd , 11 2 , we achieve that

≡ ( ) ≡ ( )

−u N v t t N0 mod and mod ,1 2
1

where −t2
1 is an integer satisfying ≡ ( )

−t t N1 mod2 2
1 . This, together with the facts ( ) =αdet 1 and T is a sub-

group of � �( / )

∗N , implies 





= ∈α r s
u v Γ. Therefore, we conclude ∈ ⋅γ IΓ ωQ by (49), as desired.
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Conversely, assume that ∈ ⋅γ IΓ ωQ, and so







= = ∈ ∈γ αβ α r s
u v β Ifor some Γ and .ωQ

Here we observe that

≡ ( ) ≡ ( ) ∈u N v t N t T0 mod and mod for some . (50)
We then derive that

�

( ) = ( )

= ( ( )) ( ) ( )

= ( ) ∈ ∈

∗

j γ ω j αβ ω
j α β ω j β ω
j α ω ζ ζ β I

, ,
, , by 43
, for some by the fact and Lemma 5.1.

Q Q

Q Q

Q K wQ

Thus, we attain

( ) − = ( ) − = ( + ) − = { ( )}

−ζ j γ ω v j α ω v uω v v
a

u aω, , 1 .Q Q Q Q
1

And, it follows from the fact ( ) =N agcd , 1 and (50) that
( ) ≡ ≡ ( )

− ∗ ∗ζ j γ ω v t, mod .Q
1 n

This shows that �( ) ∈

−ζ j γ ω P, Q K
1 , and hence �( ) ∈j γ ω P, Q K .

Therefore, the group Γ satisfies the property (14) for P. □

Theorem 5.4. We have an isomorphism

�

�

�

( )/∼ → ( / )

[ ] ↦ ( ( ) ↦ (− ) |  ∈   )

d Gal K K
Q h τ h ω h is finite at τ¯ .

N K P

K Q K

Γ

Γ,
(51)

Proof. By Theorem 2.5 and Proposition 5.3, one may consider � ( )/∼dN K Γ as a group isomorphic to ( )/I PK n

via the isomorphism ϕΓ in Section 2. Let ∈ ( )C PCl and so

�= ([ ]) = [[ ]] ∈ ( )/∼C ϕ Q ω Q d, 1 for some .Q N KΓ Γ

Note that C contains an integral ideal = [ ]

( )a ω , 1φ N
Qa , where φ is the Euler totient function. We establish by

Lemma 2.2 and definition (1) that

�

=

( )

= [− ]

−

/

( )−N a
ω1 ¯ 1 ¯ , 1

K
φ N Q

1
1a

a
a

and
























=

− ( + )/ − /

/

( ) ( )−

( )−

( )−

( )−

τ a a b b
a

ω a
a1

2
0

¯
1

,K φ N φ N
K

φ N
Q

φ N

φ N

1

1

1

1

where �( ) = + +τ x b x cmin ,K K K
2 ( �∈ [ ]x ). We then derive by Proposition 3.3 that if ��∈h Γ, is finite at τK,

then






























































� �

( ) = ( ) |

 ⋅  ( / )/{± }

= ( ) | ≡ ( )

≡ ( )

= ( ) |

= ( ) | ( )

= ( )| ( )

= (− )

− ( + )/

=−

− ( + )/

=−

( )

− −

− ( + )/

=−

− ( + )/

=−

=−

( ) ( )−

( )−

−

−

−

−

−

h C h τ
N I

h τ a N
a aa N

h τ

h τ h τ
h τ h τ
h ω

by Definition 4.3
where means the reduction onto GL

since 1 mod
where is an integer such that 1 mod

because has rational Fourier coefficients
since is modular for Γ

¯ .

a a b b
a τ ω

a b b
a τ ω

φ N

a
a b b

τ ω

a b b

τ ω

τ ω

Q

2
0 ¯

2 2

1 2
0 ¯

1 1

1 0
0

1 2
0 1 ¯

1 2
0 1 ¯

¯

φ N φ N
K

φ N
Q

K

Q

K

Q

K

Q

Q

1

1

1

1

1
1

1
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Now, the isomorphism ϕΓ followed by the isomorphism

��

( ) → ( / )

↦ ( ( ) = ( ) ↦ ( ) = ( ) = (− ) |  ∈ )

( )

P K K
C h τ h C h C h C h ω h τ

Cl Gal
¯ is finite at ,

P

K
σ C

Q K0 0 Γ,

which is induced from Propositions 4.2, 4.6 and Remark 4.5, yields the isomorphism stated in (51), as
desired. □

Remark 5.5. In [10] Eum, Koo and Shin considered only the case where � �≠ ( − ) ( − )K 1 , 3 , = ( )P PK,1 n

and = ( )NΓ Γ1 . As for the group operation of � ( )/∼
( )

dN K NΓ1 one can refer to [10, Remark 2.10]. They estab-
lished an isomorphism





















�

�

( )/∼ → ( / )

[ ] = [ + + ] ↦ ( ) ↦ ( ) |  |  ( ) ∈

( )

( − )/

=

d K K

Q ax bxy cy h τ h τ h τ τ

Gal

is finite at .

N K N

K

a b b

τ ω N K

Γ

2 2
2

0 1
K

Q

1 n

(52)

The difference between the isomorphisms described in (51) and (52) arises from Definition 4.3 of ( )h C .
The invariant ( )h Cn appeared in [10, Definition 3.3] coincides with ( )

−h C 1 .

6 Finding representatives of extended form classes

In this last section, by improving the proof of Proposition 2.3 further, we shall explain how to find all
quadratic forms which represent distinct classes in � ( )/∼dN K Γ.

For a given �= + + ∈ ( )Q ax bxy cy dN K
2 2 we define an equivalence relation ≡Q on �( )M1,2 as follows:

Let �[ ] [ ] ∈ ( )r s u v M, 1,2 . Then, [ ] ≡ [ ]r s u vQ if and only if

�[ ] ≡ ± [ ] ( ( ))   ∈ ∈r s t u v γ NM t T γmod for some and Γ ,Q1,2

where



































































=

{± } ≠ − −

± ±

− / − ( + )/ )

/

= −

± ±

−( + )/ − ( + )/

( − )/

±

( − )/ ( + )/

− −( + )/

= −

−

− −

I d

I b a b
a b

d

I b a b
a b

b a b
a b

d

Γ

if 4, 3,

, 2 4 4
2

if 4,

, 1 2 3 4
1 2

, 1 2 3 4
1 2

if 3.

Q

K

K

K

2

2
1 2

2
1 2 1 2

Here, −a 1 is an integer satisfying ≡ ( )

−aa N1 mod1 .

Lemma 6.1. Let �= + + ∈ ( )Q ax bxy cy dN K
2 2 and �[ ] [ ] ∈ ( )r s u v M, 1,2 such that ( ( − )) =N Q s rgcd , ,

( ( − )) =N Q v ugcd , , 1. Then,

� �[( + ) ] = [( + ) ]   ( )/ ⇔ [ ] ≡ [ ]rω s uω v in P P r s u v .Q K Q K K Qn

Proof. Note that by Lemma 2.2(i) the fractional ideals �( + )rω sQ K and �( + )uω vQ K belong to ( )PK n .
Furthermore, we know that









� �

�

�

� =

{± } ≠ ( − ) ( − )

{± ± } = ( − )

{± ± ± } = ( − )

∗

K
τ K
τ τ K

1 if 1 , 3 ,
1, if 1 ,
1, , if 3

K K

K K
2

(53)

([3, Exercise 5.9]) and so
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







�

� �

�

�

�= {( ) ∈  |  + ∈ } =

{±( )} ≠ ( − ) ( − )

{±( ) ±( )} = ( − )

{±( ) ±( ) ±( )} = ( − )

∗U m n mτ n
K
K
K

,
0, 1 if 1 , 3 ,
0, 1 , 1, 0 if 1 ,
0, 1 , 1, 0 , 1, 1 if 3 .

K K K
2 (54)

Then we achieve that





















































































�

� �

�

�

� �

[( + ) ] = [( + ) ] ( )/

⇔

+

+

∈

⇔

+

+

≡ ( ) ∈ ∈

⇔ ( + ) ≡ ( + )( ) ( + ) ∈

⇔ +

−

+ ≡ ( + ) +

−

+ ( )  ( ) ∈

⇔ +

( − )

+ ≡ (− + + ) + (− + )( )

=

( − )

+ ( ) = + +

⇔ ≡ −

+

+ + ( )

≡

−

− + −

−

+ ( ) = [ ]

⇔ [ ] ≡ [ ] ( ) ≡

∗ ∗

−

rω s uω v P P
rω s
uω v

P

rω s
uω v

ζt ζ t T

a rω s ζta uω v a uw v aω

r τ b b as mτ n t u τ b b av m n U

rτ r b b as t mub mk nu τ t muc nk

k u b b av τ x b x c

r t b b m n u tmav N

s ta b b c mu t b b m n v N N τ

r s u v

in

mod for some and

mod since is relatively prime to and

2 2
mod for some ,

2
mod

with
2

, where min ,

2
mod and

4 2
mod by the fact , 1

by 54 and the definition of .

Q K Q K K

Q

Q
K

Q

Q
K

Q Q Q K Q K

K
K

K K
K

K

K
K

K K K

K
K K K

K

K
K

K
K

Q Q

2

1
2 2

n

n

n n

n

n

n

□

For each �∈ ( )Q dN K , let

�= {[ ] ∈ ( ) |  ( ( − )) = }M u v M N Q v ugcd , , 1 .Q 1,2

Proposition 6.2. One can explicitly find quadratic forms representing all distinct classes in � ( )/∼dN K Γ.

Proof. We adopt the idea in the proof of Proposition 2.3. Let ′ ′ … ′Q Q Q, , , h1 2 be quadratic forms in � ( )dN K
which represent all distinct classes in �( ) = ( )/∼C d dK K . Then we get by Lemma 6.1 that for each = …i h1, 2, ,





























� �
{ }

( )/ = [( + ) ] | [ ] ∈ /≡ =

+

 | [ ] ∈ /≡
′ ′ ′

′

′ ′
P P uω v u v M

uω v
u v M1 .K Q K Q Q

Q
K Q Qi i i

i
i in

Thus, we obtain by (12) that




















































( )/ = ( ( )/ )⋅{[[ ]] ∈ ( )/  |  = … }

=

+

[ ] |  = … [ ] ∈ /≡

=

∗ ∗

( ) |  = … [ ] ∈ /≡

′

′

′ ′ ′

′ ′ ′

I P P P ω I P i h

uω v
ω i h u v M

u v ω i h u v M

, 1 1, 2, ,

1 , 1 1, 2, , and

˜ ˜ , 1 1, 2, , and ,

K K Q K

Q
Q Q Q

Q Q Q

i

i
i i i

i i i

n n n

where 





∗ ∗

u v˜ ˜ is a matrix in �( )SL2 such that 









 �

∗ ∗

≡

∗ ∗

( ( ))u v u v NM˜ ˜ mod 2 . Therefore, we conclude





























� ( )/∼ =

′

 | = … [ ] ∈ /≡

∗ ∗

′ ′

−

d Q i h u v M1, 2, , and .N K i
u v

Q QΓ
˜ ˜

i i

1

□
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Example 6.3. Let �= ( − )K 5 , =N 12 and � �= ( / )

∗T N . Then we get �= ( )P PK, n and �=K HP , where
�= N Kn and � is the order of conductor N in K. There are two reduced forms of discriminant = −d 20K ,

namely,

= + = + +Q x y Q x xy y5 and 2 2 3 .1
2 2

2
2 2

Set







′ = ′ = = + +Q Q Q Q x xy yand 7 22 18 ,1 1 2 2

1 1
1 2 2 2

which belong to � ( )dN K . We then see that

/≡ = {[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]}
′ ′

M 0 1 , 1 0 , 1 6 , 2 3 , 3 2 , 3 4 , 4 3 , 6 1Q Q1 1

with the corresponding matrices










































− − − − − −1 0
0 1 , 0 1

1 0 , 0 1
1 6 , 1 1

2 3 , 1 1
3 2 , 1 1

3 4 , 1 1
4 3 , 1 0

6 1

and

/≡ = {[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]}
′ ′

M 0 1 , 1 5 , 1 11 , 2 1 , 3 1 , 3 7 , 4 5 , 6 1Q Q2 2

with the corresponding matrices










































− − − −1 0
0 1 , 0 1

1 5 , 0 1
1 11 , 1 1

2 1 , 1 0
3 1 , 1 2

3 7 , 1 1
4 5 , 1 0

6 1 .

Hence, there are 16 quadratic forms

+ + + + − +

+ + − + + + − +

+ + + + + + + +

− + − + − + − +

x y x y x xy y x xy y
x xy y x xy y x xy y x xy y

x xy y x xy y x xy y x xy y
x xy y x xy y x xy y x xy y

5 , 5 , 41 12 , 29 26 6 ,
49 34 6 , 61 38 6 , 89 46 6 , 181 60 5 ,
7 22 18 , 83 48 7 , 623 132 7 , 35 20 3 ,
103 86 18 , 43 18 2 , 23 16 3 , 523 194 18 ,

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

which represent all distinct classes in � �( )/∼ = (− )/∼
( )

d 20N K Γ 12 Γ 120 .
On the other hand, for � �[ ] ∈ ( ) ( )r r M M\1 2 1,2 1,2 the Siegel function ( )

[ ]

g τr r1 2 is given by the infinite product

�∏( ) = − ( − ) ( − )( − ) ( ∈ )
[ ]

( − ) ( / )( − + / )

=

∞

+ − −g τ e q q e q e q e τ1 1 1 ,r r
π r r r r r π r

n

n r π r n r π ri 1 1 2 1 6 2 i

1

2 i 2 i
1 2

2 1 1
2

1 1 2 1 2 1 2

which generalizes the Dedekind eta-function ∏ ( − )

/

=

∞q q1n
n1 24

1 . Then the function









( ) =

( )

( )

[ / ]

g τ η τ
η τ

12 6
121 2 0

12
24

belongs to ��
( )Γ 12 ,0 ([14, Theorem 1.64] or [16]), and the Galois conjugates of ( )

[ / ]

g τ12 K1 2 0
12 over K are

= ( − ) = ( − / )

= ( ( + − )/ ) = ( (− + − )/ )

= ( ( + − )/ ) = ( (− + − )/ )

= ( ( + − )/ ) = ( (− + − )/ )

= ( ( + − )/ ) = ( ( + − )/ )

= ( ( + − )/ ) = ( ( + − )/ )

= ( (− + − )/ ) = ( (− + − )/ )

= ( (− + − )/ ) = ( (− + − )/ )

[ / ] [ / ]

[ / ] [ / ]

[ / ] [ / ]

[ / ] [ / ]

[ / ] [ / ]

[ / ] [ / ]

[ / ] [ / ]

[ / ] [ / ]

g g g g

g g g g

g g g g

g g g g

g g g g

g g g g

g g g g

g g g g

12 5 , 12 5 5 ,

12 6 5 41 , 12 13 5 29 ,

12 17 5 49 , 12 19 5 61 ,

12 23 5 89 , 12 30 5 181 ,

12 11 5 7 , 12 24 5 83 ,

12 66 5 623 , 12 10 5 35 ,

12 43 5 103 , 12 9 5 43 ,

12 8 5 23 , 12 97 5 523

1 1 2 0
12

2 1 2 0
12

3 1 2 0
12

4 1 2 0
12

5 1 2 0
12

6 1 2 0
12

7 1 2 0
12

8 1 2 0
12

9 1 2 0
12

10 1 2 0
12

11 1 2 0
12

12 1 2 0
12

13 1 2 0
12

14 1 2 0
12

15 1 2 0
12

16 1 2 0
12

possibly with some multiplicity. Now, we evaluate
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∏ ( − ) = + − + −

+ + −

+ + −

+ − +

+ − +

=

x g x x x x x

x x x
x x x

x x x
x x

1251968 14929949056 1684515904384 61912544374756

362333829428160 32778846351721632 845856631699319872
4605865492693542918 91164259067285621248 124917935291699694528
180920285564131280640 3000295144057714916 8871452719720384
458008762175904 1597177179712 1

i
i

1

16
16 15 14 13 12

11 10 9

8 7 6

5 4 3

2

with nonzero discriminant. Thus, ( )

[ / ]

g τ12 K1 2 0
12 generates �=K HP over K.

Remark 6.4. In [17], Schertz deals with various constructive problems on the theory of complex multi-
plication in terms of the Dedekind eta-function and Siegel function. See also [16] and [18].

Acknowledgment: Ho Yun Jung was supported by the research fund of Dankook University in 2020 and by
the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.
2020R1F1A1A01073055). Dong Hwa Shin was supported by the Hankuk University of Foreign Studies
Research Fund of 2020 and by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2020R1F1A1A01048633).

References

[1] Carl Friedrich Gauss, Disquisitiones Arithmeticae, Leipzig, 1801.
[2] Peter Gustav Lejeune Dirichlet, Zahlentheorie, 4th edn, Vieweg, Braunschweig, 1894.
[3] David Archibald Cox, Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex Multiplication, 2nd edn, Pure

and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013.
[4] Manjul Bhargava, Higher composition laws I: A new view on Gauss composition, and quadratic generalizations, Ann. of

Math. (2) 159 (2004), no. 1, 217–250.
[5] Serge Lang, Elliptic Functions, With an appendix by J. Tate, 2nd edn, Grad. Texts in Math. 112, Springer-Verlag,

New York, 1987.
[6] Gerald J. Janusz, Algebraic Number Fields, 2nd edn, Grad. Studies in Math. 7, Amer. Math. Soc., Providence, R. I., 1996.
[7] Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University

Press, Princeton, NJ, 1971.
[8] Bumkyu Cho and Ja Kyung Koo, Construction of class fields over imaginary quadratic fields and applications, Q. J. Math. 61

(2010), no. 2, 199–216.
[9] Ja Kyung Koo and Dong Hwa Shin, Singular values of principal moduli, J. Number Theory 133 (2013), no. 2, 475–483.
[10] Ick Sun Eum, Ja Kyung Koo and Dong Hwa Shin, Binary quadratic forms and ray class groups, Proc. Roy. Soc. Edinburgh

Sect. A 150 (2020), no. 2, 695–720.
[11] Joseph Hillel Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math. 151, Springer-Verlag,

New York, 1994.
[12] Jürgen Neukirch, Class Field Theory, Grundlehren der MathematischenWissenschaften 280, Springer-Verlag, Berlin, 1986.
[13] Jean-Pierre Serre, Local Fields, Springer-Verlag, New York, 1979.
[14] Ken Ono, The web of modularity: arithmetic of the coefficients of modular forms and q-series, CBMS Regional Conference

Series in Mathematics 102, AMS/CBMS, Providence, RI, 2004.
[15] Serge Lang, Algebraic Number Theory, 2nd edn, Grad. Texts in Math. 110, Springer-Verlag, New York, 1994.
[16] Daniel Kubert and Serge Lang, Modular Units, Grundlehren der mathematischen Wissenschaften 244, Springer-Verlag,

New York-Berlin, 1981.
[17] Reinhard Schertz, Complex Multiplication, New Mathematical Monographs 15, Cambridge University Press,

Cambridge, 2010.
[18] Kanakanahalli Ramachandra, Some applications of Kronecker’s limit formula, Ann. of Math. (2) 80 (1964), no. 1, 104–148.

1934  Ho Yun Jung et al.


	1 Introduction
	2 Extended form class groups as ideal class groups
	3 Class field theory over imaginary quadratic fields
	4 Construction of class invariants
	5 Extended form class groups as Galois groups
	6 Finding representatives of extended form classes
	Acknowledgment
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU <FEFF0056006500720073006900740061002000410064006f00620065002000440069007300740069006c006c00650072002000530065007400740069006e0067007300200066006f0072002000410064006f006200650020004100630072006f006200610074002000760036>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


