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Abstract: Let K be an imaginary quadratic field of discriminant dg with ring of integers Ok, and let 7 be an
element of the complex upper half plane so that Ox = [, 1]. For a positive integer N, let Qy(dx) be the set of
primitive positive definite binary quadratic forms of discriminant dy with leading coefficients relatively
prime to N. Then, with any congruence subgroup I' of SL,(Z) one can define an equivalence relation ~r on
Qn(dk). Let 7r,¢ denote the field of meromorphic modular functions for I with rational Fourier coefficients.
We show that the set of equivalence classes Qy(dx)/~r can be equipped with a group structure isomorphic
to Gal(K7,q(1x)/K) for some I', which generalizes the classical theory of form class groups.

Keywords: binary quadratic forms, class field theory, complex multiplication, modular functions

MSC 2020: 11E16, 11F03, 11G15, 11R37

1 Introduction

For a negative integer D such that D = 0 or 1(mod4), let Q(D) be the set of primitive positive definite binary
quadratic forms Q(x, y) = ax? + bxy + cy? € Z|[x, y] of discriminant b?> — 4ac = D. The modular group SL(Z)
(or PSLy(2Z)) acts on the set Q(D) from the right and defines the proper equivalence ~ as

Q~Q Q== Q(yDD for some y € SLy(Z).

In his celebrated work Disquisitiones Arithmeticae of 1801 [1], Gauss introduced the beautiful law of com-
position of integral binary quadratic forms. It seems that he first understood the set of equivalence classes
C(D) = Q(D)/~ as a group, so called the form class group. However, his original proof of the group structure
is long and complicated to work in practice. Several decades later, Dirichlet [2] presented a different
approach to the study of composition and genus theory, which seemed to be definitely influenced by
Legendre (see [3, Section 3]). On the other hand, in 2004 Bhargava [4] derived a wonderful general law
of composition on 2 x 2 x 2 cubes of integers, from which he was able to obtain Gauss’ composition law on
binary quadratic forms as a simple special case. Now, in this paper we will make use of Dirichlet’s composi-
tion law to proceed the arguments.

Given the order O of discriminant D in the imaginary quadratic field K = Q(+/D), let I(O) be the group
of proper fractional O-ideals and P(O) be its subgroup of nonzero principal O-ideals. When Q = ax? +
bxy + cy? is an element of Q(D), let wy be the zero of the quadratic polynomial Q(x,1) in H = {7 € C |
Im(7) > 0}, namely,
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-b+ D
wg=——.
2a
It is well known that [wq, 1] = Zwg + Z is a proper fractional O-ideal and the form class group C(D) under
the Dirichlet composition is isomorphic to the O-ideal class group C(O) = I(O)/P(O) through the isomorphism

C(D) - C(0), Q] = [[wo, 1]1. @)

@

On the other hand, if we let Hy be the ring class field of order O and j be the elliptic modular function on
lattices in C, then we attain the isomorphism

C(0) - Gal(Hp/K), [a] = (i(O) — j(@)) 3

by the theory of complex multiplication ([3, Theorem 11.1 and Corollary 11.37] or [5, Theorem 5 in Chapter
10]). Thus, composing two isomorphisms given in (2) and (3) yields the isomorphism

C(D) — Gal(Ho/K), [Q] = (j(O) + j([~dg, 1]). (4)

Now, let K be an imaginary quadratic field of discriminant dx and Ok be its ring of integers. If we set

{\/aTK /2 if dg =0 (mod 4),
T = ®)
(-1 + Jdx)/2 if dx =1 (mod 4),

then we get Og = [1x, 1]. For a positive integer N and n = NOk, let Ix(n) be the group of fractional ideals of K
relatively prime to n and Pg(n) be its subgroup of principal fractional ideals. Furthermore, let

Px,z(n) = {vOg | v € K* such that v = m (mod n) for some integer m prime to N},
PK,l(n) ={vOk |v € K* such thatv =* 1 (mod n},

which are subgroups of Pg(n). As for the multiplicative congruence =* modulo n, we refer to [6, Section IV.1].
Then the ring class field Hy of order O with conductor N in K and the ray class field K, modulo n are defined
to be the unique abelian extensions of K for which the Artin map modulo n induces the isomorphisms

Ix(n)/Pg,z(n) = Gal(Ho/K) and Ix(n)/Pk,(n) = Gal(K./K),

respectively ([3, Sections 8 and 9] and [6, Chapter V]). And, for a congruence subgroup I' of level N in
SLy(Z), let ¥ be the field of meromorphic modular functions for I' whose Fourier expansions with respect
to g/N = e2™7/N have rational coefficients and let

KFr,o(1x) = K(h(tx) | h € Fr,q is finite at 1%).

Then it is a subfield of the maximal abelian extension K2 of K ([7, Theorem 6.31(i)]). In particular, for the
congruence subgroups

L) = {y € SL2) ly=| o | |mod NMZ(Z»},
L(N) = {y €SLy(Z) |y = [(1) ﬂ(mod NMz(Z))},

we know that
Hp = KFrw),o(tk) and K, = KFrmw),o(m) (6)

([8, Corollary 5.2] and [9, Theorem 3.4]). On the other hand, one can naturally define an equivalence
relation ~r on the subset

Qn(dx) = {ax? + bxy + cy? € Q(dx) | gcd(N, a) = 1} @)
of Q(dy) by
Q~rQ & Q =Qforsomey¢T. (8)
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Observe that I' may not act on Qy(dy). Here, by Q¥ we mean the action of y is an element of SL,(Z).

For a subgroup P of Ig(n) with Pg,(n) € P C Px(n), let Kp be the abelian extension of K so that
Ix(n)/P =~ Gal(Kp/K). In this paper, motivated by (4) and (6) we shall present several pairs of P and I for
which
(i) Kp = K¥Frt,0(1%),

(i) Qn(dg)/~r becomes a group isomorphic to Gal(Kp/K) via the isomorphism

Qn(dx)/~r — Gal(Kp/K)

[Q] = (h(tk) = h(-@q) | h € F1,q is finite at 1x) ®)

(Propositions 4.2, 5.3 and Theorems 2.5, 5.4). This result would be a certain extension of Gauss’ original
work. We shall also develop an algorithm of finding distinct form classes in Qy(dk)/~r and give a concrete
example (Proposition 6.2 and Example 6.3). To this end, we shall apply Shimura’s theory which links the
class field theory for imaginary quadratic fields and the theory of modular functions ([7, Chapter 6]). And,
we shall not only use but also improve the ideas of our previous work [10]. See Remark 5.5.

2 Extended form class groups as ideal class groups

Let K be an imaginary quadratic field of discriminant dx and i be as in (5). And, let N be a positive integer,
n = NOg and P be a subgroup of Ix(n) satisfying Pg (n) € P € Px(n). Each subgroup I' of SL,(Z) defines an
equivalence relation ~r on the set Qy(dx) described in (7) in the same manner as in (8). In this section, we
shall present a necessary and sufficient condition for I' in such a way that

¢r : Quldg)/~r — Ix(n)/P
[Q] = [[wg, 1]

becomes a well-defined bijection with wg as in (1). As mentioned in Section 1, the lattice [wg, 1] = Zwq + Z
is a fractional ideal of K.

The modular group SL,(Z) acts on H from the left by fractional linear transformations. For each
Q € Q(dx), let 1, denote the isotropy subgroup of the point wq in SL,(Z). In particular, if we let Qo be
the principal form in Q(dx) ([3, p. 31]), then we have wq, = ¢ and

{+h} if dx + -4, -3,
Ion = {iIZs iS} if dK = _4’ (10)
{xL, ST, +(ST)?} if dx = -3,

where S = [(1) _01} and T = [(1) ﬂ Furthermore, we see that
I, = {£h} if wy is not equivalent to wg, under SLx(Z) (11)

ab

([11, Proposition 1.5 (c)]). For any y = L d

} € SLy(Z), let

jly,t)=ct+d (1t €eH).

One can readily check that if Q' = QY, then

wq = y(wg) and [wg,1] = [wg, 1].

](y’ (,UQ’

Lemma 2.1. Let Q = ax? + bxy + cy? € Q(dx). Then N o([wg, 1]) = 1/a and
[wg, 1] € Ix(n) o Q € Qu(dk).

Proof. See [10, Lemma 2.3 (iii)]. O
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Lemma 2.2. Let Q = ax? + bxy + cy? € Qu(dk).
(i) For u,v € Z not both zero, the fractional ideal (uwq + v)Oy is relatively prime to n = NOg if and only

if gcd(N, Q(v, -u)) = 1.
(i) If C € Pg(n)/P, then

C = [(uwq + v)Og] for some u, v € Z not both zero such that gcd(N, Q(v, —u)) = 1.

Proof.

(i) See [10, Lemma 4.1]

(ii) Since Px(n)/P is a finite group, one can take an integral ideal ¢ in the class C ([6, Lemma 2.3 in Chapter
IV]). Furthermore, since Ok = [awq, 1], we may express ¢ as

¢ = (kawg + v)Og forsomek,v e Z.

If we set u = ka, then we attain (ii) by (i). (|
Proposition 2.3. If the map ¢ is well defined, then it is surjective.

Proof. Let
p : Ix(n)/P — Ix(Ok)/Px(Ox)

be the natural homomorphism. Since Ix(n)/Px(n) is isomorphic to Ix(Og)/Px(Ok) ([6, Proposition 1.5 in
Chapter 1V]), the homomorphism p is surjective. Here, we refer to the following commutative diagram.

Ik (n)/ P (n)

Figure 1: A commutative diagram of ideal class groups.

Let
Qly QZP“) Qh (GQ(dK))

be reduced forms which represent all distinct classes in C(dg) = Q(dk)/~ ([3, Theorem 2.8]). Take y, y,,...,
Vi € SLa(Z) so that

Qi’= QIYI (l= 1’ 2’-'~’ h)
belongs to Qy(dy) ([3, Lemmas 2.3 and 2.25]). Then we get
Ix(Og)/Pg(Ox) = {lwq:, 1Pk(Og) |i=1,2,...,h} and [wg, 1] € Ix(n)

by the isomorphism given in (2) (when D = dk) and Lemma 2.1. Moreovet, since p is a surjection with Ker(p) =
Px(n)/P, we obtain the decomposition

Ix(n)/P = (Pc(n)/P){llwg;, 1]] € Ig(m)/P |i=1,2,..., h}. (12

Now, let C € Ix(n)/P. By the decomposition (12) and Lemma 2.2(ii) we may express C as

C= [é[wog, 1]} (13)
uwg + v

for somei € {1, 2,..., h} and u, v € Z not both zero with gcd(N, Q/(v, —u)) = 1. Take any 0 = [ } € SLy(Z)

} (mod NM,(Z)). We then derive that

*
v

¥

* %

such that o = [u v
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!

_uinr +V uwq! + v
C=|———0k|C Dbecause ——— =*1 (mod n) and Pg(n) < P
lwq +V lwg + V

[
= ——=lwq, 1]} by (13)
| dwq; + 7

- L wg, 1]}

| J(0, wq))

[[o(wg), 11].

Thus, if we put Q = Q/ ”71, then we obtain
C = [lwg, 1]] = ¢([QD).

This proves that ¢ is surjective. O

Proposition 2.4. The map ¢ is a well-defined injection if and only if T satisfies the following property:

Let Q € Qy(dy) and y € SLy(Z) such that Q" € Qy(d). 14)
Then, j(y, wq)Okx € P & y € I'Iy,.

Proof. Assume first that ¢ is a well-defined injection. Let Q € Qy(dk) andy € SL,(Z) such that QV1 € Qu(dy).

If we set Q' = Q" then we have Q = Q" and so

1
}(y’ (UQ)
And, we deduce that

j(y, wg)Og € P & [lwg, 1]] = [[wg, 1]] in Ix(n)/P by Lemma 2.1 and (15)
& ¢r([Q)) = ¢([Q']) by the definition of ¢
& [Q] = [Q'] in Qn(dk)/~r since ¢y is inective
o Q' =Q%forsomea €T

-1
& Q = Q% for some a € I because Q' = QY
& ay € I,, forsome a €T

& y e T Iy,

Hence, I satisfies the property (14).
Conversely, assume that I satisfies the property (14). To show that ¢ is well defined, suppose that

[Q] = [Q'] in Q(dk)/~r for some Q, Q' € Qy(dk).

Then we attain Q = Q'* for some a € I so that

[wg, 1] = [(wq), 1] = [wo, 1]. (16)

1
jla, wg)
Now that Q%" = Q' ¢ Qn(dg) and a € T ¢ T'-I,,, we achieve by the property (14) that j(a, wq)Ok € P. Thus,
we derive by Lemma 2.1 and (16) that

([wo, 1]] = [[wg, 1]]  in Ig(n)/P,

which claims that ¢ is well defined.
On the other hand, in order to show that ¢ is injective assume that

#r([QD) = ¢([Q'])  for some Q, Q" € Qu(dx)-

Then we get
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[wg, 1] = Alwg, 1]  for some A € K* such that AOk € P, 17)
from which it follows that
Q =Q" forsomey e SLy(Z) (18)

by the isomorphism in (2) when D = dg. We then derive by (17) and (18) that

[wqr, 1] = [y(wg), 1] = - [wo, 1] = -
Jj(y, wq) j(y, wq)

[wQ’9 1]
and so A/j(y, wg) € O%. Therefore, we attain

](y, U)Q)OK = AOK € P,
and hence y € I'-I,, by the fact nyl = Q' € Qun(dx) and the property (14). If we write

y=aB forsomea cI'andp € I,

then we see by (18) that

1

Q=0 =@ =0~
This shows that
[Ql = [Q'] in Qu(dk)/~r,
which proves the injectivity of ¢;. O

Theorem 2.5. The map ¢, is a well-defined bijection if and only if T satisfies the property (14) stated in
Proposition 2.4. In this case, we may regard the set Qn(dg)/~r as a group isomorphic to the ideal class

group Ix(n)/P.

Proof. We achieve the first assertion by Propositions 2.3 and 2.4. Thus, in this case, one can give a group
structure on Qy(dk)/~r through the bijection ¢ : Qy(dk)/~r — Ix(n)/P. O

Remark 2.6. By using the isomorphism given in (2) (when D = di) and Theorem 2.5, we obtain the com-
mutative diagram shown in Figure 2.

Qn(dk)/ ~r = Ix(n)/P
The natural map l l p in Figure 1
C(dk) - C(Ok)

The classical isomorphism in (2)

Figure 2: The natural map between form class groups.

Therefore, the natural map Qy(dx)/~r — C(dx) is indeed a surjective homomorphism, which shows that the
group structure of Qy(dx)/~T is not far from that of the classical form class group C(d).

3 Class field theory over imaginary quadratic fields

In this section, we shall briefly review the class field theory over imaginary quadratic fields established by
Shimura.
fin

For an imaginary quadratic field K, let 13" be the group of finite ideals of K given by the restricted
product
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1% = J] K; where p runs over all prime ideals of Ok
P

= {s = (sp) € [ [ K; |'s, € Ok, for all but finitely many p}
p

As for the topology on 15" one can refer to [12, p. 78]. Then, the classical class field theory of K is explained
by the exact sequence

15 K — 1 - Gal(K?/K) — 1,
where K* maps into 1" through the diagonal embedding v — (v, v, v,...) ([12, Chapter IV]). Setting
Ox,p = Ox ®z Z, for each prime p

we have

Oxyp =[]0k,
plp

([13, Proposition 4 in Chapter II]). Furthermore, if we let K=Ke&z Z withZ = Hp Z,, then

K= H 'K®z Z,)* where p runs over all rational primes
p

= {s = (Sp) € H (K ®z Z,)* | sp € Ok, for all but finitely many p} = [Ifé“
p

([3, Exercise 15.12] and [13, Chapter II]). Thus, we may use K instead of [I%n when we develop the class field
theory of K.
Proposition 3.1. There is a one-to-one correspondence via the Artin map between closed subgroups J of K~ of

finite index containing K* and finite abelian extensions L of K such that

K*/J] = Gal(L/K).
Proof. See [12, Chapter IV]. O

Let N be a positive integer, n = NOg and s = (sp) € K. For a prime p and a prime ideal p of Ox lying
above p, let ny(s) be a unique integer such that s, ¢ p"v(s)()’;(p. We then regard sOg as the fractional ideal

sOx = [T € k(O

p plp
By the approximation theorem ([6, Chapter IV]) one can take an element vs of K* such that

VsSp € 1 + NOg,, forall p|N. (19)

Proposition 3.2. We get a well-defined surjective homomorphism

¢, : QI Ix(n)/Pg,a(n)
s > [vssOk]

with kernel

Jo=K|[] @+ NOkp) x [] Okl

pIN PN

Thus, ], corresponds to the ray class field K,.
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Proof. See [3, Exercises 15.17 and 15.18]. O

Let Fy be the field of meromorphic modular functions of level N whose Fourier expansions with respect
to g'/N have coefficients in the Nth cyclotomic field Q((),) with {, = e¥/N. Then Fy is a Galois extension of
F1 with Gal(Fy/F1) = GLy(Z/NZ)/{+L} ([7, Chapter 6]).

Proposition 3.3. There is a decomposition

10

GLAZ/NZ)/{+h} - HO 0

} ld e (Z/NZ)*}/{ilz}- SLo(Z/NZ)/{+L}.

Let h(t) be an element of ¥ whose Fourier expansion is given by

ht) = Y g™ (o€ Q).

n>=-oo

10

(i) Ifa :[O d

} withd € (Z/NZ)*, then

h(r)* = ) cugiV,

n>-co
where g, is the automorphism of Q () defined by {y = (ﬁ.
(ii) If B € SLo(Z/NZ)/{+L}, then
h(T)f = h(y(1)),
where y is any element of SL,(Z) which maps to 3 through the reduction SLy(Z) — SLy(Z /INZ)[/{+L}.

Proof. See [7, Proposition 6.21]. O

IfweletQ =Q ® Z and ¥ = |J ¥, then we attain the exact sequence
N=1

1 - Q" - GL,(Q) — Gal(F/Q) — 1 (20)
([5, Chapter 7] or [7, Chapter 6]). Here, we note that

GLZ(Q) = H ’GLZ(Q p), where p runs over all rational primes
p

= {y =(y,) € []6L2A@Qp) | ¥, € GLy(Z,,) for all but finitely many p}
p

([3, Exercise 15.4]) and Q* maps into GLZ(Q) through the diagonal embedding. More precisely, let h(t) € Fy
and y € GL,(Q), and then y = af with a = (ap), € GL,(Z) and B € GL3(Q) ([3, Theorem 15.9 (i)] and [5,
Theorem 1 in Chapter 7]). By using the Chinese remainder theorem, one can find a unique matrix @ in
GL,(Z /NZ) satisfying & = a, (mod N) for all primes p such that p|N. Letting o : GLZ(Q) — Gal(¥/Q) be
the third homomorphism in (20), we obtain

h(T)” ¥ = h%(B(1) 21

([5, Theorem 2 in Chapter 7 and p. 79]).
For w € K n H, we define a normalized embedding

9w : K* = GL3(Q)

by the relation

HEZZHEKZS! )
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By continuity, g, can be extended to an embedding
Qup: K®z7Z,) — GLy(Q,) for each prime p
and hence to an embedding
o : K" = GLyQ).
Let min(tx, Q) = x% + bgx + ¢k (€ Z[x]). Since K ®7 Z, = Q,Tx + Q, for each prime p, one can deduce that

if s = (s,) € K" with s, = uyTx + v (Up, v, € Qp), then

v, —bxuy —cKup}. @)

Gnls) = () with y, = { . .
D b

By utilizing the concept of canonical models of modular curves, Shimura achieved the following remark-
able results.

Proposition 3.4. (Shimura’s reciprocity law) Let s € K',weKnHandh € F be finite at w. Then h(w) lies in
K2b and satisfies
h(w)s ™K = h(1)or@®) | _,

where [-, K] is the Artin map for K.
Proof. See [7, Theorem 6.31(i)]. O

Proposition 3.5. Let S be an open subgroup of GL»(Q) containing Q* such that S/Q* is compact. Let

Is =S n GL3(Q),
Fs=the F|W =hforallyeS},
ks = {v e Q® | vsQ =y for all s € Q*det(S) < Q'},
where [-,Q] is the Artin map for Q. Then,
(i) Ts/Q* is a Fuchsian group of the first kind commensurable with SL,(Z )/{+L}.
(ii) C¥s is the field of meromorphic modular functions for I's/Q*.
(iii) ks is algebraically closed in Fs.
(iv) If w € K N H, then the subgroup K*q,\(S) of K" corresponds to the subfield

K¥Fs(w) = K(h(w) | h € Fsis finite at w)

of K2 in view of Proposition 3.1.
Proof. See [7, Propositions 6.27 and 6.33]. O

Remark 3.6. In particular, if ks = Q, then Fs = 1o (|7, Exercise 6.26]).

4 Construction of class invariants
Let K be an imaginary quadratic field, N be a positive integer and n = NOg. From now on, let T be a sub-
group of (Z/NZ)* and P be a subgroup of Px(n) containing Px ;(n) given by

P ={vOk |v € Og — {0} such that v = t (mod n) for some t € T)
={AOg | A € K* such that A =* t (mod n) for some t € T}.

Let CI(P) denote the ideal class group
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CI(P) = Ix(n)/P

and Kp be its corresponding class field of K with CI(P) = Gal(Kp/K). Furthermore, let

= {y eSLy(Z) |y = [t(_)l ﬂ (mod NM,(2)) for some t € T},

where t~! stands for an integer such that ¢t = 1 (mod N). In this section, for a given h € ¥, we shall define
a class invariant h(C) for each class C € Ix(n)/P.

Lemma 4.1. The field Kp corresponds to the subgroup

U K*[H (t + NOk p) x H 0’;(,,,]

teT pIN PN

of K" in view of Proposition 3.1.

Proof. We adopt the notations in Proposition 3.2. Given t € T, lett~! be an integer such thattt™' = 1 (mod N).
Let s = s(t) = (s,) € K" be given by

t~1 if p|N,
Sp = .
1 if piN.
Then one can take v = t so as to have (19), and hence
¢,(s) = [tsOg] = [tOk]. (24)

Since P contains Px 1(n), we obtain Kp < K, and Gal(K,/Kp) = P/Px1(n). Thus, we achieve by Proposition 3.2
that the field Kp corresponds to

teT

= [Us(t)J. by (24) and the fact J, = Ker(¢,)

teT

= UK*[H (t1+ NOgp) x [] 0’;(,,,}

teT  \pIN piN

@ \(P/Py,(n) = ¢! [ U [tOK]] by the definitions of Py j(n) and P

- UK*[H (t+NOgpx [] 0;,1,]. O

teT  \pIN PN
Proposition 4.2. We have Kp = K¥r¢(1x).

Proof. Let S = Q*W (c GL,(Q)) with
* %
W= U {y () € 1;[ GLo(Z,) |y, = [0 t}(mod NMy(Z,,)) for all p}.
Following the notations in Proposition 3.5 one can readily show that
I = Q*{y e SLy2) |y = [; ﬂ (mod NM,(Z)) for some t € T} and det(W) =2".

It then follows that Is/Q* = I'/{+L} and ks = Q, and hence
Fs=7Frq (25)
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by Proposition 3.5(ii) and Remark 3.6. Furthermore, we deduce that

K*q(S) = K*{s = (sp) € K" | gy (s) € Q*W}
=K*s =(sp) € K | gr(s) € W} since g (r) = rL, for every r € Q* by (22)
=K*{s = (sp) € K" |'sp = uytx + v with up, v, € Q, such that
Yy = {Vp ~ by _CKMP} € Wforallp; by (23)
Up Vp

= JK*s = (sp) € K" |'sp = w7 + v, withu,, v, € Z, such that
teT

¥, € GLo(Z)) and Yy = [8 >:](mod NMx(Z p)) for all p}

= JK*s = (sp) € K" |'sp = u,x + v, With uy, v, € Z,, such that
teT

det(yp) = UpTg + Vp) (UpTg + W) € Z7,
u, = 0(mod NZ,) and v, = t (mod NZ,) for all p}

= UK | [] ¢+ NOxp) x [] O},,,J-

teT  \pIN piN

Therefore, we conclude by Proposition 3.5(iv), (25) and Lemma 4.1 that

Kp = KFr,0(1%) .

— 1925

Let C € CI(P). Take an integral ideal a in the class C, and let ¢, and &, be elements of K* so that

and {z?eﬂ—l.

2

al= [{1’ 52]
Since O = [1¢, 1] € a™! and £ € H, one can express

[Tﬂ = AEj for some A € M5(Z).
AF ]
& &)

Tk T _51 gl
det ([ f 1KD = det(A)det [_52 é;zD’

and so obtain by squaring both sides

We find by taking determinant of

that

dx = det(4)?Ng,q(a)2dx

(26)

([15, Chapter III]). Hence, det(4) = Ng/q(a) which is relatively prime to N. For a € M,(Z) with gcd(N, det(a))

=1, we shall denote by a its reduction onto GLy(Z /NZ)/{+L} (=Gal(Fn/F1))-

Definition 4.3. Let h € 7, (€ Fn). With the notations as above, we define
h(C) = h(1)A}r_¢

if it is finite.
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Proposition 4.4. If h(C) is finite, then it depends only on the class C regardless of the choice of a, & and ¢&,.

Proof. Let o’ be also an integral ideal in C. Take any &/, £, € K* so that

§

d'=[,&] and &=L eH. 27)
$
Since Ok ¢ d!and &' e H, we may write
T &
[ ﬂ = A’L}l for some A’ € M(Z). (28)
2

Now that [a] = [a'] = C, we have

a’ = Aa with A € K* such that A =* t (mod n) for some ¢t € T.

Then it follows that

2 = gl = g, AE] and o g 29)
1 2 A71€2
And, we obtain by (27) and (29) that
! -1
51, 5" 1'{1 for some B € SLy(Z) (30)
& A&,
and
&' = B(@). (31)

On the other hand, consider t as an integer whose reduction modulo N belongs to T. Since a, a’ = Aa € Ok,
we see that (A — t)a is an integral ideal. Moreover, since A =* t (mod n) and «a is relatively prime to n, we get
(A - t)a € n = NOg, and hence

(/l - t)OK c Na™l,

Thus, we attain by the facts Og = [1¢, 1] and a7 = [£,, &] that

A=t |_ ,» Nfl " +
{ 1t } =A {N{j for some A" € M;(Z). 32)
We then derive that
{1 Tk Tk
NA" =A - by (32
M HEHEC

=/1A’Fl]— mrl} by (26) and (28)

& 3
& &
=A'B - tA by (30).
M M veo
This yields A’'B - tA = O (mod NMx(Z)) and so
A’ = tAB™! (mod NM,(Z)). (33)

Therefore, we establish by Proposition 3.3 that
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@)V |e—p = (@8 |r_p by (33)
where ~ means the reduction onto GL,(Z /NZ)/{+L}

1 0]t 0]
- h(r){o oo )8 b
e
= h(t)lo ¢! l—&  because h(t) has rational Fourier coefficients
= h(T);‘EiITZSn since h(t) is modular for T’
= h(T)A|r:B’1(§’)
= h()il—¢ by (3.

This proves that h(C) depends only on the class C.
Remark 4.5. If we let Cy be the identity class in C1(P), then we have h(Cy) = h(tg).

Proposition 4.6. Let C € CI(P) and h € Fr,q. If h(C) is finite, then it belongs to Kp and satisfies
h(C)"© = h(CC') for all C' € CI(P),

where o : CI(P) — Gal(Kp/K) is the isomorphism induced from the Artin map.

Proof. Let a be an integral ideal in C and &, &, € K* such that

al=[&,&] with &= i €
&

H.

Then we have

[Tﬂ = AL{j for some A € M5(Z).

Furthermore, let a’ be an integral ideal in C’ and &/, &' € K* such that

n
(aa/)_l = [{1", 2"] with f" = % €eH.
2

Since a™! ¢ (aa’)! and £" € H, we get

Fl} -B 61” for some B € M;(Z),
& 2

and so it follows from (35) that

4]0}

2
Let s = (sp) be an ideal in K" satisfying

sp=1 if p|N,
$pO0x,p = a;, if piN,

where a;, =a' ®z Z,. Since d' is relatively prime to n = NOk, we obtain by (39) that

-1

» forallp.

-1 _
Sp OK,p =a

—_— 1927

(34)

35

(36)

@37

38)

39)

(40)
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Now, we see that

-1 ‘f -1 -1 -1 'f
9e.p(Sp )L(j = &4z p(Sp ){ﬂ =65, {ﬂ =5 ij’

$

3
basis for (aa’);,1 by (36) and (37). Thus, we achieve

3

which shows by (34) and (40) that qsr,p(s;l){ } is a Z,-basis for (aa’ );,1. Furthermore, Bl{ } is also a Z,-

2
gz.p(s,") = y,B for somey, € GLy(Z)). (41)

Letting y = (y,) € ]_[p GL,(Z,) we get
ge(s™) = yBL. (42)

We then deduce that
h(C)SK) = (h(T)4],-¢)IK) by Definition 4.3
= (h(r)hyor@ss™) l.—¢ by Proposition 3.4
= (h(ryhor¥8 D¢ by (42)
= h(T)AG|T=B—1(§) by (21), where G is a matrix in M»(Z) such that
G= Y (mod NMx(Z))) for all p|N
= h(r)AB lr—¢» by (37) and the fact that for each pIN,
s, =1 and so yI[,B‘1 = I, owing to (39) and (41)
= h(CC') by Definition 4.3 and (38).

In particular, if we consider the case where C’' = C7!, then we derive that
h(C) = h(CC'Y< T = R(Co)l* ™ = h(ze) X,

This implies that h(C) belongs to Kp by Proposition 4.2.
For each ptN and p lying above p, we have by (39) that ord, s, = ord, o/, and hence

[s, K]lg, = a(C").
Therefore, we conclude

h(C)°©) = h(cC). m|

5 Extended form class groups as Galois groups

With P, Kp and I as in Section 4, we shall prove our main theorem which asserts that Qy(dg)/~r can be
regarded as a group isomorphic to Gal(Kp/K) through the isomorphism described in (9).

Lemma 5.1. If Q € Q(dx) and y € I,,, then j(y, wq) € Ok.

Proof. We obtain from Q = QY that

[CUQ, 1] = [Y(wQ)’ 1] = [(UQ, 1]'

1
](y’ U)Q)

This claims that j(y, wq) is a unit in Ok. O
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Remark 5.2. This lemma can also be justified by using (10), (11) and the property

jaB, 1) = j(a, BT)j(B, T) (a, B € SLy(Z), T € H)
([7, (1.2.4)]).

Proposition 5.3. For given P, the group T satisfies the property (14).

Proof. Let Q = ax? + bxy + cy? € Qu(dy) and y € SL,(Z) such that Q" € Qy(dx).

Assume that j(y, wg)Og € P. Then we have

jly, wq)Ox = ﬁOK for some vy, v, € O — {0}
V2

satisfying
vi=t,v,=6b(modn) witht, b e T
and hence
Gy, wo) = % for some { € O%.
2

For convenience, let j = j(y, wg) and Q' = QY’I. Then we deduce
Y(w) = wy
and
[wo, 1] = jly(wg), 1] = jlwg', 1] = {jlwg, 1.
So there is a = Lrl S} € GLy(Z), which yields

v
o
@] 0| _ a[wo}
¢J 1
Here, since { jwqy'/{j = wq', wg € H, we get a € SL,(Z) and
wq' = a(wg).

—_— 1929

(43)

(44)

(45)

(46)

(47)

(48)

Thus, we attain y(wq) = wy' = a(wg) by (46) and (48), from which we get wq = (a”ly)(wq) and so

Y€ a- Iy,
Now that aj € Ok, we see from (44), (45) and (47) that

avy({ j) = av; = at (mod n), and
avy(( j) = avy(uwg + v) = ut(awg) + at,v (mod n).

It then follows that
at; = uty(awg) + at,v (mod n)
and hence
ut(awg) + a(b,v - ) = 0 (mod n).
Since n = NOg = Nlawg, 1], we have
utb =0(modN) and a(tv - t) = 0(mod N).
Moreover, since gcd(N, t;) = gcd(N, t,) = gcd(N, a) = 1, we achieve that
u=0(modN) and v =t (modN),

(49)

where t;! is an integer satisfying &t;! = 1(mod N). This, together with the facts det(a) = 1 and T is a sub-

group of (Z/NZ)*, implies a = [L ﬂ € I'. Therefore, we conclude y € I'-I,, by (49), as desired.
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Conversely, assume that y € I'-1,,, and so

r s
y=aB forsomea:[u v}erandﬁeIwQ.

Here we observe that
u=0(modN) and v =t(modN) forsomete T. (50)
We then derive that
(v, wo) = j(aB, wq)
= j(a, Bwa)j(B, wg) by (43)
=j(a, wg){ for some { € O by the fact € I, and Lemma 5.1.

Thus, we attain
. . 1
iy, wg) — v =j@, wg) —v=(uwg +v)-v= E{u(awa)}-

And, it follows from the fact gcd(N, a) = 1 and (50) that
¢y, wg) =* v =" t (mod n).

This shows that {~%(y, wq)Ok € P, and hence j(y, wg) Ok € P.
Therefore, the group I satisfies the property (14) for P. O

Theorem 5.4. We have an isomorphism
Qn(dg)/~r — Gal(Kp/K) 51)
[Q] = (h(tx) = h(-@q) | h € Fr g is finite at 1x).
Proof. By Theorem 2.5 and Proposition 5.3, one may consider Qy(dx)/~r as a group isomorphic to Ix(n)/P
via the isomorphism ¢ in Section 2. Let C € CI(P) and so

C = ¢([Q)) = [[wg, 1]] for some Q € Qy(dk)/~r.

Note that C contains an integral ideal a = a®™ [wq, 1], where ¢ is the Euler totient function. We establish by
Lemma 2.2 and definition (1) that

1 1
1= a= [_a-)Q) 1]

a =
NK/Q(a) aPW)-1

and

[TK} _ {a‘/’("” ~a?™-(b + by) /2}{—6}0/(1‘/’(1\’)‘1}

1 0 a(P(N)—l 1/a‘P(N)*1

where min(tg, Q) = x? + bgx + cx (€ Z[x]). We then derive by Proposition 3.3 that if h € 7 q is finite at 7,
then

h(C)=h(r)L © a?™! lr--@, by Definition 4.3
where +~ means the reduction onto GL,(Z /NZ)/{+L}

[f m&}
= h(1)lo at lr——@, since a®?™ =1(mod N)

where a~! is an integer such that aa! = 1(mod N)

[1 0 Hl’m)’ﬂ
=h@lo alllo 1 Jl_g,

{1 —a’l(b+bK)72}
= h(t)Lo 1 lr--a, because h(r) has rational Fourier coefficients

=h(1)lr-—g, since h(t)is modular for I
= h(-@g).
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Now, the isomorphism ¢ followed by the isomorphism

Cl(P) — Gal(Kp/K)
C — (h(tk) = h(Co) — h(Co)*®© = h(C) = h(-@q) | h € Frq is finite at 1),

which is induced from Propositions 4.2, 4.6 and Remark 4.5, yields the isomorphism stated in (51), as
desired. O

Remark 5.5. In [10] Eum, Koo and Shin considered only the case where K # Q(~/-1), Q(+/-3), P = Py ,1(n)
and I' = I(N). As for the group operation of Qy(dk)/~rw) one can refer to [10, Remark 2.10]. They estab-
lished an isomorphism

Qn(dx)/~rvy — Gal(K,./K)

[;m*z}
[Q] = [ax? + bxy + cy?] — |h(tg) — h(T)lo 1 lr=wo | H(T) € Fy is finite at 1y |.

(52)

The difference between the isomorphisms described in (51) and (52) arises from Definition 4.3 of h(C).
The invariant h,(C) appeared in [10, Definition 3.3] coincides with h(C™).

6 Finding representatives of extended form classes

In this last section, by improving the proof of Proposition 2.3 further, we shall explain how to find all
quadratic forms which represent distinct classes in Qy(dg)/~r.

For a given Q = ax? + bxy + cy? € Qu(dx) we define an equivalence relation = on M;,(Z) as follows:
Let[r s],[u v] € My (Z). Then, [r s] =q [u v]if and only if

[r s] = +tlu v]y (mod NM;(Z)) forsomete T andy ¢ I,

where
{xh} if dx # -4, -3,
-b/2 —a’}{(b? + 4)/4) ; - _
I‘Q _ {i L, i|: a b/2 i|} if dx = -4,
{i L. i{—(b +1)/2 —a\(p? + 3)/4} N {(b - 1/2 al(p? + 3)/4}} if dy = -3,
a (b-1)/2 -a —-(b+1)/2

Here, a7l is an integer satisfying aa™' = 1(mod N).
Lemma 6.1. Let Q = ax? + bxy + cy? € Qy(dx) and [r s],[u v] € My5(Z) such that gcd(N, Q(s, -1)) =
gcd(N, Q(v, —u)) = 1. Then,

[(rwg + s)Ok] = [(uwg + v)Ox] inPx(n)/P & [r s]=q[u v].

Proof. Note that by Lemma 2.2(i) the fractional ideals (rwg + s)Ox and (uwq + v)Og belong to Pk(n).
Furthermore, we know that

{+1} if K+ Q(-1),Q(/-3),
O% = 1{+1, +1¢} if K =Q(/-1), (53)
{+1, +1¢, =73} if K= Q(/-3)

([3, Exercise 5.9]) and so
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{+(0, 1)} if K+QW-1),Q(/-3),
Ug = {(m,n) € 22| m1 + n € O%} = {{£(0, 1), =(1, 0)} if K=0Q(/-1), (54)
{£(0,1), (1, 0), (1, D} if K=Q(/-3).

Then we achieve that

[((rwg + $)Ok] = [(uwq + v)Ok]  in Px(n)/P

Two + S
54 9 OKEP
Uwqg +v

rwg + S

=* {t(modn) forsome{ecO)andteT

Uwg + v
& a(rwg + s) = (ta(uwg + v)(mod n)  since a(uwg + v) Ok is relatively prime to n and awqg € Ok

s r(rK + sz_ b) + as = (mt + n)t{u(TK + bKZ_ bj + av}(mod n) for some (m, n) € Ug
r(bx — b) _
&SI + | —— + as | = t(-mubg + mk + nu) 1k + t(-mucg + nk)(mod n)

+ av, where min(tg, Q) = x2 + bgx + ¢k

with k = @

or= t{—[sz—+bjm + n}u + tmav (mod N) and

R b,%—bz_ (bg - b _
S =ta — cx lmu +t — m + nyv(mod N) by the fact n = N[k, 1]

& [r s]=q[u v] by (54)and the definition of =, .

For each Q € Qy(dx), let
Mg = {[u v] € My x(Z) | gcd(N, Q(v, —u)) = 1}.

Proposition 6.2. One can explicitly find quadratic forms representing all distinct classes in Qy(dx)/~r.

Proof. We adopt the idea in the proof of Proposition 2.3. Let Q/, Q5,..., Q;, be quadratic forms in Qy(dx)
which represent all distinct classes in C(dx) = Q(dx)/~. Then we get by Lemma 6.1 that for eachi = 1, 2,..., h

Uwqg + Vv

Pi(m)/P = {[(uwy + v)Ox] | [u v] € Mgy/=q/} = {éo,(} |[u v] e MQif/zQi}.

Thus, we obtain by (12) that
Ix(n)/P = (Px(n)/P){[lwqy, 1]] € Ix(n)/P | i =1,2,...,h}

={;[w " 1]} li=1,2....h and [u V] eMQil/zQi}
Uwqg, +v

:{m:‘ ;}(wQ;)Jﬂ li=1,2,...,h and [u v] eMQ;/EQi},

:;} = [Z ﬂ(mod NMy(Z)). Therefore, we conclude

%

} is a matrix in SL,(Z) such that [

Qn(dg)/~r = {{Q;P

*
where [ ~
1%

S %

NS
<t ¥

-1
] ]I i=1,2,..,h and [u v]e€ MQ;/EQ;}.
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Example 6.3. Let K = Q(+/-5), N=12 and T = (Z/NZ)*. Then we get P = Pk z(n) and Kp = Hp, where
n = NOg and O is the order of conductor N in K. There are two reduced forms of discriminant dy = -20,
namely,

Qi =x>+5y? and Q,=2x>+ 2y + 3y’
Set

11
Q=Q and Q;= Qz[1 2} = 7x% + 22xy + 182,
which belong to Qn(dx). We then see that
My/=q; =1{l0 1]1,[1 0],[1 6],[2 31,[3 21,[3 4l,[4 3],[6 1}

with the corresponding matrices
[1 0} [0 —1] 0 -1 [1 1} [—1 —1} [1 1} [—1 —1} 10
0 1)1 o1 6233 2|3 4|4 3|61

Mgy/=q; = {[0 1], [1 5], [1 11],[2 1],[3 1],[3 7], [4 5],[6 11}

with the corresponding matrices
[1 0“0 —1“0 —1“-1 -1} 1 0][1 2 [1 1} 10
o 11 51 P2 13 1374 56 1]

Hence, there are 16 quadratic forms

and

X2 + 5y2, 5x% + y?, 41x% + 12xy + y?, 29x? — 26xy + 6y?,
49x? + 34xy + 6y%,  61x% — 38xy + 6y, 89x + 46xy + 6y, 181x? — 60xy + 5)2,
7x% + 22xy + 18y?,  83x? + 48xy + 7y%, 623x% + 132xy + 7y%, 35x% + 20xy + 3y?,
103x2 — 86xy + 18y?, 43x% — 18xy + 2y%, 23x? — 16xy + 3y%,  523x? — 194xy + 18y?,

which represent all distinct classes in Qy(dk)/~r = Q12(—20)/~r,12)-
On the other hand, for[n 1] € M;»(Q)\M; »(Z) the Siegel function 8y r,)(7)is given by the infinite product

(e9]
g[rl rz](T) — _enirz(rl—l)q(l/z)(rlz—r1+1/6)(1 _ queZITirz) H (1 _ qn+rle2nirz) (1 _ q"—ﬂe—ZﬂiTz) (T c [H),
n=1
which generalizes the Dedekind eta-function g"/* [T, (1 — g"). Then the function

11(6‘1’) 24
2 01207 = (n(lzr)J

belongs to Fr,a2,0 ([14, Theorem 1.64] or [16]), and the Galois conjugates of 812 ol (121%)22 over K are

8 =81 o124-5)", 8 =8y, o(12V-5/57,

& = 8y (1206 + V-5)/41)2, 84 =8y o)(12(-13 + V=-5)/29)2,
8 =8y 01207 +V-5)/49)2, g =8, o,(12(-19 + V-5)/61)",
8 =81 01223 +V-5)/89)2, g =g, ,12(-30 + V=5)/181)%,
85 = 8y (12011 + V=5)/7)2, 810 = 815 (12024 + V=5)/83)",
81 =8y 01266 + V=5)/623)2, g, =g, (12010 + V=5)/35)2,
813 = 815 01243 + V-5)/103)2, g, =g, (12(-9 + V=5)/43)2,
85 = 81jy )28+ V=5)/B)2, g =8, o(12(-97 + V-5)/523)7

possibly with some multiplicity. Now, we evaluate
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16
l_[ (x - g)=x% + 1251968x™> — 14929949056x™* + 1684515904384x" — 61912544374756x"
i=1
+ 362333829428160x + 32778846351721632x'° — 845856631699319872x°
+ 4605865492693542918x8 + 91164259067285621248x” — 124917935291699694528x°
+ 180920285564131280640x> — 3000295144057714916x* + 8871452719720384x3
+ 458008762175904x% — 1597177179712x + 1

with nonzero discriminant. Thus, 812 ol (121%)"? generates Kp = Hy over K.

Remark 6.4. In [17], Schertz deals with various constructive problems on the theory of complex multi-
plication in terms of the Dedekind eta-function and Siegel function. See also [16] and [18].
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