
Research Article

Bing-Yuan Pu*, Chun Wen, and Qian-Ying Hu

A multi-power and multi-splitting inner-
outer iteration for PageRank computation

https://doi.org/10.1515/math-2020-0120
received June 4, 2020; accepted November 24, 2020

Abstract: As an effective and possible method for computing PageRank problem, the inner-outer (IO)
iteration has attracted wide interest in the past few years since it was first proposed by Gleich et al.
(2010). In this paper, we present a variant of the IO iteration, which is based on multi-step power and
multi-step splitting and is denoted by MPMIO. The description and convergence are discussed in detail.
Numerical examples are given to illustrate the effectiveness of the proposed method.

Keywords: PageRank, power method, inner-outer iteration, multi-splitting, convergence

MSC 2020: 65C40, 65F10

1 Introduction

With the fast development of the Internet, web search engines have become one of the most important
Internet tools for information retrieval. How to list the relevant web pages plays a significant role in this
filed. Among thousands of search engines, Google is one of the most popular and successful. And this is
mainly attributed to its effective algorithm, PageRank.

PageRank, a link-based algorithm formulated by Page et al. [1], gives a rank list of importance of pages
related to user’s query terms. The hyperlink structure of the web can be viewed as a direct graph and
modeled by a Markov chain:

= [+ (−)] =Ax αP α ve x x1 ,T (1)

where ∈ ()α 0, 1 is the damping factor, �∈

×P n n is a column stochastic matrix, e is a column vector of all ones,
v is called the personalization or the teleportation vector and set as = /v e n. In particular, A is defined as the
Google matrix and is both irreducible and aperiodic, which implies that there exists a unique right non-
negative eigenvector x for (1). For more details about the PageRank algorithm, we refer the reader to [1–4].

Given the huge size and density of the Google matrices, computing PageRank is faced with the big
challenge of computational resources, and only a small set of computational tools can come in handy. The
power method was first considered to compute the PageRank for its stable and reliable performances.
However, when the largest eigenvalue of matrix A is not separated well from the second one, the power
method costs more and works less well. Some accelerated techniques have been proposed to speed up its
convergence, such as vector extrapolation [5–8], Arnoldi-type [9,10], aggregation/disaggregation [11],
lumping [12,13], adaptive methods [4,14] and inner-outer (IO) iteration methods [15–20].

Recently, researchers have focused on the PageRank’s linear system and the corresponding iterative
methods have raised concerns [3,15–17,20]. Gleich et al. [15] proposed an IO iteration method, which is



* Corresponding author: Bing-Yuan Pu, Department of Basic Science, Chengdu Textile College, Chengdu, 611731, China,
e-mail: skypuby@163.com
Chun Wen, Qian-Ying Hu: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu,
611731, China

Open Mathematics 2020; 18: 1709–1718

Open Access. © 2020 Bing-Yuan Pu et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.

https://doi.org/10.1515/math-2020-0120
mailto:skypuby@163.com

implemented by solving a linear system with a lower damping factor and similar algebraic structure to the
original one, and Gu et al. [17] put forward an improved algorithm, i.e., the power-inner-outer (PIO)
iteration. In this paper, we proposed a variant of the IO(PIO) iteration by applying multi-step power and
multi-step splitting to combine with the IO iteration to accelerate the computation of PageRank.

The remainder of this paper is structured as follows. In Section 2, we briefly provide the mechanism of
the IO iteration for PageRank problem. In Section 3, we introduce the proposed algorithm and investigate
the convergence properties in detail. Numerical examples are given to illustrate the effectiveness of the
method in Section 4. Finally, some conclusions are drawn in Section 5.

2 The IO(PIO) iteration
In this section, we begin by briefly introducing the derivation of the IO iteration by Gleich et al. [15].
Recalling =e x 1T , the eigenvalue problem =Ax x can be rewritten as

(−) = (−)I αP x α v1 . (2)
As you know, there is a general agreement that the smaller the damping factor is the easier it is to solve

the original PageRank problem. In light of this, Gleich et al. [15] reformulated (2) as

(−) = (−) + (−) < <I βP x α β Px α v β α1 , 0 . (3)
Then they have the following outer stationary iteration:

(−) = (−) + (−) = …
+

I βP x α β Px α v k1 , 1, 2, ,k k1 (4)
where =x v0 is the initial guess, though other choices are possible too. However, solving this linear system
with coefficient matrix −I βP is still computationally difficult, even though β is small. Therefore, the inner
Richardson iteration is used to compute the approximation of

+
xk 1.

Setting the right-hand side of (4) as

= (−) + (−)f α β Px α v1 ,k (5)
the inner linear system is defined as

(−) =I βP y f , (6)
which is computed by the inner iteration

= + = … −
+

y βPy f j l, 0, 1, 2, , 1,j j1 (7)
where =y xk0 is the initial guess and the computed approximate solution yl is assigned to new

+
xk 1. The

stopping criteria of the outer iteration and the inner iteration are, respectively, given as

∥(−) − (−) ∥ <
+

α v I αP x τ1 k 1 1

and

∥ − (−) ∥ <
+

f I βP y η,j 1 1

where the parameters τ and η are the outer and inner tolerances, respectively.
Based on the above discussion, a basic IO iterative algorithm for PageRank problem has been proposed

in [15] and its convergence has also been analyzed therein.
From (2) and by the power method, Gu et al. [17] obtained the Richardson iteration

= + (−) = …
+

x αPx α v k1 , 0, 1, 2, ,k k1 (8)
and then they proposed the PIO iteration as follows:









= + (−)

(−) = (−) + (−)

= …

+

+ +

x αPx α v
I βP x α β Px α v

k
1 ,

1 ,
0, 1, 2, ,

k k

k k1

1
2

1
2

(9)

1710  Bing-Yuan Pu et al.

where =x v0 is the initial guess and ∈ ()β α0, . The first iteration of (9) is easy to implement. In the second
iteration of (9), Gu et al. come up with the IO iteration to get the next approximation

+
xk 1. They then proved

the superiority of the PIO over the power method and the IO iteration and some convergence properties of
the PIO method have been given as follows.

Theorem 2.1. [17] The iteration matrix ()T α β, of the PIO iteration (9) is given by

() = (−)(−)

−T α β α α β I βP P, ,1 2 (10)
and the modulus of its eigenvalues is bounded by

=

(−)

(−)

∈ () < <σ α α β
β

α β α
1

, 0, 1 , 0 . (11)

Therefore, the spectral radius satisfies (()) ≤ <ρ T α β σ, 1, i.e., the PIO iteration converges to the unique
solution x⁎ of (2) for any initial vector x0.

Theorem 2.2. [17] Suppose the second iteration of the PIO iteration is exact and < <α0 1. Then the PIO
iteration converges for any ∈ ()β α0, . And it has

∥ − ∥ ≤

(−)

(−)

∥ − ∥
+

x x α α β
β

x x
1k k1 1 1 (12)

and

∥ − ∥ ≤

(−)

(−)

∥ − ∥
+ −

x x α α β
β

x x
1

.k k k k1 1 1 1 (13)

3 The multi-power and multi-splitting IO iteration for PageRank

3.1 The MPMIO iteration

It is not hard to find that the first step of PIO iteration (9) is the classical power method. In this way, the PIO
iteration can be understood as the combination of one-step power method and IO iteration. It inspires us to
expand the IO(PIO) iteration to more efficient methods. First, we consider the multi-step power method with
the IO iteration. Then on the second iteration of (9), we consider the multi-step splitting iteration. Hence,
the corresponding variant of the IO(PIO) algorithm, MPMIO, can be proposed. Section 4 is about the details,
and the convergence properties are described in Section 3.2.

Given an initial guess x0, we first expand the first step of (9) to the multi-step power as follows:













= + (−)

= + (−)

⋮

= + (−)

+

+ +

+ +

+

+ +

+

−

+

x αPx α v
x αPx α v

x αPx α v

1 ,
1 ,

1 ,

k k

k k

k k

m

m m

m
m

m
m

1
1

2
1

1
1

1
1
1

(14)

where ∈ () ∈ () = /α β α v e n0, 1 , 0, , and (≥)m 2 is the step of the power method.
Now, by introducing two parameters β1 and β2, ∈ ()β α0,1,2 we expand the second step iteration of (9) to

the multi-splitting as follows:









(−) = (−) + (−)

(−) = (−) + (−)

+ +

+ +

+

I β P ω α β Px α v
I β P x α β Pω α v

1 ,
1 .

k k

k k

1 1 1

2 1 2 1

m
m 1 (15)

A multi-power and multi-splitting IO iteration for PageRank computation  1711

Taken together, the proposed multi-power and multi-splitting IO iteration can be shown below.

Multi-power and multi-splitting IO iteration. Given an initial guess x0. Compute
















= + (−)

= + (−)

⋮

= + (−)

(−) = (−) + (−)

(−) = (−) + (−)

+

+ +

+ +

+ +

+ +

+

+ +

+

−

+

+

x αPx α v
x αPx α v

x αPx α v
I β P ω α β Px α v
I β P x α β Pω α v

1 ,
1 ,

1 ,
1 ,

1

k k

k k

k k

k k

k k

1 1 1

2 1 2 1

m

m m

m
m
m

m
m

1
1

2
1

1
1

1
1

1
1

1

(16)

until the sequence { }
=

∞xk k 0 converges.
The first m-step power iterations of (16) can be implemented easily and the IO iteration can be used for

the second stage. Setting the right-hand side of the splitting iteration of (16) as

= (−) + (−)
+

+

f α β Px α v1 ,k1 1 m
m 1 (17)

we get the first inner iteration

′ = + = … −

+

y β y f j l, 0, 1, 2, , 1.j j1 1 1 (18)

Then we assign (−) ′ + (−)

+

α β Py α v1j2 1 to f2 and get the second inner iteration

= ′ + = … −
+ +

y β y f j l, 0, 1, 2, , 1,j j1 2 1 2 (19)

where we take =
+

+

y xk0 m
m 1

as the initial guess and assign the computed approximation yl to the new
+

xk 1.
Now we switch to the first m-step power method and repeat the procedure until the desired PageRank

vector is obtained. For the whole iteration, we stop the outer iteration if

∥(−) − (−) ∥ <
+

α v I αP x τ1 k 1 1

is satisfied, and use

∥ − (−) ∥ <
+

f I β P y ηj2 2 1 1

for the inner iteration stopping criterion. Now the main algorithm of this paper is shown in Algorithm 1.

Algorithm 1. (MPMIO)

Input: P, α, β1, β2, τ , η, v, m
Output: x
1. x v← ;
2. y Px← ;
3. while αy α v x τ1 − − 1∥ + () ∥ ≥

4. for i m1 := , do
5. x αy α v1 −← + () ;
6. y Px= ;
7. end for
8. f α β y α v− 1 −1 1← () + () ;

9. f f β y′ 1 1← + ;

10. f α β Pf α v− ′ 1 −2 2← () + () ;

11. repeat
12. x f β y2 2= + ;

13. y Px← ;
14. until f β y x η−2 2 1∥ + ∥ < ;

15. end while
16. x αy α v1 −← + () .

1712  Bing-Yuan Pu et al.

Lines 1 and 2 of Algorithm 1 initialize =x v and =y Px. The m-step iterations of (16) are done in lines 4–7.
Lines 8–10 are used for the computation of f2. The inner iteration is implemented in lines 11–14. We use the
repeat-until clause to ensure that at least one inner iteration is performed. To terminate the algorithm, line 3
checks the residual of the outer linear (2). And in line 14, the stopping criterion is examined for the inner
iteration. At the end of Algorithm 1, a single power method step is used for the possible benefits as given in [21].

3.2 Convergence analysis of the MPMIO iteration

In this subsection, we devote to the convergence properties of our new algorithm and pay particular
attention to its superiority over the power method, IO iteration and PIO iteration, respectively.

Return to (16) and substitute the first iteration
+

+

xk m
1

1
into the second iteration

+

+

xk m
2

1
, we have

∑= () + (−) ()
+

=

+

x αP x α v αP1 .k k
i

i2

0

1

m
2

1
(20)

Keep going and until the last step of the power method, i.e.,

∑= () + (−) ()
+

=

−

+

x αP x α v αP1 .k
m

k
i

m
i

0

1
m

m 1
(21)

At the same time, by introducing two parameters β1 and β2 and from the last two steps of (16), we get

= (−)(−)(−) (−) + (−) (−)
+

− −

+

−

+

x α β α β I β P I β P P x α v I β P1 .k k1 1 2 1
1

2
1 2

2
1m

m 1 (22)

Substituting
+

+

xk m
m 1

into the above formula, we have













∑

= (−)(−)(−) (−)

+ (−)(−) + (−)(−)(−) ()

+

− − +

− −

=

−

x α α β α β I β P I β P P x

α I β P v I α β α β I β P P αP1 .

k
m m

k

i

m
i

1 1 2 1
1

2
1 2

2
1

1 2 1
1 2

0

1 (23)

Hence, the iteration matrix of (16) is

() = (−)(−)(−) (−)

− − +T α β β α α β α β I β P I β P P, , .m
m m

1 2 1 2 1
1

2
1 2 (24)

Thus, we obtain the following theoretical results for convergence property of the MPMIO iteration (16).

Theorem 3.1. The iteration matrix ()T α β β, ,m 1 2 of the MPMIO iteration (16) is given as (24) and the modulus of
its eigenvalues is bounded by

() =

(−)(−)

(−)(−)

∈ () < <σ β β
α α β α β

β β
α β α,

1 1
, 0, 1 , 0 .m

m

1 2
1 2

1 2
1,2 (25)

Meanwhile, the spectral radius satisfies

(()) ≤ () <ρ T α β β σ β β, , , 1.m m1 2 1 2 (26)

In other words, the MPMIO iteration converges to the unique solution x⁎ of the linear system (2) for any
initial vector x0.

Proof. The first part of Theorem 3.1 has been proved. Suppose λi is an eigenvalue of P, then

=

(−)(−)

(−)(−)

+

μ
α α β α β λ

β λ β λ1 1i

m
i
m

i i

1 2
2

1 2

is an eigenvalue of the iteration matrix ()T α β β, ,m 1 2 . Since | | ≤λ 1i , we have

A multi-power and multi-splitting IO iteration for PageRank computation  1713

| | =

(−)(−)

(−)(−)

≤

(−)(−)| |

(− | |)(− | |)

≤

(−)(−)

(−)(−)

= ()

+ +

μ
α α β α β λ

β λ β λ
α α β α β λ

β λ β λ
α α β α β

β β
σ β β

1 1 1 1 1 1
, ,i

m
i
m

i i

m
i

m

i i

m

m
1 2

2

1 2

1 2
2

1 2

1 2

1 2
1 2 (27)

with equality holding for =λ 11 . So (25) is proved and the inequality (26) follows directly from (27). □

Remark 3.1. Back to the right-hand side of (25), and given that ∈ ()α 0, 1 , ∈ ()β α0,1,2 , we get









() ≤

(−)

−

= { () ()}σ β β
α α β

β
σ β σ β, min

1
min , ,m

i

m
i

i
m m1 2 1 2

where ()σ βm 1 and ()σ βm 2 are the eigenvalue’s upper boundary of the iteration matrix from single-parameter β
IO iteration. In this way, it may show the superiority of the multisplitting IO iteration.

Theorem 3.2. Suppose the last splitting iteration of the MPMIO is solved exactly and ∈ ()α 0, 1 . Then for any
∈ ()β α0,1,2 , the MPMIO iteration converges. Furthermore,

∥ − ∥ ≤

(−)(−)

(−)(−)

∥ − ∥
+

x x
α α β α β

β β
x x

1 1k

m

k1 1
1 2

1 2
1 (28)

and

∥ − ∥ ≤

(−)(−)

(−)(−)

∥ − ∥
+ −

x x
α α β α β

β β
x x

1 1
.k k

m

k k1 1
1 2

1 2
1 1 (29)

Proof. By definition, we have













∑

= (−)(−)(−) (−)

+ (−)(−) + (−)(−)(−) ()

− − +

− −

=

−

x α α β α β I β P I β P P x

α I β P v I α β α β I β P P αP1 .

m m

i

m
i

1 2 1
1

2
1 2

2
1

1 2 1
1 2

0

1 (30)

Subtracting (30) from (23), we have

− = ()(−) = (−)(−)(−) (−) (−)
+

− − +x x T α β β x x α α β α β I β P I β P P x x, , ,k m k
m m

k1 1 2 1 2 1
1

2
1 2 (31)

where ()T α β β, ,m 1 2 is the iteration matrix as (24), and xk, +
xk 1 refer to the k-step or +k 1-step iteration,

respectively.
Taking 1-norms and using the triangular inequality, we obtain

∥ − ∥ ≤ (−)(−)∥(−) ∥ ∥(−) ∥ ∥ ∥ ∥ − ∥
+

− − +x x α α β α β I β P I β P P x x .k
m m

k1 1 1 2 1
1

1 2
1

1 1
2

1 (32)

Since the matrix P is column stochastic, it holds that ∥ ∥ =P 11 . Meanwhile, since −I β P1 and −I β P2 are
diagonally dominant M-matrix, their inverses are nonnegative and it follows that

∥(−) ∥ =

−

−I β P
β

1
11

1
1

1
(33)

and

∥(−) ∥ =

−

−I β P
β

1
1

.2
1

1
2

(34)

The inequality of (28) follows from (32), (33) and (34).
Setting (23) for step k, subtracting it from (23) and taking norms in the same way like (32), we can easily

derive (29). □

1714  Bing-Yuan Pu et al.

Remark 3.2. Denote the contraction factor by

() =

(−)(−)

(−)(−)

g β β
α α β α β

β β
,

1 1
,α

m

1 2
1 2

1 2

it is easy to see that

() ≤ () = { () ()}g β β g β g β g β, min min , ,α i α i α α1 2 1 2

where ()g βα i , =i 1, 2, is the contraction factor of single-parameter IO iteration.
Thus, we can deduce that the MPMIO iteration may converge faster than that of the single parameter β1

or β2.

Remark 3.3. It is easy to prove that ()g β β,α 1 2 is a monotonically decreasing function related to m and thus
show the superiority of our MPMIO iteration over the single-power IO iteration, like PIO.

4 Numerical experiments

In this section, we carry out some numerical examples to test the effectiveness of the MPMIO iteration and
compare it with the power method, the IO iteration and the PIO iteration. All the numerical results are ob-
tained by using MATLAB9.7.0(R2019b) on a PC with 3.97 GHz Inter(R)Core(TM)i7 processor with 8GB RAM.

For the sake of justice, we take the same initial guess = = /x v e n0 for all algorithms,where = […]e 1, 1, ,1 T .
All the stopping criteria are set as ∥ + (−) − ∥ <αPx α v x τ1 ,k k 1 where τ is specified in experiment descrip-
tion. We choose =α 0.85, 0.90, 0.95 and 0.99, and set =m 2, 3, 5, 10, 20 and 50. Referring to the analysis
and empirical choices by Gleich et al. [15] and Gu et al. [17], we use the choices =η 0.01, =β 0.5, and
assign different values to β1 and β2 around β.

The Web matrices are listed in Table 1, where “nnz” denotes the number of nonzero elements and “avg
nnz per row” denotes the average number of nonzero elements per row. For convenience, in all the tables to
follow we have abbreviated the power method, the inner-outer iteration method, the PIO iteration method
and our MPMIO iteration method as Power, IO, PIO, MPMIO, respectively. We denote by “ite” the iteration
counts, “mv” the number of matrix-vector products and by “CPU” the CPU time used in seconds.

Example 1. This example aims at discussing some of the options for parameters β1 and β2. The test matrix is
amazon0505 Web matrix. With =m 5, =

−τ 10 8, we run the different methods for PageRank problem with
different pairs of values for ()β β,1 2 . Numerical results are presented in Table 2.

It is easy to see that MPMIO performs the best both in terms of iteration numbers and CPU time. As for
the matrix-vector products, they are approximately equal and with the increase in α, MPMIO gradually
reflects its advantages. At the same time, we find that there are still different performances with different
values of parameters β1 and β2, and it is currently very hard to get the best choices of β1 and β2. Thus, we
choose empirically the parameters as =β 0.61 and =β 0.52 in the following experiments.

Example 2. In this example, we examine the performance of the four methods for PageRank with various
values of m. The test matrix is the Stanford-Berkeley Web matrix. Numerical results are listed in Table 3.

Table 1: Web matrices for PageRank problems

Name Size nnz Avg nnz per row

Amazon0505 410,236 3,356,824 19.9
Stanford-Berkeley 683,446 7,583,376 11.1
Web-Google 916,428 5,105,039 5.6
Wikipedia-20051105 1,634,989 19,753,078 12.1

A multi-power and multi-splitting IO iteration for PageRank computation  1715

From Table 3, we find that among the four methods, MPMIO outperforms the other three methods, i.e.,
Power, IO, PIO, especially in iteration counts and CPU time. Meanwhile, we can find that the performance of
MPMIO is sensitive to the choice of m. For example, when m takes a small value MPMIO is outstanding but
when m takes a big value, like 20 or 50, the performance of MPMIO is barely satisfactory. Then, based on
other similar observations of test matrices, we tend to choose a modest value of m, i.e., =m 5.

Example 3. In this example, we give a comprehensive investigation into the performance of MPMIO. We
choose empirically the parameters as = = = = = =α β β β m η0.99, 0.5, 0.6, 0.5, 5, 0.011 2 . We test all
the matrices in Table 1 to compare the number of matrix-vector products and CPU time required for
convergence to three different outer tolerances τ. To state a speedup of an algorithm a over another one
b, we use speedup formula as

=Speedup CPU
CPU

.b

a

Numerical results are given in Table 4.

This example shows that our proposed algorithm MPMIO can reduce the number of matrix-vector
products obviously and is proved to be efficient. Based on the CPU time, MPMIO iteration performs the
best for each test PageRank problem. When =

−τ 10 8, MPMIO achieves a speedup from 1.13× to 1.48× over IO

Table 2: Numerical results for Example 1 with m 5= , β 0.5= , τ 10−8
= and various value pairs of β β,1 2()

Method alpha = 0.85 alpha = 0.90 alpha = 0.95 alpha = 0.99

ite (mv) CPU ite (mv) CPU ite (mv) CPU ite (mv) CPU

Power 81 (81) 0.514029 122 (122) 0.730376 238 (238) 1.430304 1,043 (1,043) 6.436183
IO 77 (84) 0.577852 118 (126) 0.888501 233 (244) 1.753881 1,032 (1,047) 7.334066
PIO 39 (82) 0.492393 60 (125) 0.733401 118 (243) 1.421175 517 (1,044) 5.876933
MPMIO (0.5,0.4) 12 (85) 0.429520 18 (127) 0.630644 34 (240) 1.192104 149 (1,045) 5.381957
MPMIO (0.5,0.5) 12 (85) 0.439055 18 (128) 0.662717 34 (240) 1.221052 148 (1,040) 5.294960
MPMIO (0.6,0.4) 12 (85) 0.433683 18 (127) 0.634136 34 (240) 1.183174 149 (1,045) 5.342428
MPMIO (0.6,0.5) 12 (85) 0.436202 18 (128) 0.635568 34 (240) 1.189355 148 (1,040) 5.312114
MPMIO (0.7,0.4) 12 (85) 0.430336 18 (127) 0.642486 34 (240) 1.188378 149 (1,045) 5.301542
MPMIO (0.7,0.5) 12 (85) 0.440045 18 (128) 0.657614 34 (240) 1.239790 148 (1,040) 5.336923
MPMIO (0.7,0.6) 12 (85) 0.434616 18 (128) 0.658883 34 (241) 1.233188 148 (1,040) 5.310513
MPMIO (0.8,0.5) 12 (85) 0.429087 18 (128) 0.652059 34 (240) 1.215909 148 (1,040) 5.319561
MPMIO (0.8,0.6) 12 (85) 0.430386 18 (128) 0.644962 34 (241) 1.222724 148 (1,040) 5.267550
MPMIO (0.8,0.7) 12 (86) 0.428920 17 (122) 0.620944 34 (241) 1.226266 148 (1,041) 5.345917

Table 3: Numerical results for Example 2 with β 0.5= , β 0.61 = , β 0.52 = , τ 10−8
= and various values of m

Method alpha = 0.85 alpha = 0.90 alpha = 0.95 alpha = 0.99

ite (mv) CPU ite (mv) CPU ite (mv) CPU ite (mv) CPU

Power 91 (91) 1.025699 138 (138) 1.506846 277 (277) 3.041634 1,341 (1,341) 14.958891
IO 76 (85) 1.116774 115 (126) 1.622780 225 (238) 3.112812 1,024 (1,041) 14.065285
PIO 39 (83) 0.913716 58 (123) 1.331178 114 (236) 2.566159 513 (1,038) 11.338970
MPMIO (m = 2) 22 (91) 0.902490 30 (125) 1.243692 58 (237) 2.350283 257 (1,035) 10.291378
MPMIO (m = 3) 18 (93) 0.890123 24 (124) 1.200560 46 (235) 2.289176 206 (1,037) 10.301479
MPMIO (m = 5) 12 (86) 0.816488 19 (136) 1.291546 33 (235) 2.245291 148 (1,041) 10.003695
MPMIO (m = 10) 8 (97) 0.881731 10 (122) 1.112733 22 (267) 2.454582 86 (1,036) 9.521987
MPMIO (m = 20) 5 (111) 0.979710 7 (155) 1.382064 13 (287) 2.558793 58 (1,279) 11.093444
MPMIO (m = 50) 2 (105) 0.900378 3 (157) 1.359985 6 (313) 2.740545 26 (1,353) 11.957493

1716  Bing-Yuan Pu et al.

and from 1.04× to 1.20× over PIO. Taken together, our proposed MPMIO iteration converges faster than the
other three methods, and this has indeed been shown by the convergent curves in Figure 1.

5 Conclusions

In this paper, we have improved the IO iteration for accelerating PageRank computation by introducing
multi-step power and multi-step splitting. Our algorithm can be implemented easily, and theoretical results
show its efficiency. Numerical experiments on several PageRank problems have indicated that the new

Table 4: Numerical results for Example 3 with α m β β β η0.99, 5, 0.5, 0.6, 0.5, 0.011 2= = = = = = . Speedup represents
the relative speedup in CPU time of MPMIO over IO and PIO (in brackets)

Tol Web matrix mv CPU

Power IO PIO MPMIO Power IO PIO MPMIO Speedup

10−4 Amazon0505 283 291 288 243 1.906843 1.979214 1.940777 1.559590 1.27 (1.24)
Stanford-Berkeley 473 260 258 220 5.106515 3.266863 2.748681 2.371718 1.38 (1.16)
Web-Google 489 304 303 261 10.132581 6.862155 5.917642 5.195980 1.32 (1.14)
Wikipedia20051105 42 44 43 37 2.890107 3.146707 2.877156 2.810747 1.12 (1.02)

10−6 Amazon0505 652 659 656 561 4.127204 4.772426 4.057435 3.375080 1.41 (1.20)
Stanford-Berkeley 902 631 628 538 10.429152 8.750668 7.169710 6.206567 1.41 (1.16)
Web-Google 942 636 635 549 18.705083 14.338529 12.547242 11.190281 1.28 (1.12)
Wikipedia20051105 390 342 341 295 26.986150 25.628100 23.665184 22.695913 1.13 (1.04)

10−8 Amazon0505 1,043 1,047 1,044 891 6.608148 7.811836 6.310431 5.269707 1.48 (1.20)
Stanford-Berkeley 1,341 1,041 1,038 892 14.471853 13.509255 10.938215 9.651750 1.40 (1.13)
Web-Google 1,399 991 993 867 27.265529 22.284097 19.162797 17.304339 1.29 (1.11)
Wikipedia20051105 847 799 799 691 59.130899 59.895641 55.289397 53.219597 1.13 (1.04)

0 500 1000
mv

10-5

100

R
es

id
ua

l n
or

m
s

amazon0505 Web matrix

Power
Inner-outer
PIO
MPMIO

0 500 1000 1500
mv

10-10

10-5

100

R
es

id
ua

l n
or

m
s

web-Stanford Web matrix

Power
Inner-outer
PIO
MPMIO

0 500 1000 1500
mv

10-10

10-5

100

R
es

id
ua

l n
or

m
s

web-Google Web matrix

Power
Inner-outer
PIO
MPMIO

0 500 1000
mv

10-10

10-5

100

R
es

id
ua

l n
or

m
s

wikipedia-20051105 Web matrix

Power
Inner-outer
PIO
MPMIO

Figure 1: Convergence of the computation for the four Web matrix. α τ0.99, 10 .−8
= =

A multi-power and multi-splitting IO iteration for PageRank computation  1717

algorithm is superior to the power method and the IO iteration methods, IO and PIO. At the same time, we
have also realized that the new algorithm is parameter-dependent and appropriate choice of parameters
can be made in our experiments. It is meaningful to explore how to determine the optimal parameters for
our algorithm and may be included in the future work.

Acknowledgments: This research was supported by the Key Fund Project of Sichuan Provincial Department
of Education (17za0003).

References

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web, Technical
Report, Stanford InfoLab, 1999.

[2] A. N. Langville and C. D. Meyer, Deeper inside PageRank, Internet Math. 1 (2004), no. 3, 335–380, DOI: https://doi.org/
10.1080/15427951.2004.10129091.

[3] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond: The Science of Search Engine Rankings, Princeton
University Press, Princeton, NJ, 2012.

[4] P. Berkhin, A survey on PageRank computing, Internet Math. 2 (2005), no. 1, 73–120, DOI: https://doi.org/10.1080/
15427951.2005.10129098.

[5] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub, Extrapolation methods for accelerating PageRank
computations, in: WWW ‘03 – Proceedings of the 12th International Conference on World Wide Web, Association for
Computing Machinery, New York, NY, USA, 2003, pp. 261–270.

[6] A. Sidi, Vector extrapolation methods with applications to solution of large systems of equations and to PageRank
computations, Comput. Math. Appl. 56 (2008), no. 1, 1–24, DOI: https://doi.org/10.1016/j.camwa.2007.11.027.

[7] B. Y. Pu, T. Z. Huang and C. Wen, A preconditioned and extrapolation-accelerated GMRES method for PageRank, Appl.
Math. Lett. 37 (2014), 95–100, DOI: https://doi.org/10.1016/j.aml.2014.05.017.

[8] H. Migallon, V. Migallon, J. A. Palomino, and J. Penades, A heuristic relaxed extrapolated algorithm for accelerating
PageRank, Adv. Eng. Softw. 120 (2018), 88–95, DOI: https://doi.org/10.1016/j.advengsoft.2016.01.024.

[9] X. Tan, A new extrapolation method for PageRank computations, J. Comput. Appl. Math. 313 (2017), 383–392,
DOI: https://doi.org/10.1016/j.cam.2016.08.034.

[10] G. Wu and Y. Wei, An Arnoldi-extrapolation algorithm for computing PageRank, J. Comput. Appl. Math. 234 (2010), no. 11,
3196–3212, DOI: https://doi.org/10.1016/j.cam.2010.02.009.

[11] H. De Sterck, T. A. Manteuffel, S. F. McCormick, Q. Nguyen, and J. Ruge,Multilevel adaptive aggregation for Markov chains,
with application to web ranking, SIAM J. Sci. Comput. 30 (2008), no. 5, 2235–2262, DOI: https://doi.org/10.1137/
070685142.

[12] Y. Lin, X. Shi, and Y. Wei, On computing PageRank via lumping the Google matrix, J. Comput. Appl. Math. 224 (2009),
no. 2, 702–708, DOI: https://doi.org/10.1016/j.cam.2008.06.003.

[13] I. R. Mendes and P. B. Vasconcelos, PageRank computation with MAAOR and lumping methods, Math. Comput. Sci. 12
(2018), no. 2, 129–141, DOI: https://doi.org/10.1007/s11786-018-0335-7.

[14] S. Kamvar, T. Haveliwala, and G. Golub, Adaptive methods for the computation of PageRank, Linear Algebra Appl. 386
(2004), 51–65, DOI: https://doi.org/10.1016/j.laa.2003.12.008.

[15] D. Gleich, A. Gray, C. Greif, and T. Lau, An inner-outer iteration for computing PageRank, SIAM J. Sci. Comput. 32 (2010),
349–371, DOI: https://doi.org/10.1137/080727397.

[16] Z. Z. Bai, On convergence of the inner-outer iteration method for computing PageRank, Numer. Algebra Control Optim. 2
(2012), no. 4, 855–862, DOI: https://doi.org/10.3934/naco.2012.2.855.

[17] C. Gu, F. Xie, and K. Zhang, A two-step matrix splitting iteration for computing PageRank, J. Comput. Appl. Math. 278
(2015), 19–28, DOI: https://doi.org/10.1016/j.cam.2014.09.022.

[18] C. Gu and W. Wang, An Arnoldi-Inout algorithm for computing PageRank problems, J. Comput. Appl. Math. 309 (2017),
219–229, DOI: https://doi.org/10.1016/j.cam.2016.05.026.

[19] Y. J. Xie and C. F. Ma, A relaxed two-step splitting iteration method for computing PageRank, Comp. Appl. Math. 37 (2018),
221–233, DOI: https://doi.org/10.1007/S40314-016-0338-4.

[20] Z. Tian, Y. Liu, Y. Zhang, Z. Liu, and M. Tian, The general inner-outer iteration method based on regular splittings for the
PageRank problem, Appl. Math. Comput. 356 (2019), 479–501, DOI: https://doi.org/10.1016/j.amc.2019.02.066.

[21] R. S. Wills and I. C. F. Ipsen, Ordinal ranking for Google’s PageRank, SIAM J. Matrix Anal. Appl. 30 (2009), no. 4,
1677–1696, DOI: https://doi.org/10.1137/070698129.

1718  Bing-Yuan Pu et al.

https://doi.org/10.1080/15427951.2004.10129091
https://doi.org/10.1080/15427951.2004.10129091
https://doi.org/10.1080/15427951.2005.10129098
https://doi.org/10.1080/15427951.2005.10129098
https://doi.org/10.1016/j.camwa.2007.11.027
https://doi.org/10.1016/j.aml.2014.05.017
https://doi.org/10.1016/j.advengsoft.2016.01.024
https://doi.org/10.1016/j.cam.2016.08.034
https://doi.org/10.1016/j.cam.2010.02.009
https://doi.org/10.1137/070685142
https://doi.org/10.1137/070685142
https://doi.org/10.1016/j.cam.2008.06.003
https://doi.org/10.1007/s11786-018-0335-7
https://doi.org/10.1016/j.laa.2003.12.008
https://doi.org/10.1137/080727397
https://doi.org/10.3934/naco.2012.2.855
https://doi.org/10.1016/j.cam.2014.09.022
https://doi.org/10.1016/j.cam.2016.05.026
https://doi.org/10.1007/S40314-016-0338-4
https://doi.org/10.1016/j.amc.2019.02.066
https://doi.org/10.1137/070698129

	1 Introduction
	2 The IO(PIO) iteration
	3 The multi-power and multi-splitting IO iteration for PageRank
	3.1 The MPMIO iteration
	3.2 Convergence analysis of the MPMIO iteration

	4 Numerical experiments
	5 Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU <FEFF0056006500720073006900740061002000410064006f00620065002000440069007300740069006c006c00650072002000530065007400740069006e0067007300200066006f0072002000410064006f006200650020004100630072006f006200610074002000760036>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

