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Abstract: In this paper, we study the Hyers-Ulam-Rassias stability of ( )m n, -Jordan derivations. As applica-
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1 Introduction

In 1940, S. Ulam [1] posed a problem about group homomorphisms. Suppose that G1 is a group, ( )G d,2 is a
metric group, and ε is a positive number. Does there exist a positive number δ, such that if a mapping f fromG1
into G2 satisfies the inequality

( ( ) ( ) ( )) ⩽f xy f x f y δd ,

for each x, y in G1, then there exists a homomorphism h from G1 into G2 such that

( ( ) ( )) ⩽f x h x εd ,

for every x in G1? If this problem has a solution, we say that the homomorphisms from G1 into G2 are stable.
In 1941, D. Hyers [2] answers the question of Ulam’s problem for Banach spaces. Suppose that X1 is a

normed space and X2 is a Banach space. If f is a mapping from X1 into X2, and there exists a positive number ε
such that

∥ ( + ) − ( ) − ( )∥ <f x y f x f y ε

for each x and y in X1, then there exists a unique additive mapping h from X1 into X2 such that

∥ ( ) − ( )∥ <f x h x ε

for every x in X1. This stability phenomenon is called the Hyers-Ulam stability of the additive functional
equation ( + ) = ( ) + ( )h x y h x h y .

In 1950, T. Aoki [3] generalized Hyers’s theorem. Suppose that X1 and X2 are two Banach spaces. If f is
a mapping from X1 into X2, and there exists a positive number ε and ⩽ <p0 1 such that

∥ ( + ) − ( ) − ( )∥ ⩽ (∥ ∥ + ∥ ∥ )f x y f x f y ε x yp p

for each x and y in X1, then there exists a positive number θ and a unique linear mapping h from X1 into X2 such
that
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∥ ( ) − ( )∥ ⩽ ∥ ∥f x h x θ x p

for every x in X1.
In 1978, Th. Rassias [4] introduced unbounded Cauchy difference and proved the stability of linear

mappings between Banach spaces. Suppose that X1 and X2 are two Banach spaces. If f is a mapping from X1
into X2, and there exist positive constants ε and ⩽ <p0 1 such that

∥ ( + ) − ( ) − ( )∥ ⩽ (∥ ∥ + ∥ ∥ )f x y f x f y ϵ x yp p

for each x and y in X1, then there exists a unique additive mapping h from X1 into X2 such that

∥ ( ) − ( )∥ ⩽
−

∥ ∥f x h x ε x2
2 2p

p

for every x in X1. Moreover, if ( )f tx is continuous in �∈t for every x in X1, then h is a linear mapping, where �

denotes the set of the real numbers. In 1991, Z. Gajda [5] proved that the result in [4] is also true when >p 1,
and Z. Gajda [5] also gave an example to show that the Rassias’s stability result is not valid for =p 1. This
phenomenon is called the Hyers-Ulam-Rassias stability.

On the other hand, J. Rassias [6–8] generalized Hyers’s stability result by presenting a weaker condition
involving a product of different powers of norms. Suppose that X1 is a normed space and X2 is a Banach
space. If f is a mapping from X1 into X2 and there exist positive constants ⩾ε 0, p1 and p2 in � with

= + ≠p p p 11 2 , such that

∥ ( + ) − ( ) − ( )∥ ⩽ ∥ ∥ ∥ ∥f x y f x f y ϵ x yp p1 2

for each x and y in X1, then there exists a unique additive mapping h from X1 into X2 such that

∥ ( ) − ( )∥ ⩽
| − |

∥ ∥f x h x ε x
2 2p

p

for every x in X1. Moreover, if ( )f tx is continuous in �∈t for every x in X1, then h is a linear mapping.
In this paper, we suppose that � is an algebra over the field of complex numbers �, and all linear

mappings are �-linear mappings.
Let � be an � -bimodule. A linear mapping δ from � into � is called a derivation if

( ) = ( ) + ( )δ xy xδ y δ x y

for each x, y in � ; and δ is called a Jordan derivation if

( ) = ( ) + ( )δ x xδ x δ x x2

for every x in � . In 1996, K. Jun and D. Park [9] considered the stability of derivations from a Banach algebra
[ ]C 0,1n into a finite dimensional Banach [ ]C 0,1n -bimodule. In 2004, C. Park [10] gave a characterization of

the stability of derivations from a Banach algebra into its Banach bimodule.
In 1990, M. Brešar and J. Vukman [11] introduced the concepts of left derivations and Jordan left

derivations. Let � be a left � -module. A linear mapping δ from � into � is called a left derivation if

( ) = ( ) + ( )δ xy xδ y yδ x

for each x, y in � ; and δ is called a Jordan left derivation if

( ) = ( )δ x xδ x22

for every x in � . In 2008, Y. Jung [12] characterized the stability of left derivations.
In 2008, J. Vukman [13] introduced the concept of ( )m n, -Jordan derivations. Let � be an � -bimodule,

⩾m 0 and ⩾n 0 be two fixed integers with + ≠m n 0. A linear mapping δ from � into � is called an
( )m n, -Jordan derivation if

( + ) ( ) = ( ) + ( )m n δ x mxδ x nδ x x2 22

for every x in � . By simple calculation, it is easy to show that δ is an ( )m n, -Jordan derivation if and only if
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( + ) ( + ) = ( ) + ( ) + ( ) + ( )m n δ xy yx mxδ y nδ x y myδ x nδ y x2 2 2 2

for each x and y in � . It is clear that the notions of Jordan derivations and Jordan left derivations are
particular cases of ( )m n, -Jordan derivations, obtained when = =m n 1 and when =m 1 and =n 0, respec-
tively.

This paper is organized as follows. In Section 2, we study the Hyers-Ulam-Rassias stability of ( )m n, -
Jordan derivations.

In Section 3, we give the applications on C⁎-algebras and some non-self-adjoint operator algebras.

2 Stability of m n,( )-Jordan derivations

In this section, we denote � �= { ∈ | | = }λ λ: 11 . To prove the main theorem, we need the following results.

Lemma 2.1. [14] Suppose that X and Y are two linear spaces. If f is an additive mapping from X into Y such that
( ) = ( )f λx λf x for every x in X and every λ in � 1, then f is a linear mapping.

In [15], P. Găvruţa generalized the results in [4] and [6] with the admissible control function as follows.

Lemma 2.2. [15] Suppose that ( +)G, is an abelian group and X is a Banach space. Let φ be a mapping from
×G G into [ ∞)0, such that

∑( ) ≔ ( ) < ∞−

=

∞

−φ x y φ x y˜ , 2 2 2 , 2
k

k k k1

0

for each x and y in G. If f is a mapping from G into X such that

∥ ( + ) − ( ) − ( )∥ ⩽ ( )f x y f x f y φ x y,

for each x and y in G, then there exists a unique additive mapping h from G into X such that

∥ ( ) − ( )∥ ⩽ ( )f x h x φ x x˜ ,

for every x in G.

Let � be a normed algebra, � be a Banach � -bimodule, and m n, be two fixed non-negative integers
with + ≠m n 0. For the sake of convenience, we use the same symbol ∥⋅∥ to represent the norms on � and
� . A mapping φ from � �× into [ ∞)0, is said to have property � if

∑( ) ≔ ( ) < ∞−

=

∞

−φ x y φ x y˜ , 2 2 2 , 2
k

k k k1

0
(2.1)

for each x y, in � . A mapping f from � into � is said to have property � if f satisfies the following two
inequalities:

∥ ( + ) − ( ) − ( )∥ ⩽ ( )f λx y λf x f y φ x y, (2.2)

and

∥( + ) ( + ) − ( ) − ( ) − ( ) − ( ) ∥ ⩽ ( )m n f xy yx mxf y nf x y myf x nf y x φ x y2 2 2 2 , (2.3)

for each x y, in � and every λ in � 1. Depending on f, we define a mapping δf from � into � such that

( ) = ( )
→∞

−δ x f xlim 2 2f
k

k k (2.4)

for every x in � . The definition of δf will be used in most of the theorems and corollaries of the paper.
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Theorem 2.3. Let � be a normed algebra, � be a Banach � -bimodule, and m n, be two fixed non-negative
integers with + ≠m n 0. Suppose that φ is a mapping from � �× into [ ∞)0, satisfying the property � and f
is a mapping from � into � satisfying the property �. Then there exists a unique ( )m n, -Jordan derivation δf

from � into � such that

∥ ( ) − ( )∥ ⩽ ( )f x δ x φ x x˜ ,f

for every x in � .

Proof. First we prove that there exists a unique linear mapping δf from � into � such that

∥ ( ) − ( )∥ ⩽ ( )f x δ x φ x x˜ ,f

for every x in � . Let =λ 1 in (2.2), it implies that

∥ ( + ) − ( ) − ( )∥ ⩽ ( )f x y f x f y φ x y, (2.5)

for each x and y in � .

Define a mapping δf from � into � as in (2.4). By the proof of Lemma 2.2 in [15] and (2.5), and also that

the sequence { ( )}− f x2 2k k is convergent, we know that δf is a unique additive mapping from � into � such

that

∥ ( ) − ( )∥ ⩽ ( )f x δ x φ x x˜ ,f

for every x in � . Replacing x, y by x2k , y2k in (2.2), respectively. It follows that

∥ ( ( + )) − ( ) − ( )∥ ⩽ ( )f λx y λf x f y φ x y2 2 2 2 , 2k k k k k (2.6)

for each x, y in � , and every λ in � 1. Multiplying −2 k from the left of (2.6), we can obtain the following
inequality

∥ ( ( + )) − ( ) − ( )∥ ⩽ ( )− − − −f λx y λf x f y φ x y2 2 2 2 2 2 2 2 , 2k k k k k k k k k (2.7)

for each x, y in � , and every λ in � 1. Taking the limit in (2.7) as → ∞k and by (2.4), we have that

( + ) = ( ) + ( )δ λx y λδ x δ yf f f

for each x, y in � , and every λ in � 1. By Lemma 2.1, we know that δf is a linear mapping.

Next we show that δf is an ( )m n, -Jordan derivation. Replacing x, y by x2k , y2k in (2.3), respectively, we
can obtain that

∥( + ) ( ( + )) − ( ) − ( )

− ( ) − ( ) ∥ ⩽ ( )

m n f xy yx m xf y nf x y
m yf x nf y x φ x y

2 2 2 2 2 2 2
2 2 2 2 2 2 2 , 2

k k k k k

k k k k k k

2
(2.8)

for each x and y in � . Multiplying −2 k2 from the left of (2.8), we have that

∥( + ) ( ( + )) − ( ) − ( )

− ( ) − ( ) ∥ ⩽ ( )

− − −

− − −

m n f xy yx m xf y nf x y
m yf x nf y x φ x y

2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 , 2

k k k k k k

k k k k k k k

2 2

2
(2.9)

for each x and y in � . By the convergence of (2.1), it follows that ( ) =
→∞

− φ x ylim 2 2 , 2 0
k

k k k2 . Taking the limit as
→ ∞k in (2.9) and by (2.4), we have that

( + ) ( + ) = ( ) + ( ) + ( ) + ( )m n δ xy yx mxδ y nδ x y myδ x nδ y x2 2 2 2f f f f f

for each x and y in � . It means that δf is an ( )m n, -Jordan derivation. □

Corollary 2.4. Let � be a normed algebra, � be a Banach � -bimodule, and = =m n1, 1. Suppose that φ
is a mapping from � �× into [ ∞)0, satisfying the property � and f is a mapping from � into � satisfying
the property �. Then there exists a unique Jordan derivation δf from � into � such that

∥ ( ) − ( )∥ ⩽ ( )f x δ x φ x x˜ ,f

for every x in � .
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In the following, we assume that � is a unital normed algebra with a unit element e and � is a unital
Banach � -bimodule, that is,

= =em me m

for every m in � . A mapping φ from � �× into [ ∞)0, is said to have the property �̂ if φ satisfies the
property � and the following equation:

( ) =
→∞

− φ e xlim 2 2 , 0
k

k k (2.10)

for each x in � .

Lemma 2.5. Let � be a unital normed algebra, � be a unital Banach � -bimodule, and m n, be two fixed
non-negative integers with + ≠m n 0. Suppose that φ is a mapping from � �× into [ ∞)0, satisfying the

property �̂ and f is a mapping from � into � satisfying the property �. Then ( ) = ( )f λx λf x for every x in �

and λ in �.

Proof. Define a mapping δf from � into � as in (2.4). By Theorem 2.3, we know that δf is a unique
( )m n, -Jordan derivation from � into � such that

∑∥ ( ) − ( )∥ ⩽ ( )−

=

∞

−f x δ x φ x x2 2 2 , 2f
i

i i i1

0
(2.11)

for every x in � . Let e be a unit element of � and λ be in �, we have the following inequality:

∥( + ) (( )( )) − [ ( ) ( ) + ( ) + ( ) + ( )( )]∥

⩽ | |∥( + ) ( ) − ( ) − ( )

− ( ) − ( ) ∥ + | |( + )∥ ( ) − ( )∥

− − − −

− −

− −

m n δ e λx λ m e f x nf e x mxf e nf x e
λ m n f ex m ef x nf e x

mxf e nf x e λ m n δ ex f ex

2 2 2 2 2 2 2 2 2
2 2 2 2 2

2 2 2 2 2 2

f
k k k k k

k k k

k k
f

k k

1 1 1 1

1 1

1 1

(2.12)

for every x in � and every k in �. By (2.3), (2.11), and (2.12), it follows that

∑

∥( + ) (( )( )) − [ ( ) ( ) + ( ) + ( ) + ( )( )]∥

⩽ | | ( ) + | |( + ) ( )

− − − −

− −

=

∞

− + +

m n δ e λx λ m e f x nf e x mxf e nf x e

λ φ e x λ m n φ ex ex

2 2 2 2 2 2 2 2 2

2 , 2 2 2 , 2

f
k k k k k

k

i

i i k i k

1 1 1 1

1 1

0

(2.13)

for every x in � and every k in �. By (2.11) and (2.13), we can obtain the following inequality:

∑

∑

∥( + ) (( )( )) − [ ( ) ( ) + ( ) + ( ) + ( )( )]∥

⩽ ∥( + ) (( )( )) − [ ( ) ( ) + ( )

+ ( ) + ( )( )]∥ + ( + )∥ (( )( )) − (( )( ))∥

⩽ | | ( ) + | |( + ) ( )

+ ( + ) ( )

− − − −

− −

− −

− −

=

∞

− + +

−

=

∞

− + +

m n f e λx λ m e f x nf e x mxf e nf x e
m n δ e λx λ m e f x nf e x

mxf e nf x e m n f e λx δ e λx

λ φ e x λ m n φ ex ex

m n φ eλx eλx

2 2 2 2 2 2 2 2 2
2 2 2 2 2

2 2 2 2 2 2

2 , 2 2 2 , 2

2 2 2 , 2

k k k k k

f
k k k

k k k
f

k

k

i

i i k i k

i

i i k i k

1 1 1 1

1 1

1 1

1 1

0

1

0

(2.14)

for every x in � and every k in �. Since

∥ ( ( ) − ( ))∥

= ∥ ( ( ) − ( ))∥

⩽ ∥ ( ) + ( ) + ( ) + ( ) − ( + ) (( )( ))∥

+ ∥( + ) (( )( )) − ( ) − ( ) − ( ) − ( ) ∥

+ ∥ ( ( ) − ( ))∥

−

−

− − − −

− − − −

−

m f λx λf x
m e f λx λf x
m ef λx nf e λx mλxf e nf λx e m n f e λx

m n f e λx mλ ef x nλf e x mλxf e nλf x e
n f λx λf x

2 2
2 2
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2
2 2

k

k

k k k k k

k k k k k

k

1

1

1 1 1 1

1 1 1 1

1

(2.15)
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for every x in � and every k in �. By (2.3), (2.14), and (2.15), we can obtain the following inequality:

∑ ∑

( + ) ∥ ( ) − ( )∥

⩽ ∥ ( ) + ( ) + ( ) + ( ) − ( + ) (( )( ))∥

+ ∥( + ) (( )( )) − ( ) − ( ) − ( ) − ( ) ∥

⩽ ( ) + | | ( ) + | |( + ) ( ) + ( + ) ( )

−

− − − −

− − − −

− − −

=

∞

− + + −

=

∞

− + +

m n f λx λf x
m ef λx nf e λx mλxf e nf λx e m n f e λx

m n f e λx mλ ef x nλf e x mλxf e nλf x e

φ e λx λ φ e x λ m n φ ex ex m n φ eλx eλx

2 2 2
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 , 2 , 2 2 2 , 2 2 2 2 , 2

k

k k k k k

k k k k k

k k

i

i i k i k

i

i i k i k

1

1 1 1 1

1 1 1 1

1 1 1

0

1

0

for every x in � and every k in �. This means that













∑

∑

( + )∥ ( ) − ( )∥

⩽ ( ) + | | ( ) + | |( + ) ( )

+ ( + ) ( )

− − − −

=

∞

− + +

−

=

∞

− + +

m n f λx λf x

φ e λx λ φ e x λ m n φ ex ex

m n φ eλx eλx

2 2 , 2 , 2 2 2 , 2

2 2 2 , 2

k k k

i

i i k i k

i

i i k i k

1 1 1

0

1

0

(2.16)

for every x in � and every k in �.

Taking the limit in (2.16) as → ∞k , by the convergence of (2.1) and the property �̂ , we have that

( + )( ( ) − ( )) =m n f λx λf x 0

for every x in � and λ in � . Since + ≠m n 0, ( ) = ( )f λx λf x for every x in � and λ in �. □

The following theorem is the main result in this section.

Theorem 2.6. Let � be a unital normed algebra, � be a unital Banach � -bimodule, and m n, be two fixed
non-negative integers with + ≠m n 0. Suppose that φ is a mapping from � �× into [ ∞)0, satisfying the

property �̂ and f is a mapping from � into � satisfying the property �. Then f is an ( )m n, -Jordan derivation.

Proof. Define a mapping δf from � into � as in (2.4). By Theorem 2.3, we know that δf is a unique
( )m n, -Jordan derivation from � into � such that

∑∥ ( ) − ( )∥ ⩽ ( )−

=

∞

−f x δ x φ x x2 2 2 , 2f
i

i i i1

0

for every x in � . By Lemma 2.4, it follows that ( ) = ( )f λx λf x for every x in � and λ in �. Hence, we have the
following inequality:

∑∥ ( ) − ( )∥ = ∥ ( ) − ( )∥ ⩽ ( )− − − −

=

∞

− + +f x δ x f x δ x φ x x2 2 2 2 2 2 2 , 2f
k k k

f
k k

i

i i k i k1

0
(2.17)

for every x in � and every k in �. Taking the limit in (2.17) as → ∞k and by the convergence of (2.1), we
have that ( ) = ( )f x δ xf for every x in � . It means that f is an ( )m n, -Jordan derivation. □

By Th. Rassias [4], we have the following result.

Corollary 2.7. Let � be a unital normed algebra, � be a unital Banach � -bimodule, and m, n be two fixed
non-negative integers with + ≠m n 0. Suppose that f is a mapping from � into � such that

∥ ( + ) − ( ) − ( )∥ ⩽ (∥ ∥ + ∥ ∥ )f λx y λf x f y θ x yp p

and

∥( + ) ( + ) − ( ) − ( ) − ( ) − ( ) ∥ ⩽ (∥ ∥ + ∥ ∥ )m n f xy yx mxf y nf x y myf x nf y x θ x y2 2 2 2 p p

for each x, y in � and every λ in � 1, where ⩾θ 0 and < <p0 1. Then f is an ( )m n, -Jordan derivation.
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Proof. Suppose that � �× → [ ∞)φ : 0, is defined by

( ) = (∥ ∥ + ∥ ∥ )φ x y θ x y, p p

for each x, y in � , with ≥θ 0 and < <p0 1. In the following we show that φ satisfies the property �̂ . Since
< <p0 1, it follows that

∑ ∑ ∑( ) ≔ ( ) = (∥ ∥ + ∥ ∥ ) = (∥ ∥ + ∥ ∥ ) < ∞−

=

∞

− −

=

∞

− −

=

∞

( − )φ x y φ x y θ x y θ x y˜ , 2 2 2 , 2 2 2 2 2 2 2
k

k k k

k

k k p k p

k

k p p p1

0

1

0

1

0

1 (2.18)

and

( ) = (∥ ∥ + ∥ ∥ ) = ( + ∥ ∥ ) =
→∞

−

→∞

−

→∞

( − ) −φ e x θ e x θ xlim 2 2 , lim 2 2 lim 2 2 0.
k

k k
k

k k p p
k

k p k p1 (2.19)

Thus by (2.18), (2.19), and Theorem 2.5, we can conclude that f is an ( )m n, -Jordan derivation. □

By J. Rassias [6], we have the following result.

Corollary 2.8. Let � be a unital normed algebra, � be a unital Banach � -bimodule, and m, n be two fixed
non-negative integers with + ≠m n 0. Suppose that f is a mapping from � into � such that

∥ ( + ) − ( ) − ( )∥ ⩽ (∥ ∥ ∥ ∥ )f λx y λf x f y θ x yp p1 2

and

∥( + ) ( + ) − ( ) − ( ) − ( ) − ( ) ∥ ⩽ (∥ ∥ ∥ ∥ )m n f xy yx mxf y nf x y myf x nf y x θ x y2 2 2 2 p p1 2

for each x, y in A and every λ in � 1, where ⩾θ 0, and �∈p p,1 2 with = + <p p p 11 2 . Then f is an ( )m n, -
Jordan derivation.

Proof. Since = + <p p p 11 2 , without loss of generality, we can assume that <p 11 . Suppose that � �×φ :
→ [ ∞)0, is defined by

( ) = (∥ ∥ ∥ ∥ )φ x y θ x y, p p1 2

for each x, y in A. In the following we show that φ satisfies the property �̂ . Since = + <p p p 11 2 and <p 11 ,
it follows that

∑ ∑ ∑( ) ≔ ( ) = (∥ ∥ ∥ ∥ ) = (∥ ∥ ∥ ∥ ) < ∞−

=

∞

− −

=

∞

− −

=

∞

( + − )φ x y φ x y θ x y θ x y˜ , 2 2 2 , 2 2 2 2 2 2 2
k

k k k

k

k k p k p

k

k p p p p1

0

1

0

1

0

11 2 1 2 1 2 (2.20)

and

( ) = (∥ ∥ ∥ ∥ ) = ∥ ∥ =
→∞

−

→∞

−

→∞

( − )φ e x θ e x θ xlim 2 2 , lim 2 2 lim 2 0.
k

k k
k

k k p p
k

k p p11 2 1 2 (2.21)

Thus by (2.20), (2.21) and Theorem 2.5, we can deduce that f is an ( )m n, -Jordan derivation. □

Corollary 2.9. Let � be a unital normed algebra, � be a unital Banach � -bimodule, and = =m n1, 1.
Suppose that φ is a mapping from � �× into[ ∞)0, satisfying the property �̂ and f is a mapping from � into
� satisfying the property �. Then f is an Jordan derivation.

Remark 1. Suppose that φ is a mapping from � �× into [ ∞)0, satisfying the property � and  f f,1 2 are two
mappings from � into � satisfying the property �. It is obvious that the mapping | |μ φ is also a mapping
from � �× into [ ∞)0, satisfying the property � , μf , and +f f1 2 are two mappings from � into �

satisfying the property �. Moreover, we have that

= + = +μδ δ δ δ δandf μf f f f f1 2 1 2

Hyers-Ulam-Rassias stability of (m, n)-Jordan derivations  1621



are ( )m n, -Jordan derivations. Let �� �= { |  → }V δ f : with the propertyf and � �= { =  |  →V δ f0 :f0
�}with the property , it follows that = /W V V0 is a linear space and it is interesting to consider the structure

of V0 and W.

Remark 2.We should notice that if � is an algebra and a mapping φ from � �× into[ ∞)0, satisfying the
property � :

∑( ) ≔ ( ) < ∞−

=

∞

−φ x y φ x y˜ , 2 2 2 , 2
k

k k k1

0

for each x and y in � , then we cannot deduce the following equation

( ) =
→∞

− φ e xlim 2 2 , 0
k

k k

for each x in � . Indeed, suppose that �� = and define a two-variable non-negative function φ by

( ) =
| |

+
φ x y xy

y
,

12

for each x and y in � . It is clear that ( )φ x y˜ , is a convergent series for each x y, in �, but ( ) ≠
→∞

− φ xlim 2 2 , 0
k

k k

when ≠x 0. It means that (2.10) is not a consequence of (2.1).

Remark 3. In 2010, J. Vukman [16] gave the definition of ( )m n, -Jordan centralizer. Let � be an algebra and
� be an � -bimodule, ⩾m 0 and ⩾n 0 be two fixed integers with + ≠m n 0. A linear mapping δ from �

into � is called an ( )m n, -Jordan centralizer if

( + ) ( ) = ( ) + ( )m n δ x mxδ x nδ x x2

for every x in � . It is clear that δ is an ( )m n, -Jordan centralizer if and only if

( + ) ( + ) = ( ) + ( ) + ( ) + ( )m n δ xy yx mxδ y nδ x y myδ x nδ y x

for each x and y in � .
Similarly, via the same technique used in the proof of Theorem 2.3, we can characterize the stability of

( )m n, -Jordan centralizers.

3 Some applications

In [17], G. An and J. He proved that every ( )m n, -Jordan derivation from a C⁎-algebra � into its Banach
� -bimodule is zero. Thus, by Theorem 2.5, we have the following result.

Corollary 3.1. Let � be a unital C⁎-algebra, � be a unital Banach � -bimodule, and m, n be two fixed non-
negative integers with + ≠m n 0. Suppose that φ is a mapping from � �× into[ ∞)0, satisfying the property

�̂ and f is a mapping from � into � satisfying the property �. Then ≡f 0.

Let � be a complex Hilbert space, and �( )B be the set of all bounded linear operators on �. By a
subspace lattice on �, we mean a collection � of subspaces of � with ( )0 and � in � such that, for every
family { }Mr of elements of � , both ∩ Mr and ∨Mr belong to � , where ∨Mr denotes the closed linear span of
{ }Mr . For a Hilbert space �, we disregard the distinction between a closed subspace and the orthogonal
projection onto it. Let � be a subspace lattice on �, � is called a commutative subspace lattice (CSL) if it
consists of mutually commuting projections.

Let � be a von Neumann algebra on �, and � �⊆ be a CSL on �. Then � � �= ∩ Alg is said to be
a CSL subalgebra of the von Neumann algebra �.
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In [17], G. An and J. He proved that if � is a von Neumann algebra on a Hilbert space � and � �⊆ is
a CSL on �, then every ( )m n, -Jordan derivation from � �∩ Alg into �( )B is zero. Thus by Theorem 2.5, we
have the following result.

Corollary 3.2. Let � be a von Neumann algebra on a Hilbert space �, � �⊆ be a CSL on �, and m, n be
two fixed non-negative integers with + ≠m n 0. Suppose that φ is a mapping from � � � �( ∩ ) × ( ∩ )Alg Alg
into [ ∞)0, satisfying property �̂ and f is a mapping from � �∩ Alg into �( )B satisfying the property �.
Then ≡f 0.

Let � be a unital algebra and � be a unital � -bimodule. Suppose that � is an ideal of � , we say that
� is a right separating set (resp. left separating set) of � if for everym in � , � = { }m 0 implies =m 0 (resp.

� = { }m 0 implies =m 0). We denote by J �( ) the subalgebra of � generated algebraically by all idempo-
tents in � .

Let � be a subspace lattice on a Hilbert space �, define � �� = { ∈ ⊉ }−E E E: , where �= ∨{ ∈−E F :
⊉ }F E and let �= ∩{ ∈ ⊈ }+E F F E: . A subspace � is called a completely distributive if �= ∨{ ∈L E :

⊉ }−E L for every �∈L ; � is called a �-subspace lattice if � ��∨{ ∈ } =E E: or ��∩{ ∈ } = ( )−E E: 0 .
For some properties of completely distributive subspace lattices and � -subspace lattices, see [19,18].
A totally ordered subspace lattice 	 is called a nest.

By [18,20], we know that if � and � satisfy one of the following conditions:
(1) � � 	= ∩ Alg and � �= , where 	 is a nest in a factor von Neumann algebra � ;
(2) � �= Alg with ( ) ≠ ( )+0 0 or � �≠− , � �= ( )B ;
(3) � �= Alg with � ��∨{ ∈ } =E E: or ��∩{ ∈ } = ( )−E E: 0 , � �= ( )B ;
(4) � �= Alg and � is a dual normal Banach � -bimodule, where � is a completely distributive subspace

lattice on a Hilbert space �;
then � has a right or a left separating set � with J� �⊆ ( ).

In [21], G. An and J. Li showed that if � is a unital algebra and � is a unital � -bimodule with a right
(left) separating set generated algebraically by idempotents in � , then every ( )m n, -Jordan derivation from
a � into � is zero. By Theorem 2.5, we have the following result.

Corollary 3.3. Let � be a unital algebra, � be a unital � -bimodule, with a right (left) separating set
J� �⊆ ( ), and m, n be two fixed non-negative integers with + ≠m n 0. Suppose that φ is a mapping from

� �× into [ ∞)0, satisfying the property �̂ and f is a mapping from � into � satisfying the property �.
Then ≡f 0.
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