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1 Introduction and preliminaries

The theory of Γ-semigroups has been around for more than three decades and counts hundreds of research
papers and many PhD theses. Along with Γ-semigroups, other structures such as ordered Γ-semigroups and
fuzzy Γ-semigroups have been studied in recent years. The majority of the results proved so far are Γ-ana-
logues of the well-known results of ordinary semigroups which their authors pretend to be genuine general-
izations of their semigroup counterparts. It should be noted that there is a striking similarity between the
proofs of the original semigroup theorems and their Γ-semigroup analogues. It is this similarity that is
causing a growing concern among Γ-skeptics that many of the results in Γ-semigroup theory are logically
equivalent with their counterparts in ordinary semigroups. But so far there has been no evidence that this
concern is mathematically based. The aim of this paper is to develop a technique whose purpose is to
demonstrate the equivalence for a pair of analogue results from the two theories. This technique is a
refinement of that developed in [1] and has the advantage that it works for regular Γ-semigroups endowed
with a partial order. More specifically, given an ordered Γ-semigroup ( ≤ )S, Γ, S , we construct an ordered
semigroup ( ⋅ ≤ )Ω , ,γ Ωγ0 0

and prove that S is regular if and only if Ωγ0 is regular. This shows that regularity in

the theory of Γ-semigroups can be interpreted as the usual regularity of semigroups. We go on further to
prove that two characterizations of regularity, one for ordered Γ-semigroups and the other for ordered
semigroups are logically equivalent. The characterization of the regularity of ordered Γ-semigroups is
Theorem 8(iii) of [2] and also Theorem 3 of [3], which states that an ordered Γ-semigroup ( ≤ )S, Γ, S is regular
if and only if one-sided ideals of ( ≤ )S, Γ, S are idempotent, and for every right ideal R and every left ideal L of
( ≤ )S, Γ, S , ( ]R LΓ is a quasi ideal of ( ≤ )S, Γ, S . On the other hand, the characterization of the regularity of
ordered semigroups is Theorem 3.1(iii) of [4], which states that an ordered semigroup ( ⋅ ≤ )S, , S is regular if
and only if, one-sided ideals of ( ⋅ ≤ )S, , S are idempotent, and for every right ideal R and every left ideal L of



* Corresponding author: Fabiana Çullhaj, Department of Mathematics, Aleksandër Moisiu University, Faculty of Technology and
Information, Durrës, Albania, e-mail: fabianacullhaj@hotmail.com
Anjeza Krakulli: Department of Mathematics, Aleksandër Moisiu University, Faculty of Technology and Information, Durrës,
Albania, e-mail: anjeza.krakulli@gmail.com

Open Mathematics 2020; 18: 1501–1509

Open Access. © 2020 Fabiana Çullhaj and Anjeza Krakulli, published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.

https://doi.org/10.1515/math-2020-0107
mailto:fabianacullhaj@hotmail.com
mailto:anjeza.krakulli@gmail.com


( ≤ )S, Γ, S , ( ]R LΓ is a quasi ideal of ( ⋅ ≤ )S, , S . Proving that the above analogue theorems are equivalent gives
points to the idea that producing Γ-analogues of known results from the semigroup theory brings nothing
new to the theory as pretended, but simply replicates those results in a new setting.

In what follows, we give a few basic notions that will be used throughout the paper. Let S and Γ be two
nonempty sets. Any map from × ×S SΓ to Swill be called a Γ-multiplication in S and is denoted by (⋅)Γ. The
result of this multiplication for ∈a b S, and ∈γ Γ is denoted by aγb. In 1986, Sen and Saha [5,6] introduced
the concept of a Γ-semigroup S as an ordered pair ( (⋅) )S, Γ , where S and Γ are nonempty sets and (⋅)Γ is a
Γ-multiplication on S, which satisfies the following property:

∀ ( ) ∈ × ( ) = ( )a b c α β S aαb βc aα bβc, , , , Γ , .3 2

Here we give some necessary definitions from ordered semigroup and ordered Γ-semigroup theory. An
ordered semigroup S is a semigroup ( ⋅)S, together with an order relation ≤ such that ≤a b implies ≤ac bc
and ≤ca cb for all ∈c S. An ordered semigroup S is called regular if for every ∈a S there exists ∈x S such
that ≤a axa. Equivalently, if ∈ ( ]a aSa for every ∈a S or if ⊆ ( ]A ASA for any subset A of S. A nonempty
subset Q of an ordered semigroup S is called a quasi-ideal of S if (1) ( ] =Q Q and (2) ( ] ∩ ( ] ⊆QS SQ Q.

An ordered Γ-semigroup (shortly po-Γ-semigroup) defined by Sen and Seth in [7] is a Γ-semigroup
together with an order relation≤ such that ≤a b implies ≤aγc bγc and ≤cγa cγb for all ∈c S and all ∈γ Γ.
A nonempty subset A of a po-Γ-semigroup S is called a right (resp. left) ideal of S if (1) ⊆A S AΓ resp.
( ⊆ )S A AΓ and (2) if ∈a A and ∋ ≤S b a, then ∈b A. A right (left) ideal A can be obviously written as
( ] =A A. An ordered Γ-semigroup S is called regular if for every ∈a S there exist ∈x S and ∈γ γ, Γ1 2 such
that ≤a aγ xγ a1 2 . A po-Γ-semigroup S is regular if and only if ∈ ( ]a a S aΓ Γ for all ∈a S, equivalently, if

⊆ ( ]A A S AΓ Γ for all ⊆A S. A nonempty subset Q of an ordered Γ-semigroup S is called a quasi-ideal of S
if (1) ( ] =Q Q and (2) ( ] ∩ ( ] ⊆Q S S Q QΓ Γ .

2 Construction of Ωγ0

Given an ordered Γ-semigroup ( ≤ )S, Γ, S , we define an ordered semigroup ( ⋅ ≤ )Ω , ,γ Ωγ0 0
. To define Ωγ0 we use

the fact that we can always define a multiplication• on any nonempty set Γ in such a way that ( )Γ;• becomes
a group. This in fact is equivalent to the axiom of choice. Also, we use the concept of the free product of two
semigroups. Material related to this concept can be found in [8, pp. 258–261]. Furthermore, let ( ⋅)F; be the
free semigroup on S. Its elements are finite strings ( … )x x, , n1 , where each ∈x Si and the product ⋅ is the
concatenation of words. Now we define Ωγ0 as the quotient semigroup of the free product ∗F Γ of ( ⋅)F; with
( )Γ, • by the congruence generated from the set of relations

(( ) ) (( ) )x y xγ y x γ y xγy, , , , , ,0

for all ∈ ∈x y S γ, , Γ and with ∈γ Γ0 a fixed element. The following is Lemma 2.1 of [9]. We have included
here for convenience. Readers unfamiliar with rewriting systems can find anything necessary to understand
the proof in the monograph [10].

Lemma 2.1. Every element of Ωγ0 can be represented by an irreducible word which has the form ( ′)γ x γ, , ,
( ) ( )γ x x γ γ, , , , or x, where ∈x S and ′ ∈γ γ, Γ.

Proof. First, we have to prove that the reduction system arising from the given presentation is Noetherian
and confluent, and therefore any element of Ωγ0 is given by a unique irreducible word from ∪S Γ. Second,
we have to prove that the irreducible words have one of these five forms. So if ω is a word of the form

= ( )ω u x γ y v, , , , for ∈ ∈γ x y SΓ, , and u v, possibly empty words, then ω reduces to ′ = ( )ω u xγy v, , . And if
= ( )ω u x y v, , , , then it reduces to ′ = ( )ω u xγ y v, ,0 . In this way, we obtain a reduction system which is length

reducing and therefore it is Noetherian. To prove that this system is confluent, from Newman’s lemma, it is
sufficient to prove that it is locally confluent. For this, we need to see only the overlapping pairs.
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1. ( ) → ( )x y z xγ y z, , ,0 and ( ) → ( )x y z x yγ z, , , 0 which both reduce to ( )xγ yγ z0 0 ;
2. ( ) → ( )x γ y z xγy z, , , , and ( ) → ( )x γ y z x γ yγ z, , , , , 0 which both reduce to ( )xγyγ z0 ;
3. ( ) → ( )x y γ z xγ y γ z, , , , ,0 and ( ) → ( )x y γ z x yγz, , , , which both reduce to ( )xγ yγz0 ;

4. ( ′ ) → ( ′ )x γ y γ z xγy γ z, , , , , , and ( ′ ) → ( ′ )x γ y γ z x γ yγ z, , , , , , which both reduce to ( ′ )xγyγ z ;
5. ( ) → ( )γ γ γ γ γ γ, , • ,1 2 3 1 2 3 and ( ) → ( )γ γ γ γ γ γ, , , •1 2 3 1 2 3 which both reduce to γ γ γ• •1 2 3.

To complete the proof, we need to show that the irreducible word representing the element of Ωγ0 has
one of the five forms stated. If the word which has neither a prefix nor a suffix made entirely of letters from
Γ, then it reduces to an element of S by performing the appropriate reductions. If the word has the form
( ′)α ω α, , , ( )α ω, or ( ′)ω α, , where ω is a word which has neither a prefix nor a suffix made entirely of letters
from Γ, and α, ′α have only letters from Γ, then it reduces to an element of one of the first three forms. □

Definition 2.1. We define an order relation ≤Ωγ0
in terms of ≤S as follows:

(1) For every ∈x y S, , we let ≤ ⇔ ≤x y x ySΩγ0
;

(2) For every ∈x y S, , and ∈γ Γ we let ≤ ⇔ ≤γx γy x ySΩγ0
;

(3) For every ∈x y S, , and ∈γ Γ we let ≤ ⇔ ≤xγ yγ x ySΩγ0
;

(4) For every ∈x y S, , and ∈γ Γ we let, ′ ≤ ′ ⇔ ≤γxγ γyγ x ySΩγ0
;

(5) The restriction of the relation in Γ is taken to be the equality.

Using the fact that ≤S is an order relation in the Γ-semigroup S, we can prove that ≤Ωγ0
is an order

relation in the semigroupΩγ0. It is obvious that≤Ωγ0
is reflexive, and very easy to see that it is antisymmetric.

We check for convenience the transitivity.

(1) If ∈x y z S, , are such that ≤x yΩγ0
and ≤y zΩγ0

, then by the definition, ≤x yS and ≤y zS , hence ≤x zS

because ≤S is transitive, and then ≤x zΩγ0
.

(2) If ∈x y z S, , and ∈γ Γ are such that ≤γx γyΩγ0
and ≤γy γzΩγ0

, then ≤x yS and ≤y zS , hence ≤x zS and

as a result ≤γx γzΩγ0
.

(3) If ∈x y z S, , and ∈γ Γ are such that ≤xγ yγΩγ0
and ≤yγ zγΩγ0

, then similarly with above ≤x yS and

≤y zS , hence ≤x zS , consequently ≤xγ zγΩγ0
.

(4) If ∈x y z S, , and ∈γ Γ are such that ′ ≤ ′γxγ γyγΩγ0
and ′ ≤ ′γyγ γzγΩγ0

, then ≤x yS and ≤y zS , hence

≤x zS , consequently ′ ≤ ′γxγ γzγΩγ0
.

(5) If ∈α β γ, , Γ are such that ≤α βΩγ0
and ≤β γΩγ0

, then = =α β γ.

Next we prove that the compatibility of ≤S in S implies that of ≤Ωγ0
in Ωγ0. We obtain the proof only for

relations of type (4) of Definition 2.1 since the proofs for the other types are analogous. So let ′ ≤ ′γxγ γyγΩγ0
,

and want to prove that the inequality is preserved after multiplying both sides of the above on the left
(resp. on the right) by one of the following elements: ∈ ∈ ∈ ∈ ∈α z S αz S zβ S αzβ SΓ, , Γ , Γ, Γ Γ. Since the
proofs for the compatibility on the right are symmetric to those on the left, we obtain them only for the left
multiplication.

(1) ( ′) ≤ ( ′) ⇔ ( ) ′ ≤ ( ) ′ ⇔ ≤ ⇔ ′ ≤ ′α γxγ α γyγ α γ xγ α γ xγ x y γxγ γyγ• • SΩ Ω Ωγ γ γ0 0 0
.

(2) ( ′) ≤ ( ′) ⇔ ( ) ′ ≤ ( ) ′ ⇔ ≤z γxγ z γyγ zγx γ zγy γ zγx zγySΩ Ωγ γ0 0
, where the latter is true since ≤x yS .

(3) ( )( ′) ≤ ( )( ′) ⇔ ( ) ′ ≤ ( ) ′ ⇔ ≤αz γxγ αz γyγ α zγx γ α zγy γ zγx zγyΩ Ω Ωγ γ γ0 0 0
, where the latter is true since ≤x yS .

(4) ( )( ′) ≤ ( )( ′) ⇔ ( ) ′ ≤ ( ) ′ ⇔ ( ) ≤ ( )zβ γxγ zβ γyγ z β γ xγ z β γ yγ z β γ x z β γ y• • • •Ω Ω Ωγ γ γ0 0 0
, where the last inequality

is true since ≤x yS .
(5) ( )( ′) ≤ ( )( ′) ⇔ ( ( ) ) ′ ≤ ( ( ) ) ′ ⇔ ( ) ≤ ( )αzβ γxγ αzβ γyγ α z β γ x γ α z β γ y γ z β γ x z β γ y• • • •Ω Ω Ωγ γ γ0 0 0

, where the last

inequality is true since ≤x yS .

Therefore, ≤Ωγ0
is compatible with the multiplication of Ωγ0. Summarizing, we have the following.

Proposition 2.1. The triple ( ⋅ ≤ )Ω , ,γ Ωγ0 0
is an ordered semigroup.
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Since in Section 3 we deal with ordered ideals in both structures, ( ≤ )S, Γ, S and ( ⋅ ≤ )Ω , ,γ Ωγ0 0
, we will not

use the standard notation ( ]X to indicate the ordered ideal, but we introduce a new one as in the following
definition.

Definition 2.2. For ⊆C S, we define ( ) = { ∈ ∃ ∈ ≤ }L C x S c C x c: such thatS S , and for every ⊆D Ωγ0,
( ) = { ∈ ∃ ∈ ≤ }L D w d D w dΩ : such thatγΩ Ωγ γ0 0 0

.

We remark by passing the following.

Lemma 2.2. ( ) = ( )L C L CSΩγ0
for ⊆C S.

Proof. First, we prove that ( ) ⊆ ( )L C L CS Ωγ0
. If ∈ ( )y L CS , then ≤y cS for ∈c C. Since ∈y c S, , then ≤y cS by

Definition 2.1 is equivalent to ≤y cΩγ0
, hence ∈ ( )y L CΩγ0

.

Conversely, if ∈ ( )ω L CΩγ0
, then ≤w cΩγ0

for ∈c C and by Definition 2.1 we must have that ∈w S, and
that ≤ω cS , proving that ∈ω LS. □

The following lemma gives a relationship between the principal ordered ideal in S generated by some
∈x S and the principal ordered ideal in Ωγ0 generated by the same element x.

Lemma 2.3. Let ∈x S by an arbitrary element. The following hold true.

(i) The principal left ordered ideal of Ωγ0 generated by x is the set ( ) = ( ) ∪ ( )
≤ ≤ ≤x x xΓl l l

γ S SΩ 0 , where ( ) =≤x l
S

( ∪ )L x S xΓS is the left ordered ideal of S generated by x and ( ) = { | ∈ ∈ ( ∪ )}≤x γy γ y L S x xΓ Γ, Γl SS .

(ii) The principal right ordered ideal of Ωγ0 generated by x is the set ( ) = ( ) ∪ ( )
≤ ≤ ≤x x x Γr r r

γ S SΩ 0 , where ( ) =≤x r
S

( ∪ )L x S xΓS is the right ordered ideal of S generated by x and ( ) = { | ∈ ∈ ( ∪ )}≤x yγ γ y L x S xΓ Γ, Γr SS .

Proof. We obtain the proof for (i) since the proof for (ii) is dual to that of (i). So we have to prove that

∈ ( )
≤A x l

γΩ 0 if and only if ∈ ( ) ∪ ( )≤ ≤A x xΓl l
S S. Indeed, if ∈ ( )

≤A x l
γΩ 0, then ≤A BΩγ0

, where ∈ ( ∪ )B L x xΩγΩγ0 0 . If

=B x, we have ≤A xγ0 and by Definition 2.1 ≤A xS , so ∈ ( )≤A x l
S. If ∈B xΩγ0 , then B may have these forms:

(1) = ( ) = ( )B αyβ x α yβx . In this case, ≤ ( )A α yβxΩγ0
which forces =A αz, where ≤z yβxS , hence ∈ ( )≤z x l

S

and then ∈ ( )≤A xΓ l
S.

(2) = ( ) = ( )B αy x α yγ x0 . In this case, ≤ ( )A α yγ xΩ 0γ0
. One can see that in the same way as above, ∈ ( )≤A xΓ l

S.

(3) = ( ) =B yα x yαx. In this case, ≤A yαxΩγ0
and by definition 2.1 we have that ≤A yαxS , there-

fore, ∈ ( )≤A x l
S.

(4) = ( ) =B α x αx. In this case, ≤A αxΩγ0
, then =A αz, where ≤z xS , hence ∈ ( )≤z x l

S and then ∈ ( )≤A xΓ l
S.

Conversely, if ∈ ( ) ∪ ( )≤ ≤A x xΓl l
S S, then either ≤A BS where ∈ ( )≤B x l

S or ≤A BΩγ0
, where =B αC with ∈α Γ

and ∈ ( )≤C x l
S. In the first case, it follows at once that ∈ ( )

≤A x l
γΩ 0. In the second case, when =B αC and

∈ ( )≤C x l
S, the inequality ≤A αCΩγ0

implies that = ′A αA with ′ ≤A CS , and as a consequence ′ ∈ ( )≤A x l
S. Thus,

∈ ( )≤A xΓ l
S. □

3 Regularity in ordered Γ-semigroups as a consequence of
regularity in ordered semigroups

The following proposition shows that the regularity of an ordered Γ-semigroup can be completely char-
acterized as the regularity of an ordered semigroup.
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Proposition 3.1. S is a regular ordered Γ-semigroup if and only if Ωγ0 is a regular ordered semigroup.

Proof. If S is a regular ordered Γ-semigroup, then for all ∈ ∃ ∈a S x S, and ∈γ γ, Γ1 2 , such that ≤a aγ xγ aS 1 2 .
To prove Ωγ0 is a regular ordered semigroup, we have to prove that every element of Ωγ0 have an ordered
inverse in Ωγ0. By Lemma 2.1, we have that the elements of Ωγ0 can be represented by an irreducible word
which has only five forms. We prove regularity for elements of each of these five forms. So let first

∈α aα Ωγ1 2 0. To find its ordered inverse we take ≤a aγ xγ aS 1 2 and then by Definition 2.1 we have ≤α aα1 2 Ωγ0

( ) = ( )( )( )− −α aγ xγ a α α aα α γ xγ α α aα1 1 2 2 1 2 2
1

1 2 1
1

1 2 which tells us that α aα1 2 is regular in Ωγ0 and ∈− −α γ xγ α Ωγ2
1

1 2 1
1

0

is its ordered inverse. Second, for showing that ∈αa Ωγ0 is regular, we take ≤a aγ xγ aS 1 2 and then by

Definition 2.1 we can write ≤ ( ) = ( )( )( )−αa α aγ xγ a αa γ xγ α αaΩ 1 2 1 2
1

γ0
. This tells us that αa is regular and as

its inverse we can take ∈−γ xγ α Ωγ1 2
1

0. In the same way, one may prove that ∈aα Ωγ0 is regular with inverse

∈−α γ xγ Ωγ
1

1 2 0. Furthermore, we prove that ∈a Ωγ0 is regular with inverse ∈γ xγ Ωγ1 2 0, since by Definition 2.1,

≤a aγ xγ aS 1 2 and then ≤a aγ xγ aΩ 1 2γ0
. And finally, ∈γ Ωγ0 is regular since ≤ −γ γγ γΩ

1
γ0

. Hence, we showed that

Ωγ0 is a regular ordered semigroup. Conversely, if Ωγ0 is regular ordered semigroup, then every ∈a S has an
inverse in Ωγ0. To show that S is a regular ordered Γ-semigroup, we show that very ∈a S has an inverse in S.
For this, we distinguish between the five following forms. First, if the inverse of a in Ωγ0 has the form

∈αxβ Ωγ0, for ∈x S, then ≤a aαxβaΩγ0
by Definition 2.1 implies that ≤a aαxβaS , showing that a is regular

in S. Second, if the inverse of a in Ωγ0 has the form αx, then ≤ ( ) =a a αx a aαxγ aΩ 0γ0
and then Definition 2.1

implies that ≤a aαxγ aS 0 , whichmeans that a is regular in S. Third, the inverse of a inΩγ0 has the form xα, this
case is similar to the second case. Fourth, the inverse of a in S is x, then ≤ =a axa aγ xγ aΩ 0 0γ0

and by

Definition 2.1 ≤a aγ xγ aS 0 0 , which means that a is regular in S. Finally, if the inverse have the form ∈α Γ,
then ≤ ≤a aγa aγaγaΩ Ωγ γ0 0

and by Definition 2.1 we have that ≤a aγaγaS and a is regular in the ordered Γ
semigroup S. □

Before we prove our main theorem we need this technical lemma which is the analogue of implication
( ) ⇒ ( )iii ii of Theorem 9.4 of [11].

Lemma 3.1. If ( ≤ )S, Γ, S is an ordered Γ-semigroup such that one-sided ideals of ( ≤ )S, Γ, S are idempotent, and
for every right ideal R and every left ideal L of ( ≤ )S, Γ, S , ( )L R LΓS is a quasi ideal of ( ≤ )S, Γ, S , then for every

∈a S, ( ) ∩ ( ) = (( ) ( ) )≤ ≤ ≤ ≤a a L a aΓr l S r l
S S S S .

Proof. Observe first that

( ) = ( ∪ ) = ( ∪ ) ( ∪ ) ⊆ ( ) ⊆ ( )≤ ≤a L a a S L a a S L a a S L a S aΓ Γ Γ Γ Γ ,r S S S S r
S S

from which we derive that ( ) = ( )≤a L a SΓr SS . In a similar fashion, one can get that ( ) = ( )≤a L S aΓl SS . Further-
more, since

(( ) ( ) ) = ( ( ) ( ))≤ ≤L a a L L a S L S aΓ Γ Γ ΓS r l S S SS S

is a quasi ideal, we have

( ( ( ) ( )) ) ∩ ( ( ( ) ( ))) ⊆ ( ( ) ( ))L L L a S L S a S L S L L a S L S a L L a S L S aΓ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ .S S S S S S S S S S S

From this and the previous assumptions, we obtain

( ) ∩ ( ) = ( ) ∩ ( )

= ( ( ) ( ) ( )) ∩ ( ( ) ( ) ( ))

⊆ ( ( ( ) ( )) ) ∩ ( ( ( ) ( )))

⊆ ( ( ) ( ))

= (( ) ( ) )

≤ ≤

≤ ≤

a a L a S L S a
L a S L a S L a S L S a L S a L S a

L L L a S L S a S L S L L a S L S a
L L a S L S a
L a a

Γ Γ
Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ Γ Γ
Γ Γ Γ
Γ ,

r l S S

S S S S S S

S S S S S S S S

S S S

S r l

S S

S S

proving thus the nonobvious inclusion ( ) ∩ ( ) ⊆ (( ) ( ) )≤ ≤ ≤ ≤a a L a aΓr l S r l
S S S S . □
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Theorem 3.1. The following are logically equivalent.
(i) An ordered Γ-semigroup ( ≤ )S, Γ, S is regular if and only if, one-sided ideals of ( ≤ )S, Γ, S are idempotent,

and for every right ideal R and every left ideal L of ( ≤ )S, Γ, S , ( )L R LΓS is a quasi ideal of ( ≤ )S, Γ, S .
(ii) An ordered semigroup ( ⋅ ≤ )S, , S is regular if and only if, one-sided ideals of ( ⋅ ≤ )S, , S are idempotent, and

for every right ideal R and every left ideal L of ( ≤ )S, Γ, S , ( )L R LΓS is a quasi ideal of ( ⋅ ≤ )S, , S .

Proof. ( ) ⇒ ( )i ii is trivial since any regular ordered semigroup can be regarded as an regular ordered
Γ-semigroup, where Γ is a singleton. Also, one-sided ideals and quasi ideals in ordered semigroups are
the same as those in ordered Γ-semigroups when Γ is a singleton.

( ) ⇒ ( )ii i . Assume first that the ordered Γ-semigroup S is regular. Then by Proposition 3.1, Ωγ0 is a
regular ordered semigroup. Theorem 3.2 of [4] implies that for every right ideal R and every left ideal L
of Ωγ0, ∩ = ( )R L L RLΩγ0

, ( )L RLΩγ0
is a quasi-ideal of Ωγ0, and also every right and left ideal of the semigroup

Ωγ0 is idempotent. Let A now be an ordered right ideal of S and consider the subset = ( ∪ )R L A AΓΩγ0
of Ωγ0.

We show that = ( ∪ )R L A AΓΩγ0
is a right ideal of the ordered semigroup Ωγ0. To this end, we have to prove

that it satisfies the two conditions of right ideals: (1) ( ∪ ) ⊆ ( ∪ )L A A L A AΓ Ω ΓγΩ Ωγ γ0 0 0
, (2) if ∈ ( ∪ )a L A AΓΩγ0

and ≤b aΩγ0
, then ∈ ( ∪ )b L A AΓΩγ0

. To show the first we have to show that for every ∈ ( ∪ )b L A AΓΩγ0

and every ∈C Ωγ0, ∈ ( ∪ )bC L A AΓΩγ0
. Since ∈ ( ∪ )b L A AΓΩγ0

, either ≤b aS where ∈a A, or ≤b aγΩγ0
, in

which case = ′b a γ and ′ ≤a aS . In the first case, when ∈a b S, and ≤b aS , it follows immediately that
≤bC aCΩγ0

whatever the value of C is, since ≤Ωγ0
is a compatible relation. But still we have to prove that

∈ ( ∪ )aC L A AΓΩγ0
and this depends on the value of C. Since

∈ ∪ ∪ ∪ ∪C S S S SΓ Γ Γ Γ Γ,

then

∈ ∪ ∪ ∪ ∪ ⊆ ∪ ∪ ⊆ ( ∪ )aC aS a S aS a S a a S a S a L A AΓ Γ Γ Γ Γ Γ Γ Γ Γ Γ ,Ωγ0

where the last inclusion comes from the fact that A is an ordered right ideal of ( ≤ )S, Γ, S . It remains to prove
that the same holds true in the second case when = ′b a γ with ′ ∈a S and ′ ≤a aS , and ∈γ Γ. Depending on
the value of C we have to prove that ∈ ( ∪ )aγC L A AΓΩγ0

. Indeed,

∈ ( ) ∪ ( ) ∪ ( ) ∪ ( ) ∪ ( ) ⊆ ∪ ∪ ⊆ ( ∪ )aγC aγ S aγ S aγ S aγ S aγ a S a S a L A AΓ Γ Γ Γ Γ Γ Γ Γ Γ Γ .Ωγ0

All the above verifications prove the first condition, while the second condition is obvious. So =R LΩγ0

( ∪ )A AΓ is a right ideal of the ordered semigroup Ωγ0 and from [4] it follows that = ( ∪ )R L A AΓΩγ0
is an

idempotent. Passing now from the ordered semigroup Ωγ0 to the ordered Γ semigroup S, we show that if
every right ideal of the ordered semigroup Ωγ0 is idempotent, then so is every right ideal of the ordered
Γ-semigroup S. Let A be a right ideal of the ordered Γ semigroup S, we have to prove A is an idempotent in S,
that is, ( ) =L A A AΓS . Since A is a right ideal, ( ) ⊆ ( ) ⊆L A A L A S AΓ ΓS S . To prove the converse, we utilize the
fact that ( ∪ )L A AΓΩγ0

is an idempotent in Ωγ0, thus

( ( ))⊆ ( ∪ ) = ∪ ⊆ ( ∪ ∪ ∪ ) ⊆ ( ∪ )A L A A L A A L AA AA A A A A L A A AΓ Γ Γ Γ Γ Γ Γ Γ .Ω Ω
2

Ω Ωγ γ γ γ0 0 0 0

This implies that every ∈a A is lower with respect to ≤Ωγ0
than some element of A or some element of AΓ.

The second case is impossible from the way we have defined≤Ωγ0
, so it remains that there is some ∈γ Γ, and

′ ″ ∈a a A, such that ≤ ′ ″a a γaΩγ0
. But this is the same as to say that ≤ ′ ″a a γaS , so ∈ ( )a L A AΓS , and as a

result ⊆ ( )A L A AΓS . One can show that left ideals of S too are idempotent by first proving in a similar fashion
to above that for every left ideal B of S, the set ( ∪ )L B BΓΩγ0

is a left ideal of Ωγ0. Finally, if A is a right ideal
and B a left ideal of the ordered Γ semigroup S, we have to prove that ( )L A BΓS is a quasi ideal of ( ≤ )S, Γ, S ,
which means that:

( ( ) ∩ ( )) ⊆ ( )L L A B S S L A B L A BΓ Γ Γ Γ ΓS S S S (1)

and

( ( )) = ( )L L A B L A BΓ Γ .S S S (2)
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From [4] we have that for the right ideal ( ∪ )L A AΓΩγ0
and for the left ideal ( ∪ )L B BΓΩγ0

of Ωγ0, the set
( ( ∪ )⋅ ( ∪ )) = (( ∪ )⋅( ∪ ))L L A A L B B L A A B BΓ Γ Γ ΓΩ Ω Ω Ωγ γ γ γ0 0 0 0

is a quasi ideal of Ωγ0. To prove the first condition
(1), we see that

( ( ) ∩ ( ))

⊆ (( ( ∪ )⋅ ( ∪ ))⋅ ∩ ⋅ ( ( ∪ )⋅ ( ∪ ))

⊆ (( ( ∪ )⋅ ( ∪ ))

= (( ∪ )⋅( ∪ )) = ( ) = ( )

L L A B S S L A B
L L A A L B B L L A A L B B
L L A A L B B
L A A B B L A B L A B

Γ Γ Γ Γ
Γ Γ Ω Ω Γ Γ
Γ Γ

Γ Γ Γ Γ ,

S S S

γ γ

S

Ω Ω Ω Ω Ω Ω

Ω Ω Ω

Ω Ω

γ γ γ γ γ γ

γ γ γ

γ γ

0 0 0 0 0 0 0 0

0 0 0

0 0

where the last equality follows from Lemma 2.2. The second condition (2) is obviously true since ( )L A BΓS is
an ordered ideal.

Conversely, we assume that every right and left ideal of S is an idempotent, and for every right ideal A of
S, and every left ideal B of S, the set ( )L A BΓS is a quasi ideal of S, and want to prove that S is regular. The
strategy is to prove that under the given conditions, Ωγ0 is a regular ordered semigroup, and then from
Proposition 3.1 we obtain straightaway that S is a regular Γ-semigroup. To prove the regularity of Ωγ0, it is
enough to prove that all right ideals R and all left ideals L of Ωγ0 are idempotent, and ( ⋅ )L R LΩγ0

is a quasi

ideal of Ωγ0. Let R be a right ideal of Ωγ0 and want to prove that =RR R. The inclusion ⊆RR R is trivial. To
prove the reverse inclusion ⊆R RR, we need to prove that every ∈x R is of the form =x x x1 2, where

∈x x R,1 2 . There are several possibilities for ∈x R.

(i) ∈x S. Then, from Lemma 2.3 we have that ( ) = ( ) ∪ ( )
≤ ≤ ≤x x x Γr r r

γ S SΩ 0 . Recalling that ( )≤x r
S is idempotent

from the assumption, so ( ) = ( ) ( )≤ ≤ ≤x x xΓr r r
S S S, hence =x x γx1 2, where ∈ ( )≤x x x, r1 2 S and ∈γ Γ. Now

∈ ( )≤x γ x Γr1 S and ∈ ( )≤x x r2 S, consequently

= ( )⋅ ∈ ( ) ⋅ ( ) ⊆ ⋅
≤ ≤x x γ x x x R R.r r1 2

γ γΩ 0 Ω 0

(ii) Let the element of R be of the form xα with ∈x S and ∈α Γ. Since R is a right ideal of Ωγ0, then

= ( ) = ( ) ⊆ ( ) ⊆ ⊆x x α xα xα R RΓ •Γ Γ Ω Ω ,γ γ0 0

and then we also obtain that

= ⊆ ⊆ ⊆x S x S R S R RΓ ΓΓ Γ Ω .γ0

Now we prove that the element x above is necessarily in R. For this, we use again the fact that ( )≤x r
S

is idempotent. It follows from this assumption that = ′ ″x x γx , where either ′ ≤x xS or ′ ≤x xβsS with
∈s S. In the first case,

= ′ ″ ≤ ″ ∈ ⊆x x γx xγx x S RΓ ,S

from which it follows that ∈x R. Similarly, in the second case we see that

= ′ ″ ≤ ″ ∈ ⊆x x γx xβsγx x S RΓ ,S

and then ∈x R. From the proof of (i) above we have that = ( ) ⋅x x γ x1 2, where ∈x γ R1 and ∈x R2 . Then
= ( )⋅( )xα x γ x α1 2 , where again ∈x γ R1 and ∈x α R2 . Thus, we proved that xα is expressed as a product of

two elements from R as desired.

(iii) The element of R is of the form αx with ∈α Γ and ∈x S. In this case, we have to show first the equality

( ) = ( )
≤ ≤αx α xr r

γ γΩ 0 Ω 0. Indeed,

∈ ( ) ⇔ ∈ ( ∪ )

⇔ = ′ ′ ∈ ( ∪ )

⇔ ∈ ( )

≤

≤

ξ αx ξ L αx αx
ξ αx x L x x

ξ α x

Ω
, where Ω

,

r γ

γ

r

Ω

Ω

γ
γ

γ

γ

Ω 0
0 0

0 0

Ω 0

which proves that ( ) = ( )
≤ ≤αx α xr r

γ γΩ 0 Ω 0. From Lemma 2.3, we derive that

( ) = (( ) ∪ ( ) )
≤ ≤ ≤αx α x x Γ .r r r

Ωγ S S0
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Now the right ideal ( )≤x r
S is idempotent, which means that ( ) = ( ) ( )≤ ≤ ≤x x xΓr r r

S S S, hence

( ) = (( ) ( ) ∪ ( ) )
≤ ≤ ≤ ≤αx α x x xΓ Γ .r r r r

γ S S SΩ 0 (3)

It follows from (3) that =αx αx γx1 2,where ∈ ( )≤x x x, r1 2 S. Now ifwe rewrite this termas = ( )( )( )−αx αx γα αx1
1

2 ,
we see that

= ( )( )( )

∈ (( ) ∪ ( ) ) (( ) ∪ ( ) )

= ( ) ⋅ ( )

−

≤ ≤ ≤ ≤

≤ ≤

αx αx γα αx
α x x α x x

αx αx

Γ Γ

,
r r r r

r r

1
1

2
S S S S

γ γΩ 0 Ω 0

which proves the claim.

(iv) The element of R is of the form αxβ. We first note that

( ) = ( ∪ ( ∪ ∪ ∪ ∪ ))

= ( ∪ ∪ )

≤αxβ L αxβ αxβ S S S S
L αx αx S αx S

Γ Γ Γ Γ Γ
Γ Γ Γ Γ .

r Ω

Ω

γ
γ

γ

Ω 0
0

0

Since ( )≤x r
S is idempotent, =x x γx1 2 where ∈ ( )≤x x x, r1 2 S. It follows that

∈ ( ∪ ∪ )−αx γα L αx αx S αx SΓ Γ Γ Γ1
1

Ωγ0

and similarly,

∈ ( ∪ ∪ )αx β L αx αx S αx SΓ Γ Γ Γ ,2 Ωγ0

hence

( ( )) (( ) )= ( )( ) ∈ ∪ ∪ = ⊆−
≤αxβ αx γα αx β L αx αx S αx S αxβ RΓ Γ Γ Γ .r1

1
2 Ω

2 2 2
γ

γ
0

Ω 0

This shows that αxβ is expressed as a product of two elements of R.

(v) The final case is when the element of R is some ∈γ Γ. Observe that

= ⊆ ⊆γ R RΓ Γ Ω .γ0

Now letting 1 be the unit element of ( )Γ, • we have that

= ⋅ ∈γ γ RR1 ,

and once again, ∈γ R is expressed as a product of two elements in R, namely, γ and 1.

Recollecting, we have proved that any right ideal R of Ωγ0 is idempotent. Similarly, we can show that
any left ideal L is idempotent in Ωγ0. Now if R is a right ideal and L a left ideal of the ordered semigroup Ωγ0,
we have to prove that ( )L RLΩγ0

is a quasi ideal of Ωγ0. This would follow immediately if we prove that

∩ ⊆ ( )R L L RLΩγ0
, since on one hand, ∩R L is a quasi-ideal, and on the other hand, ( ) ⊆ ∩L RL R LΩγ0

. Let

∈ ∩αxβ R L where ∈α β, Γ are operators from Γ, and ∈x S such that ≤αxβ αaβΩγ0
where ∈ ∩αaβ R L and

∈a S. From Definition 2.1, we have that ≤x aS . Consequently,

∈ ( ) ∩ ( ) = (( ) ( ) )≤ ≤ ≤ ≤x a a L a aΓ ,r l S r l
S S S S

where the equality follows from Lemma 3.1. Then there are ∈ξ ξ ξ, , Γ1 2 3 and ∈s t S, such that ≤x S
aξ sξ tξ a1 2 3 . Furthermore, we have that

≤ ( )( )(( )( )( )) ∈ ( )− −αxβ αaβ β ξ sξ t ξ α αaβ L RLΩ
1

1 2 3
1

Ωγ γ0 0

since ( )(( )( )( )) ∈− −β ξ sξ t ξ α αaβ L1
1 2 3

1 . The remaining cases for an element from ∩R L include elements of the
form αx, xβ or simply x, where ∈α β, Γ and ∈x S. These cases are dealt similarly as above. □
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The following is straightforward.

Corollary 3.1. Any of the characterizations of the regularity of an ordered Γ-semigroup given in Theorem 8 of
[2] is logically equivalent to its corresponding characterization of the regularity of an ordered semigroup given
in Theorem 3.1 of [4].
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