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Abstract: In this paper, we present a new refinement of Jensen’s inequality with applications in information
theory. The refinement of Jensen’s inequality is obtained based on the general functional in the work of
Popescu et al. As the applications in information theory, we provide new tighter bounds for Shannon’s
entropy and some f-divergences.
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1 Introduction

Let C be a convex subset of the linear space X and fa convex function on C. If p = (py,..., p,) is a probability
sequence and X = (x,..., X,) € C", then the well-known Jensen’s inequality

f[ZpixiJ Z fx) 1)
i=1

holds [1]. If f is concave, then the preceding inequality is reversed.

Jensen’s inequality probably plays a crucial role in the theory of mathematical inequalities. It is applied
widely in mathematics, statistics, and information theory and can deduce many important inequalities such
as arithmetic-geometric mean inequality, H6lder inequality, Minkowski inequality, and Ky Fan’s inequality.

In 2010, Dragomir obtained a refinement of Jensen’s inequality as follows [2]:

Theorem 1.1. If f, X, p are defined as above, then
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The same year, Dragomir has also obtained a different refinement of Jensen’s inequality as follows [3]:

Theorem 1.2. (S. S. Dragomir) Let C be a convex subset in the real linear space X and assume that f : C > R
is a convex functionon C. If x; € Cand py > 0, k € {1, 2,..., n} with Zzzlpk = 1, then for any nonempty subset |
of {1, 2,..., n}, we have

Y pifa) = D(f, p, %3 ]) = f(Zpkxk} 3)

k=1 k=1

where D(f, p, X; J) is a functional defined as follows:

D(f,p,x;]) = P]f[%zpixij + P]f[%z p]'X]]

Tiej T jey

with ] a nonempty subset of {1,2,...,n},J =1{1,2,...,n}\], P, = ¥, ;p; and P; = Py = Yigbi =1- Xigbis
where | + {1, 2,..., n}.

It is easy to find that if J = {k}, then inequalities (3) imply inequalities (2).
In 2016, Popescu et al. defined a new refined functional as follows [4]:

D(f) P, X;];]l;]Zy---’]m) = ZPLf(PLZ p]X]] + p]f(%]z pjxl]y
i=1

ki jej; jel

where /i, J5,..., Jn are nonempty, pairwise disjoint subsets of J, with J = | J; J; and Py, == Z].E 5 b It is easy to
observe that

m

Z P]i + p] =1,

i=1

and in order to make sense, m should be less or equal with the cardinal of J, thatis,1 < m < |J|. Ifm = 1, then

D(f’ pyx;]yjl) :D(f! p9x;])-

Then Theorem 1.2 can be generalized as follows:

Theorem 1.3. (P. G. Popescu et al.) Let C be a convex subset in the real linear space X and assume that
f: C — R is a convex function on C. If x;, € C and py > 0,k € {1, 2,..., n} with ZLlpk =1, then for any non-
empty subset J of {1, 2,..., n}, we have

Y oif ) = D(f, P, X5 ], iy Joso Jm) 2 D(F, P, X3 ) 2 f[z pkxk} (4)

k=1 k=1

where Ji, b,..., Ju are nonempty, pairwise disjoint subsets of J, with ] = |J; J; and m < |J|.

In [5], Horvath developed a general method to refine the discrete Jensen’s inequality in the convex and
mid-convex cases. The main part of the inequalities in Theorems 1.2 and 1.3 are special cases of Theorem 1 in
the paper. Recently, Horvath et al. [6] presented new upper bounds for the Shannon entropy (see Corollary 1)
and defined an extended f-divergence functional (see Definition 2) by applying a cyclic refinement of Jensen’s
inequality. For more other refinements and applications related to Jensen’s inequality, see [7-17].

The main aim of this paper is to extend the results of Dragomir [3] and Popescu et al. [4] by the afore-
mentioned functional. In Section 2, we give refinement of Jensen’s inequality associated with the general
functionals. The refinement demonstrates some estimates of Jensen’s gap and tightens the inequalities (4).
In Section 3, we show the applications in information theory. We propose and prove new tighter upper
bounds for Shannon’s entropy compared to the bound given in [4]. At last, we obtain new bounds for some
f-divergences better than the bounds given in [3].
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2 General inequalities by generalization

We continue to use the aforementioned definition and show the main results.

Theorem 2.1. Let C be a convex subset in the real linear space X and assume that f : C — R is a convex
function on C. If x; € C and px > 0,k € {1, 2,..., n} with Z;’:ka =1, then for any nonempty subset ] of

{1, 2,..., n}, we have

Zpkf(xk) > max }D(f,p,x;l,h,lz, vy Jms)

) c{l,...,n
. (5)
> max D(f,p, ;1,102 -5 Jm) zf{z PkaJ-
@+Jc{l,...,n} k=1

Proof. We assume the value of max D(f, p, X; J, Ji, ..., J) is obtained for J; = J™,1<i< m.
@+Jc{l,...,n}

If m + 1 = n and each subset J™ (1 <i < m) and /™ contain one element, then we can easily obtain
that the inequalities (5) hold as follows:

Y pif () max  D(f, P, X; ], i, Jose s Jms1)

=1 g+Jc{l,...,n}

max D(f p’x ]s ]1)]2) y]m) >f zpkxk
a+Jc{1,... k=1
Otherwise, there exists a subset ]i(’") (l<i<m)or] (m), which contains more than one element. Without

loss of generality we assume JU™ contains more than one element. Then we find two nonempty subsets
JomeD | pmid) sych that J&D y J0D = Jm gng jmeD n jmiD — g5 By using Jensen’s inequality, we have

m+1

p Jamen 1 Py 1
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P s 1 P](m+1 1
Zf Im X z p}X} + m+1 . ij]
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1
et 3l
]r(nrrw )U]r(n":l) ]'Ef;(n'"H)U]y(lell)
The aforementioned inequality can be rewritten as:
1
m+1)f bixj | + P]frmhf DjX; > P]r(nmﬂ)U];s:Tll)f _— z DjX; |
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So let J™™V = '™ 1 < i< m - 1, we can deduce that
max D(f P, X; 1, )i, Loy ey Jme1)
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> D(f, p, x; JOmD, Jima gomeD | poma, Jineh)| jominy
= 1
z m+1)f Z p]X] + P]r("mﬂ)f p]X]
i-1 Pl m+1) ]El,'(mﬂ) P]r(nmﬂ ]E] (m+1)
P P o 1
+Pyof| 5=, P |+ Pyrof B o Y piX
]m+1 iE],(n”Hl) ](m+1)
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m-1
1
> Z P]i(m+1>f DjX; +P],‘n"'“’ul,(n"f1”f _ Z DjX;
i-1 J jegmsd P ymen oy jegtmeDyjmsn
+ Py f ! Y pix
m+ — = X;
/ P]("Hl) . F(m+1) "
jeJ
m-1 1 1
= ) Pynf 5 Y x|+ Pymf 5 Y pix |+ Pymf 5 Y pix
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=D(f, p, x; JO, JIM, I, Jm, gy

= max D(f’ p’x;]’]lyjbony]m)'
@#Jc{1,...,n}

So the middle inequality in (5) holds.
The first inequality and the last inequality in (5) can be seen from Theorem 1.3. O

Theorem 2.2. Let C be a convex subset in the real linear space X and assume that f: C — R is a convex
function on C. If xx € C and pyx > 0,k € {1, 2,..., n} with Z?:kpk =1, then for any nonempty subset ] of
{1, 2,..., n}, we have

zpkf(xk) 2 min D(f’ p’x;]’II,JZ;u~’]m+l)
k=1 @+]c{l,..., n}
) (6)
> min D(f, p, X;];]l;]Z’“-)]m) 2f{z pkxk]'
a+Jc{l,...,n} k=1

Proof. We assume the value of min  D(f, p, X; J, Ji, Ja,.-., Jns1) is obtained for J; = J™V, 1 <i<m + 1.
}

@+Jc{l,...,n
Then we let two nonempty subsets J\™*D, J&1 gych that Ji™+V y JMD = (M Using the similar method in
Theorem 2.1, inequalities (6) can be obtained. O

Now we say that S;, S,,..., S;; generate a partition of the set S # & if they are pairwise disjoint and non-
empty sets with U2, S; = S. Then the main results above are given as follows:

Theorem 2.3. Let C be a convex subset in the real linear space X and assume that f: C — R is a convex
function on C. Assume further that x; € C and p; > 0, k€ {1, 2,..., n} with Zlf':lpk = 1. If A,, denotes all
partitions of the set {1, 2,..., n} with m elements (m = 1, 2,..., n), then

n
Zpkf(xk) 2 max D(f’ P, X; ]1’]21~~-,]n71)
k=1 .15 - s Jn-1}€Ana
22 max D(f’ p’ X;]l’]ZJ"'!]m) (7)
UsJ2s s Jmb€Am
>

{h,2te Ay

s max D(f’ p; X;]lx]Z) Zf[z kakJ’
k=1
where

m
1
Mﬁnmhwaﬂ=Zh{FZM%,M=LLqm
i=1 Ti jej;
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Proof. Since the first inequality and the last inequality follow from Theorem 1.3, we can suppose thatn > 4,
and we need only to prove that

max D(f,p,x; ), Jos..sJme) 2 max  D(f, p,X; 1, Jos..., Jm)-
UIJZ <<<<< ]m+1}€~7(m+1 UIJZ ::::: lm}e»ﬂm

for everym = 2,..., n - 2. It is enough to show that for each fixed {J;, b,..., i} € A there exists {Kj, K,...,
K1} € Apyq such that

D(f) P, X; I<1y KZy---! -Km+l) 2 D(f’ P, X; ]la ]2:---; ]m)-

Since n > 4 and m € {2,..., n — 2}, one of the sets J;, 5,..., Jn contains at least two elements. We can
suppose that

]m = Km U Km+1a

where K,,, and K, are disjoint and nonempty sets. Then {J;, J,..., Jn_1, Ky Km+1} € Ams1 and

PKm Prpin
py.f ZPJXJ = Pp.f Z DbjX P : P > b
m ]Ejm ]m m ]EK ]m Km+1 1€Km 1

By 1;% + % =1, Jensen’s inequality can be applied, and we obtained from the aforementioned equality

1
Prf piX | < P f|—— ), piXi| + Px,.f D% |»
7 <o B ot [ X o

j€lm K j€Km K1

and this gives the result.
The proof is complete. O

Theorem 2.4. Let C be a convex subset in the real linear space X and assume that f: C — R is a convex
function on C. Assume further that x; € C and px > 0, k € {1, 2,..., n} with Z?zlpk = 1. If A,, denotes all
partitions of the set {1, 2,..., n} with m elements (m = 1, 2,..., n), then

n
Y pifa) > min  D(f, P, X; J1, Bs -es Jue1)
=1 J2se s Jn1} €A
22 min D(f’ p9x;]1,]2,-~~,]m) (8)
Ul evvsJmb€Am
n
>> min D(f,p, X i, o) = f| Y pexec|s
{h.2}e Az =1

where

D(f’ P, X;]l;]Z,n-’]m) = ZP],f[ zp]X]J’ m=1,2,.,n
i=1

Ji jer

Proof. Analyzing the proof of Theorem 2.3, we can see the next: if {Ki, K,..., K1} € Ame is a refinement of
{1 Bs-vs Jm} € Ay (every element of {K;, K, ..., Ki,,1} is contained in an element of {J;, j,..., Jn}), then
D(f: p’ X3 I(l’ KZ’“-’ I<m+l) = D(f’ p’ X; ]1, ]2’-“1 ]m)

holds. Since each partition from A, is a refinement of a partition from A,,, the result follows.
The proof is complete. O
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3 Applications in information theory
3.1 New upper bounds for Shannon’s entropy

As the consistent work, bounds for Shannon’s entropy [18] can be found in [4,8,10,15]. For further discus-
sion, we present the definition of Shannon’s entropy first. If the discrete probability distribution P" is given
by PX =i) =p;,p; >0, i=1,2,...,n, s. t. Y., p; = 1, then Shannon’s entropy is defined as

- 1
HX) =) p; log;.

i=1 i
In [4], Popescu et al. obtained a new upper bound for entropy as follows:
m Prrs 15]
. i 1
HX)< min lo — =1 | 9
0 JJuJs-osm g{g (Pﬁj (P]j ] ®

Furthermore, considering the aforementioned results the following tighter bounds for Shannon’s en-
tropy are presented.

Theorem 3.1. Let H(X) be defined as above, under the assumptions of Theorem 2.1, the following inequal-

ities hold:
m+1 Pr i3\
; ;| I/
HX) <---< min lo — —
*) JJu)2s s Jmet gll—[ [P]i] [P]] ]

i=1

m O\PE (7 B
< min log [H (mj [ﬂ] ] (10)
TJisJ2s s Im iz1 P]i P]

PI1 T PI
<---< min log Wl |L_| < logn.
I.h P]1 P]

Proof. Taking into consideration the inequalities of Theorem 2.1 applied for the convex function f(x) =
—log x and x; = 1/p;, 1 < i < n, then

i 1 mel 1 1 1 1
- log — > Y Plog|—Yp - -—|-Plog|=Yp =
Y. pi log 1 hax Y. Pjlog P > b o 0g ]ZPJ

k=1 Dk Julzs s Jme i=1 Ji jeli j ]Ei p]

jeJ

> max iP log 1Zp L P log 1Zp Lils log En:p 1
> _ : L S 2V p . s e —|.
i:1] P " p ! P ! pj Dk

LT )m Ji jeki p] k=1
Those inequalities are equivalent with

() I
HX) < min | ) log|==| + log|%
I;]lv]Zv»»»v]mH i=1 P]l P]

i=

() INE
<  min Z log | = + log | =
LhuJas-sdm| §21 P]I. P]

< logn.

Let m have the value from 1 to n — 1 and the inequalities (10) are deduced. O
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Theorem 3.2. Let H(X) be defined as above, under the assumptions of Theorem 2.3, the following inequal-
ities hold:

(N ()
HX) < min log H = << min log L4t
Ui.J2s - s Jn-1}€AR i-1 P]I Ul2s-.s Jm}€Am i=1 P]l

Py Plz
<...< min ]og M @ < logn.
{h,l2te Az P]1 P]z

Proof. Taking into consideration the inequalities of Theorem 2.3, we have the inequalities (11) by the similar
method above. O

(11)

3.2 New lower bounds for f-divergence measures

Given a convex function f: [0, c0) — R, the f-divergence functional

n

I, @) = ) af {&j (12)
i=1 i

wherep = (py,..., Pn), 4 = (q1,..., Gn) are positive sequences, was introduced by Csiszar in [19], as a general-

ized measure of information, a “distance function” on the set of probability distributions P™. As in [19], we

interpret undefined expressions by

£(0) = lim f(); Of(g) —0; Of(gj - lim qf(gj _alimf@, 450
t—0+ 0 0 q—0+ q t—oo t
The following results were essentially given by Csiszar and Korner [20]:
(i) If fis convex, then I¢(p, q) is jointly convex in p and q;
(ii) For every p, q € R, we have
- [ Ziipi
Ip, @) > Y af | 50— | (13)
i-1 Yio di
If f is strictly convex, equality holds in (13) iff
bhi_P2_  _Pn
/AN an

If f is normalized, i.e., f(1) = 0, then for every p, q € R} with Y p; = Y, g;, we have the inequality
Ir(p, q) 2 0. (14)

In particular, if p, q € P", then (14) holds. This is the well-known nonnegative property of the f-diver-
gence.

Dragomir gives the concept for functions defined on a cone in a linear space as follows [3]:

In the first place, we recall that the subset K in a linear space X is a cone if the following two conditions
are satisfied:
(i) forany x,y € K we have x + y € K;
(ii) for any x € K and any a > O we have ax € K.

For a given n-tuple of vectors z = (zi,..., z,) € K" and a probability distribution q € P" with all values
nonzero, we can define, for the convex function f: K — R, the following f-divergence of z with the dis-
tribution q

Iz, @) =) gif [5] (15)

i=1 i
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It is obvious that if X € R, K = [0, o) and x = p € P", then we obtain the usual concept of the f-divergence
associated with a function f: [0, c0) — R. Now, for a given n-tuple of vectors x = (x,..., x,) € K", a prob-
ability distribution q € P" with all values nonzero and for any nonempty pairwise disjoint subsets
i by Jms J Of {1,..., n} we have

q]("” = (Q}ls Q]za---’ Q]m’ Q_]) € [Pm+l
and
X](M) = (X]l, X]z""’ X]m, X]) € [Pm+1,
where Qr = Y., i Q;=Qj,and X; = Yier Xis X = X;.
Let
n X, - (X
Lxym, qpm) = Y Quf | 22 |+ Qif | 2 |. (16)
i-1 Q; Y
The following inequalities for the f-divergence of an n-tuple of vectors in a linear space holds, which are

better than the inequalities given in [3].

Theorem 3.3. Let f : K — R be a convex function on the cone K. Then for any n-tuple of vectors x = (x,..., Xp) €
K", a probability distribution q € P" with all values nonzero and for any nonempty pairwise disjoint subsets
]19 ]2’-“’ ]ma ]_ Of{l,..., n} we have

Vv

I(x,q) == max (Iy (X m, g ome))

])]1;]2;»»»;]m+1
> max (If (x;m, q;m)) 17
R A T A (17)

=2 max (Iy (X;0, q;0)) = f(X,),
DA

where X, = Y| X;.

Proof. The aforementioned inequalities are obtained directly from Theorem 2.1 by letting p; — ¢; and
X;i — ﬁ O
Theorem 3.4. Let f: K — R be a convex function on the cone K. Then for any n-tuple of vectors X =
(x,..., Xn) € K", a probability distribution q € P™ with all values nonzero and for any nonempty any nonempty
pairwise disjoint subsets Ji, J»,..., Jn, ] 0f {1,..., n} we have

If(X, qQ == min (If (X](m+l), q](m+1)))

T JiJ2s s Jmet
> min (If (x;m, g ;m)) 18
[N e T (18)

>---= min Iy (x;0, g;0)) = f(Xy),
I.h
where X, = Y| X;.

Proof. The aforementioned inequalities are obtained directly from Theorem 2.2 by letting p; — ¢; and
X
X;i — =, O

In the scalar case and if x = p € P", a sufficient condition for the positivity of the f-divergence I¢(p, q) is
that f(1) > 0. The case of functions of a real variable that is meaningful for applications is involved in the
following:
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Corollary 3.1. Let I¢(x, q) be defined as above, under the assumptions of Theorem 3.2, the following inequal-

ities hold:
m+1 B P
I(p,q) >-> max [Z Q;f[ j+ Q,fKT’D
]x Q]

Ll Tt

Pi\ (B
% e [lzl Q]f( LJ ' Q]f[QJD "

S>> max(th[P j + Qf[ ]] =f(h)=0
LA Qj,

In what follows, we provide some lower bounds for a number of f-divergences that are used in various
fields of information theory, probability theory and statistics.

The total variation distance is defined by the convex function f(t) = |t — 1|, t € R and given by

me—Z@

i=1

E -1 ‘ Z i — qil. (20)

1

Proposition 3.1. For any p, q € P", we have the inequality

Jm+1

m+1
V(p, @) zz  max (Z [Py — Qyl + |pI_Q]|]

m (21
> max IPr— Qjl + 1P - Q| | 2---22max |Pj, — Q| (=0).
T ks Jm {; e ]J pho
Proof. The proof follows by the inequalities (19) for the convex function f(t) = |t - 1], t € R. O

The K. Pearson y2-divergence [21] is obtained for the convex function f(t) = (1 - ), t € R and given by

n . 2 n N2
%mm=2m%—Q=Z@7@n @
1 i=1 1

i=1

Proposition 3.2. For any p, q € P", we have the inequality

m+1
x’(p,q) =-> max [Z (Py - Qp)° (p]_Q])J

Lhidooodma\ 5 Qy Q
m+1 _ 2 D _ N
> max [Z (Py — Qp) + & _Q])Zj (23)
Lhiodn S0 Qy Y
( h Q]l) 2
>ee> 4 Py - >0).
= 111 Qn(1-Qp ) I?%X( A Qh) =0

Proof. Using the inequalities (19) for the convex function f(t) = (1 - t)%, t € R, we get the inequalities

m+1 _ 2 5 A2
X’(p,q) >---> max (Z (Pr - Qp) N B Q/)]

Lhdna 5 Qy Q
m+1 _ 2 _ 2
> max |y (Pr- Q)  B-Q)
Lhko\ 5 Qp Q
_ 2 D _ _ 2
oosmax| PR B -2 (Pr- Q)
T.h Qy Q Lh Qi1 -Qyp)
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Since
1 , 1
Q;1-Qp <—[Qy+1-QpkF =—,
4 4
then
(Ph Qll
—L =V > 4(P;, - Q)3
Q]l(l _ Qh ( 5 ]1)
which proves the last part of inequalities (23). O

The Kullback-Leibler divergence [22] can be obtained for the convex function f(¢) =t Int, t > 0 and
given by

KL(p, @) = Y g2 n (ﬂj =Y piln [5] (24)
i=1 t

i-1 i i

Proposition 3.3. For any p, q € P", we have the inequality

m+l (p Py 5\ m.(p P 5 \F
KL(p,q) >--->In{ max H Pt (B > In{ max H s Ll
JJu2s e Jmst Qy, Q TJudossm | 321 \ Qj; Q
Ph D. P]
-->In<{ max Ph . ﬂ > 0.
I Q]1 Q]
Proof. Using the inequalities (19) for the convex function f(t) = t Int, t > 0, we get the inequalities
mil(p \Pr(p D m (p i (p\D
KL(p,q) 2-->In{ max |]] i 2L > In max H it/ B e
LuloseosJman | 521 Q},- Q L. Q]I Q]
Ph ») PI 1 _ 1-Pp
-->In<{ max Ph . i = In{ max P]‘ 1= Py .
Lho [\ Qy Q Lho [\ Qy 1- Qh

Utilizing the geometric-harmonic mean inequality

(25)

v

\%

XYV > — Xy>0, 0<w<l,
PR
P/1 Pll
we have for x = =1, y = , and w = Py, that
1-P
(ﬁj " [1—1’11] " L

Qh 1- Q]l

which proves the last part of inequalities (25). O

The Jeffrey’s divergence [23] that has great importance in information theory can be obtained for the
convex function f(t) = (t — 1)Int, t > 0 and given by

_ l&—ljl (”’) ; il(&j. 26
J(p, Q) = Zq[q_ nl Z(p an| (26)

i=1 t
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Proposition 3.4. For any p, q € P", we have the inequality

m+1 P, P;-Qy; 13] P-Q
Jp,q) >--->In< max it/ 1
JoJuJos s Jmet ,1:! 0 Q
m+1 Py-Qy 5 \PI-Q
P . i i P
>In{ max |[] ki N @27)
LhsJasewsJm | 529 Q]i Q]
Qp=Py 2
1-P 2 -P
>...>1n{ max ( ]1) Qfl > max (Qh ]1) >0
T.h 1 -QpPpy, Li | Pr+ Q- 2P, Qy
Proof. Applying the inequalities (19) for the convex function f(t) = (¢t — 1)In ¢, t > 0, we get the inequa-
lities
m+1 Pr-Qy = \P-Qs
Pl i i P]
Jp,q) >-->In{ max lt/h A
Ll Jma :ll:! Q]i Q]
m+1 Pji-Qy 5 \o-Q
P . i i P
>In{ max |J]|=E |
LJulosesJm | 54 Q]i Q]

Qp—Pp
>...>1In<{ max % .
L |1 = Qp)Py,

Utilizing the elementary inequality for positive numbers

Inb- Ina 2
>

> , a,b>0,
b-a a+b
we have
In (—FP") - In (QJ
(Qh - P]1)2 . 1-0Qy Qn > (Qh - P]1)2 . 2
Q;1-Q =Py Py T Q1-Q 1-Py Pyt
/1( 11) -0, 0 11( /1) -0, + o

This inequality derives
1-P P - 2
Q- Pyp) ln[ h] - In [iJ > 20, - by) >0
1- Qh Qll P]1(1 - Q/l) + Qh(l - P]l)

Rewriting the aforementioned inequalities the last part of the inequalities (27) can be obtained. O

Moreover, all the aforementioned theorems, corollaries, and propositions can also be changed into
comparable versions according to Theorems 2.3 and 2.4.

4 Conclusion

The classical Jensen’s inequality plays a very important role in both theory and applications. In this paper,
we have obtained some refinements of Jensen’s inequality (5)—(8) in real linear space using the generalized
Popescu et al. functional. Moreover, we have obtained the new and sharp bounds of Shannon’s entropy and
several f-divergence measures in information theory. In the future work, we will continue to explore other
applications on the inequalities newly obtained in Section 2.
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