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1 Introduction

We denote by H a complex separable infinite dimensional Hilbert space endowed with the inner product
{+,>, and B(H) the algebra of all bounded linear operators on . Sometimes the letter H will denote the
so-called reproducing kernel Hilbert space (RKHS) over some set Q.

Definition 1.1. An operator T € B(H) is said to be skew-symmetric, if T = - T*.

It is easy to check, for example, that the Volterra integral operator (Vpf)(x) = IX f(t)dt is a skew-
—X

symmetric operator on the space L*(-1, 1). Also, for any self-adjoint operator T on  the operator iT is
skew-symmetric.

As it is known, many classical results in the matrix theory deal with complex symmetric matrices
(i.e., T = Tt) and skew-symmetric matrices (i.e., T = —T*). These concepts appear naturally in a variety of
applications such as complex analysis, functional analysis (including operator theory), and even quantum
mechanics.

In [1], Zagorodnyuk studied the polar decomposition of skew-symmetric operators and obtained some
basic properties of skew-symmetric operators. Later, Li and Zhu [2] also noted that an important way to
investigate the structure of skew-symmetric operators is to characterize the skew-symmetry of concrete
class of operators. For example, Zagorodnyuk [3] studied the skew-symmetry of cyclic operators. Li and Zhu
[4] studied the skew-symmetry of normal operators and gave two structure theorems of skew-symmetric
normal operators. For more information about skew-symmetric operators, see, for instance, Zhu [5], Li and
Zhu [6], and references therein.

In the present article, we characterize skew-symmetric operators on an RKHS in terms of their Berezin
symbols. We also study in terms of the Berezin symbols the solvability of some operator equations with
skew-symmetric operators. Note that such an approach, apparently, was initiated by the second author
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in [7]. We also give in terms of the Berezin number a sufficient condition providing essential unitarity of
essentially invertible operators.

2 Reproducing kernel Hilbert space and some properties

A reproducing kernel Hilbert space is a Hilbert space H = H(Q) of complex-valued functions on some set Q
such that evaluation f — f(A) at any point of Q is a continuous functional on 7. The Riesz representation
theorem ensures that an RKHS 4 has a reproducing kernel, that is, for every A € Q there is a unique
element kg, 4 € H for which f(A) = <f, kg2 for all f € H . We call the function ky; 5 the reproducing kernel
at A. The following proposition gives a way to compute the reproducing kernels (see, for instance, Aronzajn
[8], Halmos [9], and Stroethoff [10]).

Proposition 1. If {¢j};>; is an orthonormal basis for the RKHS H = H(Q), then

k‘H,/\ = z mej’

j=1

where the convergence is in H. In particular,

kra2) =) eelz), zeQ.
j=1

It follows from the aforementioned proposition that kq( (A) = kg a(z). Writing ke(z, ) = ke 2(z), we have

ky (A, 2) = ky(z, A) for all z, A € Q. The norm of ky , is easily determined: kg 2P = Ckaps kaa) = kaaA).
The function

i k4,2 k4,2
’A = =
T Negnl (kg a2

is called the normalized reproducing kernel at A.

Definition 2.1. Let T be a bounded linear operator on #, the Berezin symbol of T is defined by T(A) =
<TI/(\'H’/1, I/(\f].{’,\> for A € Q.

Note that the Berezin symbol T is a complex-valued bounded function, because |T(A)| < || Tl for all
A € Q. Let ber(T) denote the Berezin number of T defined by

ber(T) = sup |[TA)| = [Tl~)-
AeQ

For any T € B(H), we can write
(If) (2) = K<TIf, k2> = <f5 Tkp,2)-
Thus, T is uniquely determined by the function T*k¢ (1) on Q x Q, also by the function

Tk, D) (Thkpp k) Thpa2)
ky(,2(A) Ckains k2> k(z, A)

defined at all points, where k(z, A) # O. It follows from the definition that the mapping T — T(z, A) is linear,
T*(z,A) = TQA, z), and I(z, A) = 1, where I is the identity operator and 1 the constant function one. Also, if the
elements of H are continuous (smooth, holomorphic), then so is T(z, A) in each variable, at all points where
ke (z, /T) + 0.

Assume now that:

*the functions T(z, A) are uniquely determined by their restrictions T(z, z) to the diagonal.

T(z,A) =
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This is the case, for example, whenever the functions T(z, A) are holomorphic in z and A, by a well-
known classical theorem in complex analysis (see, for example, Folland [11] and Stroethoff [12, Lemma
2.3]). The following uniqueness lemma is due to the second author (see [13, Lemma 2]).

Lemma 2. Let ‘H = H(Q) be an RKHS whose elements are functions on some set Q. If H satisfies condition
(*), then the correspondence T < T is one-to-one, i.e., T = 0 if and only if T(A) = O for all A € Q.

Definition 2.2. The RKHS H = H(Q) is said to be standard (see Nordgren and Rosenthal [14]) if the under-
lying set Q is a subset of a topological space and the boundary 0Q is nonempty and has the property that

{1274, A} converges weakly to O whenever {A,} is a sequence in Q that converges to a point in Q.

The common Hardy, Bergman, and Fock Hilbert spaces are standard in this sense (see Stroethoff [10]).

For a compact operator K on the standard RKHS %, it is clear that lim,_,.K(A,) = 0 whenever {1,}
converges to a point in 0Q, since compact operators send weakly convergent sequences into strongly con-
vergent ones. In this sense, the Berezin symbol of a compact operator on a standard RKHS vanishes on
the boundary.

3 Operator equations on C*-algebras

The equations AX = C and XB = D for operators, including square and rectangular matrices, have a long
history. In particular, the first equation has applications in the control theory. For more information and
application about these equations, see, for example, [15] by Dajic and Koliha.

In the present section, we study the solution of the operator equations TX =K + Y and XT=L + Z
(where K, L are compact and Y, Z are skew-symmetric operators) in some Engli§ C*-operator algebras of
operators on the reproducing kernel Hilbert spaces, including the Hardy space H? = H(D ) over the unit disc
D of the complex plane C. First, we need some notations and preliminaries.

The Hardy space H?> = H?(D) is the Hilbert space consisting of the analytic functions on the unit disc
D = {z € C : |z| < 1} satisfying

If13 = Sup — _[ If(re') 2dt < +c0.

0<r<1

Since {z"},s0 is an orthonormal basis in H?, it is easy to see from Proposition 1 that k pAz) = A , and hence
k
kHZ,A = kHj‘" % The symbol H*® = H*® (D) denotes the Banach algebra of bounded and analytic
HA -

functions on the unit disc D equipped with the norm |f]l,, = sup{|f(z)| : z € D}. It is convenient to establish
a natural embedding of the space H? in the space L? = L% (T) by associating to each function f € H? its radial
boundary values (bf)({) := lim,_ f(r{), which (by the Fatou Theorem [16]) exist for almost all { ¢ T = dD,
where m is the normalized Lebesgue measure on T. Then we have

={fel?>:f(n)=0,n<0},

where f n) = I {"f($)dm({) is the Fourier coefficient of the function f.
Ifpel>= LOO(TT) then the Toeplitz operator T, on H? is defined by T,,f = P.(¢f), where P, : LA(T) — H?
is the Riesz projection (orthogonal projection). The harmonic extension of function ¢ € L* is defined by ¢:

2n
1 it 1-r? 0
@(re®) = — | p(e") de, ret? eD.
2 1+712
0

-2 cos(@ - t)
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The following lemma is well known (see, for instance, Engli§ [17] and Zhu [19]).
Lemma 3. If T, is a Toeplitz operator on H?, then T(A) = () forall A e D, i.e, T, = @.

The main lemma for our further discussions is the following lemma due to Engli$ [17, Theorem 6] and

Karaev [18, Lemma 1.1], which shows that the normalized reproducing kernels IEHZ,A of H? are, loosely
speaking, asymptotic eigenfunctions for any Toeplitz operator T,, ¢ € L>(T).

Lemma 4. Let ¢ € L°°(T) and let ¢ be its harmonic extension into D (which is the Berezin symbol of T,). Then
Tokiza — T,(A) ky — O radially, i.e.,
Tim [Tk et — Pre kel = O
for almost all t € 0, 2m).
The following set is defined by Engli$ in [17, (6) in Section 3]
e =T € BEH) : [Tkl — ITAP and [Tkeal? - |T*Q)P — 0 radially}

(note that [T(1)| = | T*1)| for all A € D). Engli$ proved (see [17, Section 3]) that €52 is a C*-algebra. We call
ep2 the Engli§ algebra of operators on the Hardy space HZ?. It follows from Lemma 4 that for any
@ € L°(T), T, € ;2. Here we study the solution of the operator equations TX = K + Y and XT = K + Y in
the set

Agq = 1{A € B(H) : |Aky 22 = AQ)PR — 0 as A — 3Q} 6))

and in the Engli$ algebra €4;, where K is compact and Y is a skew-symmetric operator, which is defined on
an RKHS H = H(Q), as follows:

ex = 1{A € B(H) : |Akp 2P — IAQDP and A kyal? - [AM)P — 0 as A — 30}

As in the case H = H?, it can be shown that actually the set £4 is a C*- algebra (see the proof of (Al) in
Section 3 of Engli$’s paper [17]). We also characterize the skew-symmetric operators in terms of Berezin
symbols.

Proposition 5. Let H(Q) be an RKHS such that the functions T(z, A) satisfy condition (*) whenever T is a
bounded linear operator on H = H(Q). Then the operator T is skew-symmetric if and only ifRe T = 0, i.e., if
its Berezin symbol T is a purely imaginary complex-valued function.

Proof. According to Lemma 2, T* = —T if and only if T*(1) = —T(A) for all A € Q, or equivalently T* + T(A) = O
for all A € Q. This means that

(Thkaps kzpy + (Thpop, Kz )y = 0
(because T* = T), and hence
2Re(Tky(10 kyi2) = 0

for all A € Q. Consequently, T* = T if and only if Re T = 0 for all A € Q, as desired. |

Theorem 6. Let T, K, Y € B(H(Q)) be operators such that Y is skew-symmetric.
(i) IFK(A) - 0as A — 3Q and X € Ay is a solution of the equation

TX=K+Y, )
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then
lim Re(X(A)T(A)) = 0.
A—0Q
(if) IfT* € Ay and X € B(H(Q)) is a solution of equation (2) with K(A) — 0 as A — 3Q, then
lim ReX V) TA)) = 0.
1-23Q

(iii) Let H(Q) be an RKHS such that the functions T(z, A) satisfy condition (*) whenever T is a bounded
linear operator on H = H(Q). If X € B(H(Q)) is a solution of the equation TX = K + Y such that
Range (X) L Range(T*), then K is skew-symmetric.

Proof.
(i) Let X € Aqy satisfy (2), thatis,TX = K + Y. Then X*T* = K* + Y* = K* — Y. Since TXA) =KQ) + Y(A) and

XT*) = KQ) - Y(A), we get TX () + X*T*(1) = K* + K(Q) for all A € Q. Since (TX)* (1) = TX (), the
latter means that

2Re (TX(A)) = K" + K (M),
and hence
Re (Tl k) = S + O 3)
for all A € Q. Then we have
SE TN =Re [ - XDy, T + XA e, TH)]
= Re (Xkyp - XWkpp, Thz ) + Re XA TA),

from which we have that

-~ 1 ~ - A N
[Re(X(W)T(A))| < 5 IK* + K| + [{Xkgr,n = XMk ps Tk 1) |
(4)
1 A A
<5 [K* + K| + [ITIIXkge,0 — X A) ke llge

for all A € Q. On the other hand, by considering that XIQ(H,A -X ()l)ler, ALX (/\)I?«H, 1, we have
IXkpa e = 1Xkzin = XM ksl + 1XAPR,

and hence
Xk = XD kpally = IXhkpale - IXQ)P

for all A € Q. This shows that

lim (IXkgal3, — IXA)P) = 0
A—{cdQ

if and only if

lim (| Xks 1 — XA kg allag) = O.
A—{edQ

So, since

K*+KQA) -0 as A — {€dQ,
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we have from the inequality (4) that

lim (Re(X()T(A))) =0,
A—{edQ

which implies the desired result.
(ii) It follows from (3) that

Re [(Xkg1, Tkgi2 — TNk, )] + ReE M) T(A)) = %mu),
and therefore,
— ~ — A 1 —
IReX DT < IXINTerer = TN kgl + = 1K+ O

for all A € Q. Now the result follows immediately from this inequality. This proves (ii).
(iii) It follows from (3) that

Re(Xkz 1o THore ) = %(K*’TIT)(A)

for all A € Q, and since XH L T*H, we have
K+KM)=0
for all A € Q. This implies by Lemma 2 that
K* = -K,

as desired. This proves the theorem. O

Remark 1. Assertion (ii) in Theorem 3 shows that the necessary condition
Re(X(W)T(1)) —» 0 as A — 0Q
in (i) is not in general a sufficient condition for a solution X of (2) being from the class A4,.
Corollary 7. Let H(Q) be an RKHS such that the functions T(z, A) satisfy condition (*) whenever T is a
bounded linear operator on H. Let T,K,Y € B(H) be operators such that Y is skew-symmetric and K

is not skew-symmetric. Then the operator equation TX = K + Y has no solution with the property that
Range(X) L Range(T*).

Remark 2. It is easy to see from the proof of Theorem 6 that the same results can be obtained for the
operator equation XT = K + Y; we omit them.

Proposition 8. Let H = H(Q) be anRKHS, and letT,, T», Ki, K, Y1, Y> € B(H) be operators such that K,(A) — 0,
KQA) - 0as A — 3Q, ¥; and s are the skew-symmetric operators. If X € €4 satisfies the equations

hX=K+% (5)
and
XL =K+ Y, (6)
then
Alig}) IRe XMTA)| =0
and

lim |[Re(X (1) TB(A))| =O0.
A—0Q
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Proof. The proofis similar to the proof of (i) in Theorem 6. Indeed, if X € €4, isa common solution of equations
(5) and (6), then as in the proof of (i) in Theorem 6, we obtain that

Re(X M) TA)| < + I TIIXkp,0 = X A ez p e

K; + Ki(d)
2

and

K + KO

Re(X (1) BA)| < 5

‘ + 1B INX Fer 0 = XA kg pll -

Since X € ey and Ki(A), T(?‘(A) — 0 (i=1, 2) as A — 90Q, the desired results are immediate from these
inequalities. This proves the proposition. O

Corollary 9. Let H = H(Q) be a standard RKHS, and let Ty, T, K, K, Y1, Y, € B(H) be operators such that
Ky, K, are compact and Yy, Y, are skew-symmetric. If X € €4, satisfies equations (5) and (6), then

max{ lim |Re (X(A)T(A))], lim |Re (X(A)TZ(A)M} =0.
A—0Q A—0Q
The proof of the following corollary is immediate from Lemmas 3 and 4 and Proposition 8.

Corollary 10. Let H = H? in Proposition 8. If the Toeplitz operator T,, with the symbol ¢ € L*(T) is a common
solution of (5) and (6), then

maX{ lim | Re (9() [i(A)|, lim |Re (@(A)Tz(/\))l} =0.
130 A-30

Remark 3. Note that the Berezin symbol of ¢ of a function ¢ € L*(D, dA) is defined to be the Berezin
symbol of the Toeplitz operator T, on the Bergman space L} = LX(D) with the normalized reproducing kernel
l?a,,\(z) = (il/{g;. In other words, ¢ = T(p. Because <T¢,12a,,1, Iza,,o = (P((plza,,\), 12,1,,0 = <q)l€a,,\, Iza,,o, we obtain
the formula

P = j 0(@)kar(2) PAAR),
D

where dA(z) = @ is the normalized Lebesgue area measure and P is the Bergman projection.

The Berezin symbol of a function in L*®(D, dA) often plays the same important role in the theory of
Bergman spaces as the harmonic extension of a function in L*(dD) plays in the theory of Hardy spaces.

The Toeplitz algebra 7 is the C*-subalgebra of B(L7) generated by {T, : g € H®}. Let U denote the
C*-subalgebra of L®(D, dA) generated by H*®. As it is well known (see [20, Proposition 4.5]), U equals
the closed subalgebra of L>°(D, dA) generated by the set of bounded harmonic functions on D. Although the
map u — T, is not multiplicative on L*(D, dA), the identities T; = T, T, T, = T, and T; T,, = Ty, hold for all
u € [°(D, dA), and v € H®. This implies that 7 equals the closed subalgebra of B(L?) generated by the
Toeplitz operators with bounded harmonic symbol, and that 7~ also equals the closed subalgebra of B(L2)
generated by {T,, : u € U}. The main goal of the paper [20] is to study the boundary behavior of the Berezin
symbols of the operators in 7 and of the functions in ¢ . Namely, the author’s study shows (see [20,
Theorem 2.11]) that if S € 7, then S € U Also, they prove (see [20, Corollary 3.4]) that ifu € U, thenii — u
has nontangential limit O at almost every point of dD. Using similar techniques, they prove (see [20,
Corollary 3.7]) that ifu € U, then the function A — |T,_zx) lza, 1l> has nontangential limit O at almost every
point of dD. Theorem 3.10 in [20] describes the functions u € U such that &i(1) — u(A) —» 0 as A — dD. The
aforementioned assertions show that the function A — ||T,_z) Iza,,\ [, has nontangential limit O at almost
every point of dD. Since this property is mainly used in the proof of Corollary 10, the same results also can
be proved for the Bergman space Toeplitz operators T, with u € U, which we omit.
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Remark 4. As an application of Proposition 5 and also for its usefulness note the following: if ¢ € H® is a
non-constant function and 6 is a nontrivial analytic map of D onto itself (i.e., (D) ¢ D and 8 # constant),
then we can construct a weighted composition operator with symbols ¢, 6,

Wp,of = T,Cof = @of = 6 = of (0(2))

for fin the Hardy space H?, where T, is an analytic Toeplitz operator and Cy is a composition operator on H2.

Note that Tj, = Tj, co-analytic Toeplitz operator. However, in the theory of composition operator deter-
mination of the adjoint is a problem of some interest. For example, this question is not trivial even for the
composition operator C,2; for more discussion about the adjoint of composition operators, see [21-26] and
references therein. Thus, in particular, the investigation of skew-symmetric weighted composition opera-
tors and the operators of the form Cg T, with ¢ € L™ is not in general a trivial question, while for the symbol
6 with 6(0) = 0, Cy is obviously non skew-symmetric. In fact, since the set {k; : A € D} spans H?, it is easy to
see that Cy = —Cy if and only if Cgk; = —Cyk, for all A € D. Equivalently, Cg = —Cy if and only if (see (7) below)

1 1

— = — — (VA € D).
1-6A)z 1-A6(2)

But, since 6(0) = 0, for A = O this equality does not hold, and hence C; # —Cy, that is, Cy is not skew-sym-
metric.

More generally, every composition operator Cy on H? (or on the Bergman space Laz([D)) is not skew-
symmetric. In fact, for A = 0 we have that

Re((Cp) (0)) = Re{Cp1,1) = (1,1) =1,

hence, by Proposition 5, Cy cannot be skew-symmetric.

There is also a direct proof without using Proposition 5. In fact, as before, C5 = —Cy if and only if

Cokpep = —Cokpz p (o1 Cikap = —Cokyp) for all A € D. Equivalently, Cg = —Cp if and only if L 1

1-80)z  1-16(z)
1 _ 1 . _ _ 1 _
(or 00 <1-/T9(z))2) forall A € D and z € D. In particular, for A = 0 and z = 6(0), we have TZT00F =
(or m = -1), which is impossible. This shows that every composition operator Cy on the Hardy and

Bergman spaces is not skew-symmetric.
However, in the following examples we demonstrate usefulness and application of Proposition 5, since
Coky has an explicit expression:

1
C*k = AElD.
o ka 5002 ( ) 7)
Indeed, for any p € D, we have:
() Q) = (Cikn Y = ko, Cokeyy = { Ky —— - ! g )=—1 -1
9 KA) (U 9 K0 Ky 1 Loky A’l—ﬁG(z) 1—},79(2)’ A 1- 760 1—}1%’

which proves (7).

Example 1. Let ¢ € H* be as in Remark 4. Then W, of is skew-symmetric if and only if

Re (@) (1 — ABQ))) = 0 (VA € D).

Proof. Let A € D be arbitrary. Then by using formula (7), we have:
Wy,o) = (T, Cokr, kp) = <Coka, Tjkr) = (Cokr, @Mkry = (1 = IAP)p(A) <k, Cokn )
1 > _ - e _ a-IAp)

1- 00z = (@) (1 - A6(1))),

_ _ 2
=1 - 1AP)p@) <’<A’ 1- 1600 [1-A64)P
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hence, Re( W, 4(1)) = 0 if and only if Re(p(A)(1 - A6(A))) = 0. Since A € D is arbitrary, Proposition 5 works.
O

Example 2. Let ¢ € H® be a non-constant function and 6 be a non-trivial analytic self-map of the unit
disc D. Then (37T, is a skew—symmetric operator on H? if and only if Re(F(1)) = 0 for all A € D, where

¥, denotes the function ¢({ ) onT.

1- /19(( )

Proof. Indeed, we have:

_ L I 1
CoT,(A) ={CiT,ky, ky) = (T, ky, Coky) = (1 — |AP) { Pk, ————
0 To(A) = (CaTpkp, kpy = (Tpky, Cokp) = ( ||)<(p/11—/10(z)>

_ _ 2 ; _ —1 00

1 -1 )<(pk,\, - /T@(z)> (because (1 -A106(z)) € H®)
e [ 1 N 1- P
=({1-1AF) J1- AL 1-200) ac= I (O 1-A80) 11 - AP a

- - AP

e g j )~ o

It is easy to see that ¥ € L® since IAT()I < 1 for all A € D. Hence, the last formula means that @fp(/l) =
¥\ (1), where ¥, denotes the harmonic extension of ¥, into D. Then, by Proposition 5, we deduce that CyT,
is a skew-symmetric if and only if Re(¥(A)) = O for all A € D, as required. a

I O 95 Aem I

4 On essential unitarity of essentially invertible operators

It is well known that unitary operators on a Hilbert space H can be characterized as invertible contractions
with contractive inverses, i.e., as operators T with |T|| < 1and ||T~}| < 1. Recently, Sano and Uchiyama [27]
proved that if T is an invertible operator on H such that w(T) < 1 and w(T™!) < 1, then T is unitary (see also
Stampfli [28, Corollary 1]); here w(T) denotes the numerical radius of T defined by

w(T) = sup{|[{Tx, x)| : x € H and |x||g = 1}.

Ando and Li [29, Theorem 1.1] generalized the latter by using the so-called p-radius of operator T € B(H)
defined by

wy(T) = inf{u > 0 : u7'T € C,},

where C, denotes the class of operators T € 8(#H) which admits a unitary p-dilation, i.e., there is a unitary
operator U on a subspace K > H such that T" = pPyU"|H forn =1, 2, ..., where Py : K — H is the ortho-
projection. When p =1 and p = 2, this definition reduces to the operator norm and numerical radius,
respectively. (For more details see also Garayev [7], and Sahoo et al. [30].)

We say that an operator T € B(H) is essentially invertible (or Fredholm) if there exists an operator
A € B(H) such that AT — I and TA - I are both compact operators, i.e.,

AT=1+K and TA=1+K

for some compact operators K;, K; on H. An essential inverse of T will be denoted as T-'¢%. Thus, the
following problem naturally arises.
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Problem 1
To find in terms of Berezin numbers of an essentially invertible operator T and its essential inverse T~ the
necessary and sufficient conditions under which T be an essentially unitary operator on RKHS H = H(Q)

(i.e., T*T =1+ Ky and TT* = I + K, for some compact operators K; and K;).
Note that the class of essentially unitary operators has not been extensively studied with respect to the

class of unitary operators.

The present section, which is motivated by this question (see also [7]), gives in terms of the Berezin
numbers of operators TT* and (TT*)"1¢ a sufficient condition for essentially unitarity of the essentially
invertible operator T on the RKHS. Our result improves the result of the paper [7, Theorem 1] where only the
case K; = K, = 0 is considered.

Theorem 11. Let H = H(Q) be a standard RKHS with the property (*) (Section 2) and T € B(H) be an
essentially invertible operator, associated with the compact operators K; and K,. If

ITkp4l? <1+ ReKo(d)
and
I esSkpal? < 1+ ReKo(A)
for all A € Q which obviously imply that

ber(TT*) < sup(1 + Re Ks(A))
AeQ

and

ber(T-1ess*T-1ess) < sup(1 + Re IG(A)),
AeQ

then T is an essentially unitary operator.

Proof. We have for all A € Q that

I(T* = T e kyg 1P = (T = Tk, (T* = T kg )
= 1 Tkgeal? + 1Tk a P = <Tkpips T kg0) = (T kg, T
= 1Tk a I + 1Tk a2 = Chgps TT8kg00) — (TT¢5%kg0 0, kg2
= 1Tk a2 + 1T Skpi 2 = ey (0 + K kg — (T + Kok p, g0

= ITkp P + IT 2 eSkp a2 - 2 — Q) - Ko(A)
= ITkp AP + 1T e5kgq 2P - 2(1 + Re Ko(A)).

Hence, by considering conditions, we conclude from the latter that
I(T* = T kp a2 < O,

and therefore (T* — T~1¢%)ky ) = O for all A € Q. Now by considering that {k¢; 1 : A € Q} is a total set, we
deduce that T* = T'¢%, and hence T*T = I + K; and TT* = I + K,, which proves the theorem. O
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