მ

Research Article

Ju Myung Kim*

Approximation properties of tensor norms and operator ideals for Banach spaces

https://doi.org/10.1515/math-2020-0116 received June 12, 2019; accepted November 17, 2020

Abstract: For a finitely generated tensor norm α , we investigate the α -approximation property (α -AP) and the bounded α -approximation property (bounded α -AP) in terms of some approximation properties of operator ideals. We prove that a Banach space X has the λ -bounded $\alpha_{p,q}$ -AP ($1 \le p, q \le \infty, 1/p + 1/q \ge 1$) if it has the λ -bounded g_p -AP. As a consequence, it follows that if a Banach space X has the λ -bounded g_p -AP, then X has the λ -bounded g_p -AP.

Keywords: approximation property, tensor norm, Banach operator ideal

MSC 2020: 46B28, 46B45, 47L20

1 Introduction

The main subjects of this paper originate from the classical approximation properties for Banach spaces, which was systematically investigated by Grothendieck [1]. A Banach space *X* is said to have the *approximation property* (AP) if

$$id_X \in \overline{\mathcal{F}(X,X)}^{\tau_c}$$
,

where id_X is the identity map on X, \mathcal{F} is the ideal of finite rank operators and τ_c is the topology of uniform convergence on compact sets.

Let X and Y be Banach spaces. We denote by $X \otimes Y$ the algebraic tensor product of X and Y. The normed space $X \otimes Y$ equipped with a norm α is denoted by $X \otimes_{\alpha} Y$ and its completion is denoted by $X \otimes_{\alpha} Y$. The basic two norms on $X \otimes Y$ are the *injective norm* ε and the *projective norm* π which are defined as follows.

$$\varepsilon(u; X, Y) := \sup \left\{ \left| \sum_{j=1}^{n} x^*(x_j) y^*(y_j) \right| : x^* \in B_{X^*}, y^* \in B_{Y^*} \right\},$$

where $\sum_{j=1}^{n} x_j \otimes y_j$ is any representation of u and we denote by B_Z the closed unit ball of a normed space Z.

$$\pi(u; X, Y) := \inf \left\{ \sum_{j=1}^{n} \|x_{j}\| \|y_{j}\| : u = \sum_{j=1}^{n} x_{j} \otimes y_{j}, n \in \mathbb{N} \right\}.$$

It is well known that a Banach space *X* has the AP if and only if for every Banach space *Y*, the natural map

$$J_{\pi}: Y \, \hat{\otimes}_{\pi} \, X \to Y \, \hat{\otimes}_{\varepsilon} \, X$$

is injective (cf. [2, Theorem 5.6]). This equivalent statement can be naturally extended to tensor norms. For basic definitions and general background of the theory of tensor norms, we refer to [2,3]. For a finitely

^{*} Corresponding author: Ju Myung Kim, Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea, e-mail: kjm21@sejong.ac.kr

[@] Open Access. © 2020 Ju Myung Kim, published by De Gruyter. © This work is licensed under the Creative Commons Attribution 4.0 International License.

generated tensor norm α , a Banach space X is said to have the α -AP if for every Banach space Y, the natural map

$$J_{\alpha}: Y \hat{\otimes}_{\alpha} X \to Y \hat{\otimes}_{\varepsilon} X$$

is injective (cf. [2, Section 21.7]). It is well known that if a Banach space *X* has the AP, then it has the α -AP for every finitely generated tensor norm α (cf. [2, Proposition 21.7(1)]).

Some of the well-known tensor norms can be obtained from the tensor norm $\alpha_{p,q}$ $(1 \le p, q \le \infty, 1/p + 1/q \ge 1)$, which was introduced by Lapresté [4]. For $1 \le p < \infty$, $\ell_p^w(X)$ stands for the Banach space of all *X*-valued weakly *p*-summable sequences endowed with the norm $\|\cdot\|_p^w$. Let $1 \le r \le \infty$ with 1/r = 1/p + 1/q - 1. For $u \in X \otimes Y$, let

$$\alpha_{p,q}(u) := \inf \left\{ \|(\lambda_j)_{j=1}^n\|_r \|(x_j)_{j=1}^n\|_{q^*}^w \|(y_j)_{j=1}^n\|_{p^*}^w : u = \sum_{j=1}^n \lambda_j x_j \otimes y_j, n \in \mathbb{N} \right\},\,$$

where p^* is the conjugate index of p. Then $\alpha_{p,q}$ is a finitely generated tensor norm and the *transposed tensor* norm $\alpha_{p,q}^t = \alpha_{q,p}$ (cf. [2, Proposition 12.5]). The special cases $g_p := \alpha_{p,1}$ and $d_p := \alpha_{1,p}$ are called the *Chevet-Saphar tensor norms* [5,6] and $\alpha_{1,1} = \pi$. The tensor norm $w_p := \alpha_{p,p^*}$ is also well known. Díaz et al. [7] studied the $\alpha_{p,q}$ -AP in terms of certain approximation properties of operator ideals. As a consequence, it was shown that a Banach space X has the $\alpha_{p,q}$ -AP if it has the $\alpha_{p,1}$ -AP.

Let $\lambda \geq 1$. A Banach space *X* is said to have the λ -bounded AP if

$$\mathrm{id}_X \in \overline{\{S \in \mathcal{F}(X, X) : \|S\| \leq \lambda\}}^{\tau_c}$$
.

It is well known that a Banach space X has the λ -bounded AP if and only if for every Banach space Y, the natural map

$$I_{\pi}: Y \otimes_{\pi} X \to (Y^* \otimes_{\varepsilon} X^*)^*$$

satisfies $\pi(u;Y,X) \leq \lambda \|I_{\pi}(u)\|_{(Y^*\otimes_{\varepsilon}X^*)^*}$ for every $u \in Y \otimes X$ (cf. [2, Corollary 16.3.2]). More generally, for a finitely generated tensor norm α , a Banach space X is said to have the λ -bounded α -AP if for every Banach space Y, the natural map

$$I_{\alpha}: Y \otimes_{\alpha} X \to (Y^* \otimes_{\alpha'} X^*)^*$$

satisfies $\alpha(u;Y,X) \leq \lambda \|I_{\alpha}(u)\|_{(Y^* \otimes_{\alpha'} X^*)^*}$ for every $u \in Y \otimes X$ (cf. [2, Section 21.7]), where α' is the *dual tensor norm* (cf. [2]) of α . Note that $\pi' = \varepsilon$.

The main goal of this paper is to study the α -AP and the λ -bounded α -AP in terms of operator ideals. In Section 2, we extend the result of Díaz et al. [7], and in Section 3, we obtain some bounded versions of the results obtained in Section 2. As an application, it is shown that a Banach space X has the λ -bounded $\alpha_{p,q}$ -AP if it has the λ -bounded $\alpha_{p,1}$ -AP. Consequently, if X has the λ -bounded $\alpha_{p,1}$ -AP, then X has the λ -bounded $\alpha_{p,p}$ -AP.

2 The α -approximation property

We denote by $[\mathcal{L}, \|\cdot\|]$ the ideal of all operators and refer to [2,8-10] for operator ideals and their some information. A tensor norm α is said to *be associated with* a Banach operator ideal $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ if the canonical map $(\mathcal{A}(M, N), \|\cdot\|_{\mathcal{A}}) \to M^* \otimes_{\alpha} N$ is an isometry for all finite-dimensional normed spaces M and N. Let X and Y be Banach spaces. For $T \in \mathcal{L}(X, Y)$, let

$$||T||_{\mathcal{A}^{\max}} := \sup \{||q_L^Y T I_M^X|| : \dim M, \dim Y/L < \infty\},$$

where $I_M^X: M \to X$ is the inclusion map and $q_L^Y: Y \to Y/L$ is the quotient map, and

$$\mathcal{A}^{\max}(X, Y) := \{T \in \mathcal{L}(X, Y) : ||T||_{\mathcal{A}^{\max}} < \infty\}.$$

We call $[\mathcal{A}^{max}, \|\cdot\|_{\mathcal{A}^{max}}]$ the *maximal hull* of $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$. If $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}] = [\mathcal{A}^{max}, \|\cdot\|_{\mathcal{A}^{max}}]$, then $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ is called *maximal*. If α is a finitely generated tensor norm, then its associated maximal Banach operator ideal is uniquely determined (cf. [2, Sections 17.1, 17.2 and 17.3]). For a finitely generated tensor norm α , the *adjoint ideal* $[\mathcal{A}^{adj}, \|\cdot\|_{\mathcal{A}^{adj}}]$ is the maximal Banach operator ideal associated with the *adjoint tensor norm* $\alpha^* := (\alpha')^t = (\alpha^t)'$.

Lemma 2.1. [2, Theorem 17.5] Let $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be the maximal Banach operator ideal associated with a finitely generated tensor norm α . Then for all Banach spaces X and Y, $\mathcal{A}(X, Y^*)$ is isometric to $(X \otimes_{\alpha'} Y)^*$ and $\mathcal{A}(X, Y)$ is isometrically imbedded in $(X \otimes_{\alpha'} Y^*)^*$ by the natural dual actions.

Let α be a finitely generated tensor norm. According to [2, Proposition 21.7(4)], a Banach space *X* has the α -AP if and only if for every Banach space *Y*, the natural map

$$I_{\alpha}: Y^* \, \hat{\otimes}_{\alpha} \, X \to Y^* \, \hat{\otimes}_{\varepsilon} \, X \hookrightarrow \mathcal{L}(Y, X)$$

is injective.

Theorem 2.2. Let $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be the maximal Banach operator ideal associated with a finitely generated tensor norm α . Then the following statements are equivalent for a Banach space X.

- (a) X has the α -AP.
- (b) For every Banach space Y, $\mathcal{F}(X, Y)$ is dense in $\mathcal{A}^{\mathrm{adj}}(X, Y)$ with the weak* topology on $(X \otimes_{\alpha^t} Y^*)^*$.
- (c) For every Banach space $Y, \mathcal{F}(X, Y^*)$ is dense in $\mathcal{A}^{\mathrm{adj}}(X, Y^*)$ with the weak* topology on $(X \hat{\otimes}_{\alpha^t} Y)^*$.

Proof. (a) \Rightarrow (b): Let Y be a Banach space. Since $[\mathcal{A}^{\mathrm{adj}}, \|\cdot\|_{\mathcal{A}^{\mathrm{adj}}}]$ is associated with α^* and $(\alpha^*)' = ((\alpha^t)')' = \alpha^t$, by Lemma 2.1, $\mathcal{A}^{\mathrm{adj}}(X, Y)$ is isometrically imbedded in $(X \widehat{\otimes}_{\alpha'} Y^*)^*$. Let $T \in \mathcal{A}^{\mathrm{adj}}(X, Y)$. Suppose that $T \notin \overline{\mathcal{F}(X, Y)}^{\mathrm{weak}^*}$. Then by the separation theorem, there exists a $u \in X \widehat{\otimes}_{\alpha'} Y^*$ such that for every $S \in \mathcal{F}(X, Y)$,

$$\langle S, u \rangle = 0$$
 but $\langle T, u \rangle \neq 0$,

where $\langle \cdot, \cdot \rangle$ is the dual action on $(X \widehat{\otimes}_{\alpha^t} Y^*)^*$. We will show that u = 0 in $X \widehat{\otimes}_{\alpha^t} Y^*$, which is a contradiction. Let

$$J_{\alpha^t}: X \, \hat{\otimes}_{\alpha^t} \, Y^* \to X \, \hat{\otimes}_{\varepsilon} \, Y^* \hookrightarrow \mathcal{L}(X^*, \, Y^*)$$

be the natural map. To show that $J_{\alpha^t}u = 0$ in $X \otimes_{\varepsilon} Y^*$, let $x^* \in X^*$ and $y \in Y$. For every $v = \sum_{k=1}^m x_k \otimes y_k^* \in X \otimes Y^*$,

$$\langle x^* \otimes y, \nu \rangle = \sum_{k=1}^m x^*(x_k) y_k^*(y) = ((J_{\alpha^t} \nu) x^*)(y).$$

Let (u_n) be a sequence in $X \otimes Y^*$ such that $\lim_{n \to \infty} \alpha^t (u_n - u) = 0$. Then

$$\lim_{n\to\infty}\langle x^*\otimes y,u_n\rangle=\langle x^*\otimes y,u\rangle.$$

Since

$$|((J_{\alpha^t}u_n)x^*)(y) - ((J_{\alpha^t}u)x^*)(y)| \le ||x^*|| ||y|| \varepsilon (J_{\alpha^t}(u_n - u); X, Y^*) \le ||x^*|| ||y|| \alpha^t (u_n - u) \to 0$$

as $n \to \infty$, and for every n, $\langle x^* \otimes y, u_n \rangle = ((J_{a^t}u_n)x^*)(y)$,

$$0 = \langle x^* \otimes y, u \rangle = ((J_{\alpha^t} u) x^*)(y).$$

Thus, $J_{\alpha^t}u = 0$ in $X \otimes_{\varepsilon} Y^*$.

The aforementioned argument also shows that

$$x^*((I_{\alpha}u^t)v) = ((I_{\alpha^t}u)x^*)(v)$$

for every $x^* \in X^*$ and $y \in Y$, where $J_\alpha : Y^* \widehat{\otimes}_\alpha X \to Y^* \widehat{\otimes}_\varepsilon X \hookrightarrow \mathcal{L}(Y,X)$ is the natural map. Consequently, $J_\alpha u^t = 0$ in $Y^* \widehat{\otimes}_\varepsilon X$. Since X has the α -AP, $u^t = 0$ in $Y^* \widehat{\otimes}_\alpha X$ and so u = 0 in $X \widehat{\otimes}_{\alpha^t} Y^*$.

(b) \Rightarrow (c): Let Y be a Banach space. By Lemma 2.1, $\mathcal{A}^{\mathrm{adj}}(X, Y^*)$ is isometric to $(X \widehat{\otimes}_{\alpha'} Y)^*$. Let $T \in \mathcal{A}^{\mathrm{adj}}(X, Y^*)$. Then by (b),

$$T \in \overline{\mathcal{F}(X, Y^*)}^{\text{weak}^*} \text{ on } (X \widehat{\otimes}_{\alpha^t} Y^{**})^*.$$

Since the canonical imbedding from $X \otimes_{a^t} Y$ to $X \otimes_{a^t} Y^{**}$ is an isometry,

$$T \in \overline{\mathcal{F}(X, Y^*)}^{\text{weak}^*} \text{ on } (X \widehat{\otimes}_{\alpha^t} Y)^*.$$

(c) \Rightarrow (a): Let Y be a Banach space. We show that the natural map

$$J_{\alpha}: Y \widehat{\otimes}_{\alpha} X \to Y \widehat{\otimes}_{\varepsilon} X \hookrightarrow \mathcal{L}(Y^*, X)$$

is injective. Assume that $J_{\alpha}u = 0$ in $Y \otimes_{\varepsilon} X$. To show that u = 0 in $Y \otimes_{\alpha} X$, we will show that $u^t = 0$ in $X \otimes_{\alpha^t} Y$, that is, $\langle T, u^t \rangle = 0$ for every $T \in \mathcal{A}^{\mathrm{adj}}(X, Y^*)$. Let $T \in \mathcal{A}^{\mathrm{adj}}(X, Y^*)$ be fixed. Since $I_{\sigma}u = 0$ in $Y \otimes_{\varepsilon} X$, for every $x^* \in X^*$ and $y^* \in Y^*$,

$$y^*((J_{\alpha^t}u^t)x^*) = x^*((J_{\alpha}u)y^*) = 0,$$

where $J_{a'}: X \widehat{\otimes}_{a'} Y \to X \widehat{\otimes}_{\varepsilon} Y \hookrightarrow \mathcal{L}(X^*, Y)$ is the natural map. As in the proof of (a) \Rightarrow (b), we see that

$$\langle x^* \otimes y^*, u^t \rangle = y^*((J_{\alpha^t}u^t)x^*) = 0$$

for every $x^* \in X^*$ and $y^* \in Y^*$, and so

$$\langle S, u^t \rangle = 0$$

for every $S \in \mathcal{F}(X, Y^*)$. Since $T \in \overline{\mathcal{F}(X, Y^*)}^{\text{weak}^*}$ on $(X \widehat{\otimes}_{\alpha^t} Y)^*$, $(X, u^t) = 0$.

Let $1 \le p$, $q \le \infty$ with $1/p + 1/q \le 1$ and let $1 \le r \le \infty$ with $1/p + 1/q + 1/r^* = 1$, where $1/r + 1/r^* = 1$. A linear map $T: X \to Y$ is called (p, q)-dominated if there exists a C > 0 such that

$$\|(y_n^*(Tx_n))_n\|_r \le C \|(x_n)_n\|_n^w \|(y_n^*)_n\|_q^w$$

for every $(x_n)_n \in \ell_p^w(X)$ and $(y_n^*)_n \in \ell_q^w(Y^*)$. We denote by $\mathcal{D}_{p,q}(X,Y)$ the collection of all (p,q)-dominated operators from X to Y and for $T \in \mathcal{D}_{p,q}(X,Y)$, let $||T||_{\mathcal{D}_{p,q}}$ be the infimum C satisfying all such inequalities. Then $[\mathcal{D}_{p,q}, \|\cdot\|_{\mathcal{D}_{p,q}}]$ is a Banach operator ideal (cf. [2, Section 19]). $\mathcal{P}_p = \mathcal{D}_{p,\infty}$ is well known as the *ideal of* absolutely p-summing operators (cf. [2,8–10]) and $\mathcal{D}_p \coloneqq \mathcal{D}_{p,p^*}$ is the ideal of p-dominated operators. For $1/p + 1/q \ge 1$, let $[\mathcal{L}_{p,q}, \|\cdot\|_{\mathcal{L}_{p,q}}]$ be the maximal Banach operator ideal associated with the tensor norm $\alpha_{p,q}$. $\mathcal{L}_{p,q}$ is well known as the *ideal of* (p,q)-factorable operators. Then

$$[\mathcal{L}_{p,q}, \|\cdot\|_{\mathcal{L}_{p,q}}]^{\text{adj}} = [\mathcal{D}_{p^*,q^*}, \|\cdot\|_{\mathcal{D}_{p^*,q^*}}]$$

(see [2, Section 17.12] and [9, Section 17.4]).

Theorem 2.2 applied to the tensor norm $\alpha_{p,q}$ covers [7, Theorem 1].

Corollary 2.3. Let $1 \le p$, $q \le \infty$ with $1/p + 1/q \ge 1$. The following statements are equivalent for a Banach space X.

- (a) X has the $\alpha_{p,q}$ -AP.
- (b) For every Banach space Y, $\mathcal{F}(X, Y)$ is dense in $\mathcal{D}_{p^*, q^*}(X, Y)$ with the weak* topology on $(X \otimes_{\alpha_n} Y^*)^*$.
- (c) For every Banach space Y, $\mathcal{F}(X, Y^*)$ is dense in $\mathcal{D}_{p^*,q^*}(X, Y^*)$ with the weak* topology on $(X \otimes_{a_q,p} Y)^*$.

Recall that a Banach space *X* has the AP if and only if *X* has the π -AP. Then the most special case of Corollary 2.3 is the following.

Corollary 2.4. The following statements are equivalent for a Banach space X

- (a) X has the AP.
- (b) For every Banach space $Y, \mathcal{F}(X, Y)$ is dense in $\mathcal{L}(X, Y)$ with the weak* topology on $(X \hat{\otimes}_{\pi} Y^*)^*$.
- (c) For every Banach space Y, $\mathcal{F}(X, Y^*)$ is dense in $\mathcal{L}(X, Y^*)$ with the weak* topology on $(X \otimes_{\pi} Y)^*$.

Proof. It is well known that π is associated with the ideal \mathcal{I} of integral operators and $\mathcal{I}^{\text{adj}} = \mathcal{L}$ holds isometrically (cf. [2]). Since $\pi^t = \pi$, we have the conclusion.

Theorem 2.5. Let $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be the maximal Banach operator ideal associated with a finitely generated tensor norm α . Then a Banach space X has the α^t -AP if and only if for every Banach space Y, $\mathcal{F}(Y, X^*)$ is dense in $\mathcal{A}^{\mathrm{adj}}(Y, X^*)$ with the weak* topology on $(Y \widehat{\otimes}_{\alpha^t} X)^*$.

Proof. Assume that X has the α^t -AP. Let Y be a Banach space. By Lemma 2.1, $\mathcal{A}^{\mathrm{adj}}(Y, X^*)$ is isometric to $(Y \widehat{\otimes}_{\alpha^t} X)^*$. Let $T \in \mathcal{A}^{\mathrm{adj}}(Y, X^*)$. Suppose that $T \notin \overline{\mathcal{F}(Y, X^*)}^{\mathrm{weak}^*}$. Then there exists a $u \in Y \widehat{\otimes}_{\alpha^t} X$ such that for every $S \in \mathcal{F}(Y, X^*)$,

$$\langle S, u \rangle = 0$$
 but $\langle T, u \rangle \neq 0$.

Then as in the proof of Theorem 2.2, we can show that the natural map $J_{\alpha^t}: Y \widehat{\otimes}_{\alpha^t} X \to Y \widehat{\otimes}_{\varepsilon} X$ is not injective. This contradicts the assumption that X has the α^t -AP.

To show the converse, let Y be a Banach space. We want to show that the natural map

$$J_{\alpha^t}: Y \widehat{\otimes}_{\alpha^t} X \to Y \widehat{\otimes}_{\varepsilon} X \hookrightarrow \mathcal{L}(Y^*, X)$$

is injective. Assume that $J_{\alpha^t}u = 0$ in $Y \otimes_{\varepsilon} X$. Let $T \in \mathcal{A}^{\operatorname{adj}}(Y, X^*)$. Since $J_{\alpha^t}u = 0$ in $Y \otimes_{\varepsilon} X$, we see that for every $Y^* \in Y^*$ and $X^* \in X^*$,

$$\langle y^* \otimes x^*, u \rangle = x^*((J_{\alpha^t}u)y^*) = 0.$$

Thus, $\langle S, u \rangle = 0$ for every $S \in \mathcal{F}(Y, X^*)$. Since $T \in \overline{\mathcal{F}(Y, X^*)}^{\text{weak}^*}$, $\langle T, u \rangle = 0$. Hence, u = 0 in $Y \otimes_{\alpha} X$.

Corollary 2.6. Let $1 \le p$, $q \le \infty$ with $1/p + 1/q \ge 1$. Then a Banach space X has the $\alpha_{q,p}$ -AP if and only if for every Banach space Y, $\mathcal{F}(Y, X^*)$ is dense in $\mathcal{D}_{p^*,q^*}(Y, X^*)$ with the weak* topology on $(Y \widehat{\otimes}_{\alpha_{q,p}} X)^*$.

3 The bounded α -approximation property

Let α be a tensor norm and let X and Y be Banach spaces. Recall from [2, 12.4] that for every $u \in X \otimes Y$, let

$$\overrightarrow{\alpha}(u; X, Y) := \inf\{\alpha(u; M, N) : u \in M \otimes N, \dim M, \dim N < \infty\}$$

and

$$\overleftarrow{\alpha}(u; X, Y) := \sup\{\alpha((q_K^X \otimes q_L^Y)(u); X/K, Y/L) : \dim X/K, \dim Y/L < \infty\}.$$

It follows that $\overleftarrow{\alpha} \leq \alpha \leq \overrightarrow{\alpha}$. A tensor norm α is called *totally accessible* if $\overleftarrow{\alpha} = \overrightarrow{\alpha}$.

From [2, Proposition 21.7(2)], a Banach space *X* has the λ -bounded α -AP if and only if for every Banach space *Y*,

$$\alpha(u; Y, X) \leq \lambda \overleftarrow{\alpha}(u; Y, X)$$

for every $u \in Y \otimes X$. Since $\alpha^t = (\alpha)^t$, it follows that a Banach space X has the λ -bounded α^t -AP if and only if for every Banach space Y,

$$\alpha(u; X, Y) \leq \lambda \overleftarrow{\alpha}(u; X, Y)$$

for every $u \in X \otimes Y$.

Lemma 3.1. [2, Theorem 15.5] For all Banach spaces X and Y, and a tensor norm α , the natural maps

$$I_{\overline{\alpha}}: X \otimes_{\overline{\alpha}}^{\leftarrow} Y \to (X^* \otimes_{\alpha'} Y^*)^*,$$

 $I_{\overline{\alpha}}: X^* \otimes_{\overline{\alpha}}^{\leftarrow} Y \to (X \otimes_{\alpha'} Y^*)^*$

are isometries.

The following lemma is a reformulation of [2, Lemma 16.2].

Lemma 3.2. Let α be a tensor norm and let X and Y be Banach spaces. Let $\lambda > 1$. Then $\alpha < \lambda \alpha$ on $X \otimes Y$ if and only if for every $\phi \in B_{(X \otimes_n Y)^*}$, there exists a net $(T_n)_n$ in $\lambda B_{X^* \otimes_n Y^*}$ such that for every $x \in X$ and $y \in Y$,

$$\lim_{\eta} (T_{\eta}x)(y) = \langle \phi, x \otimes y \rangle.$$

Proof. Suppose that $\alpha \leq \lambda \overleftarrow{\alpha}$ on $X \otimes Y$. Let $\phi \in B_{(X \otimes_{\alpha} Y)^*} \subset (X \otimes_{\alpha} Y)^*$. By Lemma 3.1, we can choose a Hahn-Banach extension $\hat{\phi} \in (X^* \otimes_{\alpha'} Y^*)^{**}$ of ϕ . By Goldstine's theorem, there exists a net $(T_{\eta})_{\eta}$ in $X^* \otimes Y^*$ with $\alpha'(T_n; X^*, Y^*) \leq \|\hat{\phi}\|_{(X^* \otimes_{\sigma'} Y^*)^{**}}$ such that

$$\lim_{\eta} \langle f, T_{\eta} \rangle = \langle \hat{\phi}, f \rangle$$

for every $f \in (X^* \otimes_{\alpha'} Y^*)^*$. Thus, for every $x \in X$ and $y \in Y$,

$$\lim_{\eta} (T_{\eta}x)(y) = \lim_{\eta} \langle x \otimes y, T_{\eta} \rangle = \langle \hat{\phi}, x \otimes y \rangle = \langle \phi, x \otimes y \rangle.$$

Also, since

$$\|\hat{\phi}\|_{(X^*\otimes_{\alpha'}Y^*)^{**}} = \|\phi\|_{(X\otimes_{\alpha}Y)^*} \leq \lambda \|\phi\|_{(X\otimes_{\alpha}Y)^*} \leq \lambda,$$

the net (T_n) is in $\lambda B_{X^* \otimes_{\alpha'} Y^*}$.

To show the converse, let $u = \sum_{k=1}^{m} x_k \otimes y_k \in X \otimes Y$. Then there exists $\phi \in B_{(X \otimes_\alpha Y)^*}$ such that $\alpha(u; X, Y) = x$ $\langle \phi, u \rangle$. By assumption, there exists a net (T_{η}) in $\lambda B_{X^* \otimes_{\sigma'} Y^*}$ such that

$$\lim_{\eta}\langle u, T_{\eta}\rangle = \lim_{\eta} \sum_{k=1}^{m} (T_{\eta}x_k)(y_k) = \langle \phi, u \rangle.$$

Hence,

$$\alpha(u; X, Y) = \langle \phi, u \rangle \leq \lambda \sup\{|\langle u, v \rangle| : v \in B_{X^* \otimes_{\alpha'} Y^*}\} = \lambda \|u\|_{(X^* \otimes_{\alpha'} Y^*)^*} = \lambda \overleftarrow{\alpha}(u; X, Y). \qquad \square$$

Lemma 3.3. [2, Proposition 21.8] Let $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be the maximal Banach operator ideal associated with a finitely generated tensor norm α and let $\lambda \geq 1$. Let X and Y be Banach spaces. Then $\alpha \leq \lambda \overleftarrow{\alpha}$ on Y* \otimes X if and only if for every $T \in B_{\mathcal{A}^{\operatorname{adj}}(X,Y^{**})}$, there exists a net $(T_{\eta})_{\eta}$ in $\lambda B_{X^*\otimes_{\alpha^*}Y}$ such that for every $x \in X$ and $y^* \in Y^*$,

$$\lim_{\eta} y^*(T_{\eta}x) = (Tx)(y^*).$$

We denote the *strong operator topology* and the *weak operator topology* on \mathcal{L} , respectively, by τ_{so} and τ_{wo} . For a net $(T_{\alpha})_{\alpha}$ in $\mathcal{L}(X, Y^*)$, we say that $T_{\alpha} \to 0$ in the weak* *operator topology* if

$$\lim_{\eta} (T_{\alpha}x)(y) \to 0$$

for every $x \in X$ and $y \in Y$. We denote the weak* operator topology by τ_{w^*o} .

Theorem 3.4. Let $[\mathcal{A}, \|\cdot\|_{\mathcal{H}}]$ be the maximal Banach operator ideal associated with a finitely generated tensor *norm* α and let $\lambda \geq 1$. Then the following statements are equivalent for a Banach space X.

- (a) X has the λ -bounded α -AP.
- (b) For every Banach space Y and every $T \in \mathcal{A}^{\mathrm{adj}}(X, Y)$,

$$T \in \overline{\left\{S \in \mathcal{F}(X,Y) : \alpha^*(S;X^*,Y) \leq \lambda \|T\|_{\mathcal{A}^{adj}}\right\}^{\tau_{so}}}.$$

(c) For every Banach space Y and every $T \in \mathcal{A}^{\mathrm{adj}}(X, Y^*)$,

$$T \in \overline{\left\{S \in \mathcal{F}(X, Y^*) : \alpha^*(S; X^*, Y^*) \leq \lambda \|T\|_{\mathcal{A}^{adij}}\right\}^{\tau_{W^*o}}}.$$

Proof.

(b) \Rightarrow (c) is trivial.

(a) \Rightarrow (b): This proof is essentially due to [11, Theorem 4.1]. Let Y be a Banach space and let $T \in \mathcal{A}^{\operatorname{adj}}(X, Y)$. Consider $i_Y T \in \mathcal{A}^{\operatorname{adj}}(X, Y^{**})$, where $i_Y : Y \to Y^{**}$ is the canonical isometry. Since X has the λ -bounded α -AP, by Lemma 3.3, there exists a net $(T_\eta)_\eta$ in $\mathcal{F}(X, Y)$ with $\alpha^*(T_\eta; X^*, Y) \leq \lambda$ such that for every $x \in X$ and $y^* \in Y^*$,

$$\lim_{\eta} y^*(\|i_Y T\|_{\mathcal{A}^{\text{adj}}} T_{\eta} x) = (i_Y T x)(y^*) = y^*(T x).$$

Since $\alpha^*(\|i_Y T\|_{\mathcal{A}^{\mathrm{adj}}} T_{\eta}; X^*, Y) \leq \lambda \|T\|_{\mathcal{A}^{\mathrm{adj}}}$,

$$T \in \overline{\left\{S \in \mathcal{F}\left(X,\,Y\right):\, \alpha^*\left(S;\,X^*,\,Y\right) \leq \lambda \|T\|_{\mathcal{A}^{\operatorname{adj}}}\right\}^{\tau_{\operatorname{wo}}}} = \overline{\left\{S \in \mathcal{F}\left(X,\,Y\right):\, \alpha^*\left(S;\,X^*,\,Y\right) \leq \lambda \|T\|_{\mathcal{A}^{\operatorname{adj}}}\right\}^{\tau_{\operatorname{so}}}}.$$

(c) \Rightarrow (a): Let Y be a Banach space. Since $\alpha^t = (\overleftarrow{\alpha})^t$, $\alpha \leq \lambda \overleftarrow{\alpha}$ on $Y \otimes X$ if and only if $\alpha^t \leq \lambda \overleftarrow{\alpha^t}$ on $X \otimes Y$. So, in order to show that X has the λ -bounded α -AP, we will show that $\alpha^t \leq \lambda \overleftarrow{\alpha^t}$ on $X \otimes Y$ using Lemma 3.2.

Now, let $\phi \in B_{(X \otimes_{a^t} Y)^*}$. By Lemma 2.1, we can choose the representation $T_\phi \in \mathcal{A}^{\operatorname{adj}}(X, Y^*)$ of ϕ with $\|T_\phi\|_{\mathcal{A}^{\operatorname{adj}}} \leq 1$. Then by (c), there exists a net $(S_\eta)_\eta$ in $\lambda B_{X^* \otimes_{a^*} Y^*}$ such that for every $x \in X$ and $y \in Y$,

$$\lim_{n} (S_{\eta}x)(y) = (T_{\phi}x)(y) = \langle \phi, x \otimes y \rangle.$$

Hence by Lemma 3.2, we complete the proof.

Corollary 3.5. Let $1 \le p$, $q \le \infty$ with $1/p + 1/q \ge 1$ and let $\lambda \ge 1$. The following statements are equivalent for a Banach space X.

- (a) X has the λ -bounded $\alpha_{p,q}$ -AP.
- (b) For every Banach space Y and every $T \in \mathcal{D}_{p^*,q^*}(X, Y)$,

$$T \in \overline{\{S \in \mathcal{F}(X, Y) : \|S\|_{\mathcal{D}_{p^*, q^*}} \le \lambda \|T\|_{\mathcal{D}_{p^*, q^*}}\}^{\tau_{\text{so}}}}.$$

(c) For every Banach space Y and every $T \in \mathcal{D}_{p^*,q^*}(X,Y^*)$,

$$T \in \overline{\{S \in \mathcal{F}(X,\,Y^*):\, \|S\|_{\mathcal{D}_{p^*,q^*}} \leq \lambda \|T\|_{\mathcal{D}_{p^*,q^*}}\}^{\tau_{w^*o}}.$$

Proof. If $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ is the maximal Banach operator ideal associated with a totally accessible finitely generated tensor norm α , then by Lemmas 2.1 and 3.1, $\alpha = \|\cdot\|_{\mathcal{A}}$ on \mathcal{F} . Since $\alpha_{p,q}^*$ is totally accessible (cf. [2, Theorem 21.5]), by Theorem 3.4, we have the conclusion. The equivalence (a) \Leftrightarrow (b) is also a consequence of [11, Theorem 4.1].

For the following result, we will need [11, Corollary 2.14], which can be reformulated as follows.

Lemma 3.6. Let $1 \le p \le \infty$ and let $\lambda \ge 1$. The following statements are equivalent for a Banach space X. (a) For every Banach space Y and every $T \in \mathcal{P}_p(X, Y)$,

$$T \in \overline{\{S \in \mathcal{F}(X,Y): \|S\|_{\mathcal{P}_p} \leq \lambda \ \|T\|_{\mathcal{P}_p}\}}^{\tau_{so}}.$$

(b) For every Banach space Y and every $T \in \mathcal{P}_p(X, Y)$,

$$\mathrm{id}_X \in \overline{\{S \in \mathcal{F}(X,X) : \|TS\|_{\mathcal{P}_p} \leq \lambda \ \|T\|_{\mathcal{P}_p}\}^{\tau_{so}}}.$$

According to [11, Definition 1.2], for a Banach operator ideal \mathcal{A} , a Banach space X is said to have the weak λ -BAP for \mathcal{A} if for every Banach space Y and every $T \in \mathcal{A}(X, Y)$,

$$\mathrm{id}_X \in \overline{\{S \in \mathcal{F}(X,X) : \|TS\|_{\mathcal{A}} \leq \lambda \|T\|_{\mathcal{A}}\}}^{\tau_{so}}$$
.

Theorem 3.7. Let $1 \le p$, $q \le \infty$ with $1/p + 1/q \ge 1$ and let $\lambda \ge 1$. If a Banach space X has the λ -bounded g_p -AP, then X has the weak λ -BAP for \mathcal{D}_{p^*,q^*} .

Proof. By Corollary 3.5 and Lemma 3.6, if *X* has the λ -bounded g_p -AP, then for every Banach space *Z* and every $T \in \mathcal{P}_{n^*}(X, Z)$,

$$\mathrm{id}_X \in \overline{\{S \in \mathcal{F}(X,X) \,:\, \|TS\|_{\mathcal{P}_{n^*}} \leq \lambda \,\, \|T\|_{\mathcal{P}_{n^*}}\}^{\tau_{so}}}.$$

Now, let Y be a Banach space and let $T \in \mathcal{D}_{p^*,q^*}(X,Y)$. Let $\delta > 0$. Then by Kwapień's factorization theorem (cf. [2, Theorem 19.3]), there exist a Banach space Z, $R \in \mathcal{P}_{g^*}(X, Z)$ and $U^* \in \mathcal{P}_{g^*}(Y^*, Z^*)$ with $\|U^*\|_{\mathcal{P}_{q^*}}\|R\|_{\mathcal{P}_{p^*}} \leq (1+\delta)\|T\|_{\mathcal{D}_{p^*,q^*}}$ such that the following diagram is commutative.

By the aforementioned statement, for every finite $x_1, ..., x_m \in X$ and every $\varepsilon > 0$, there exists an $S \in \mathcal{F}(X, X)$ with $||RS||_{\mathcal{P}_{n^*}} \leq \lambda ||R||_{\mathcal{P}_{n^*}}$ such that

$$||Sx_i - x_i|| \le \varepsilon$$

for every i = 1, ..., m. Since

$$||TS||_{\mathcal{D}_{n^*a^*}} \le ||U^*||_{\mathcal{P}_{a^*}} ||RS||_{\mathcal{P}_{n^*}} \le (1+\delta)\lambda ||T||_{\mathcal{D}_{n^*a^*}},$$

we have shown that for every $\delta > 0$,

$$\operatorname{id}_X \in \overline{\{S \in \mathcal{F}(X,X): \|TS\|_{\mathcal{D}_{p^*,q^*}} \leq (1+\delta)\lambda \ \|T\|_{\mathcal{D}_{p^*,q^*}}\}^{\tau_{so}}}.$$

Let $x_1, ..., x_m \in X$ and let $\varepsilon > 0$. Choose a $\delta > 0$ so that

$$(\delta \lambda/(1+\delta)\lambda) \max_{1 \le k \le m} \|x_k\| \le \varepsilon/2.$$

Then, there exists an $S \in \{S \in \mathcal{F}(X,X) : \|TS\|_{\mathcal{D}_{p^*,q^*}} \le (1+\delta)\lambda \|T\|_{\mathcal{D}_{p^*,q^*}}\}$ such that for every i=1,...,m, $||Sx_i - x_i|| \le \varepsilon/2$. Consider

$$(\lambda/(1+\delta)\lambda)S\in\{S\in\mathcal{F}(X,X):\|TS\|_{\mathcal{D}_{p^*,q^*}}\leq\lambda\ \|T\|_{\mathcal{D}_{p^*,q^*}}\}.$$

Then for every i = 1, ..., m,

$$\left\| \frac{\lambda}{(1+\delta)\lambda} Sx_i - x_i \right\| \leq \frac{\lambda}{(1+\delta)\lambda} \left\| Sx_i - x_i \right\| + \frac{\delta\lambda}{(1+\delta)\lambda} \max_{1 \leq k \leq m} \|x_k\| \leq \varepsilon.$$

Hence,
$$\mathrm{id}_X \in \overline{\left\{S \in \mathcal{F}\big(X,X\big): \|TS\|_{\mathcal{D}_{p^*,q^*}} \leq \lambda \|T\|_{\mathcal{D}_{p^*,q^*}}\right\}^{\tau_{\mathrm{so}}}}.$$

In [7, Proposition 2], it was shown that if a Banach space *X* has the g_n -AP, then *X* has the $\alpha_{p,q}$ -AP. From Theorem 3.7 and Corollary 3.5, we have:

Corollary 3.8. Let $1 \le p$, $q \le \infty$ with $1/p + 1/q \ge 1$ and let $\lambda \ge 1$. If a Banach space X has the λ -bounded g_p -AP, then X has the λ -bounded $\alpha_{p,q}$ -AP.

Theorem 3.9. Let $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be the maximal Banach operator ideal associated with a finitely generated tensor norm α and let $\lambda \geq 1$. Then a Banach space X has the λ -bounded α^t -AP if and only if for every Banach space Y and every $T \in \mathcal{A}^{\mathrm{adj}}(Y, X^*)$,

$$T \in \overline{\{S \in \mathcal{F}(Y, X^*) : \alpha^*(S; Y^*, X^*) \leq \lambda \|T\|_{\alpha^{\mathrm{adj}}}\}^{\tau_{\mathrm{W}^*o}}}$$
.

Proof. Let

$$i: X \otimes_{\alpha} Y \to Y \otimes_{\alpha^t} X$$

be the isometry defined by $i(u) = u^t$.

Suppose that X has the λ -bounded α^t -AP. Let Y be a Banach space and let $T \in \mathcal{A}^{\mathrm{adj}}(Y, X^*)$. By Lemma 2.1, we can choose the representation $\phi_T \in (Y \otimes_{\alpha^t} X)^*$ of T. Consider $\phi_T i \in (X \otimes_{\alpha} Y)^*$. Since X has the λ -bounded α^t -AP, $\alpha \leq \lambda \overleftarrow{\alpha}$ on $X \otimes Y$. Then by Lemma 3.2, there exists a net $(u_\eta)_\eta$ in $\lambda B_{X^* \otimes_{\alpha'} Y^*}$ such that for every $X \in X$ and $Y \in Y$,

$$\lim_{\eta} \langle x \otimes y, u_{\eta} \rangle = \left\langle \frac{\phi_T i}{\|\phi_T i\|_{(X \otimes_{\sigma} Y)^*}}, x \otimes y \right\rangle.$$

Let us consider the net $(\|\phi_T i\|_{(X \otimes_\alpha Y)^*} u_\eta^t)_\eta$ in $Y^* \otimes X^* = \mathcal{F}(Y, X^*)$. Then

$$\alpha^*(\|\phi_T i\|_{(X \otimes_{\alpha} Y)^*} u_n^t; Y^*, X^*) = \|\phi_T i\|_{(X \otimes_{\alpha} Y)^*} \alpha'(u_n; X^*, Y^*) \le \lambda \|T\|_{\mathcal{A}^{\text{adj}}}$$

and for every $y \in Y$ and $x \in X$,

$$\lim_{\eta} (\|\phi_T i\|_{(X \otimes_{\alpha} Y)^*} u_{\eta}^t y)(x) = \lim_{\eta} \|\phi_T i\|_{(X \otimes_{\alpha} Y)^*} \langle x \otimes y, u_{\eta} \rangle = \langle \phi_T i, x \otimes y \rangle = (Ty)(x).$$

Hence,
$$T \in \overline{\{S \in \mathcal{F}(Y, X^*) : \alpha^*(S; Y^*, X^*) \leq \lambda \|T\|_{\mathcal{A}^{\text{adj}}}\}^{\tau_{w^*o}}}$$
.

To show the converse, we also use Lemma 3.2. Let Y be a Banach space and let $\phi \in B_{(X \otimes_{\alpha} Y)^*}$. Consider $\phi i^{-1} \in B_{(Y \otimes_{\alpha} tX)^*}$. By Lemma 2.1, we can choose the representation $T_{\phi i^{-1}} \in \mathcal{A}^{\operatorname{adj}}(Y, X^*)$ of ϕi^{-1} with $\|T_{\phi i^{-1}}\|_{\mathcal{A}^{\operatorname{adj}}} \leq 1$. By assumption, there exists a net $(S_{\eta})_{\eta}$ in $\lambda B_{Y^* \otimes_{\alpha} {}^* X^*}$ such that for every $y \in Y$ and $x \in X$,

$$\lim_{\eta} (S_{\eta} y)(x) = (T_{\phi i^{-1}} y)(x).$$

Consider the net $(S_{\eta}^t)_{\eta}$ in $X^* \otimes Y^*$. Then $\alpha'(S_{\eta}^t; X^*, Y^*) = \alpha^*(S_{\eta}; Y^*, X^*) \leq \lambda$ and for every $x \in X$ and $y \in Y$,

$$\lim_{\eta} (S_{\eta}^{t}x)(y) = \lim_{\eta} (S_{\eta}y)(x) = (T_{\phi i^{-1}}y)(x) = \langle \phi i^{-1}, y \otimes x \rangle = \langle \phi, x \otimes y \rangle.$$

Thus by Lemma 3.2, $\alpha \le \lambda \overleftarrow{\alpha}$ on $X \otimes Y$. Hence, X has the λ -bounded α^t -AP.

From Theorem 3.9, we have:

Corollary 3.10. Let $1 \le p$, $q \le \infty$ with $1/p + 1/q \ge 1$ and let $\lambda \ge 1$. A Banach space X has the λ -bounded $\alpha_{q,p}$ -AP if and only if for every Banach space Y and every $T \in \mathcal{D}_{p^*,q^*}(Y,X^*)$,

$$T \in \overline{\{S \in \mathcal{F}(Y, X^*) : \|S\|_{\mathcal{D}_{p^*,q^*}} \leq \lambda \ \|T\|_{\mathcal{D}_{p^*,q^*}}\}^{\tau_w \circ}}.$$

4 Open problems

The following question is a well-known problem (cf. [2, Section 21.12]).

Problem 1

Is the tensor norm w_p (1 < p < ∞ , $p \ne 2$) totally accessible?

Since a finitely generated tensor norm α is totally accessible if and only if every Banach space has the 1-bounded α -AP, the problem can be reformulated as follows.

Problem 1

Does every Banach space have the 1-bounded w_p -AP (1 < p < ∞ , $p \ne 2$)?

According to Corollaries 3.5 and 3.10, a Banach space X has the 1-bounded w_p -AP if and only if for every Banach space Y and every $T \in \mathcal{D}_{n^*}(X, Y)$,

$$T \in \overline{\{S \in \mathcal{F}(X, Y) : \|S\|_{\mathcal{D}_{n^*}} \leq \|T\|_{\mathcal{D}_{n^*}}\}^{\tau_{so}}}$$

if and only if for every Banach space Y and every $T \in \mathcal{D}_n(Y, X^*)$,

$$T \in \overline{\{S \in \mathcal{F}(Y, X^*) : \|S\|_{\mathcal{D}_n} \leq \|T\|_{\mathcal{D}_n}\}^{\tau_{\mathbf{w}^*_0}}$$
.

Therefore, the problem can be reformulated as follows.

Problem 1

Let $1 , <math>p \ne 2$. For all Banach spaces X, Y and every $T \in \mathcal{D}_{p^*}(X, Y)$,

$$T \in \overline{\{S \in \mathcal{F}(X, Y) : \|S\|_{\mathcal{D}_{n^*}} \leq \|T\|_{\mathcal{D}_{n^*}}\}^{\tau_{so}}}?$$

Or, for every $T \in \mathcal{D}_p(Y, X^*)$,

$$T \in \overline{\{S \in \mathcal{F}(Y, X^*) : \|S\|_{\mathcal{D}_n} \leq \|T\|_{\mathcal{D}_n}\}^{\tau_{\mathbf{w}^*_0}}}?$$

Reinov [12] constructed Banach spaces failing to have the g_p -AP and the d_p -AP ($1 \le p \le \infty$, $p \ne 2$). From [7, Proposition 2], if a Banach space has the g_p -AP, then it has the w_p -AP. It is not known whether every Banach space has the w_p -AP (1 < p < ∞ , $p \ne 2$). According to Corollaries 2.3 and 2.6, a Banach space X has the w_p -AP if and only if $\mathcal{F}(X, Y)$ is dense in $\mathcal{D}_{p^*}(X, Y)$ with the weak* topology on $(X \widehat{\otimes}_{w_{p^*}} Y^*)^*$ for every Banach space Y if and only if $\mathcal{F}(Y, X^*)$ is dense in $\mathcal{D}_p(Y, X^*)$ with the weak* topology on $(Y \otimes_{w_p} X)^*$ for every Banach space Y. We ask:

Problem 2

Let $1 , <math>p \ne 2$. For all Banach spaces *X* and *Y*, is the space $\mathcal{F}(X, Y)$ dense in $\mathcal{D}_{n'}(X, Y)$ with the weak* topology on $(X \otimes_{w_{n^*}} Y^*)^*$?

Or, is the space $\mathcal{F}(Y, X^*)$ dense in $\mathcal{D}_p(Y, X^*)$ with the *weak** topology on $(Y \otimes_{w_n} X)^*$?

Acknowledgments: The author would like to thank the referees for valuable comments. This work was supported by the National Research Foundation of Korea (NRF-2018R1D1A1B07043566).

References

- A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), DOI: http://dx.doi.org/10.1090/memo/0016.
- A. Defant and K. Floret, Tensor Norms and Operator Ideals, Elsevier, North-Holland, 1993.
- O. Reinov, Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints, Math. Nachr. 109 (1982), 125-134.
- J. T. Lapresté, Opérateurs sommants et factorisations à travers les espaces L^p, Studia Math. **57** (1976), 47–83.
- [5] S. Chevet, Sur certains produits tensoriels topologiques d'espaces de Banach, Z. Wahrscheinlichkeitstheorie verw. Gebiete 11 (1969), 120-138.

- [6] P. Saphar, Applications à puissance nucléaire et applications de Hilbert-Schmidt dans les espaces de Banach, Ann. Scient. Ec. Norm. Sup. 83 (1966), 113–151.
- [7] J. C. Díaz, J. A. López-Molina, and M. J. Rivera, *The approximation property of order* (*p*,*q*) *in Banach spaces*, Collect. Math. **41** (1990), 217–232.
- [8] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.
- [9] S. Lassalle, E. Oja, and P. Turco, Weaker relatives of the bounded approximation property for a Banach operator ideal, J. Approx. Theory **205** (2016), 25–42.
- [10] N. Tomczak-Jaegermann, *Banach-Mazur Distances and Finite-Dimensional Operator Ideals*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientifical and Technical, New York, 1989.
- [11] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, Berlin, 2002.
- [12] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.