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Abstract: We mainly consider the limit behaviors of the Riemann solutions to Chaplygin Euler equations for
nonisentropic fluids. The formation of delta shock wave and the appearance of vacuum state are found as
parameter € tends to a certain value. Different from the isentropic fluids, the weight of delta shock wave is
determined by variance density p and internal energy H. Meanwhile, involving the entropy inequality, the
uniqueness of delta shock wave is obtained.
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1 Introduction

One-dimensional compressible Euler equations for nonisentropic fluids can be written as

pt + (pu)x = O’
(pu); + (pu? + P(p, s))x = 0, 1.1)
(pu?/2 + pe); + ((pu?/2 + pe + P(p, s))u), = 0,

where the variables p, u, s, P, e stand for the density, velocity, specific entropy, pressure and specific

energy, respectively, and P(g, p) = €p satisfies lim P(p, €) = 0. P and e are the functions of p and s, and
fulfill the thermodynamical constraint 0

de = Tds — PdY, (1.2)
p
where T = T(p, s) represents the temperature. The equation of state with Chaplygin gas can be expressed as
p=-+, 13)
p

which was introduced by Chaplygin [1] in 1904. In some theories of cosmology, Chaplygin gas explains the
acceleration and the dark energy of the universe, and the formation of delta shock wave may be used to
illustrate the different periods of evolution of the universe. As for the related results, one can see [2-6].

* Corresponding author: Lihui Guo, College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046,
P. R. China, e-mail: lihguo@126.com

Maozhou Lin: College of Mathematics and System Sciences, Xinjiang University, Urumgi 830046, P. R. China,

e-mail: maozhoulin@126.com

8 Open Access. © 2020 Maozhou Lin and Lihui Guo, published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.


https://doi.org/10.1515/math-2020-0113
mailto:maozhoulin@126.com
mailto:lihguo@126.com

1772 —— Maozhou Lin and Lihui Guo DE GRUYTER

In 2005, Brenier [7] considered the Riemann problem of the isentropic Chaplygin gas Euler equations
pe + (pu)y = 0,

o[- 2] o,
p

X

(1.4)

and obtained the concentration solutions when the initial value belongs to a certain region in the phase
plane. In 2010, Guo et al. [8] put away this restriction to system (1.4) and received the global solutions
including the delta shock. Wang and Zhang [9] investigated the Riemann problem with delta initial data
and obtained four kinds of the global generalized solutions. In 2014, Nedeljkov [10] studied higher order
shadow waves and delta shock blow up in the Chaplygin gas and found that a double shadow wave
interacted with an outgoing wave and formed a singled weighted shadow wave, which is in general called
delta shock wave. Meanwhile, Nedeljkov proved that this delta shock has a variable strength and variable
speed. For more detailed knowledge of delta shock, interested readers can refer to [11-17].
As the pressure vanishes, equations (1.4) converge to the transport equations

{pt + (pu)x =0,

(pu); + (pu?)y = 0, (1.5)

which are also called the pressureless Euler equations and can be used to describe the motion of free
particles sticking under collision in [18-20]. Equations (1.5) have been extensively studied since 1994 such
as in [21-23]. In 2016, Shen [24] considered the Riemann problem for the Chaplygin gas equations with
a source term. Furthermore, Guo et al. [25] studied the vanishing pressure limits of Riemann solutions and
analyzed the phenomena of concentration and cavitation to the Chaplygin gas equations with a source
term. As for the pressure vanishing limits of the isentropic Euler equations, let us refer to [26—31] for more
details.

Kraiko [32] studied system (1.1) with P(p, s) = 0 in 1979. In order to construct a solution for any initial
data, they needed the discontinuities which are different from classical waves that carry mass, impulse and
energy. In 2012, Cheng [33] solved the Riemann problem for (1.1) with P(p, s) = 0 and found two kinds of
solutions containing vacuum state and delta shock with Dirac delta function in both the density and the
internal energy. We replace internal energy pe by H, therefore, system (1.1) can be transformed into the
following equations:

P+ (pu)y = 0,
(pu) + (pu? + P), = 0, (1.6)
(pu?/2 + H); + ((pu?/2 + H + P)u), = 0,

where H denoted the internal energy and H > 0. Pang [34] considered the system of (1.6) for Chaplygin gas
equations with the following initial data

(p, u, H)(x, 0) = {(p’ -, B, x <0, (1.7)

0., uy, H), x>0,
where p, > 0,u, > 0and H; > O are different constants. For more detailed information on the nonisentropic
Euler equations, interested readers can refer to [35-38].
In this article, we mainly focus our attention to the vanishing pressure limits of Riemann solutions for
system (1.6)—(1.7), when the pressure vanishes, equation (1.6) can be translated into (1.5), and an additional
conservation law

(ou?/2 + H); + (pu?/2 + Hu), = 0. (1.8)

As pressure vanishes, we identify and analyze the formation of delta shock waves and vacuum states in the
Riemann solutions. Furthermore, in the sense of distributions, entropy inequality corresponding to equa-
tion (1.8) will be verified

(pu?) + (pud), = 0. (1.9)
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The remainder of this article can be organized as follows: in Sections 2 and 3, we review the Riemann
solutions to (1.5) and (1.6), respectively. In Section 4, we consider the vanishing pressure limits of Riemann
solutions to (1.6) and (1.7). In Section 5, we give some discussions.

2 Riemann problem for (1.5)

In this section, we review some results on Riemann solution to system (1.5) with initial data

(0, ) (x, 0) = {(p" 1), x<0, 1)

) Us), X >0,

where p, > 0, the details can be referred to in [23].
For the case u_ < u,, we know that the Riemann solutions of (1.5) contain two-contact discontinuities J;,
J, and a vacuum state between two-contact discontinuities, and J;, J, satisfy

h:u=u, L:u=u,. (2.2)

For the case u_ = u,, the Riemann solution include a contact discontinuity J that connects (o, u_) to
(0., u,), and J satisfies

Jiu=u_=u,. (2.3)
While for the caseu_ > u,, the superposition of S and J leads to the singularity for p on the line x = x(t)t
as a weighted Dirac delta function, which was named as the so-called delta shock wave. Thus, the delta

shock wave solution to the Riemann problem (1.6) and (1.7) should be constructed when u_ > u,. Then, let
us recollect the definition of delta shock wave in [13,22].

Definition 2.1. For arbitrary Y(x, t) € C§°(R + R,), the two-dimensional weighted Dirac delta function B(s) 61
with the support on a parameterized smooth curve I = {(x(s), t(s)) : a < s < b} is defined by

B(s)0r, Y(x, 1)) = Iﬁ(S)IIJ(X(S), t(s)ds.

By virtue of the above definition, the Riemann solution of (1.6) and (1.7) contains a delta shock wave.
It can be briefly expressed by

(p,u)+6S+ (p,u), (2.4)
namely,
(o, u), x < x(t),
(p, w)(x, t) = < (W(t)6(x - x(t)), us), x = x(t), (2.5)
(p',, u+)) X(t) < X,

where w(t) and o(t) denote the weight and velocity of delta shock wave, respectively.

While for the case u_ > u,, singularity must happen. We use a delta shock wave to construct the
Riemann solution. The details can be found in [22]. The location, weight and velocity of the delta shock
are given by computing generalized Rankine-Hugoniot relations, which are

\/p_+u++ﬁu,t _Jpu.+ Jpu

t
x(t) = »  w(t) = ——=(olp] - [pul), o= (2.6)
Jo + 1+ 0? Jo +Jp
In addition, the delta shock wave satisfies the generalized entropy condition
u, <o<u, .7)

which means that all characteristics on both sides of the 6-shock wave curve are incoming. Furthermore,
the uniqueness of delta shock wave can be obtained.
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3 Riemann problem for (1.6)—(1.7) for the Chaplygin gas

From thermodynamical constraint (1.2), we derive
Tds - d( _ ?j

, £
T =f'(s), e:?+f(s).

thus, there is a function f(s) satisfying

Due to the value of e is positive, which means that the function g(x) = %xz + f(s) = 0 when x € (0, +00), SO

f(s) > 0, namely, e - % > 0. Then, the physically relevant region can be expressed as
N:{(P:U,H)|P>0, HZi, UER}.
2p

In this section, we review results on the Riemann problem of (1.6) for the Chaplygin gas, see [34] for the
details. Equations (1.6) have three eigenvalues

JE

h=u-—, Ah=u, MA=u+
p

e G
p

with corresponding right eigenvectors

p’ 1Y p’ 1Y
v v v
n=|-—,1,vJe —-—Hp|, B»=0,0D" &HB=|-—,1,-ve+—Hp]|.
1 [ NG 7 P] 2 = ( ) 3 [ NG NG Pj
Direct calculation yields VA; - 7[ =0, for i =1, 2, 3, which indicates that all the characteristic fields are
contact discontinuous.

For any given constant state (0, u_, H ) in the phase plane, we can derive three families of contact
discontinuities

]1 (R’ u, H,) : p p— (3-2)
(2Hp - £)p* = 2H.p. - €)p?,

oy=u=u, p=p,
S, u H):q 2 3.3
Jip,u, H) {Hq&H_, 33)
ey YE N
. jos=u+ =u + ,
E,u,H): P 12 (3.4)

(2Hp - )p? = H.p - €)p?.

On the physical correlation region, thatis (o, u_, H_) € X, from given state (o , u_, H_), we can draw the
one-contact discontinuity curve J that satisfies (3.2) and the three-contact discontinuity curve J5 that

2Je
78, H

satisfies (3.4). And from the point (p_ , U — P ) draw three-contact discontinuity curve Sy that satisfies

(3.4). In fact, this curve S§ consists of some states that can be connected to the states (o , u_, H_) on the right
by a éS.

We project these curves onto the (p, u)-plane. J{ has two asymptotesu = u_ - ? and p = 0, J§ has two
asymptotes u = u_ + % and p = 0, and S§ satisfies

VE VE

u+ —=u.—-—, (3.5)
p P
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which has two asymptotic lines u = u_ - % and p = 0. Thus, the phase plane can be divided into five
regions. )

When the projection of (g,, u., H,) belongs to I(p, u_) U Il(p, u_) U lll(p, u_) U IV(g, u_) in the (p, u)-
plane, the Riemann solution can be briefly expressed by
(o, u Ho) + JF + (o, wi, HE) + 5 + (o, us, HY) +J5 + (o, uy, Hy), (3.6)

where (o, us, Hi) and (o, us,, Hy) are the intermediate states.
For the projection of (g, u,, H,) belongs to V(o , u_) in the (p, u)-plane, the Riemann solution can be
given by
(o,u,H)+6S+(p,u, H). (3.7)

The details can be referred to in [34]. The delta shock wave holds the generalized Rankine-Hugoniot
conditions

dxgt’ & _ustt, e),
d“’étt’ £ _ us(t, €)[pl - [pul,
4@ DU _ i, 6y jpu - + P, >
dt
2
d(a)(t)ué(t)/z + h(t)) — u&(ty £)|:p_uz + H:| — |:(p—uz + H + PJ j|y
dt 2 2

(X’ w, Us, h)(O) = (O: 0,0, O)’

where w(t, €) and ug(t, €) are weight and velocity of delta shock wave, respectively.
It can be derived from (3.8) that

1
(p]
us(t, €) = %([pu] + w'(t, €)),

-2 2 2 2]

h(t, €) = —w(t, €)us(t, €)*/2 + x(t, €) [pu?/2 + H] - [(ou?/2 + H + P)ult,

x(t, &) = —([pult + w(t, €)),

(3.9

for[p] =p. - p # 0, and
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x(t, €) = (u_ + u+)t’
2
u_+u
us(t, €) = —— 2, (3.10)

w(t, &) = p - —u)t,
h(t, €) = —w(t, €)ug(t)/2 + x(t, €) [pu?/2 + H] - [(pu?/2 + H + P)ult,

for[p] =p. - p =0.
In addition, it is easy to see that the delta shock wave satisfies the generalized entropy condition

JE

u+ Y& sty e) <u - YE, (3.11)
) p

which ensures the uniqueness of Riemann solutions.

4 Limits of Riemann solutions to (1.6)-(1.7)
In this section, we concentrate on the limit behavior of Riemann solutions to equations (1.6)—(1.7), and the

formation of delta shock and the vacuum phenomenon are considered in the case u_ > u, and the case
u_ < u,.

4.1 Limits of Riemann solutions in the case u_ > u,

Lemma 4.1. Assume u_ > u,, and then there exist two constant values &, &, & > & > 0, such that the pro-
jection of (., u.., H,) belongs to IV(p , u_) when & < € < &, and belongs to V(p, u_) when 0 < € < &,

Proof. Suppose u_ > u,, the states (g, u,, H,) connect with (o , u_, H.) by contact discontinuities that satisfy

u+=u,—£+£, >R, (4.1)
P p

u+:u,+£—£, p<p. (4.2)
P p

If p # p,, the projection pertains to IV(p , u_) or V(o , u_), we have

(u- —uy) ?
g(_PPj 3)
p—p,

that is, the projection belongs to IV(p, u_) or V(o , u_) when O < € < &.
If the projection pertains to V(o , u_), we have

(u- —uy) ’
g[_fﬂpj (5.4)
p+p,

that is, projection is located in IV(p , u_) when ¢, < € < &, and projection belongs to V(o , u_) whenO < € < &.
If p = p, the conclusion is clearly valid. O

From Lemma 4.1, we know there is no delta shock wave when ¢ > &. We find that the curves of two-
contact discontinuities become steeper when ¢ decreases, that is, when € decreases, the projection of
(0., us, H,) must belong to IV(p , u_) or V(o , u_).
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First, we consider the situation & < € < &, namely, the projection of (o, , u,, H,) pertains toIV(p , u_). In

this situation, the Riemann solution to (1.6)—(1.7) is

(f)_y u-, H—) +]1£ + (p:‘;: ufi’ H*gl) +]2£ + (P*is uéy Hé) + ]; + (P+, u+, H+)y

the intermediate states satisfy the following formulae

wi - u- = ﬁ{% - le pi > P,
*1 -

(H:p: - e)p’ = QHp - &)(pL),

2 .

£ _ € £ _ 3, €
]a {pﬁ = P*z’ U = U,

HE + HE,
1 1
u+—u§=ﬁ[———], pf>p,
5 . A ’

QH.p, - €)(pS)* = (2HEp - €)p},
where (pf1 , us, H) and (pfz, us, HY) are the intermediate states.
Lemma 4.2. The intermediate density p? becomes unbounded as € — &, that is,

limpf = oo,
£—8

where pf = p; = p;, the intermediate internal energy H;, H;, become unbounded, i.e.,

limH{ = oo, lim H = co.
EDE EDE

Proof. From (4.6) to (4.8), it is easy to calculate that

& . & _ &€ & ._ & _ &€
p* — p*] - p*z’ Uy = u*1 - u*z;

ST O
ué=-|u, + — |+ -ju. - —|,
2 2

o, P
JE 1( JEJ 1[ JE]
— = U+ — |- = |u - —|
p* 2 p+ 2 R

Therefore,

. e .1 JE 1 JE
hm—g:hm—u++— - —|lu.-—|=0,
e—>g P, £—8 p+ 2

which implies that limp? = co.
E08

Using (4.6),, we derive

pf @ p p¥
thus
2H?
lim— = 2H %,
e~g P 2 P
namely,

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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By using (4.8),, we obtain the same conclusion

lim H = oo.
E0E
Lemma 4.3. Let
U, + pu_
Us = AU +p ,

ptp
then

limuf = lim of = lim 0§ = lim 0§ = us.
EDE E0E E08 E08

Proof. Involving the first term of (3.2)-(3.4), the following equations are obtained

limof = lim [u - ﬁj =u - Al —u) _ pu. tpU- us,
e | e P p+p p+p
lim of = lim[u+ + ﬁj: U, + pU_—u) _ pU+pU- = ug,
-8 £—8 p+ p+ +0 Q_ +0

limoy = lim u = us.

E08 ED8
Lemma 4.4.
limpf (0§ - of) = - 1PL
£—8 p. +p
(u-—u)pp

limp# (0§ - 0f) =
-8 p.t+p

DE GRUYTER

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

Proof. The expressions of g; (i = 1, 2, 3) are employed again, and the following discussions will be presented

limpf (o5 — 0f) = limpf(uf —uf + ifj = lim /€ = w,
£58 £o8 ), £-86 p.+p
limpf (o5 - 03) = limpf[uf + £§ - uf} = lim /¢ = w
£—8 €08 P, €08 P tp

Lemma 4.5.
(4, E\2 2 2
tim | 2% L pe o5 — 08y = ug| 2L s 1| = [P 4 H - 2]u]],
-8 2 2 2 p

. Hf, of <&< o3,
H* = £ £ £
HS, 05 < &< 03.

where

(4.26)

(4.27)

O

(4.28)
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Proof. Using the Rankine-Hugoniot conditions of (1.6), we obtain the following forms:

£(1,€\2 2 2 2
of{p* ) HE - pus j (P* (us) + HE - %juf B (P_u vH i]u,
2 2 2 Jox 2 Jol

2 2 2 2
ot (p*(;*) . p*(;*) —Hflj (p*(;w Q_%juf [P*(“*) Hfl—%juf, (4.29)

2
2

2 €0y, €2
o pu: +H, - pr ) -H: | =- P () +Hfz—£uf+ Al +H+—£u+.
2 2 2 of 2

4

When € — &, utilizing (4.29) and taking limits, we have

lim [[p, (2u 5% Hflj(az o) + (p* )y fzj(af - af)j - u({%“z ; H} . HPT“Z VH- ?H, (4.30)

which implies that

lim (p* sy Hfj((fgC -0f) = [u({p_uz + H} - Kp_uz +H - gjuD
£ 2 2 2 P

The proof is complete. O

Theorem 4.6. When u_ > u,, the Riemann solution tends to a delta shock wave as € — &,. The limit functions
p, pu and H are the sums of a step function and a §-measure with weights

pialbe-s) o [
m(uaw m(us[pu] {pu PD’ — [uz{ — > TH-

PU+p U

where ug =
P+

Proof.
1. For & = 7, the Riemann solutions are denoted by

H, ¢<oaf,
€ £ £
HS, of <&< o3,

(p_y u—)y €< 0'18)
P(§), u(§) =1 (o5, us), of <§<o3, and H) =
(p+’ u+)’ f> 036’

&€ & &
HY, 05 < &< o3,

H+’ { > Of,
which satisfies the following weak formulae:
8t + P Wy = [ (8 + (pruIpdE = 0, (431)
<—$<pfuf>s + (pf(uf)z - %} : ¢> - | [—apfuf); ' [pf(uf)z - %j }pds -0, (4.32)
P )e - P )¢

(BT ] ([ ]
2 ¢ 2 P ¢

_ I [_é,(pe(;s)z + HE)g + (%W + Heut — gp_lf] ]lp(m': 0,
¢

—00

(4.33)

for arbitrary ¥ € C5°(R).
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2. From (4.31), one can obtain
T (=o + (p*u®))dé = I + b, (4.34)
where B
h= f ppas, b - r P& — )P dé.

We decompose L, as

b= j . j . T pe(§ - u)hpd.

of
The total of the first and last terms is

| p-wmags [ p-uva

- PU(GS) ~ pup(af) + poFYoD) ~ posas) = | pdi— [ pydz,
when € — &, it converges to the following equality:
ol — wlplp [ ppdg— [ pad = loud - wslphus) - [ polé - w1, (a3s)

where p (& - us) = p + [p]F(¢) and F(¢) is a Heaviside function.
In addition,

J PEE - uf)h dE = pf(0f - of) UM“iZ = 2:"’(“15) —uf ‘/’("iz - Z’lg("f) “ ! - I pdg|,  (436)
when £ - &, it leads to
Jim T pL& - uf)yYdé = pf (o5 - of) (usy)' — usyp’ — ) = 0. (4.37)
Above all, from (4.34), it :ields
Jim T P = po(§ = us)P(§)ds = (uslp] — lpul)ih(us). (4.38)

3. We deduce the limit of the momentum m¢ = p*u® from momentum equation (4.32), that is to say,

(o)

L [—é’(ﬂgue)s + (Pe(ue)2 - %]ll/)df = [O (Peus(f -u) + %]l/’;d‘f + L prupds = 0. (4.39)
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The first term on the right of equation (4.39) can be rewritten as

IO [pfuf(«f— uf) + %]%d{: j; + :[ + I [pfuf(f— ué) + ;lefdé’.

The sum of the first and last terms of equation (4.40) is

J {p_u-(f— u) + i)% + '[ (pﬂh(‘f -ug)+ f]ll’gdf

)
-0 o5

— 1781

(4.40)

(4.41)

=p_u_of¢<of>—p+u+o§¢<o§>+(p+u3—§j¢<o§> - (p_uz - f}/»(of) . j pupde - j pupde.

Letting € — &, we derive

of o

81131 {p_u({— u) + %]1,05 + f (p+u+('f u,) + J'I’;df

(o)

= — uslpuly + {pu2 —} I mo(§ — us)P(§)ds,

where mo(¢) = pu_ + [pu]F(¢) and F(&) is a Heaviside function.
o5

-[ [p* uf(é - uf) + —jl/)sdf

of

o
= (Pfuf(é'— us) + %jl/)liji - I piuspds
* 0_18

p*u*’)bdé‘
o5P(03) - ofP(of) g!l)(Gf) - YPo)  of

0§ — of o - of 0§ - o}

= pius(o3 - of)

it converges to
piui(os — of) (ush(us)' —us)’ - ) =0

as € — &.
Above all, from (4.39), we obtain

ggjwwwa—m@—wwm&EPmm—Pw—%wa
4, Next, let us consider the conservation of energy (4.33), we have
o £(1,€)2 £(1€)3 £
f _{(p (we) +H£J +{—p ) +H*’us—&] pd¢
- 2 ¢ 2 P* )

_ I [P (;l‘g) ng(é‘ ug)l/)£+—l,[)£df I[ps(;lg) +H8ledf.

(4.42)

(4.43)

— +;@@%¢w»

(4.44)

(4.45)

(4.46)
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The first integral in (4.46) can be decomposed into

J I I [(p ey Hfj(f—uf)+%gjl/){df. (4.47)

The sum of the first and the last terms in (4.47) is

7 [ e o

2 2
- {pT“ + H]ofzp(of) - (pzu - ] o5 P(af) - ( =+ Hu “‘thof) (4.48)
pu} EUs | ey r pu’
T (R (R
which converges to
pu’ pu’ & I
—us| 25 B || [B5 v B - 2| ) - [ €olg - upp§)dg (4.49)
2 2 P

as € — &, with gy(§) = = + H_ + { +H }7—' (&) and F(¢) is a Heaviside function.

For the second term in (4.47), we get

lim ((p*(“ y Hfj(é’—uf) 8“*}/);(16

£—8&

= lim

£—8&

2
‘i’j* (W(05) - Y(0f)) = (”* (;‘*) Hfj(oi — 0F) (us) — usy — ) + 0 =0,

[p* <§ £ Hfj(a;-af){"m’;’ — 0TY(o) P05 — o) z/)(o;—of)J (4.50)

o5 - of o5 - of o5 - of

where

HY, of <§<o3,
HE =1 " X (4.51)
Hf, 05 < &< o03.

From (4.46), we obtain that

£—8

. 2 £ (ué 2 u2 u

lim (/)(T) + Hsjlp({) + Eo(é — ug)Y(é)dé = ug{% + H}[) + sz + H - pJ }l/). (4.52)

5. By considering the time dependence of weights of §-measures, the limits of density, momentum and
energy are obtained.

For any ¥ € C5°(R x R,), letting 1[)({ , t) = P(ét, t), we obtain

+00 +00

o, %) = lim I j 0 ( jl[)(x Od(E0de = lim f I pE(E)B(E, DdEdt, (4.53)

E0E
0 -oo

as (p¢, uf, H) is a self-similar solution.
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[ o, 0dc = [ poté - e, 0 + lol - lpul)us,

=t J P& — us)P(x, t)ydx + (ofp] — [pul)P(ust, t),

@,y = [ [ pote - ustrpee, oaxde + [ cuslol - fpudypiast, o
0 -oo 0

px, t) = py(x, t) + wo(t)bs,

and

+00

(Wo(t) 65, ) = j wolt) X (€ + 1yh(x, £)dt,

0

utilizing (4.54)-(4.56), we have

+00 +00 +00

@w = [ ] potxwix odxde + [ woo) X @7+ 1, ode
0 -o0 0
= [ ] pote - otrpix dxde + [ @i 0 + 1ex, 0,
0 -o0 0
therefore,
wo(t)Jug + 1 = t(uslp] -
namely,
wo(t) = (uﬁ[P] [pul).
A1+ ll5
Similarly, it can be shown that

08
-0 0 -0 0 0

with

wi(t) = Jﬁ{wu] {pu2 "jD

lim
£—&

éb—u8

-0 0 0

with

ws(t) = \/Ltriug [ut{%ﬂ N H} _ HPSZ cH- ;j D

— 1783

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

lim I ngufz,b(x £)dxdt = I Jmo(x—ugt)¢(x, £)dxdt + I W) pust, U2 + 1dt,  (4.60)

(4.61)

I (p* sy + ngl,b(x t)dxdt = I Iso(x - ot)P(x, t)dxdt + Iwz(t)l/)(ugt t)yJug + 1dt, (4.62)
0

(4.63)
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When 0 < € < &, the projection of the state (g,, u,, H.,) belongs to V(o , u_) onto the (o, u)-plane. From
[34], when € — 0, we know that the limit solutions of (1.6) satisfy the following generalized Rankine-
Hugoniot condition:

dx(t) _
T - G(t)y
d‘g“) = o(0)[p] - [pul,
(4.64)
d(w(ctl)tO(t)) o) [oul - [,
d()0’(H)/2 + h(t) _ (t){pu N H} HP_HZ + HH
de 2 ’

from (4.64), it is easy to calculate that the solutions can be expressed as

Jpu + o

x(t) =
NN
o(t) = %, (4.65)

w(t) = Jpp (u- - u,)t,
h(t) = —w(t)0?/2 + x(t) [pu?/2 + H] - [(pu?/2 + H)ult,

where o satisfies the entropy condition.
Finally, we show that the law of conservation of energy (1.6); actually produces the entropy inequality
(1.9) of the transport equation (1.5) and obtains the entropy consistency.

Theorem 4.7. There are limit functions (p, u) which are a measure solution of the transport equation (1.5), and
these meet
(Pu?) + (pw)y = 0, (4.66)

in the sense of distributions.

Proof. Due to [p ) j + (p wy | Hfusj = 0 in the sense of distributions,
t

X

(P W) + (P WEP)x = —2(Hf + (Hu®)y). (4.67)

Furthermore, for each given positive test function ) € C°(R x R )

PEWE) + (PE(EY )y, Yy = 2CHE, W,y + 2CHUE, ). (4.68)
We note that
lim J j (He, + Heusp)dxdt = lim | (0F(HS - H) — (HSu® - Hu))p(oft, t)de
: 0 -oc0 e 0

+ lim | (05(HS - H) - (HHué — Hiud)p(ost, t)dt
o (4.69)
+lim | (0%(H, - HS) - (Hu, — H5uf)Y(oit, t)dt

£—8&
0

| st - st e = [ @ - w)@H, + (- D)t de > o,
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fora = 22— €(0,1)
p+p,

pUL +puU
Ug = ——-—.
ptp
Through the aforementioned discussions, we verify the consistency of entropy. O

4.2 Limits of Riemann solutions in the case u_ < u,

In this section, we show the phenomenon of cavitation of Riemann solutions for (1.6)—(1.7), in the case
u_ < u, as the pressure decreases.

Lemma 4.8. Suppose that u_ < u,, then there exists a €3, when 0 < € < &3, the projection of (p, u, H) onto the
(p, u)-plane belongs to I(p , u_).

Proof. If p. = p, then the conclusion is obviously true. Next, we discuss the situation p, # p. Assume that
u_ < u,, the states (g,, u,, H,) connect with (o , u_, H.) by contact discontinuities that satisfy

3 €
u+:u,—£+£, p<p, (4.70)
22 P
u+=u,+£—£, p>p. (4.71)
2 .
The projection of (o, u,, H,) belongs to I(p , u_), we have
(u, —u) ’
&= [7* P +p-] , (4.72)
p =P
it is easy to see that the projection of (g, u,, H,) onto the (p, u)-plane belongs to I(p , u_) as € < &;. O

Lemma 4.9. When u_ < u,, the cavitation occurs as € — 0. Namely,

limp;, = limp;, = 0. (4.73)

Proof. From the first equation of (4.6)—(4.8), respectively, we derive

€ €
U = ME - £, (4.74)
Py o
P =P, UG = U, (4.75)
€ €
ws B s )
), Pir
Hence, one can easily see
JE Je
U, + ~— — (u, - —) _
lim Y% - lim Y& - lim & Al _ MU (4.77)
-0 p*l -0 p*Z -0 2 2
thus, we have
limpf, = limp?, = 0.
-0 p*l £—>0p*2 (478)



1786 —— Maozhou Lin and Lihui Guo DE GRUYTER

5 Discussion

We have considered the limit behavior of Riemann solutions to Chaplygin Euler equations for nonisentropic
fluids, when u_ > u, and u_ < u,, and we studied the formation of delta shock wave and the appearance of
vacuum state for equations (1.6)—(1.7), respectively. When u_ > u, and the parameter € tends to &,, the
weight of delta shock wave for (1.6)—(1.7) is analyzed. When u_ < u, and € — 0, we show the phenomenon
of cavitation for (1.6)—(1.7).
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