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Abstract: New families of uniformities are introduced on ( )UC X Y, , the class of uniformly continuous
mappings between X and Y, where �( )X, and �( )Y , are uniform spaces. Admissibility and splittingness
are introduced and investigated for such uniformities. Net theory is developed to provide characterizations
of admissibility and splittingness of these spaces. It is shown that the point-entourage uniform space is
splitting while the entourage-entourage uniform space is admissible.
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1 Introduction

The function space ( )C X Y, , where X Y, are topological spaces, can be equipped with various interesting
topologies. Properties of these topologies vis-a-vis that of X and Y have been an active area of research in
recent years. In [1], it is shown that several fundamental properties hold for a hyperspace convergence τ on

( )C X, $ at X if and only if they hold for ⇑τ on ( )�C X, at origin (where$ is the Sierpinski topology and ⇑τ is the
convergence on ( )�C X, determined by τ). In [2], function space topologies are introduced and investigated
for the space of continuous multifunctions between topological spaces. In [3], some conditions are dis-
cussed under which the compact-open, Isbell or natural topologies on the set of continuous real-valued
functions on a space may coincide. Properties of c-compact-open topology on the ( )C X such as metriz-
ability, separability, and second countability have been discussed in [4]. Function space topologies over the
generalized topological spaces, defined by Császár, are introduced and studied in [5]. Their dual topologies
have been investigated in [6]. Similarly, the space ( )C X , the space of continuous mappings from X to �,
where X is a completely regular or a Tychonoff space, has also been studied by several researchers in recent
years [7,8]. It is well known that every metric space has a uniformity induced by its metric, but not every
uniform space is metrizable. Similarly, every uniformity induces a topology. But not every topological space
is uniformizable. The metric topology of a space can be derived purely from the properties of the induced
uniform space via its uniform topology. In this sense, uniformities are positioned between metric spaces
and topological structures. Hence, it is natural to look for similar studies for uniform spaces also. However,
not much literature is available so far regarding function space uniformities over uniform spaces. In most of
these studies, the topologies and not the uniformities of the underlying spaces are considered. For example,
in [9], a quasi-uniformity is formed over a topological space X. In [10], fuzzy topology on X is considered for

Ankit Gupta: Department of Mathematics, Bharati College, University of Delhi, Delhi 110058, India
Abdulkareem Saleh Hamarsheh: Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin
Abdulaziz University, Alkharj 11942, Saudi Arabia
Ratna Dev Sarma: Department of Mathematics, Rajdhani College, University of Delhi, Delhi 110015, India



* Corresponding author: Reny George, Department of Mathematics, College of Science and Humanities in Alkharj, Prince
Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia, e-mail: renygeorge02@yahoo.com

Open Mathematics 2020; 18: 1478–1490

Open Access. © 2020 Ankit Gupta et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.

https://doi.org/10.1515/math-2020-0110
mailto:renygeorge02@yahoo.com


the space ( )Cf X Y, . Similar is the case in [11,12]. None of these studies relate to uniformities over uniform
spaces, per se.

In the present paper, we provide a study of the possible uniform structures on the space of uniformly
continuous mappings between uniform spaces. We have verified the existence of two such families, namely,
entourage-entourage uniformities and point-entourage uniformities, for the space of uniformly continuous
mappings. Our present study is centered around developing the well-known topological concepts of func-
tion spaces such as admissibility and splittingness for the function space uniformities over uniform struc-
tures. Unlike in [13–15], net theory has been used as a tool in our study. For this purpose, we have
introduced the concept of pairwise Cauchy nets for uniformities. This has helped us develop a net theoretic
characterization for uniform continuity between uniformities. All the concepts introduced and studied in
Section 3 are new, although similar concepts do exist for function space topologies between topological
spaces. It is found that a uniformity on ( )UC Y Z, is splitting if and only if every pair of nets in ( )UC Y Z, is
pairwise Cauchy whenever it is continuously Cauchy. On the other hand, a uniformity is admissible if and
only if every pair of nets in ( )UC Y Z, is continuously Cauchy whenever it is pairwise Cauchy. While the
point-entourage uniformity is splitting, entourage-entourage uniformity is found to be admissible. Several
examples are provided to explain the theory developed in the paper. The successful application of net
theory in the entire investigation testifies that like in topology, net theory is an effective tool for uniformities
too. We have concluded the present work with some open questions for future work.

2 Preliminaries

A uniform space is a non-empty set with a uniform structure on it. A uniform structure (or a uniformity) on a
set X is a collection of subsets of ×X X satisfying certain conditions. More precisely, we have the following
definition.

Definition 2.1. [16,17] A uniform structure or uniformity on a non-empty set X is a family � of subsets of
×X X satisfying the following properties:

(2.1.1) if �∈U , then ⊆X UΔ ;
where = {( ) ∈ ×X x x X XΔ , for all ∈ }x X ;

(2.1.2) if �∈U , then �∈−U 1 ,
where −U 1 is called the inverse relation of U and is defined as:

= {( ) ∈ × |( ) ∈ }−U x y X X y x U, , ;1

(2.1.3) if �∈U , then there exists some �∈V such that ∘ ⊆V V U ,
where the composition ∘ = {( ) ∈ × |U V x z X X, for some ∈y X , ( ) ∈x y V, , and ( ) ∈ }y z U, ;

(2.1.4) if �∈U V, , then �∩ ∈U V ;
(2.1.5) if �∈U and ⊆ ⊆ ×U V X X , then �∈V .

The pair �( )X, is called a uniform space and the members of � are called entourages.

Remark 2.1. There are two more approaches to define uniformity on a set. One of them [18] uses a certain
specification of a system of coverings on X. The other is via a system of pseudo-metrics. The one we have
provided here is originally due toWeil [19]. This definition centers around the idea of closeness of points of X. In
metric spaces, the metric defines the closeness between points. However, in topological spaces, we can only talk
of a point being arbitrarily close to a set (i.e., being in the closure of the set). In a uniform space, as defined
above, the closeness of points x and y is equivalent to the ordered pair ( )x y, belonging to some entourage.

Definition 2.2. [20] A subfamily � of a uniformity � is called a base for � if each member of � contains
a member of � .
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In view of (2.1.5), a base is enough to specify the corresponding uniformity unambiguously as the
uniformity consists of just the supersets of members of � . Also, every uniformity possesses a base.

Definition 2.3. [20] A subfamily � of a uniformity � is called subbase for � if the family of finite
intersections of members of � is a base for � .

The finite intersection of the members of a subbase generates a base. A uniformity is obtained by taking
the collection of the supersets of the members of its base.

Remark 2.2. The aforementioned definitions of base and subbase are similar to those of a topology. In fact,
if we replace uniformity � by a topology τ in Definitions 2.2 and 2.3, we get the definitions of base and
subbase of topology τ on X. As in topology, these definitions help us to restrict our study to a smaller
collection of subsets.

The conditions under which a collection of subsets of ×X X becomes a base (respectively, a subbase) of
a uniformity on X are provided in the following theorems.

Theorem 2.4. [20] A non-empty family � of subsets of X × X is a base for some uniformity for X if and only if
the aforementioned conditions (2.1.1)–(2.1.4) hold.

Theorem 2.5. [20] A non-empty family � of subsets of ×X X is a subbase for some uniformity for X if and
only if the aforementioned conditions (2.1.1)–(2.1.3) hold.

In particular, the union of any collection of uniformities for X forms a subbase for a uniformity for X.
The fact that a subbase (respectively, a base) uniquely defines a uniformity is being utilized in this paper for
defining new uniformities.

Remark 2.3. The aforementioned two results provide us simplified methods to check whether a given
collection of subsets of ×X X qualifies to generate a uniformity on X.

In fact, Theorem 2.5 is used in this paper in Lemmas 3.4 and 3.5 to establish the existence of the point-
entourage uniformity and the entourage-entourage uniformity on ( )UC X Y, and ( )UC Y Z, , respectively.

Definition 2.6. [20] Let �( )X, and �( )Y , be two uniform spaces. A mapping →f X Y: is called uniformly
continuous if for each �∈V , there exists �∈U such that [ ] ⊂f U V2 , where × → ×f X X Y Y:2 is a map
corresponding to f defined as ( ′) = ( ( ) ( ′))f x x f x f x, ,2 for ( ′) ∈ ×x x X X, .

In other words, →f X Y: is uniformly continuous if for each �= × ∈V V V1 2 , there exists = ×U U1
�∈U2 such that ( ) × ( ) ⊆ ×f U f U V V1 2 1 2.
The collection of all uniformly continuous functions from X to Y is denoted by ( )UC X Y, .

3 The main results

The development of this section is as follows. In Section 3.1, we first define pairwise Cauchy nets and then
use them to characterize uniform continuity. In Section 3.2, we establish the existence of uniformities in

( )UC X Y, . Two such uniformities on ( )UC X Y, are point-entourage and entourage-entourage uniformities,
respectively. Next we define admissibility and splittingness for such uniformities on ( )UC X Y, . Net theory
has been extensively used to provide alternative characterizations for these notions. Finally, we prove that
point-entourage uniformity on ( )UC X Y, is splitting, while entourage-entourage uniformity is admissible.
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Here, it may be mentioned that �-Cauchy nets and �-convergence using ideal of the directed sets were
introduced in [21] for uniform spaces. However, convergence of �-nets was defined there using open sets of
the corresponding topology. In our paper, we are using nets without any such restrictions. The convergence
defined here is purely in terms of uniformity. We have not come across any results in the literature
resembling the net-theoretic characterization of uniform continuity provided here. Splittingness and admis-
sibility have been studied by several authors for the function space topologies [13,17,21]. In [16], it has been
proved that point-open topology is splitting and open-open topology is admissible. In this section, we
extend these notions to uniformities on the space of uniformly continuous mappings. We provide char-
acterizations of these notions using net theory. We also provide examples of splitting and admissible
uniformities. The successful development of net theory and its effective applications here have established
that like in topology, and net theory is an useful tool for studying uniform structures.

3.1 Uniformly continuous mappings and net theory

Definition 3.1. Let �( )X, be a uniform space. Two nets { } ∈xn n D1 and { } ∈ym m D2 in �( )X, , where Di are directed
sets, are called pairwise Cauchy if {( )}( )∈ ×x y,n m n m D D, 1 2 is eventually contained in each entourage �∈U , that
is, for each �∈U , ( ) ∈x y U,n m for all ≥n n0 and ≥m m0 for some ( ) ∈ ×n m D D,0 0 1 2.

For brevity, we simply say that {( )}( )∈ ×x y,n m n m D D, 1 2 is pairwise Cauchy to indicate that { } ∈xn n D1 and
{ } ∈ym m D2 are pairwise Cauchy nets with respect to the uniformity concerned.

Now we provide a characterization for uniformly continuous mappings.

Proposition 3.2. Let �( )X, be a uniform space and {( )}( )∈ ×x y,n m n m D D, 1 2 be a pair of nets. Then
{( )}( )∈ ×x y,n m n m D D, 1 2 is pairwise Cauchy if and only if the pair of nets {( )}( )∈ ×y x,m n m n D D, 2 1 is pairwise Cauchy.

Proof. Let {( )}( )∈ ×x y,n m n m D D, 1 2 be a pairwise Cauchy nets. Let �∈U be any entourage. Then there exists
�∈−U 1 . Since the pair of nets {( )}( )∈ ×x y,n m n m D D, 1 2 is pairwise Cauchy, ( ) ∈ −x y U,n m

1 eventually. Thus,
( ) ∈y x U,m n eventually. Hence, the pair of nets {( )}( )∈ ×y x,m n m n D D, 2 1 is pairwise Cauchy.

Converse is true obviously. □

Here, it may be mentioned that pairwise Cauchy nets remain pairwise Cauchy if finitely many members
of the pair are replaced by other elements. In other words, the results related to pairwise Cauchy nets will
remain valid if the pair of nets is eventually Cauchy.

In our next theorem, we provide an equivalent criterion for uniform continuity.

Proposition 3.3. Let �( )X, and �( )Y , be two uniform spaces. Then � �( ) → ( )f X Y: , , is uniformly con-
tinuous if and only if the image of every pairwise Cauchy nets in X is again pairwise Cauchy in Y.

Proof. Let f be uniformly continuous and {( )}( )∈ ×x y,n m n m D D, 1 2 be pairwise Cauchy nets in X. Let �∈V be
any entourage. Since f is uniformly continuous, there exists �∈U such that [ ] ⊂f U V2 . As ( ) ∈x y U,n m
eventually, we have ( ) ∈ [ ] ⊂f x y f U V,n m2 2 , eventually. That is, ( ( ) ( )) ∈f x f y V,n m eventually. Hence,
{( ( ) ( ))} × ∈ ×f x f y,n m n m D D1 2, the image of {( )}( )∈ ×x y,n m n m D D, 1 2 is also pairwise Cauchy.

Conversely, let the image of every pairwise Cauchy nets be pairwise Cauchy. Let if possible, f be not
uniformly continuous. Then there exists an entourage �∈V such that there is no entourage �∈U with

[ ] ⊂f U V2 . Hence for each �∈U , we have [ ] ⊈f U V2 . Thus, for each entourage �∈U , there exists a pair
( ) ∈x y U,u u such that ( ) = ( ( ) ( )) ∉f x y f x f y V, ,u u u u2 . Now the collection of all entourages �∈U forms a
directed set under the relation ≥, which is defined by “ ≥U V implies ⊂U V .” Now we show that

�{( )} ∈x y,u u u is pairwise Cauchy in X but its image is not pairwise Cauchy in Y.
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Let �∈U0 . For ≥U U0, that is, ⊂U U0, we have ( ) ∈ ⊂x y U U,u u 0. Hence, ( ) ∈x y U,u u 0 for all ≥U U0.
Thus, �{( )} ∈x y,u u u is pairwise Cauchy. Now consider entourage �∈V , we have ( ( ) ( )) ∉f x f y V,u u , for each

�∈u . Hence, the image of �{( )} ∈x y,u u u is not pairwise Cauchy. Thus, we got a contradiction. Therefore,
f is uniformly continuous. □

3.2 Uniformity over uniform spaces

We now define a uniformity on ( )UC X Y, in the following way:
Let �( )X, and �( )Y , be two uniform spaces. For �∈V and ∈x X , we define:

( ) = {( ) ∈ ( ) × ( )|( ( ) ( )) ∈ }x V f g UC X Y UC X Y f x g x V, , , , , .

Let � � = {( )| ∈ ∈ }x V x X V V, , .p,

Lemma 3.4. � �p, forms a subbase for a uniformity over ( )UC X Y, .

Proof. By Theorem 2.5, it is enough to show that � �p, satisfies conditions (2.1.1)–(2.1.3). We proceed as
follows:

1. = {( )| ∈ ( )} ⊂ ( )f f f UC X Y x VΔ , , , .
This follows from the definition of � �p, .

2. For every � �( ) ∈x V, p, , � �( ) ∈−x V, p
1

, .

Since �∈V , �∈−V 1 . We claim that ( ) = ( )− −x V x V, ,1 1 .
Let( ) ∈ ( )−f g x V, , 1, then( ) ∈ ( )g f x V, , . Thus,wehave( ( ) ( )) ∈g x f x V, . Hence,( ( ) ( )) ∈ −f x g x V, 1. Therefore,
( ) ∈ ( )−f g x V, , 1 and hence ( ) ⊂ ( )− −x V x V, ,1 1 . On the same line, one can prove that ( ) ⊂−x V, 1 ( )−x V, .1

Hence, ( ) = ( )− −x V x V, , .1 1

3. For every � �( ) ∈x V, p, , there exists some � �∈A p, such that ∘ ⊂ ( )A A x V, .

Let � �( ) ∈x V, p, . For �∈V there exists �′ ∈V such that ′ ∘ ′ ⊂V V V . Now, we claim that for
� �( ′) ∈x V, p, we have ( ′) ∘ ( ′) ⊂ ( )x V x V x V, , , .

Let ( ) ∈ ( ′) ∘ ( ′)f h x V x V, , , . Then there exists ∈ ( )g UC X Y, such that ( ) ( ) ∈ ( ′)f g g h x V, , , , , that is,
( ( ) ( )) ⊂ ′f x g x V, and ( ( ) ( )) ⊂ ′g x h x V, . Thus, we have ( ( ) ( )) ∘ ( ( ) ( )) ⊂ ′ ∘ ′ ⊂f x g x g x h x V V V, , . Hence,
( ( ) ( )) ∈f x h x V, which implies( ) ∈ ( )f h x V, , .Thus, � �( ′) ∘ ( ′) ⊆ ( ) ∈x V x V x V, , , p, .Therefore,( ) ∈ ( )f h x V, , .

Hence, � �p, forms a subbase for a uniformity on ( )UC X Y, . □

Uniformity generated by this subbase is called the point-entourage uniformity for ( )UC X Y, and is
denoted by �Up, .

Example 3.1. Let = �X be the set of integers. The p-adic uniform structure on �, for a given prime number
p, is the uniformity � generated by the subsets �n of ×� �, for = …n 1, 2, 3, , where �n is defined as:

= {( )| ≡ }� k m k m p, mod .n
n

Consider the family of subsets

= {( )| | − | < }U x y x y ε,ε

of ×� � for >ε 0. The uniform structure generated by the subsets Uε for >ε 0 is called the Euclidean
uniformity of �. Specifically, a subset D of ×� � is an entourage if ⊂U Dε for some >ε 0.

Now, we consider, for ∈ �x and ∈ �n ,

( ) = {( ) ∈ ( ) × ( )| ( ( ) ( )) ∈ }� �x f g UC X Y UC X Y f x g x, , , , , .n n
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Let � �� = {( )| ∈ ∈ }� � �x x, , .p n n, It can be easily verified that � �p, satisfies (2.1.1) to (2.1.3) of Definition
2.1. Thus, � �p, forms a subbase for a uniformity over ( )� �UC , which is a point-entourage uniformity for

( )� �UC , . Here, structure of the entourage in the uniformity generated by the subbase � �p, is the collection
of the pair of uniformly continuous functions from � to �, ( )f g, such that ( ) − ( )f x g x is divisible by pn, for
some given ∈ �x and ∈ �n .

Now, let �( )Y , and �( )Z, be two uniform spaces. Let �∈V be any symmetric entourage, that is,
= −V V 1. For �∈U , we define:

( ) = {( ) ∈ ( ) × ( )| ( ( ) ( )) ⊆ } ∪ {( )| ∈ ( )}V U f g UC Y Z UC Y Z f V g V U f f f UC Y Z, , , , , , , ,1 2

where = ×V V V1 2.
Consider � � �� � = {( )| ∈ ∈ }V U V U V, , , is symmetric, .

Lemma 3.5. �� �, forms a subbase for a uniformity over ( )UC Y Z, .

Proof. By Theorem 2.5, it is enough to show that �� �, satisfies conditions (2.1.1)–(2.1.3). We proceed as
follows:

1. = {( )| ∈ ( )} ⊂ ( )f f f UC Y Z V UΔ , , , .
This follows from the definition of �� �, .

2. For every �� �( ) ∈V U, , , �� �( ) ∈−V U, 1
, .

Let ( ) ∈ ( )f g V U, , , which implies ( ( ) ( )) ⊆f V g V U,1 2 , where = ×V V V1 2. Since �∈V and �∈U , −V 1 and
−U 1 belong to � and � , respectively.

We claim that ( ) = ( )− − −V U V U, ,1 1 1 .
Let ( ) ∈ ( )−f g V U, , 1, then ( ) ∈ ( )g f V U, , . Thus, we have ( ( ) ( )) ⊆g V f V U,1 2 . Hence, ( ( ) ( )) ⊆ −f V g V U,2 1

1.
Therefore, ( ) ∈ ( )− −f g V U, ,1 1 and hence ( ) ⊂ ( )− − −V U V U, ,1 1 1 . On the same line, one can prove that
( ) ⊂ ( )− − −V U V U, , .1 1 1 Hence, ( ) = ( )− − −V U V U, , .1 1 1

3. For every �� �( ) ∈V U, , , there exists some �� �∈A , such that ∘ ⊂ ( )A A V U, .
Let �� �( ) ∈V U, , . For �∈U there exists �′ ∈U such that ′ ∘ ′ ⊂U U U and similarly, there exists

�″ ∈U such that ″ ∘ ″ ⊆ ′U U U and hence ″ ∘ ″ ∘ ″ ∘ ″ ⊂U U U U U . Now, we claim that for �� �( ″) ∈V U, ,

we have ( ″) ∘ ( ″) ⊂ ( )V U V U V U, , , .
Let ( ) ∈ ( ″) ∘ ( ″)f h V U V U, , , . Then there exists ∈ ( )g UC Y Z, such that ( ) ( ) ∈ ( ″)f g g h V U, , , , , that is,
( ( ) ( )) ⊂ ″f V g V U,1 2 and ( ( ) ( )) ⊂ ″g V h V U,1 2 , where = ×V V V1 2. Since ( ) ∈ ( ″)g g V U, , , where V is a sym-
metric entourage, we have ( ( ) ( )) ⊂ ″g V g V U,1 2 and hence ( ( ) ( )) ⊂ ″g V g V U,2 1 .
Thus, we have ( ( ) ( )) ∘ ( ( ) ( )) ∘ ( ( ) ( )) ∘ ( ( ) ( )) ⊂ ″ ∘ ″ ∘ ″ ∘ ″ ⊂f V g V g V g V g V g V g V h V U U U U U, , , ,1 2 2 1 1 1 1 2 . Hence,
( ( ) ( )) ∈f V h V U,1 2 which implies ( ) ∈ ( )f h V U, , . Thus, ( ″) ∘ ( ″) ⊆ ( )V U V U V U, , , .

Hence, �� �, forms a subbase for a uniformity on ( )UC Y Z, . □

The uniform space generated by the aforementioned subbase is called the entourage-entourage uni-
formity and it is denoted by � �U , .

Example 3.2. Now, we again consider the set of integers �, with p-adic uniformity � and the set of real
numbers � with Euclidean uniformity � , defined in Example 3.1. We for given >ε 0 and ∈ �n define:

( ) = {( ) ∈ ( ) × ( )| ( ( ) ( )) ⊆ } ∪ {( )| ∈ ( )}� � � � � � � �U f g UC UC f V g V f f f UC, , , , , , , ,ε n n1 2

where = ×U V Vε 1 2.
Consider � �� � = {( )| ∈ ∈ }� �U U U, ,ε n ε n, .

It is easy to verify that �� �, satisfies (2.1.1) to (2.1.3) of Definition 2.1. Hence, �� �, forms a subbase for
a uniformity over ( )� �UC , . This is an example of an entourage-entourage uniformity and it is denoted
by � �U , . Here, the structure of entourage in entourage-entourage uniformity over ( )� �UC , is the collection
of pair of all uniformly continuous functions ( )f g, from � to � such that for given >ε 0, there always exists
a natural number ∈ �n such that ( ) − ( )f x g y is divisible by pn whenever | − | <x y ε.
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The above discussion clearly indicates that several uniformities do exist on ( )UC X Y, .

Let � be a uniformity on ( )UC X Y, , then the pair �( ( ) )UC X Y, , is called a uniform space over uniformly
continuous mappings or uniform space over uniform continuity.

Now we introduce the notions of admissibility and splittingness for the uniform spaces over uniform
continuity. Admissibility and splittingness are two very important notions in the topology of function
spaces. They were introduced by Arens and Dugundji [16] and have been studied by several authors
thereafter. In recent years, Georgiou, Iliadis, and others [13–15,17] have significantly contributed to the
study of these notions. In the following, we proceed to extend the notions of splittingness and admissibility
to the domain of uniformities.

Definition 3.6. Let �( )Y , and �( )Z, be two uniform spaces and let �( )X, be another uniform space. Then
for a map × →g X Y Z: , we define → ( )g X UC Y Z: ,⁎ by ( )( ) = ( )g x y g x y,⁎ .

The mappings g and g⁎ related in this way are called associated maps.

Definition 3.7. Let �( )Y , and �( )Z, be two uniform spaces. A uniformity � on ( )UC Y Z, is called
1. admissible if for each uniform space �( )X, , uniform continuity of → ( )g X UC Y Z: ,⁎ implies uniform

continuity of the associated map × →g X Y Z: ;
2. splitting if for each uniform space �( )X, , uniform continuity of × →g X Y Z: implies uniform con-

tinuity of → ( )g X UC Y Z: ,⁎ , where g⁎ is the associated map of g.

Now, we prove that the point-entourage uniformity defined in Example 3.1 over ( )� �UC , is splitting.

Example 3.3. Let = �Y , the set of real numbers with Euclidean uniformity � and = �Z , the set of all
integers with p-adic uniformity � be two uniform spaces. Let ( )� �UC , be the space of all uniform con-
tinuous functions from Y to Z with point-entourage uniformity �Up, , defined in Example 3.1. Let �( )X, be
any uniform space such that the map × →� �g X: is uniformly continuous. We have to show that the
associated map → ( )� �g X UC: ,⁎ is uniformly continuous, where g⁎ is defined as ( )( ) = ( )g x y g x y,⁎ .

Let ( )�x, n be any entourage in ( )� �UC , . Since, the map g is uniformly continuous, there exists an
entourage V of × �X such that [ ] ⊆ �g V n2 , where = ′ ×V U Uε for some >ε 0 and �′ ∈U . We have

( ′ × ) ⊆ �g U Uε n2 , that is, ( ( ) ( )) ∈ �g a x g b y, , , n for all ( ) ∈ ′a b U, and ( ) ∈x y U, ε. That is, ( ) ≡g a x,
( )g b y p, mod n for all ( ) ∈ ′a b U, and ( ) ∈x y U, ε. That is, ( )( ) ≡ ( )( )g a x g b y pmod n⁎ ⁎ for all ( ) ∈ ′a b U, and

( ) ∈x y U, ε. Since �∈Uε is an entourage, ( ) ∈x x U, ε for all ∈ �x . Thus, we have ( )( ) ≡ ( )( )g a x g b x pmod n⁎ ⁎ ,
which implies ( ( ) ( )) ∈ ( )�g a g b x, , n

⁎ ⁎ for all ( ) ∈ ′a b U, . Hence, we have [ ′] ⊆ ( )�g U x, n2
⁎ . The associated

map g⁎ is uniformly continuous, therefore, the point-entourage uniformity over ( )UC Y Z, is splitting.

Before proceeding further, we mention few basic results which will be used later.

Proposition 3.8. Let �( )X, , �( )Y , , and �( )Z, be uniform spaces and let � �( ) → ( )f X Y: , , and
� �( ) → ( )g Y Z: , , be two uniformly continuous maps. Then � �∘ ( ) → ( )g f X Z: , , is again uniformly

continuous.

Proposition 3.9. Let �( )X, , �( )Y , , and �( )Z, be uniform spaces and let � �( ) → ( )f X Y: , , be uniformly
continuous. Then × → ×F X Z Y Z: , defined by ( ) = ( ( ) )F x z f x z, , is also uniformly continuous.

Proof. Let � �( ) → ( )f X Y: , , be any uniformly continuous function. We have to show × → ×F X Z Y Z: ,
defined by ( ) = ( ( ) )F x z f x z, , is uniformly continuous. Let = ×A V W be any entourage in the uniformity of

×Y Z , where �∈V and �∈W . Since f is uniformly continuous, there exists an entourage �∈U such that
[ ] ⊂f U V2 . Thus, ( ) × ⊂ ×f U W V W2 , which implies [ × ] ⊂ ×F U W V W2 . Hence,F is uniformly continuous. □
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The notion of evaluation maps of topology can be extended for uniformities also to obtain the following
characterization of admissibility.

Theorem 3.10. Let �( )Y , and �( )Z, be two uniform spaces. Then a uniformity � on ( )UC Y Z, is admissible if
and only if the evaluation mapping ( ) × →e UC Y Z Y Z: , defined by ( ) = ( )e f y f y, is uniformly continuous.

Proof. Let �( )Y , and �( )Z, be two uniform spaces and uniformity � on ( )UC Y Z, be admissible, that is,
uniform continuity of the map → ( )g X UC Y Z: ,⁎ implies the uniform continuity of the associated map

× →g X Y Z: for each uniform space �( )X, . We take = ( )X UC Y Z, , then the identity map ( ) →g UC Y Z: ,⁎

( )UC Y Z, , where ( ) =g f f⁎ for all ∈ ( )f UC Y Z, is uniformly continuous. Then by the given hypothesis,
the associated map ( ) × →g UC Y Z Y Z: , is also uniformly continuous. Consider, ( ) = ( )( ) =g f y g f y, ⁎

( ) = ( )f y e f y, . Thus, we have ≡g e. Hence, the evaluation map ( ) × →e UC Y Z Y Z: , is uniformly
continuous.

Conversely, let → ( )g X UC Y Z: ,⁎ be uniformly continuous. We define a map × → ( ) ×h X Y UC Y Z Y: ,
defined by ( ) = ( ( ) )h x y g x y, ,⁎ . In the light of Proposition 3.9, the map h is uniformly continuous.
Since the given evaluation map ( ) × →e UC Y Z Y Z: , is uniformly continuous. Thus, the composition
map ∘ × →e h X Y Z: is also uniformly continuous and ∘ ≡e h g because ∘ ( ) = [ ( )] =e h x y e h x y, ,
( ( ) ) = ( )( ) = ( )e g x y g x y g x y, ,⁎ ⁎ . Hence, the associated map g is uniformly continuous. This completes the
proof. □

The uniform space ( )� �UC , is admissible under entourage-entourage uniformity, defined in
Example 3.2.

Example 3.4. Let = �Y , the set of all real numbers with the Euclidean uniformity � and = �Z , the
set of all integers with p-adic uniformity � . We have to show that the evaluation mapping ( )� �e UC: ,
× →� � , defined as ( ) = ( )e f y f y, , is uniformly continuous under the entourage-entourage uniformity
over ( )� �UC , defined in Example 3.2. Let �n be any entourage in �( )� , .

Consider an entourage = ( )�V U ,ε n1 and =V Uε2 , for some >ε 0. Then ( × ) = ( ( ) ( )) =e V V e f x e g y, , ,2 1 2
( ( ) ( ))f x g y, . We have ( ) ∈ ( )�f g U, ,ε n , thus ( ( ) ( )) ∈ �f a g b, n, that is, ( ) ≡ ( )f a f b pmod n, for all ( ) ∈ �a b, n.
Therefore, ( × ) ⊆ �e V V n2 1 2 . Thus, the evaluation map is uniformly continuous and hence ( )� �UC , under
entourage-entourage uniformity is admissible.

Before coming to the main results of this paper, we provide a small discussion on directed sets.

Let D1 and D2 be two directed sets. We define a uniformity �0 on = ∪D DΔ 1 2, generated by
{ | ( ) ∈ × }U n m D D,n m, 0 0 1 20 0 , where = ∪ {( ) | ( ) ≥ ( )} ∪ {( ) | ( ) ≥ ( )U δ n m n m n m m n m n m n, , , , , , :n m, 0 0 0 00 0

( ) ∈ × }n m D D,0 0 1 2 and = {( ) | ∈ }δ n n n, Δ , where “≥” being defined component-wise.

Lemma 3.11. Let �( )Y , be a uniform space and {( ′ }( )∈ ×y y,n m n m D D, 1 2 be a pair of nets in Y. Then
{( ′ }( )∈ ×y y,n m n m D D, 1 2 is pairwise Cauchy if and only if the function →s Y: Δ defined by ( ) =s n yn for ∈n D1,

( ) = ′s m ym for ∈m D2, ≠n m is uniformly continuous under �0 defined above on = ∪D DΔ 1 2 and � on Y.
In case, ∩ ≠ ∅D D1 2 , that is, =n m for some ∈n D1 and ∈m D2, take ( ) = ( ) =s n s m yn in the above definition.

Proof. Let {( ′ )}( )∈ ×y y,n m n m D D, 1 2 be any pairwise Cauchy nets in Y. Let �∈U be any entourage, then
( ′ ) ∈y y U,n m eventually, that is, there exists ( ) ∈ ×n m D D,0 0 1 2 such that ( ′ ) ∈y y U,n m for all ( ) ≥n m, ( )n m,0 0 .
That is, there exists �∈Un m, 00 such that ( ) ⊂s U Un m2 ,0 0 . Hence, s is uniformly continuous.

Conversely, let {( ′ )}( )∈ ×y y,n m n m D D, 1 2 be any pair of nets in Y and s be a uniformly continuous mapping. Let
�∈V be any entourage. Then there exists an entourage �∈Un m, 00 0 such that ( ) ⊂s U Vn m2 ,0 0 . Thus,

(( )) ∈s n m V,2 for all ( ) ≥ ( )n m n m, ,0 0 . Hence, {( ′ }( )∈ ×y y,n m n m D D, 1 2 is pairwise Cauchy. □
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In the next pair of theorems, we provide some characterizations of splittingness and admissibility of the
uniform spaces over uniformly continuous mappings. We introduce the notion of continuously Cauchy nets
for this purpose. The need for such notion has arisen purely out of uniformity structure of the space and has
no topological or metric counterpart.

Definition 3.12. Let {( )}( )∈ ×f g,n m n m D D, 1 2 be a pair of nets in ( )UC Y Z, . Then {( )}( )∈ ×f g,n m n m D D, 1 2 is said to be
continuously Cauchy if for each pairwise Cauchy net {( ′)}( )∈ ×y y,k l k l D D, 3 4 in Y, {( ( ) ( ′))}( )∈ × × ×f y g y,n k m l n m k l D D D D, , , 1 2 3 4

is pairwise Cauchy in Z.

Lemma 3.13. Let �( )Y , and �( )Z, be two uniform spaces and let {( ′ )}( )∈ ×y y,n m n m D D, 1 2 and {( ′)}( )∈ ×z z,k l k l D D, 3 4 be
two pairwise Cauchy nets in Y and Z, respectively. Then {( ) ( ′ ′)}( )∈ × × ×y z y z, , ,n k m l n m k l D D D D, , , 1 2 3 4 is pairwise Cauchy
in ×Y Z with respect to the product uniformity � �× and vice versa.

Proof. Let �( )Y , and �( )Z, be two uniform spaces and let {( ′ )}( )∈ ×y y,n m n m D D, 1 2 and {( ′)}( )∈ ×z z,k l k l D D, 3 4 be two
pairwise Cauchy nets in Y and Z, respectively. Therefore, for each �∈U and �∈V , we have ( ′ ) ∈y y U,n m and

( ′) ∈z z V,k l eventually. Hence, {( ) ( ′ ′)} ∈ ×y z y z U V, , ,n k m l eventually. Thus, {( ) ( ′ ′)}( )∈ × × ×y z y z, , ,n k m l n m k l D D D D, , , 1 2 3 4

is pairwise Cauchy in ×Y Z . The converse can be proved in similar manner. □

In the remaining part of this section, we use net theory to provide further investigations about admis-
sibility and splittingness for uniformities on ( )UC Y Z, . In the first two theorems, we provide net-theoretic
characterization for splittingness and admissibility, respectively. In the topological parlance, Arens and
Dugundji were the ones to introduce the concept of continuous convergence. They have provided char-
acterizations for splittingness and admissibility for topological function spaces, by using the concept of
continuous convergence. Here, we extend the same for uniformity and use the concept of pairwise Cauchy
nets to arrive at our results. Theorems 3.16 and 3.17 provide examples of splittingness and admissibility
families of uniform space, respectively, on ( )UC Y Z, .

Theorem 3.14. Let �( )Y , and �( )Z, be two uniform spaces. A uniformity � on ( )UC Y Z, is splitting if and
only if each pair of nets {( ′ )}( )∈ ×f f,n m n m D D, 1 2 in ( )UC Y Z, is pairwise Cauchy whenever it is continuously Cauchy.

Proof. Let �( )X, be any uniform space such that × →g X Y Z: be uniformly continuous. We have to show
that the associated map → ( )g X UC Y Z: ,⁎ is uniformly continuous. Let {( ′ )}( )∈ ×x x,n m n m D D, 1 2 be any pairwise

Cauchy nets in X. We have to show that {( ( ) ( ′ ))}( )∈ ×g x g x,n m n m D D
⁎ ⁎

, 1 2 is again pairwise Cauchy in ( )UC Y Z, .

Let {( ′)}( )∈ ×y y,k l k l D D, 3 4 be any pairwise Cauchy net in Y. Then {( ) ( ′ ′)}( )∈ × × ×x y x y, , ,n k m l n m k l D D D D, , , 1 2 3 4 is a pairwise

Cauchy net in ×X Y . Since × →g X Y Z: is uniformly continuous, { ( ) ( ′ ′)}( )∈ × × ×g x y g x y, , ,n k m l n m k l D D D D, , , 1 2 3 4 is a

pairwise Cauchy net in Z. Let us define ( ) =g x fn n
⁎ and ( ′ ) = ′g x fm m

⁎ . Then { ( ) ( ′ ′)}( )∈ × × ×g x y g x y, , ,n k m l n m k l D D D D, , , 1 2 3 4

= { ( )( ) ( ′ )( ′)}( )∈ × × ×g x y g x y,n k m l n m k l D D D D
⁎ ⁎

, , , 1 2 3 4 = { ( ) ′ ( ′)}( )∈ × × ×f y f y,n k m l n m k l D D D D, , , 1 2 3 4 is pairwise Cauchy in Z.

Therefore, the pair of nets {( ′ )}( )∈ ×f f,n m n m D D, 1 2 is continuously Cauchy. By the hypothesis, the pair of nets

{( ′ )}( )∈ ×f f,n m n m D D, 1 2 is pairwise Cauchy in ( )UC Y Z, and hence {( ( ) ( ′ ))}( )∈ ×g x g x,n m n m D D
⁎ ⁎

, 1 2 is pairwise Cauchy.
Therefore, g⁎ is uniformly continuous and hence �( ( ) )UC Y Z, , is splitting.

In the above proof, let if possible, = ′ =x x xn m k (say) for some ∈n D1 and ∈m D2, then we should
proceed as follows.

We then define the map → ( )g X UC Y Z: ,⁎ as ( ) =g x fn n
⁎ , ( ′ ) = ′g x fm m

⁎ for ≠x xn m and ( ) =g x fk k
⁎ when-

ever = ′ =x x xn m k. Then { ( ) ( ′ ′)}( )∈ × × ×g x y g x y, , ,n k m l n m k l D D D D, , , 1 2 3 4 = { ( )( ) ( ′ )( ′)}( )∈ × × ×g x y g x y,n k m l n m k l D D D D
⁎ ⁎

, , , 1 2 3 4 =
{ ( ) ′ ( ′)}( )∈ × × ×f y f y,n k m l n m k l D D D D, , , 1 2 3 4, where ′ ( ′) = ( ′)f y f ym l k l , whenever = ′ =x x xn m k, is pairwise Cauchy net in Z

as they are eventually pairwise Cauchy. Therefore, { ( ) ′ ( ′)}( )∈ × × ×f y f y,n k m l n m k l D D D D, , , 1 2 3 4 is again pairwise

Cauchy. Hence, the pair of nets {( ′ )}( )∈ ×f f,n m n m D D, 1 2 is continuously Cauchy. By the hypothesis, the pair of

nets {( ′ )}( )∈ ×f f,n m n m D D, 1 2 is pairwise Cauchy in ( )UC Y Z, and hence {( ( ) ( ′ ))}( )∈ ×g x g x,n m n m D D
⁎ ⁎

, 1 2 is pairwise
Cauchy. Therefore, g⁎ is uniformly continuous and hence �( ( ) )UC Y Z, , is splitting.
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The case where = ′x xn m for infinitely many indices, may be treated in a similar manner.
Conversely, let �( ( ) )UC Y Z, , be splitting and {( ′ )}( )∈ ×f f,n m n m D D, 1 2 be any pair of nets in ( )UC Y Z, which is

continuously Cauchy. We have to show that the pair ( ′ )( )∈ ×f f,n m n m D D, 1 2 is pairwise Cauchy in �( ( ) )UC Y Z, , .
Let �0 be the uniformity generated on Δ, where = ∪D DΔ 1 2. Then the only non-trivial pair of nets in Δ is
( )( )∈ ×n m, n m D D, 1 2, which is pairwise Cauchy. Let � be any pairwise Cauchy net in × YΔ . Then � � �= ×1 2,

where �1 and �2 are nets in × YΔ , where� = { }( )∈ ×n y, k n k D D1 , 1 3 and� = { ′}( )∈ ×m y, l m l D D2 , 2 4 Then { }( )∈ ×n m, n m D D, 1 2

and { }( )∈ ×y y,k l k l D D, 3 4. Then we define a map × →g Y Z: Δ as ( ) = ( )g n f yn and ( ) = ′ ( )g m y f y, m . Thus,

�( ) = ( ( ) ( ′))( )∈ × × ×g g n y g m y, , ,k l n m k l D D D D2 , , , 1 2 3 4. That is, �( ) = ( ( ) ′ ( ′))( )∈ × × ×g f y f y,n k m l n m k l D D D D2 , , , 1 2 3 4. Since the pair

{( ′ )}( )∈ ×f f,n m n m D D, 1 2 is given to be a continuously Cauchy pair, {( ( ) ( ′))}( )∈ × × ×g n y g m y, , ,k l n m k l D D D D, , , 1 2 3 4 is pair-
wise Cauchy. Hence, the map g is uniformly continuous. As � is splitting, this implies g⁎ is uniformly
continuous. Since {( )}( )∈ ×n m, n m D D, 1 2 is pairwise Cauchy, we have {( ( ) ( ))}( )∈ ×g n g m, n m D D

⁎ ⁎
, 1 2 is pairwise

Cauchy in ( )UC Y Z, . Now consider, ( )( ) = ( ) = ( )g n y g n y f y, n
⁎ and ( )( ) = ( ) = ′ ( )g m y g m y f y, m

⁎ . That is,
( ) =g n fn

⁎ and ( ) = ′g m fm
⁎ . Hence, {( ′ )}( )∈ ×f f,n m n m D D, 1 2 is pairwise Cauchy in �( ( ) )UC Y Z, , .

If ∩D D1 2 in non-empty and finite, then in the above discussion, we take ( ) = ( )g n y f y, n and
( ) = ′ ( )g m z f z, m , whenever ≠ ∈y z Y . Furthermore, if we have, =n m and =y z for some ∈y z Y, , then

we define ( ) = ( ) = ( )g n y g m z f y, , n . Then in the above proof, �( ) = ( ( ) ′ ( ′))( )∈ × × ×g f y f y,n k m l n m k l D D D D2 , , , 1 2 3 4.

Since the pair {( ′ )}( )∈ ×f f,n m n m D D, 1 2 is continuously Cauchy, �( ) = ( ( ) ′ ( ′))( )∈ × × ×g f y f y,n k m l n m k l D D D D2 , , , 1 2 3 4 is pair-
wise Cauchy. Hence, the proof.

If ∩D D1 2 in non-empty and infinite and =y z, then the images of �1 and �2 under g will coincide in
infinitely many places. Thus, proof becomes a trivial case of the above discussion for the converse part. □

Example 3.5. Let �( )�, and �( )� , be uniform spaces as stated in Example 3.1. It has been shown that the
point-entourage uniform space �( ( ) )U� �UC , , p, is splitting (see Example 3.3). We now show that this
uniformity satisfies the conditions stated in the above theorem.

For this, we have to show that if a pair of nets ( )( )∈ ×f f,n m n m D D, 1 2 in ( ) × ( )� � � �UC UC, , is continuously
Cauchy, then ( )( )∈ ×f f,n m n m D D, 1 2 is pairwise Cauchy under �( ( ) )U� �UC , , p, . Let �( ) ∈ U�y, n p, , for
some ∈ �y and for some ∈ �n , be any entourage in the point-entourage uniformity. Then, consider
( ) = ( )( )∈ ×y y y y, , ,l k l k D D, 3 4 which is constant and hence is pairwise Cauchy net. Since ( )( )∈ ×f f,n m n m D D, 1 2 is
assumed to be continuously Cauchy, ( ( ) ( ))( )∈ ×f y f y,n m n m D D, 1 2 is pairwise Cauchy net in �. Hence, for

�∈�n , we have ( ( ) ( )) ∈ �f y f y,n m n eventually. Therefore, ( ) ∈ ( )�f f y, ,n m n eventually. Hence, the pair
of nets ( )( )∈ ×f f,n m n m D D, 1 2 is pairwise Cauchy net in �( ( ) )UUC Y Z, , p, . Thus, the point-entourage uniform space
( ( ) )⊑UUC Y Z, , p, satisfies the conditions of Theorem 3.14.

Theorem 3.15. Let �( )Y , and �( )Z, be two uniform spaces. A uniformity � on ( )UC Y Z, is admissible if and
only if each pair of nets ( ′ )( )∈ ×f f,n m n m D D, 1 2 in ( )UC Y Z, is continuously Cauchy under � if ( ′ )( )∈ ×f f,n m n m D D, 1 2 is
pairwise Cauchy.

Proof. Let �( ( ) )UC Y Z, , be admissible and ( )( )∈ ×f g,n m n m D D, 1 2 be a pair of nets in ( )UC Y Z, , which is pairwise
Cauchy. We have to show that the pair ( )( )∈ ×f g,n m n m D D, 1 2 is continuously Cauchy in �( ( ) )UC Y Z, , . Let 	0 be
the uniformity generated on Δ, where = ∪D DΔ 1 2. The only non-trivial pair of nets in Δ, which is pairwise
Cauchy, is {( )}( )∈ ×n m, n m D D, 1 2. Then define a map → ( )g UC Y Z: Δ ,⁎ by ( ) =g n fn

⁎ and ( ) =g m gm
⁎ . Consider

( ( ) ( )) = ( )( )∈ × ( )∈ ×g n g m f g, ,n m D D n m n m D D
⁎ ⁎

, ,1 2 1 2 is pairwise Cauchy. Hence, the map g⁎ is uniformly continuous.
Since �( ( ) )UC Y Z, , is given to be admissible, the associated map × →g Y Z: Δ is also uniformly contin-
uous. Let ( ′)( )∈ ×y y,k l k l D D, 3 4 be any pairwise net in Y. Therefore, {( ) ( ′)}( )∈ × × ×n y m y, , ,k l n m k l D D D D, , , 1 2 3 4 is again a

pairwise Cauchy net in × YΔ . Since the map g is uniformly continuous, { ( ) ( ′)}( )∈ × × ×g n y g m y, , ,k l n m k l D D D D, , , 1 2 3 4

is pairwise Cauchy.
That is, { ( )( ) ( )( ′)} = ( ( ) ( ′))( )∈ × × ×g n y g m y f y g y, ,k l n m k l D D D D n k m l

⁎ ⁎
, , , 1 2 3 4 is pairwise Cauchy. Hence, the pair

( )( )∈ ×f g,n m n m D D, 1 2 is continuously Cauchy.
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Conversely, let → ( )g X UC Y Z: ,⁎ be uniformly continuous. We have to show that the associated
map g is uniformly continuous. Let {( ) ( ′ ′ )}( )∈ ×x y x y, , ,n m n m n m D D, 1 2 be a pairwise Cauchy net in ×X Y . Then

{( ′ }( )∈ ×x x,n m n m D D, 1 2 and {( ′ )}( )∈ ×y y,n m n m D D, 1 2 are pairwise Cauchy net in X and Y, respectively. Since

{( ′ )}( )∈ ×x x,n m n m D D, 1 2 is a pairwise Cauchy net in X and g⁎ is uniformly continuous, { ( ) ( ′ )}( )∈ ×g x g x,n m n m D D
⁎ ⁎

, 1 2

is also a pairwise Cauchy net in ( )UC Y Z, , that is, {( )}( )∈ ×f g,n m n m D D, 1 2 is a pairwise Cauchy in ( )UC Y Z, , where

= ( )f g xn n
⁎ and = ( ′ )g g xm m

⁎ , respectively. Then, by the given hypothesis, the pair {( )}( )∈ ×f g,n m n m D D, 1 2

is continuously Cauchy. Hence, for the pairwise Cauchy net {( ′ )}( )∈ ×y y,n m n m D D, 1 2 in Y, we have

{( ( ) ( ′ ))}( )∈ ×f y g y,n n m m n m D D, 1 2 is pairwise Cauchy in Z, that is, { ( ) ( ′ ′ )}( )∈ ×g x y g x y, , ,n n m m n m D D, 1 2 is pairwise Cauchy.
Hence, g is uniformly continuous. Therefore, �( ( ) )UC Y Z, , is admissible. □

Remark 3.1. In the above proof, if = ′x xn m, for some ∈ ∈n D m D,1 2, we may proceed in a similar way as in
Theorem 3.14. Similarly, in the converse part, if ∩ ≠ ∅D D1 2 , we proceed as in Theorem 3.14.

Example 3.6. In Example 3.4, it has shown that the uniform space ( )� �UC , is admissible under the
entourage-entourage uniformity defined as in Example 3.2. Now, we show that this uniformity satisfies
the conditions laid down in the above theorem.

For this, we show that if a pair of nets ( ) ∈ ( )( )∈ × � �f f UC, ,n m n m D D, 1 2 is pairwise Cauchy, then
( )( )∈ ×f f,n m n m D D, 1 2 is continuously Cauchy.

Let ( )( )∈ ×y y,l k l k D D, 3 4 be a pair of Cauchy nets in �( )�, . Thus, for any given >ε 0, ( ) ∈y y U,l k ε eventually.
Since the pair of nets ( )( )∈ ×f f,n m n m D D, 1 2 is also a Cauchy pair, ( ) ∈ ( )�f f U, ,n m ε n eventually. Hence,
( ( ) ( )) ∈ �f V f V,n m n1 2 eventually, where = ×U V Vε 1 2. Therefore, we have ( ( ) ( )) ∈ �f y f y,n l m k n eventually.
Hence, ( )( )∈ ×f f,n m n m D D, 1 2 is continuously Cauchy. Thus, entourage-entourage uniform space � �( ( ) )UUC Y Z, , ,
satisfies the condition laid down in Theorem 3.15.

In our next pair of theorems, we provide the existence of some uniform spaces over ( )UC Y Z, , which
satisfy the conditions of splittingness and admissibility, respectively. Using the results obtained so far, we
show that every point-entourage uniform space is splitting, whereas every entourage-entourage uniform
space is admissible.

Theorem 3.16. Let �( )Y , and �( )Z, be two uniform spaces. Then the point-entourage uniform space

�( ( ) )UUC Y Z, , p, is splitting.

Proof. Let �( )Y , and �( )Z, be two uniform spaces. We have to prove that the point-entourage uniform
space �( ( ) )UUC Y Z, , p, is splitting. For this, we have to show that if a pair of nets ( )( )∈ ×f f,n m n m D D, 1 2

in ( ) × ( )UC Y Z UC Y Z, , is continuously Cauchy, then ( )( )∈ ×f f,n m n m D D, 1 2 is pairwise Cauchy under

�( ( ) )UUC Y Z, , p, .
Let �( ) ∈ Uy U, p, be any entourage in point-entourage uniformity. Consider ( ) = ( )( )∈ ×y y y y, ,l k l k D D, 3 4 is

the pairwise constant Cauchy net. Since ( )( )∈ ×f f,n m n m D D, 1 2 is continuously Cauchy, ( ( ) ( ))( )∈ ×f y f y,n m n m D D, 1 2

is pairwise Cauchy net in Z. Hence for �∈U , we have ( ( ) ( )) ∈f y f y U,n m eventually. Therefore, ( ) ∈f f,n m
( )y U, eventually. Hence, the pair of nets ( )( )∈ ×f f,n m n m D D, 1 2 is pairwise Cauchy net in �( ( ) )UUC Y Z, , p, .
Thus, the point-entourage uniform space �( ( ) )UUC Y Z, , p, is splitting. □

In the next theorem, we show that the entourage-entourage uniform space � �( ( ) )UUC Y Z, , , is
admissible.

Theorem 3.17. Let �( )Y , and �( )Z, be two uniform spaces. Then the entourage-entourage uniform space

� �( ( ) )UUC Y Z, , , is admissible.

Proof. Let �( )Y , and �( )Z, be two uniform spaces. We have to prove that the entourage-entourage
uniform space � �( ( ) )UUC Y Z, , , is admissible. For this, we have to show that if a pair of nets
( ) ∈ ( )( )∈ ×f f UC Y Z, ,n m n m D D, 1 2 is pairwise Cauchy provided ( )( )∈ ×f f,n m n m D D, 1 2 is continuously Cauchy.
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Let ( )( )∈ ×y y,l k l k D D, 3 4 be a net of Cauchy pair in �( )Y , . Thus, ( ) ∈y y V,l k eventually for all �∈V . Since
the pair of nets ( )( )∈ ×f f,n m n m D D, 1 2 is also a Cauchy pair, ( ) ∈ ( )f f V U, ,n m eventually. Hence, ( ( ) ( )) ⊆f V f V U,n m1 2

eventually, where = ×V V V1 2. Therefore, we have ( ( ) ( )) ∈f y f y U,n l m k eventually. Thus, entourage-
entourage uniform space � �( ( ) )UUC Y Z, , , is admissible. □

Does there exist any uniformity on ( )UC Y Z, which is both admissible and splitting? The answer is yes.
In the following, we provide an example to show this fact. This example also highlights applications of net-
theoretic characterization of admissibility obtained in Theorem 3.15.

Let X be a non-empty set. We call a uniformity � on X an indiscrete uniformity if it has only one
entourage, that is, ×X X . In an indiscrete uniform space, every pair of nets is a Cauchy pair.

Example 3.7. Let �( )Y , and �( )Z, be two uniform spaces, where � is the indiscrete uniformity over Z. The
point-entourage uniformity, �Up, generated over the class of all uniform continuous function ( )UC Y Z, is
splitting in view of Theorem 3.14.

Now, let ( ′ )( )∈ ×f f,n m n m D D, 1 2 be pairwise Cauchy in ( )UC Y Z, . We show that it is continuously Cauchy. Let
( ′)( )∈ ×y y,k l k l D D, 3 4 be pairwise Cauchy nets in Y. As � is indiscrete uniformity, the pair of nets ( ( ) ′ ( ′))f y f y,n k m l is

pairwise Cauchy. Therefore, ( ′ )f f,n m is continuously Cauchy. Hence, ( )UC Y Z, is admissible, in view of
Theorem 3.15.

Remark 3.2. Consider the point-entourage uniformity over the space of all uniform functions ( )� �UC , ,
with Euclidean uniformity. Then the convergence of the sequence of functions in the topology generated by
point-entourage uniformity coincides with the point-wise convergence of the sequence of the function.

4 Conclusion

This study establishes that the uniformly continuous mappings between uniform spaces do possess inter-
esting uniform structures. We have also shown that net theory can successfully be used in the realm of
uniform spaces. The authors have not come across similar work in the literature so far in the domain of
uniform spaces. The present work is expected to encourage researchers working in the field of metric spaces
and topologies as uniform spaces lie between metric spaces and topological spaces. Also, one can develop
the concept of dual uniformity in the line of the studies carried out in [6].

To begin with, let �( )Y , and �( )Z, be two uniform spaces, U be a uniformity on ( )UC Y Z, . For

 ⊆ ( ) × ( )UC Y Z UC Y Z, , , � �∈ = × ∈U V V V, 1 2 , we define


 
( ) = {( ( ) ( ))| ( ) ∈ }− −U f U g U f g, , , ,2
1

2
1

� 
 �( ) = {( )| ∈ ∈ }T TU H U, , .

Does �( )T form a subbase for a uniformity on � ( )YZ , where

� �( ) = { ( )| ∈ ( ) ∈ }−Y f U f UC Y Z U, , ?Z 2
1

If yes, do properties of this uniformity depend on that of U on ( )UC Y Z, and vice versa? How to define
splittingness and admissibility for such spaces and how they are related to those of U on ( )UC Y Z, ?
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