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Abstract: In this work, we refine the results of Sendov and Shan [New representation theorems for completely
monotone and Bernstein functions with convexity properties on their measures, J. Theor. Probab. 28 (2015),
1689-1725] on subordinators obtained by the class of Bernstein functions stable by the Mellin-Euler differ-
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1 Introduction

Recall that the class CM of completely monotone functions corresponds to those infinitely differentiable
functions f: (0, 00) — (0, 00) s.t. (-1)f™ > 0. By Bernstein characterisation f € CM, if, and only if, f is
the Laplace transform of some measure:

F) = _[ eMy(dx), A> 0.

[0,00)

The class 8F of Bernstein functions corresponds to non-negative antiderivatives of completely monotone
function, i.e. to those functions ¢ represented by:

o) =g+ di+ [ (-eMuda, 120, M

(0,00)

where g > 0 is called the killing rate, d > O is called the drift term and y is a positive measure on (0, co)
which integrates x A 1, called the Lévy measure. By integration by parts, ¢ is equivalently represented by

pA)=qg+dr+ A j e N(x)dx = q + dA + A? I e i(u)du, (2)
0 0

where we have used the notation [ for the nonincreasing function and k for the concave function given by

I(x) = p(x, c0), we sometimes also use the notation ji(x) = u(x, co) 3)
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k() = _[ 1) dx. %)
0

In this work, we refine and extend the results obtained by Sendov and Shan [1] on a class of Bernstein
functions that we denote here by 8%, and which is defined by

BFo ={p € BF, s.t. p(A) — Ap'(A) € BF, for every c € (0, 1)}.

Our contribution in this work consists in the following:

(a) The class BFg is demystified by proving the existence of densities enjoying a monotony property for
the Lévy measures and for the transition of the associated subordinators, if we restrict ourselves in the
subclass of the stabilisators of 8Fg. We provide a full characterisation by the stochastic point of view.
More precisely, a positive and infinitely divisible random variable X has its Bernstein function ¢ € 8%,
if, and only if, X is embedded into a subordinator (X;)o, i.e. X = Xj, and for all ¢ € (0, 1), there exists
a random variable Z; such that we have the identity in law

x4 X. + 7. (X.and Z. independent). (5)
This decomposability property is linked to the operators 8, defined by
0:0(A) = p(cA) — cp(d), c € (0,1),

Operating on the class 8F and is new in the literature. We denote by RD the class of distributions
satisfying (5) and call it the class reverse self-decomposable distributions. Observe that this class is very
close (in its formalism) to the famous class SD of self-decomposable ones, formed by those distributions
associated with random variables X = satisfying the following: for every c € (0, 1), there exists a r.v. Y,
such that we have the identity in law

X 4 cX + Y, (X and Y; independent).

(b) Observe that rare are the cases in which we are able to deduce the shape of the distribution P (X; € dx)
for arbitrary subordinators (X;)¢so. The class BF }9, introduced by Sendov and Shan [1], consists of those
of Bernstein functions ¢ such that1 - e ¢ 8% for all t > 0. In this paper, we show that BF} is in
bijection with the class of subordinators (X;);0, such that for every t > 0, the distribution of X; is of the
form

Dpe(X)

P(X; € dx) = o
X

x >0, where p; is nondecreasing.

As a consequence, we provide a satisfying answer to the open problem raised by Sendov and Shan
[1, Open Problem 4.1] in case where (X;)=0 is an a-stable subordinator: what is the critical value
@o € (2/3,1) such that A — A% € BF for all a € (0, ag] ?

(c) We also introduce the class BF; é of Bernstein functions ¢ such that e® — 1 + t¢p € BFg for all t > 0,
and provide monotonicity properties for the finite-dimensional distributions of the associated subor-
dinators. Other results of stochastic nature are also deduced.

(d) Finally, we generalise the class of reverse self-decomposable distributions via the operator v, defined
by

Uep(A) = p(ch) + p((1 - )A) - (), ¢ € (0,1).

2 Some operators of interest

We need to introduce some formalism in order to clarify the characterisation of three classes of distributions
that will be studied later on.
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Definition 2.1. For differentiable functions ¥ : (0, co) — R, the Mellin (or Euler) differential operator Z and
its companion O are defined by

EY) =AP'(A) and O =1 - E (I = Identity).
For c € (0, 1), the difference operators &, 6., v, are defined by

E Y = Y) - P(ch),
O:pA) = Y(ch) - cp(A),
UepA) = P(cA) + (1 - ©)A) - Y(A).
For a set A of functions ¢ : (0, co) — R, we denote by A, and A4 the subsets
Ap = {p € AsuchthatAp € A}, ifA=E,0O, (6)
As= () {¢p € Asuchthatd ¢ € A}, ifé.=¢,0,v.. @)

ce(0,1)

Remark 2.2. We have the remarkable facts:
(i) The difference operators are obtained from integrals of the differential operators:

OY(x)
o dx

1 1
gy = [ L ax and o= |

Cc 4

(8)

(ii) The differential operators are obtained from limits of the difference operators:

1- e’fclp(/l) 1- e*ec'/}(/l)

EY@) = im ———— and OY@A) = lim ——. )
c—1- 1-c¢ c—1- 1-c¢
(iii) Note that
Y(0+) = lim YPu) < 0 & M is integrable at O
u—0+ X
and
lim YW <oo & Y is integrable at co.

u—oo U X2

Then, under the last integrability conditions, we have the inversion formulae:
A

W = o) + | @ d, (10)
0
A

3 Some tools on Bernstein function and infinite divisibility
Next result on the stability and closure properties will be used several times in the sequel:

Proposition 3.1. [2, Corollaries 1.6 and 3.9]

1. Stability properties: If f ¢ CM and ¢, € BF , then fo p e CM and ¢ - ¢ € BF.

2. Closure by pointwise limits: If (f,), ¢ CM (resp.(¢,)n ¢ BF ) andiflim,_,o, f(A) = f(A) (resp.lim,_, P, (A)
= ¢(A)) exists for every A > O, then f € CM (resp. ¢ € BF).



1858 —— Wissem Jedidi et al. DE GRUYTER

See [2] for more details on completely monotone and Bernstein functions. The following two propositions
are easy to obtain but useful, and they will be used several times in the sequel:

Proposition 3.2. Let f: (0, co) — (0, co). Then
1. If fis concave, then it is nondecreasing.
2. fis concave if, and only if, x — xf(1/x) is concave.

The second statement is Lemma 2.2 in [3]. We were not able to find a reference for the first statement, which
is probably known in the literature, and we propose this simple proof.

Proof. Since f has necessarily nonincreasing slopes:

fly) - f(x) S f(z) - fx)

y-Xx z-x

, 0<x<y«<z,

and since f(z) > 0, we obtain

fo) 2 0 + L2 @) - Foo) > 250,
z-x zZ-X
for fixed x, y and arbitrary big values of z. It is suffice to let z — oo. O

Proposition 3.3. Let f: (0, co) — (0, c0) and ¢ : [0, co) — (0, co). Then the following holds true.
(1) feCM & f(c) - f(. +c) € BF, for every c > 0;

2 fe CM = O(f(c) - f(. +¢)) € BF, for every c > 0;

3) 6f e CM = fe CM and A f(A) = j1°° of )%

(4) ¢ € BF = limy_ o, E¢p(A) = 0;
(5) Ep e BF = ¢p € BF.

Proof.
(1) The equivalence is obtained by differentiation and by the closure property in Proposition 3.1.
(2) Elementary computation gives that

O(x — (f(c) - fx + M) = (©f)(c) - (Of YA +¢), A>0.
Then, using (1), we have the equivalences:

©f)(c) - ©Of)(.+c) e BF, VYc>0 ©©Of)(.+c)eCM, Vc>0
© 0f e CM.

(3) The implication is justified by the facts that CM is a convex cone, and essentially by (11): since 6f is a
nonincreasing function, then 0f(x)/x? is integrable at infinity and necessarily [ = lim,, f(x)/x exists.
To check that I = 0, observe that f is necessarily often differentiable (like ©f) and — xf” = (6f)’.
Assuming lim,, f(x)/x = I € (0, c0), we would have lim_, f'(x) = lim,, f(x)/x — lim,,,0f (x)/x = 1 (since
Of € CM, then lim,,0f(x)/x = 0). Then, we would also have lim,., xf"(x) = -lim,(©f)'(x) = 0. The
latter gives a contradiction between the behaviour of f' and f”.

(4) Assume ¢ is represented by (1). For every x > 0, A € (0, 1), we have Axe™ <1 A (Ax) <1 A x, and the
dominated convergence theorem ensures that

lim A@'() = lim |dd+ j Axe™ y(dx) | = 0.
-0+ —0+
(0,00)

(5) Certainly, A — ¢'(A1) = E¢p(A)/A € CM. Since ¢ > 0, then ¢p € BF. O
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The injectivity of the Laplace transform ensures that the distribution of a positive random variable X is
entirely characterised by its Laplace transform E [eX] = _[[0 ) e™P(X e dx), A > 0. The class of cumulant
, 00

functions is denoted by C¥ and defined by
CF = {¢(A) = - log E[e™], X > 0}.

Remark 3.4. By point (1) of Proposition 3.3, we have that
peCFredp0)=0 and 1-e?ec BF.
Using Proposition 3.1, it is then evident that

(i) peBFel-e®ecBF, Vt>O0;
(ii) tp € CF,Vt>0 & p(0) =0 and 1 - e ¢ BF, Vt> 0.

From now on, we adopt the notation

X ~ C, if the distribution of X belongs to the class of distributions C.

Recall that a random variable X has an infinitely divisible distribution (X ~ ID) if for every n € N*, there
exists sequence of independent and identically distributed random variables X, 1,..., Xn,» (called the nth
folds of X), such that

d
X=Xp1+ -+ Xnn

c.f. [4]. Actually, the set infinitely divisible distributions on [0,00) are in bijection with the class of Bernstein
functions null at 0, namely, infinite divisibility of a non-negative r.v. X is entirely characterised by the fact
that its cumulant ¢ is a Bernstein function and every non-negative infinitely divisible r.v. X is embedded
into a subordinator (X;)s0 (i.e. an increasing Lévy process, see [5]), this means that

x4 X, and [E[eM] =D, A>o0.

4 Revisiting the class of self-decomposable distributions

A proper subclass of ID is the well-known class SD of self-decomposable distributions, also known as
the Lévy class, and introduced by Lévy in 1937. In the specialised literature, the notation £ is frequent for
the class SD (see [6] for instance). This class forms a natural extension of the class of stable laws and its
importance stems from the fact that it arises in limit theorems for sums of independent variables. Without
using the fact that SD c ID (frequently required in the literature), self-decomposability could be defined as
follows:

Definition 4.1. (Sato [7, Definition 15.1]) We say that X is self-decomposable, and we denote X ~ SD, if for
each c € (0, 1), there exists a non-negative random variable Y;, independent of X, such that we have the
identity in distribution

x2ex+v,. (12)
A reformulation of (12) property in terms of cumulant functions is as follows:

E[e ]
E [e—AcX]

X~SDe v =e %M e CM, Vce(0,1) & ¢y € CF, (13)

where we used the notations (6) and (7). For more account on self-decomposability, we suggest [4] and [8].
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For the sake of clarity, we provide a full characterisation of the class SD. With the notations (6) and (7),
we have:

Theorem 4.2. Let X be a non-negative r.v. with cumulant function ¢. We have the equivalences
(1) X € SD;

() &, ¢ € CF, for some sequence ¢, € (0, 1) such that ¢, — 1;

(3) E¢p € BF;

4) é&.¢p e BF ,ie Y. ~1IDin (12), for every c € (0, 1);

(5) ¢ € BF and its Lévy measure is of the form x~!1(x)dx, where l is nondecreasing.

As an immediate consequence we get the following.

Corollary 4.3. We have
CFe = {¢p € BF;, s.t. (0) =0} and BF; = BFz c BF.

Proof of Theorem 4.2.
(1) = (2): Just apply (13).
(2) = (3): Since e~%® € CM, then, by Proposition 3.3(1), obtain (1 — e~%=?)/(1 - ¢,) € BF . Then, use Proposi-
tion 3.1 together with (9) and obtain that
— e ben®
£ = lim =" ¢ g
n—oco 1-— Cn
(3) © (4): Use (8) and the fact that BF is a convex cone. For the converse, use (9).
(3) = (5): Observe that there is no drift in Z¢, then use representation (2) for Z¢p and (1) for ¢p and obtain that
¢’ is represented by both these expressions

&) = @ - Ie""‘l(x)dx and ¢'(A) = I M), A> 0,
0 (0,00)

for some decreasing function I. Then conclude by Laplace inversion.
(5) = (1): Use twice (2), make a change of variable and get the following representation that meets (1): for
every ¢ € (0, 1),

) I(x) - llx/c)
X

€C¢(A)=I(1—e dx € BF  CF,
0

and the latter is (13). O

5 The class of reverse-decomposable distributions

We propose in this section a new class of infinitely divisible distributions denoted by RD, which is the dual
in some sense of the class SD. We shall provide the counterpart of Theorem 4.2 for this class.

Definition 5.1. (Reverse decomposable distributions)
(i) Recall

CFg= [) CFo =1{¢p € CF, s.t. 8.¢ € CF, foreveryc € (0, 1)}.

ce(0,1)

A non-negative ID random variable X, with cumulant function ¢y, is said “reverse-decomposable,” and
we denote X ~ RD if ¢, € CFp, or equivalently if
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E [e—}ch]
E [e—AX]c

A = @YW s completely monotone for all ¢ € (0, 1).

(ii) We denote by
BFg= ()| BFp =1{p € BF, s.t. 6.¢ € BF, foreveryc e (0,1)}

ce(0,1)
and by
BFo={¢p € BF, s.t. Op € BF}.

In order to clarify the structure of RD, we need several analytic results.

5.1 Analytic properties of the classes C¥y and ¥ ¢
We start with the following two propositions.

Proposition 5.2. If c € (0, 1) and if ¢ € BF, then the functions ©¢ and 6. ¢ are non-negative, nondecreasing
and both functions x — 6.¢(x)/x?, O¢(x)/x? are integrable at co.

Proof. Note that the derivative of (O¢)’ = -A¢" is non-negative and, by Proposition 3.3(4), we have
limy_0,0¢(A) = ¢p(0) > 0. We deduce that ©¢ is non-negative and nondecreasing. Furthermore, using
inversion formula (11), we get the integrability condition for ©¢. The assertion on 6.¢ is obtained by the
representation (8). O

Proposition 5.3. Let ¢ : [0, co) — [0, co). The following holds:

(1) If©¢ € BF and has no drift term, then ¢ € BF;

(2) If6:.¢ € BF for some c € (0, 1), then p € BF .

(3) If ¢ is nondecreasing and differentiable function on (0, co) and if .,¢p € CF for some sequence c, € (0, 1)
such that ¢, — 1, then O¢ € BF .

Proof.
(1) Since there is no drift term in ©¢), then x — ©¢(x)/x? is integrable at co, and representation (2) for O¢
gives
@ [o/e) X
o) _ I e f lo(t)dt |du, x>0,
X
0 0

with some nonincreasing function ly. The inversion formula (11) gives a representation of type (2) for ¢:

(o9

o) = A| lim 284, [erio), 100 =2 [uwdr 1=,
u—oo Uu X
(0]

0

1
and note that x — I(x) = IO lo(xt)dt is nonincreasing. Thus, ¢ meets the representation (2) of a Bern-
stein function.
(2) For every integer n > 1 and real number A > 0, we have

0enp(A) = B.p(c™ ) + cOn1p(A).

By induction, we see that for every n € N, the function 6.r¢ belongs to BF, or equivalently

A ) - cnqb%J € BF.
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The next step is to prove that ¢(A) = lim,_,,c"@(A/c") is of the form
@) = KA, forevery A >0 and some K > 0. (14)

Using Proposition 3.1 and taking the limit as n — oo, the latter will give that A — ¢(A) — KA € 8F and
hence, ¢ € BF . In order to prove the claim (14), note that for every fixed A > O, the increments of
sequence u, = ¢(A) — c"P(A/c") are of the form

A
Ups1 — Up = c"@cq,')(cmlj > 0.
The sequence uy, being nondecreasing and bounded by ¢(A), is convergent. Then, the function ¢ is well
defined on [0, co) and satisfies
@) =0, @(c™) =c"pd), forevery A >0, m €N. (15)

Every A € (0, 1] could be written in the form A = ¢*, x > 0, and plugging in (15) with m = 1, we see that
the function f(x) = ¢(c*) satisfies the iterative functional equation

fx+1) =cf(x), x>0.

By [9, Theorem 2.4.2, p. 72], the unique solution f is necessarily of the form Kc*, with K > 0. At this
stage, we have proved that

f(logA) = (1) = KA, forevery A € (0, 1] and some K > 0. (16)
If A > 1, there exits py € N such that cP°A < 1. By (16), and by (15) with m = py, we obtain
KcPod = p(cPod) = cPog(A).

Simplifying the last identity, we get (14).
(3) As in the proof of Theorem 4.2, use (9) to get that (1 — e?=%)/(1 — ¢,) is a sequence of Bernstein
functions, then apply Proposition 3.1 and retrieve

_ b
0¢ = lim L= ¢ gF. O

n—oo 1- Cn

Remark 5.4. Recall the classes CFy and BF¢ of Definition 7.2. Proposition 5.3 shows that actually
CFo= () {¢p € BF, s.t. $(0) =0 and 6.¢p € CF} and CFy C BF.

ce(0,1)

5.2 Improving the results of Sendov and Shan [1], full characterisation of C# 4 and
BFeo

The right tail function ji of Lévy measure y and its reflected function y are denoted by
= ulx 00), 00 = u(l, ooj, x> 0. a7
X

Sendov and Shan [1] showed that
0¢ € BF if, and only if, x — xjfi(x) is a concave function,

and called such measures u measures with harmonically concave tail. We complete their work and provide
the complete characterisation of 8% as follows:



DE GRUYTER Three classes of decomposable distributions —— 1863

Theorem 5.5. Let ¢ be a Bernstein function represented by (1), associated with the Lévy measure pu, and the

functions )7 be given by (17). Then, we have the equivalence between the following assertions.
(1) xji(x) is concave;

2 }T(x) is concave;
(3) u has a density function in the form

u(dx) = P ()2() dx, where p is nondecreasing;
X

(4) 0.1 is positive and nondecreasing for every c < (0, 1);

(5) 6.¢ € BF, for every c € (0, 1);

(6) B.,¢ € CF, for some sequence c, € (0, 1) such that c, —» 1 asn — oo;

(7) ¢ € BFo;

(8) there exists ¢ € BF (with drift term equal to 0), s.t. p(A) = f W) dx.

Under any of the latter, we have the representation
dp(x
0p(A) = p(0) + I 1- e""‘)%- (18)

(0,00)

Note that if ¢ € BFg, then certainly ¢’'(0) = +co. Indeed, by point (3) of Theorem 5.5, and because p is
nondecreasing, one has

P> | xp(dx)>jp— T
1

(0,00)

With the same argument as for Corollary 4.3, also note that Remark 5.4 and Theorem 5.5 yield:
Corollary 5.6. CFy = BFy N {¢, s.t. $(0) =0} and BFy = BFe C BF.
Example 5.7. We propose two examples:
(i) If p € BFg, then 1 — P(A%) € BFp, for all 0 < a < 1. Indeed,
O — d(A") = (1 - ))p(A*) + (O) (1),

and the two functions in r.h.s are in B8 since they are obtained by the composition with the stable
Bernstein function A — A%,
(ii) Next example is less trivial: the function

P,(A) = P JA belongs to BFe.
To see that, note that for every A > 0

e—1/4x

ﬁ‘f“'e "2 vaman ¥

2\/—3/de and 1-e A= j(l—e

so that ¢, is represented by

P,(A) = I (1-eME=s p( X) ds, x~ pkx)= [l - 6_12/4)() is nondecreasing.

Proof of Theorem 5.5. By Proposition 3.2, observe that x — xji(x) is concave and non-negative, hence is

a nondecreasing function. Thus, the function x — ¥ (x)/x := ji(1/x)/x is nonincreasing.
(1) © (2): The equivalence is due to [3, Lemma 2.2].
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(1) = (3): If x » g(x) = xpi(x) is nondecreasing, then
d(g(x)) = pO)dx — xu(dx) (19)

is a positive measure. We deduce that y admits a density function, which we write in the form p(x)/x?,
where p is a non-negative measurable function. Observing that g is concave, differentiable and is repre-
sented by

t
gx) =x J- % dt,
X
obtain from
x— g'(x) = I % dt - pX) is nonincreasing,
X
X

that

d(-g'(x) = dp)fx) - p)ﬁ’z‘) dx + pf;) dx = dp)fx). (20)

Finally, deduce that the measure dp is a positive, i.e. p is nondecreasing.
(3) = (4): For x > 0, define

R P N E AT (012 N W /O 90
i = 1001 = B9 gl 1 [ 2D ac - [ B a @

c

and by the change variable t = s/c, retrieve the representation

_ s/c) — p(s
B0 = J‘ p(s/ )2 p0) 4.
S
X
Since p is nondecreasing, then ji. is non-negative and nonincreasing, which is equivalent to the claim

on Gc((];)-
(4) = (5): Recall the form (2) of ¢ and that ji_ is given in (21). By the change of variable x = y/c, write

0-pA) = P(cA) — cp(A) = g1 — ¢) + cA j e Mia(x)dx - cA I e™i(x)dx = q(1 - ¢) + cA J- e (y)dy.
0 0 0

Since ji., given by (21), is nonincreasing, then 6.¢ has also the representation (2) of a Bernstein function.
(5) = (6): Just recall that BF c CF¥ and use the definition of the class B¥g in 5.1.
(6) = (7): This is point (3) of Proposition 5.3.
(7) © (8): Take d = lim,, p(u)/u, ¢ = B¢ and use inversion formula (11).
(8) = (1): Using representation (2) for O¢, write
M) = d + J e dx - A j M1 (x) dx
0 0
so that
OB = ) - Ap'() = g + X [ e xmtodr. (22)
0

By representation (2), conclude that x — xji(x) is concave.
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For the last assertion, use representations (1) and (2) of ¢ and write
Op =g+ A [ e - xu(d),
(0,00)
then conclude with (19), (20) and representation (2) for O¢. O
Remark 5.8. Due to the linearity of the operator ® and due to Proposition 3.1, we retrieve the following
properties for the class BFq:

(i) The class BFg is a convex cone, i.e. if (¢, )ycp is a family of BFg and v is a measure on the indexation set
U, then, modulo the existence of the integral, we have

Ao I b, (Mv(du) € BF%.
U

(ii) The class B¥g, like BF, is closed under pointwise limits.
Point (3) in the next theorem shows a nice fact:

Proposition 5.9. We have the equivalence between the following assertions.
(1) ¢ € BFo;

) A= @A) = Pp(A%) € BFg for every a € (0, 1);

(3) ¢ is differentiable and for every a > 0,

A Q) = ap) - AP + @) - pA) € BF.

Proof. (1) & (2): It is suffice to write

0¢,A) = p(A") — aA%P'(A%) = (1 — Q) Pp(A%) + a(O¢P)(A).
For the converse, conclude by letting @ — 1- and by the closure property of the class 8%g in Remark 5.8.
(1) = (3) By Theorem 5.5, there is no loss of generality to assume that ¢p € 8% has the characteristics
(0, o, % dx), with p nondecreasing. Using (2), write

Y =al I e M, (x)dx
0

1-e*

L,(x) = J- % dt - e(ax)%, ex) = €(0,1), x>0,

and by (20), it is clear that l,(x) > IOO % - @ > 0. It remains to show that I, is nonincreasing, but this is
X
easily seen by the fact that

K(x)=1-¢ex) +xg'(x) >0, Vx>0

and by the differentiation of —1,, which gives the positive measure:

~d0) () = k(@) 22 dx + ean) LX),

X X
(3) = (1): For the sufficient part, use the closure property of the class 8F in Proposition 3.1, and note that
0¢ = lim,_o, @, /a. O

The class CBF of complete Bernstein functions (resp. 78% of Thorin-Bernstein function) consists in
those Bernstein function ¢ s.t. the associated Lévy measure y has a density functionm € CM (resp. xm(x) €
CM). Let A be the operator defined on 8% by:
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A = A2 I eMpdx, ¢ € B @)

(0,00)

The following nice fact gives an additional interest to the class 8Fg:
Proposition 5.10. The operator A is a bijection from BF (resp. BFg) to CBF (resp. TBF).

Proof. In [2, Theorem 6.2], it is stated that the operator A is a bijection from B¥ to CB¥ . Observe that if
¢ € BFo, then, by Theorem 5.5, there exist d, ¢ > 0 and a nondecreasing function p such that

G =d+qh+ j (1—e-xu>$du, x>0

(0,00)

and elementary computations give that

pp =g+di+ [ A PW g aso,
A+u u
(0,00)
meets the representation of a 78¥ -function as given in [2, Theorem 8.2]. The converse is obtained by
reversing the calculus. O

5.3 Stochastic interpretation of the class #7¢

Recall that a non-negative r.v. X ~ ID is embedded into a subordinator (X;);o, i.e. X = X;. From this
observation we retrieve a simple characterisation of RD:

Theorem 5.11. Let X be a non-negative random variable with cumulant function ¢(A) = —log E[e™*], A > 0.
Then, the following assertions are equivalent.

(1) X ~ RD;

(2) X ~ ID and is embedded into a subordinator (X;);-o such that we have the identities in distribution:

cX; 4 Xet + Zey, foreveryce (0,1)andt > 0, (24)

where Z.; is a non-negative infinitely divisible random variable independent of X.;
3) ¢y € BFe.

Remark 5.12. In Remark 5.8, we have noted that B¥g is a convex cone, i.e. it is stable by mixture of families
of BFg by a measure . In case where u is a discrete measure, say v = 8; + 6, + -+ + 0y, the latter is stochasti-
cally interpreted as follows: If X;, X;,..., X, ~ ID are independent and associated functions ¢,, ¢,,..., ¢, € BFe,
i.e. there exists an independent family of r.v.’s Z; ¢, Z, c,. .., Zs ¢ associated with X, X, ..., X, via the identity (24),
thenS, =X, + X +---+ X, € RD and the r.v.

Zic + Zy o + -+ Zn,c is associated with S, via (24).
Another stochastic interpretation is as follows. By Theorem 5.5, we know that the Lévy measure of a func-
tion ¢ € BFg is represented by:

pdx) _ pk)
dx X2

dx, p nondecreasing.

Recall that any Bernstein function ¢ is associated with a subordinator (X;); > O, possibly killed with a rate
q = ¢$(0). The so-called harmonic and harmonic potential measures are defined by:
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dt
U(dX) = J‘ IP(Xt € dX)dt, H(dX) = J‘ IP(Xt € dX)T, (25)
(0,00) (0,00)

and the exponential functional of the subordinator (X;):»¢ is given by the stochastic integral I = I:O eXdt.
The measure

W(dx) = dbo(dx) + (g + p(x))dx

is also of a particular interest. In [10], it is shown that the measure U is infinitely divisible (in the sense of
the convolution), whereas W is not in general, but we have the following:

Proposition 5.13. For any Bernstein function ¢, the following assertions are equivalent:

1 A % - %(A) is completely monotone;

@ A (pN)/A) is completely monotone for all t > 0O;

(3) W(dx) is an infinitely divisible measure;

(4) For every a > 0, ag(a) e ®W(dx) is an infinitely divisible distribution;

(5) The exponential functional I is such that 1og I is infinitely divisible;

(6) The harmonic potential measure H has a density function of the form @, x > 0, with p(x) € [0, 1].

Corollary 5.14. Any function ¢ € BFg satisfies the assertions of Proposition 5.13.

Proof. Since O¢ € BF, then

e OO _ o) -~ AW

cM
A A

and multiplying by the completely monotone function 1/¢, we get the result. O

Proof of Proposition 5.13.
(1) = (2): Writing

[(l)(/l))t —e —t(log A - log ¢)’
A

note that log A - log ¢ is an extended Bernstein function, whose derivative is % - (% The assertion stems
from [2, Theorem 5.11, p. 53].
(2) = (3): By representation (1), the Laplace transform of the measure W(dx) equals

(e9]

-4 Mg _ 94
LW(A)—A+d+Ie aodx = £, 1o,
0

Since for every positive integer n, (L) is the Laplace transform of some positive measure W, i.e. the
following convolution equation holds:

W=W, *---xW,, n times.

(3) = (4): is justified by the fact that the measure ag(a)le-*W(dx) is a probability measure whose Laplace
transform is

_a ¢ +a
p@a A+a

(4) & (5) © (6) & (1): These assertions are stated in [10, Theorem 1.5, p. 715]. O
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5.4 What about #7:.9, 9.z and BF g N BF:=?

The differential operators = and its companion © were defined in (2.1)

E¢p() =Ap'(A) and ©=I-E (I =Identity).

I

Observe that the operators © and £ commute:
@<E)(P)) = (E-0)(P)(A) = -A*¢",

and then, BFz.g = BFg.z. The last class is not void since it contains all stable Bernstein functions A — A%,
0 < a < 1. By representation (2),

200)(¢) € BF o A - X"(A) = A2 I eMx2u(dx) = A2 I k() dx,
0 0

for some concave function k and it is clear that
k(x)
BFz.0= BFg.c=1¢ € BF, s.t. u(dx) = —de, k concave;.
X

On the other hand,

BF=N BFg = {q.') € BF, s.t. u(dx) = k(—)z()dx, X @/ and k \}.
X X

By Proposition 3.2, if a non-negative function on (0,00), k(x) = xI(x), is concave, then it is necessarily
nonincreasing and xk(1/x) = I(1/x) is also concave, and then nondecreasing. We deduce that
BFz.0 C BF=zN BFe.

It is then natural to ask the question: whether it is true that BFz.9 = BF=z N BFg? The assertion fails, and a
counterexample is given by the function k(x) = x3/%(1 — e™¥), which is not concave but satisfies the require-
ments for BF=z N BF .

6 The class B7 3

We now introduce a more refined class than 8%g, the class BF }9, that will provide the behaviour of the
transitions of the subordinator behind the involved Bernstein functions.

6.1 Definition of 7 § and analytic results
Definition 6.1. [1] We denote by BF, g_) the class of functions ¢ : [0, c0) — [0, c0), differentiable on (0, co),
such that

O(e ) = e (1 + tE¢) € CM, forall ¢ > 0. (26)

The class BF 4 has also been considered by Sendov and Shan [1] and denoted there by Hgs. We start by

some enlightenment on the structure of 87 . The linearity of © leads to the following observation that will
be used several times.

_et®
0¢ = lim o -e®

t—0+ t

(27)
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Proposition 6.2. Let ¢ : [0, co) — [0, co) be differentiable on (0, co) such that ¢(A) > 0 if A > 0. Then
(1) ¢ = 0 and O¢ > 0 if, and only if, 0 < B(e™®) < 1, for all t > 0;
(2 Ifp € BF,then0 < O(1 - ) <1, forallt > 0.

Proof.
(1) For the sufficiency part, fix A > 0 and denote p,(t) = O(e ) (A). Observe that p, is nonincreasing
because its derivative is

p'a(t) = —[OpA) + tpA)EPA)]e ¥ < 0
and conclude with the facts that p,(0) = 1 and p,(+00) = 0. For the necessity part, use representation

(26) to deduce that ¢ = lim,_,, e ?0(e~®)/t > 0 and use (27) for O¢.
(2) Certainly Z¢p > 0 and Proposition 5.2 ensure that ©¢ > 0, so point (1) applies. O

Proposition 6.3. We have the (strict) inclusion BF % ¢ BFe, and the equivalence between the following
assertions:

(1) ¢ € BFe;

(2) O(fop) e CM, forall fe CM;

(3) ©(1 - e ) € BF, for allt > 0;

(4) O(p o @) € BF, forallp € BF.

Proof. The inclusion is obtained by (27) and by Proposition 3.1. The inclusion is strict because the identity
function belongs to 8¢ but not to 8F 5. For the equivalences, use Proposition 3.3:

P eBFy o 0™ ecCM,Vt>0 & 01 -e')=1-0(") c BF,Vt>0,

then use the fact that kernels e ® and 1 - e, t, x > 0, respectively, generate the convex cones CM and
BF in order to retrieve the stability property of 874 by composition on the left. O

Remark 6.4.

(i) Due to the linearity of the operator O, it is not difficult to see that the class BF; %9 inherits from BF its
closure property by pointwise limits given by Proposition 3.1.

(i) Assume ¢'/® ¢ (BF, é) for a € (0, 1). Proposition 6.3, applied with the composition with the Bernstein
function A — A%, gives that necessarily ¢ € BF .

Next result gives a simple sufficient condition for a function to belong to the class 8F}:
Proposition 6.5. If ¢ € BFg and (E¢p)? € BF, then ¢ € BF .
Proof. First note that A — ¢,(A) = Ja - log(1 + JA) € BF because its derivative gal’(/\) =201 + JA)is
completely monotone. Also,
O(e®) = e (1 + tEP) = e, @; = td — log(1 + tEP)

and by Proposition 3.1 on the compositions, obtain

@; = tOP + ,((tEP)?) € BF,Vt > 0= e P e CM,Vt >0 & ¢ € BFp. O
Example 6.6. For every a € [0, ﬂ, the stable Bernstein function A — A* satisfies Proposition 5.5, and hence

belongs to BF, é. Certainly, this not true for a = 1, and this motivates the investigation made in Section 6.4
on the determination of the maximal value aq € [1/2, 1) for which A - A% € B8F},.
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6.2 A stochastic result closely related to the class £7
The following result is very close to the requirements on functions in 8F%:

Proposition 6.7. Let X be a positive random variable with cumulant function ¢(A) = ~log E[e™], A = 0, and
define for every c > 0, the functions

¢(c)
fex) = ce?@e*P(X <x) and g.(x)=c € e“P(X > x), x> 0.
e

$) _ 1

(1) The functions f. and g, are probability density functions associated with two independent random vari-
ables, say X and Y,.), satisfying the identity in distribution:

E 4
? = BL‘X(C) + (1 - BC) Y(c)’

where E has the standard exponential distribution and B, is Bernoulli distributed, with parameter e (©)
and is independent of X and Y.
(2) Assume X is infinitely divisible with Bernstein function ¢, and let (X;);~o be its embedding subordinator, i.e.

x4 Xi. Then, the r.v. X is always infinitely divisible for every c > 0 and we have the equivalence between
the following assertions:
(i) the r.v. Yy is infinitely divisible for every ¢ > 0;

. : e W
(i) the function A — /11@(117 < ¢(1)(A) = % - e‘:w({)l is completely monotone;

(iii) the harmonic renewal measure v of the random walk (Xi)x-1 has a density k on (0,00) with respect to
the measure dx/x:

v(dx) = OZO: %[P(Xk e dx) = xx dx and 0 < x(x) < 1.

k=1 X

Proof.

(1) Itisnot difficult to check that f. and g, are probability density functions. The main assertion is based on
the following remark: Let B, be a Bernoulli distributed random variable with parameter p < (0, 1)
independent of two independent real random variables X and Y, then the probability measure
pP(X € dx) + (1 — p)P(Y € dx) is the distribution of the random variable

B,X + (1-B),)Y.
It is suffice to take p = e #© and to note that
ce™™® = pfe(x) + 1 -p)g.x), x>0.
(2) X() ~ ID is due to the form the Laplace transform of X is given by

c E [e—(AJrc)X]

Elel = A+c E[eX]

=e %M (28)

and A = ¢.A) = p(A + ¢) - P(c) + log[l + g] € B8F . The statements on Y, are justified as follows:
let ¢ be defined by

e M) = _[ e™P(X > x)dx =

0

1- 90

T =exp - [logA - log(1 — e®M)], A > 0.

Then

. 1 @Ne D a1 - eh)()
YN =3 T T A0 = 9@y
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Observe that (1 — e?) € BF implies1 - e? e BF, A 0(1 - e?)())/A e CM and (1 — e®)! e CM.
Then ¢’, as the product of the two last functions, is also completely monotone. The argument for
(i) © (i) is finished because

c 1 - E[e~A+0X]

= e~ (@A+0)-0(c)
1-e%0© A+c

E [e_AY(C)] =

and ¢’ e CM © A — @A + c) — p(c) € BF for every ¢ > 0. For the equivalence (ii) & (iii), just write

1 9N 1 v, -k¢(/1)_l_ool X _ e
1 e?™_1 2 kZ‘l’(A)e 1 Zka[Xke ]= _[ e ™(dx - xv(dx)). O

=1 k=1 (0,00)

Remark 6.8. The Esscher transform X of X, ¢ > 0, whose distribution is given by
P (X € dx) = e *P(X € dx)/E[e ],
is also infinitely divisible because

E[eMia] = e~ (@@A+o)-¢(c)

and ¢(. +¢) - ¢p(c) € BF . Take anr.v. E independent of X[ and exponentially distributed. By (28), we have
the identity in law

IEY

E
X =
(c) c

+ X[c]-

Corollary 6.9. Assume ¢ € BF , $(0) = 0, be associated with the subordinator (X;)¢=o and adopt the notations
of Proposition 6.7 on the random variables X;. Then, (X;)) is always infinitely divisible for all t, c > 0 and we
have (4) = 3) & 2) & (1):

(1) t¢ satisfies the conditions of Proposition 5.13 for every t > 0;

(2) (Yo) is infinitely divisible for every t, c > 0;

3) A 100NN _ 1 @D Cat oyery £ 0;

A 1-e oM A et _q
(4) ¢ € BF.
Proof.
(4) = (3): Observe that (ii) in Proposition 6.7 is implied by ©(e*®) € CM or, equivalently, by ©(1 - e ¢) ¢ BF.
(3) © (2) and (2) & (1): immediately follow by Proposition 6.7. O

Conjecture. Let (X;);»o be the gamma subordinator, i.e. X; has the density and Bernstein functions f; and ¢,:

fix) = %e"‘, x>0 and ¢,A) =tlogl +A), A=0.

Observe that Corollary 6.9(iv) does not apply on ¢, = t¢, because ¢, is not even in BFg:

Ao 0 M) = t[log(l P ) - %} ¢ BF.

Elementary calculus gives that the associated k-function in Proposition 6.7 is given by

Ki(Xx) = XZ Jux) =te X (E(x") - 1), x>0,
k>1 k
where Ey(u) stands for the Mittag-Leffler function. Also observe that x(x) =1 - e™* € [0, 1] and then
Theorem 6.7 applies. Due to the asymptotic [11, (3.5.7) p. 32], we surmise that
Kx)<1,vx>20 & t<1.
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6.3 Stochastic interpretation of the class 7 §

The class BF} is related to harmonic concavity property of the finite-dimensional distributions of sub-
ordinators by the following corollary, which makes [1, Lemma 7.4] a straightforward consequence:

Corollary 6.10. Let ¢ € BF, ¢p(0) = 0, associated with the subordinator (X;);»o. Then the following assertions

are equivalent.

(1) ¢ € BFs;

(2) There exists a family (p;)i=0 of nondecreasing functions on (0, co) s.t. such that, the distribution of X;,
t > 0, admits a density function represented by

PX e dx) _ pi(x)

I 2 x> 0. (29)

Proof. Using the representation
1-e®W=1_E[eM] = j (1-e™MPX; € dx),
(0,00)

and consider the probability measure P (X; € dx) as the Lévy measure associated with the Bernstein func-
tion 1 — e~*. Theorem 5.5 and Proposition 6.3 entail

P e BFy & 01 - et e BF, Vt >0 & (29) is true for every t > 0. |

Corollary 6.11. Let ¢ € BFp, associated with the subordinator (X;);so and with the potential measure and
harmonic potential measure U, H given by (25). Then,
(1) The measures U and H are absolutely continuous such that

U(dx) = L)z()dx’ H(dx) = h(—)z()dx, where u, h are nonincreasing.
X X

In particular, the p-function given by Proposition 5.13 is s.t. x — xp(x) is nondecreasing.
(2) Both functions O(1/¢) and ©(¢' /@) are completely monotone.

Proof.
(1) By Proposition 6.10, we have the representation

vao = [ pteand- [ 2Par- ay,

b%
(0,00) (0,00)
H(dx) = f P, e 03l - f podt  h 4
t x2 t x2
(0,00) (0,00)

where for every t > 0, p; is nondecreasing. It is then obvious x — u(x), h(x) are also nondecreasing.
(2) The assertion stems from

1 _Ax ') A
) = I e™U(dx) and ) = I e™xH(dx), A>0,
[0,00) (0,00)
which entails
Ly = Xt [P X +1
@(¢J<A)_ | e umax and @[qb](/t)_ | e hoax. O

[0,00) (0,00)
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6.4 Answer to the problem of Sendov and Shan [1]: for which a does A% ¢ B7 §?

In this section, we give a partial answer to an open problem raised by Sendov and Shan, [1, Open Problem
4.1], which is in strong relation with positive stable laws: what is the value 0 < a, < 1 for which it holds that

A= Ae 8FL, foralla < ag? (30)

The authors proved that (30) holds for a < 2/3 and conjectured that

(o = —= = 0.70710678118.

NF]

The importance of this problem is that the function ¢(A) = A%, A > 0, is the Thorin-Bernstein function
associated with the positive stable r.v. S, through the following representations:

« T oy Ca B a a sin(mra) e AS. T s
A% = I 1-e )x‘“l dx, c,= i-a I'(a + 1)771 , et =[E[e™] = I ef,(s)ds, (31)
0 0

where f, is the probability density function of the r.v. S,. Note that f, is explicit only for the value a = 1/2
and that

e—1/4x

22307

corresponds to the inverse-Gaussian distribution. In general, f, is only evaluated by the series expansion
given by [12, formula (2.4.8), p. 90]:

fip(x) = x>0,

= T'(na + 1)
I

_l _1\n-1
fa(x)—ﬂn;( D T m T

sin(mna) x~(a+), (32)

Note that (30) is equivalent to
Ao e™1 + atA%) e CM, forall a<ag and t> 0
and also to
A e 1 +al®) e M, forall a< ag.

Based on the result found in Simon [13], we assert that:

Theorem 6.12. Let o; = 0.688483504697 be the root of the function x — sin?(nx) - x, % <x<lLIfa<a,
then A — A% € BF .

Proof. In [13, Lemma 2.3], it was shown that there exits an increasing function R : [0, 1] — [0, co] such that

A eM(s+al%) e CM o a<1/2 or s = R(a),

where R(a) = a if a € [0,1/2] and 1/4(1 — &) < R(a) < a/sin’(na) if a € [1/2, 1]. Taking s = 1, it is clear that
(30) holds true if @ € [0,1/2] or if @ € [1/2,1] and 1 > a/sin?(na). Thus, for a € [1/2, a;], we always have
1 > a/sin?(ma). O

Recall that ¢ is given in Theorem 6.12 and that the density function f, is given by (32). Theorem 6.12
immediately gives the following consequence.

Corollary 6.13. If O < a < oy, then the following function is nondecreasing:

, 1@ 71]" na+1) . —(na-1)
X X)) = = ) () 1———= sin(ma)x~"™D, x> 0.
n=1

(
I'n+1)
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7 The class 873

Definition 7.1. We denote by BF; é the class of functions ¢ : [0, co) — [0, c0), such that
A e —1+tpeBFg forallt > 0.

Proposition 7.2. With the notation /B = {f, s.t. f*> € B}, we have the inclusions

JBF Y ¢ BFY ¢ JBFe N BFe.

The first inclusion is strict because \JA € BF3 but A ¢ BF .

Proof.
(1) Example 5.7 ensures that A — ¢,(A) = eVl 1+ e BFe and hence in BF . Thus, if 2 € BF L, then
point (2) of Proposition 6.3 completes the first inclusion: ¢0(t2¢2) =e® -1+ t¢ € BFe. The inclusion

is strict and a counter-example is given by ¢p(1) = /A € BF} because

A eth 14 (VX = () € BFe, VE> O,

but $2(A) = A ¢ BF . The latter is true since the first derivative of (1 — e) =1 — e}(1 + A) equals to
the noncompletely monotone Ae™.

(2) Assume ¢ € BT%, i.e. 0(e® - 1 + t¢) € BF, for all t > 0. From Proposition 3.1, and from next limits
deduce the second inclusion:

0(¢) = lim %@(e*“?5 ~1+tp) e BF and O(¢p?) = lim 1‘2—28(e4¢ -1+ tp) € BF. O
t—0+

t—o0

Next proposition gives a stochastic interpretation of the class 8F3.

Proposition 7.3. Let ¢ € BF be associated with a subordinator (X;);-o. Then, the following assertions are
equivalent.

(1) ¢ € BFY;

(2) the measure u(dx) and P(X; € dx), t > 0, are absolutely continuous and the function

X - xz[tu(dx) _ P& e dx)j’ x> 0,

dx dx

is non-negative and nondecreasing;
(3) the function x — l(x) = ti(x) — P(X; > x) is non-negative nonincreasing and x — xli(x) is non-negative
nondecreasing;

(4) the function x — t J: wu(du) - [E[thl(xtgx)] is non-negative and concave.

Proof. Without loss of generality, we may assume that ¢ has triplet of characteristics (0, 0, u). By (2) and
(22), we have the following representation valid for all A > 0 and t > O:

-1+ =A [ eMdr, (33)
0
B(e® -1+ tp)(A) = A2 I e Mxl(x)dx, (34)

0

where x — l(x) = ti(x) - P(X; > x).
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(1) = (2): Theorem 5.5 and representation (34) entail that d(-l)(x) = tu(dx) — P(X; € dx) is a positive
measure which is absolutely continuous and

tu(dx) - P(X; € dx) = qt(f) dx, with g; non-negative and nondecreasing. (35)
b

By Proposition 7.2, necessarily ¢p € BFg and u(dx) is absolutely continuous, and then, so is P(X; € dx).

(2) = (3): Using (35), we have

x> Li(x) = I q‘(gl ) dy is non-negative and nonincreasing
y

X

and by the change of variable y — xy, we see that

x B xly(x) = I szy) dy is non-negative and nondecreasing.
1

(3) = (4): By Theorem 5.5 and Corollary 6.10, we know that the measures y and P(X; € dx), t > 0, have
density functions of the form

u(dx) = % and P(X; € dx) = p;(z"),

where both p and p; are nondecreasing and, by representation (18), dp(x)/x and dp;(x)/x are, respectively,
the Lévy measures of ©(¢)) and of O(1 — e *?). Because ¢ € BF % and by representation (33), we obtain

tdp(x) — dp;(x)
X

B -1+ t) = I 1 - e € BF, Vt>0,

(0,00)

and the latter ensures that the measure tdp(x) — dp;(x) is positive, hence the function x — tp(x) — p;(x) is
nondecreasing.

(2) = (1) is obtained by reading the last arguments from bottom upwards. The other equivalences are
obtained by integration. O

Recall the constant ¢, and the density function f, are, respectively, given by (32) and (32). A straight-
forward consequence of Proposition 7.3 is the following result.

Corollary 7.4. Let f,, a € (0, 1), be the density function of a positive stable distribution. Then, the following
assertions are equivalent.

I 0<ac<1/2

(2) The following function is non-negative and nondecreasing:

X xz( - _fa(X)j ) i DD i g e, x> o,

xo+1 o} I'n+1)

8 Generalisation of reverse decomposability:
convex decomposability

A natural extension of the class 8%y is given by the class 8%, which is described as follows.
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8.1 The class 7, and its analytic properties

Definition 8.1. The class of convex decomposable cumulant functions, denoted by 8%, is defined by
BF, = {¢ € CF s.t. v.¢p € BF, foreveryc e (0, 1)},

where v, is the operator given in Definition 2.1.

Proposition 8.2. If ¢ : [0, co) — [0, ©0) is such thatv.¢ € BF forsomec € (0, 1), thenp € BF . We actually
have BFg C BF, C BF.

Proof. Note that BF¢ c BF, because v, = 6. + 6,_.. Since v, = 6.¢ + 6,_.¢ € BF for any c € (0, 1), then
U%(p = 291/2¢ € BF.

By Proposition 5.3 point (2), we deduce that ¢ € BF. O

Unfortunately, we were not able to derive a differential operator associated with 8F,, as we did for the
identification BFy = BFg in Theorem 5.5, nevertheless we propose the following characterisation of BF,:

Theorem 8.3. Let ¢ be a Bernstein function represented by (2) and associated with a Lévy measure . Recall i
and (}7 are given by (17). Then, we have equivalences:

(D) vep € BFy;

2 UC)T is positive and nondecreasing for all c € (0, 1);

(3) The measure u has the form

u(dx) = L);) dx suchthat xw— xp (lj is subadditive;
X X
4) P(A) +---+ Pplchd) — p(A) € BF, forallg,...,ca =z 0st.g+ o+ + ¢ = 1.

Proof. (1) = (2): Use representation (2) of ¢p, make the appropriate changes of variable and use the operator
U in order to write

U dA) = P(cd) + PEA) — ) = a + A j e (v ) (1/x)dx,
(0,00)
where
W) (1/x) = fi(x/c) + A(x/T) - A(X).

Since v.¢ € BF, then using representation (1) for v.¢(A), deduce that x — (ucﬁ)(l/x) is right queue of
a Lévy measure and hence UC)T is positive and nonincreasing, so that x — (UC)T)(X) is positive and non-
decreasing.

(2) = (3): It is clear that lim, ,of1(1/x) = 0 and by the assumption that x — ji(1/x) subadditive nonde-
creasing. Deduce from [14, Theorem 16.2.1, p. 460] that x — fi(1/x) is continuous on (0, co), and then j1
is absolutely continuous. Thus, the measure y can be represented in the form pu(dx) = x?p(x)dx with some
measurable function p. Furthermore, since (vcﬁ)(l/x) is nonincreasing and since

/) =ese) + fx/e) - oo = [ 2R aee [ B ae- [ 2D

- j {Ep(s/c) + Spisie) - lp(s)}%,
S S S S

X

deduce that the last integrand is positive for any s, and then x — xpGj is subadditive.
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(3) = (4): As in the first implication of this proof, make the appropriate changes of variables in order to write
dal) +--+ plcpd) - p(A) = g(n - 1) + A _[ eMHy/a) +--+ f(y/ca) - A(y)]dy.
0

By the same argument as in (36), deduce that A — @(cqA) +---+ Pp(cyd) — P(A) € BF,.

(4) = (1): Just take n = 2. O

Remark 8.4. The last results bring us to the following comments:
(i) If ¢ € BF,, then limy_,o, ¢'(1) = +0c0. To see this, do as in the proof of Proposition 5.3: if ¢'(0) =

limy_, o, ¢'(A) was finite, then Proposition 3.1 would give

1 = e VM)
A lim ——— = A(¢p'(0+) — ¢p'(A)) € BF,
c—1- 1-c¢

and then, ¢'(0+) — ¢’ € CM, so that ¢" € CM, which is impossible.
(ii) Assume p is nondecreasing. Then, [15, Remark 2.19] ensures that x — xp(1/x) is subadditive and this

comforts the inclusion BF, ¢ BFg obtained in Proposition 8.2.

8.2 Stochastic interpretation of the class B7,

Let X be a non-negative random variable associated with a cumulant function ¢ € 8F,. Proposition 8.2
shows that X is necessarily infinitely divisible, and Theorem 8.3 shows that ¢ € 8%, is equivalent to the
identity in law:

X+1-0X dx4 W, forevery c € (0, 1), (37)

where, in the r.h.s, X and X’ are i.i.d random variables and in the L.h.s, the random variable W, independent
of X, is necessarily infinitely divisible because its cumulant function is the Bernstein function v, ¢ given in
Definition 2.1. It is then legitimate to introduce the subclass CRD of convex reverse distributions of random
variable satisfying (37). A straightforward stochastic reformulation of Theorem 8.3 is as follows:

Proposition 8.5. Assume X ~ CRD and X,,..., X,, are independent copies of X. Then, for all ¢ = (c,..., ¢y) €
(0, 1)" such that ¢ +---+ ¢, = 1, there exists a non-negative random variable in W, ~ ID, independent from X
such that

d
aXi+-+ o Xpg =X+ W, VneN.

9 Conclusion

We have revisited the class SD of self-decomposable distributions, introduced its dual class RD and then
extended RD to the class CRD. We would like to stress that the idea of this work is inspired by the original
idea of Sendov and Shan [1], who were the first to exhibit the analytic interest of the operator @ in the
context of completely monotone functions and Bernstein functions. Our work completes theirs with further
analysis and essentially, it provides the stochastic interpretation and comparison between the Lévy mea-
sure of transitions of the related subordinator. We are confident that the classes RD and CRD will find their
way, like SD, in the applications of the theory of Lévy processes and infinite divisible distributions.
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