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Abstract: We study the modularity of Ramanujan’s function ( ) = ( ) ( )k τ r τ r τ22 , where ( )r τ is the Rogers-
Ramanujan continued fraction. We first find the modular equation of ( )k τ of “an” level, and we obtain
some symmetry relations and some congruence relations which are satisfied by the modular equations;
these relations are quite useful for reduction of the computation cost for finding the modular equations. We
also show that for some τ in an imaginary quadratic field, the value ( )k τ generates the ray class field over an
imaginary quadratic field modulo 10; this is because the function k is a generator of the field of the modular
function on ( )Γ 101 . Furthermore, we suggest a rather optimal way of evaluating the singular values of ( )k τ
using the modular equations in the following two ways: one is that if ( )j τ is the elliptic modular function,
then one can explicitly evaluate the value ( )k τ , and the other is that once the value ( )k τ is given, we can
obtain the value ( )k rτ for any positive rational number r immediately.
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1 Introduction

Let Γ be a congruence subgroup of �( )SL2 , H be the complex upper half plane, and H H�≔ ∪ {∞} ∪∗ . We
consider the compact Riemann surface H∗Γ\ and the field �( )Γ of meromorphic functions which are invar-
iant under Γ. If the congruence subgroup Γ has genus zero, there is a function ( )f τ which satisfies �( ) =Γ
�( ( ))f τ . For a positive integer N, we call the function ( )( )j τN a Hauptmodul of level N if it is a generator for
�( ( ))NΓ0 which has a simple pole at the cusp at infinity. Clearly, it is unique up to a constant. Note that the
genus of ( )NΓ0 is zero only for = …N 1, 2, , 10, 12, 13, 16, 18, and 25, and Table 1 describes Hauptmoduln

( )( )j τN in terms of η-quotients for the levels ≥N 2 [1,2], where ( ) = ∏ ( − )/
=

∞η τ q q1n
n1 24

1 with =q e πiτ2 .

Table 1: Hauptmoduln of levels 2,…, 10, 12, 13, 16, 18, and 25
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We consider the following equation:

− = ( ) +( )

X
X j τ c1

N
N

N
N (1.1)

with a solution ( )X c,N N , where XN is the modular function and cN is a constant. Then the solutions ( ( ) )r τ , 11 ,5

( ( ) )r τ , 313 and ( ( ) )r τ5 , 1 are found for =N 5, 13, and 25, respectively. In detail,

( )
− ( ) = ( ) +( )

r τ
r τ j τ1 11,5

5 5 (1.2)

( )
− ( ) = ( ) +( )

r τ
r τ j τ1 3,

13
13

13 (1.3)

and

( )
− ( ) = ( ) +( )

r τ
r τ j τ1

5
5 1,25 (1.4)

where ( )r τ is the Rogers-Ramanujan continued fraction

( )∏( ) =
+

= ( − )
/

+
=

∞

+
+⋯

r τ q q q
1

1 ,q
n

n
1 5

1 1q
q

n

2

1
3

1

1
5 5

and ( )r τ13 is the level 13 analogue of the Rogers-Ramanujan continued fraction

( )∏( ) = ( − )
=

∞

r τ q q1
n

n
13

1

n
13

with the Legendre symbol ( )n
p . Identities (1.2) and (1.4) were stated by Ramanujan [3, pp. 85 and 267] and

proved by Watson [4], and Identity (1.3) was proved by Cooper and Ye [5] and Lee and Park [6].
On the other hand, Cooper [7, Theorem 3.5] showed that ( ) = ( ( ) )X c k τ, , 010 10 is a solution to the

following equation:

− = ( ) +( )

X
X j τ c1

10
10

10
10 (1.5)

by using the following identity:

( ) = ( ) ( )k τ r τ r τ2 .2 (1.6)

In fact, Ramanujan used the function ( )k τ as a parameter for expressing ( )r τ5 and ( )r τ25 in [8, p. 326]:

  












( ) =
−

+
( ) =

+

−
r τ k k

k
r τ k k

k
if 1

1
, then 2 1

1
.5

2
5 2

Therefore, it is clear that there is a significant meaning of the function ( )k τ , but there has been no inves-
tigation yet for ( )k τ as a modular function. It is thus certainly worthy of studying the modularity of the
function ( )k τ . This is one of the motivations for this paper: we study the modularity of Ramanujan’s
function ( ) = ( ) ( )k τ r τ r τ22 .

The field of modular functions on ( )Γ 5 and ( )Γ 130 is generated by ( )r τ and / ( ) − ( )r τ r τ1 13 13 , respectively.
Koo and Shin found all the generators of ( )NΓ1 whose genus is zero [9, p. 161], and they chose / ( )k τ1 as
a generator of ( )Γ 101 . Therefore, the modular function ( )k τ is a generator of the function field �( ( ))Γ 101 .
Furthermore, using (1.5), we see that / ( ) − ( )k τ k τ1 is a generator of �( ( ))Γ 100 . One can get the relation
between ( )k τ and ( )k nτ for any positive integer n using the previous facts as above. For ′ = + /τ τ 1 2,

+ /τ τ2 1 2, 3 , and τ5 , the relations of this type were found by Xia and Yao [10]. These relations are called
modular equations which satisfy Kronecker’s congruence.
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In this paper, we investigate the modularity of Ramanujan’s function ( ) = ( ) ( )k τ r τ r τ22 . We first find
the modular equation of ( )k τ of “any” level, and we obtain some symmetry relations and some congru-
ence relations which are satisfied by the modular equations; these relations are quite useful for reduction of
the computation cost for finding the modular equations (Theorem 1.1). We also show that for some τ in
an imaginary quadratic field, the value ( )k τ generates the ray class field over an imaginary quadratic field
modulo 10; this is because the function k is a generator of the field of the modular function on ( )Γ 101
(Theorem 1.2). Furthermore, we suggest a rather optimal way of evaluating the singular values of ( )k τ using
the modular equations in the following two ways: one is that if ( )j τ is the elliptic modular function, then one
can explicitly evaluate the value ( )k τ (Theorem 1.3), and the other is that once the value ( )k τ is given, we can
obtain the value ( )k rτ for any positive rational number r immediately (Theorem 1.4). For any congruence
subgroup Γ such that �( ) ⊂ ⊂ ( )Γ 10 Γ SL1 2 , any function �∈ ( )f Γ can be written as the rational function of

( )k τ since ( )k τ is the generator of �( ( ))Γ 101 . For example, combining the first formula in [11, Corollary 3.40]
with (1.5), we get the same formula in Theorem 1.3. In Theorem 1.3, we focus on finding the explicit relation
of ( )k τ with the modular j-function directly. If one is interested in expressing ( )j dτ in terms of ( )k τ for

=d 1, 2, 5, 10, then one can use the result in [11, Theorems 10.8 and 10.13] in order to write ( )η dτ and ( )Q qd

in terms of ( )k τ since ( ) = ( )/ ( )j τ Q q η τ ,3 24 where ( ) = / + ∑ /( − )
=

∞Q q m q q1 240 1m
m m

1
3 .

Now we state four theorems, which are our main results in detail:

Theorem 1.1. Let ( )k τ be a solution to (1.1) for =N 10 and c10 = 0.
(1) One can explicitly obtain the modular equation of ( )k τ of level n for any positive integer n.
(2) For every positive integer n with ( ) =n, 10 1, the modular equation ( )F X Y,n of ( )k τ has the following

symmetry:





( ) = ( ) ≡ ± ( )

( ) = (− ) ≡ ± ( )−

F X Y F Y X if n
F X Y Y F Y X if n

, , 1 mod 10 ,
, , 3 mod 10 ,

n n

n
d

n
1

where = ∏ ( + )
|

−d n p1p n
1 .

(3) For any odd prime ≠p 5, the modular equation ( )F X Y,p of ( )k τ of level p is congruent to





�

�

( − )( − ) [ ] ≡ ± ( )

( − )( + ) [ ] ≡ ± ( )

X Y X Y p X Y if p
X Y XY p X Y if p

mod , 1 mod 10 ,
1 mod , 3 mod 10 .

p p

p p

Using the modularity, one can construct some ray class fields over an imaginary quadratic field.
Theorem 1.2 shows that ( )k τ generates the ray class field modulo 10 over an imaginary quadratic field.

Theorem 1.2. Let K be an imaginary quadratic field with discriminant dK and H∈ ∩τ K be a root of the
primitive equation + + =ax bx c 02 such that − =b ac d4 K

2 and ( ) =a, 10 1, where �∈a b c, , . Then ( ( ))K k τ
is the ray class field modulo 10 over K.

It is mentioned that the value ( )k τ is a unit for an imaginary quadratic quantity H∈τ [9, Theorem 6.7].
We prove that this value ( )k τ can be written in the following two ways. Theorem 1.3 shows that we can
evaluate the value ( )k τ by using its relation with ( )j τ , and the other way is given in Theorem 1.4.

Theorem 1.3. Let k be the modular function ( )k τ . Then ( ) = ( / − ) / ( / − )j τ G k k G k k1 1 ,1
3

2 where

( ) = + + + + + +

( ) = ( + ) ( − )

G X X X X X X X
G X X X X

236 1,440 1,920 3,840 256 256,
1 4

1
6 5 4 3 2

2
2 5 10

and ( )j τ is a generator of ��( ( ))SL2 with q-expansion + + + ( )−q q O q744 196,8841 2 .

Theorem 1.4. When ( )k τ is expressed in terms of radicals, we can express ( )k rτ in terms of radicals for any
positive rational number r.

We present some examples (Examples 4.4 and 4.5) for Theorems 1.3 and 1.4, respectively, in Section 4.
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This paper is organized as follows. We briefly mention some definitions and lemmas which are used to
prove our theorems in Section 2. In Section 3, we focus on the modular equations of ( )k τ . We use the fact
that ( )k τ generates the field of modular functions on ( )Γ 101 , and we find the modular equations which satisfy
Kronecker’s congruence (Theorem 1.1). It is possible to reduce the computation cost for finding modular
equations by using useful properties for the coefficients Ci j, ’s of modular equations given in Theorem 1.1 (2)
and Proposition 3.5. Modular equations of levels 2, 3, 4, 5, 7, 8, 11, and 19 are found, and they are presented
in Appendix A. The proofs of Theorems 1.2–1.4 are given in Section 4. First of all, the value ( )k τ generates
the ray class field modulo 10 over an imaginary quadratic field (Theorem 1.2). Some relation between ( )k τ
and ( )j τ is obtained (Theorem 1.3), and it is used to get the value ( )k τ in terms of radicals (Theorem 1.4).
Using the modular equations, we find an explicit method for evaluating the value ( )k τ in terms of radicals.
Some calculations in this paper are performed by the MAPLE program.

2 Preliminaries

Ramanujan’s function ( )k τ can be written as an infinite product

∏( ) =
( − )( − )( − )( − )

( − )( − )( − )( − )
=

∞ − − − −

− − − −
k τ q q q q q

q q q q
1 1 1 1
1 1 1 1n

n n n n

n n n n
1

10 9 10 8 10 2 10 1

10 7 10 6 10 4 10 3

by (1.6) and

∏( ) =
( − )( − )

( − )( − )
/

=

∞ − −

− −
r τ q q q

q q
1 1
1 1

.
n

n n

n n
1 5

1

5 4 5 1

5 3 5 2

Hence, in [9, Table 2, p. 161] the generator of �( ( ))Γ 101 is ( ) = / ( )G τ k τ110 , and we get the following:

Proposition 2.1. The field �( ( ))Γ 101 is generated by ( )k τ , that is,

��( ( )) = ( ( ))k τΓ 10 .1

We assume that two modular functions ( )f τ1 and ( )f τ2 satisfy the relation ( ( ) ( )) =F f τ f τ, 01 2 , where
( )F X Y, is a two-variable polynomial with complex coefficients. The following lemma which is proved by

Ishida and Ishii [12] provides some information on the coefficients of ( )F X Y, .

Lemma 2.2. For any congruence subgroup ′Γ , let ( )f τ1 and ( )f τ2 be nonconstants such that �( ( ) ( )) =f τ f τ,1 2

�( )′Γ with the total degree Dk of poles of ( )f τk for =k 1, 2. Let

�∑( ) = ∈ [ ]
≤ ≤

≤ ≤

F X Y C X Y X Y, ,
i D
j D

i j
i j

0
0

,
2

1

be such that ( ( ) ( )) =F f τ f τ, 01 2 . Let ′SΓ be a set of all the inequivalent cusps of ′Γ , and for =k 1, 2,

= { ∈ ( ) }′S s S f τ has zeros at s: ,k k,0 Γ

= { ∈ ( ) }∞ ′S s S f τ has poles at s: ,k k, Γ

∑ ∑= − ( ) = ( )
∈ ∩ ∈ ∩∞

a ord f τ and b ord f τ .
s S S

s
s S S

s1 1
1, 2,0 1,0 2,0

We assume that a (resp. b) is zero if ∩∞S S1, 2,0 (resp. ∩S S1,0 2,0) is empty. Then we obtain the following
assertions:
(1) ≠C 0D a,2 . If further ⊂ ∪∞ ∞S S S1, 2, 2,0, then =C 0D j,2 for any ≠j a.
(2) ≠C 0b0, . If further ⊂ ∪∞S S S1,0 2, 2,0, then =C 0j0, for any ≠j b.

If we interchange the roles of f1 and f2, then we obtain further properties similar to (1) and (2).
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3 Modular equations: Proof of Theorem 1.1

Let = ( ) ∩ ( )N mNΓ Γ Γ1 0 for positive integers N and m. We denote the subgroup Δ by

� �≔ {±( + ) ∈ ( / ) = … − }×Nk mN k mΔ 1 : 0, , 1 .

We understand that ± / = ∞1 0 . Then we use the following lemmas to obtain useful properties.

Lemma 3.1. Let �′ ′ ∈a c a c, , , be such that ( ) = ( ′ ′) =a c a c, , 1. Then with the notation Δ as above, a/c and
′/ ′a c are equivalent under ( ) ∩ ( )N mNΓ Γ1 0 if and only if there exist � �∈ ⊂ ( / )×s mN¯ Δ and �∈n such that

( ′ ′) ≡ ( + ) ( )−a c s a nc sc mN, ¯ , ¯ mod1 .

Proof. See [13, Lemma 1]. □

Let ��( )Γ be the subfield of �( )Γ which consists of all modular functions whose Fourier coefficients are
in �.

Lemma 3.2. Let n be a positive integer. Then we have

� ��( ( ) ( )) = ( ( ) ∩ ( ))k τ k nτ n, Γ 10 Γ 10 .1 0

Proof. Foraconvenience, let ≔ ( ) ∩ ( )nΓ Γ 10 Γ 101 0 . Since� ��( ( )) = ( ( ))k τ Γ 101 ,weknowthat forany �∈ ( )+α GL2 ,

( ) = ( )k ατ k τ if and only if �∈ ⋅ ( )×α Γ 101 . Let 





=β n 0

0 1
. Note that

( ) ∩ ( ) = ( ) ∩ ( ) =−β β nΓ 10 Γ 10 Γ 10 Γ 10 Γ.1
1

1 1 0

Hence, we get ��( ) ( ) ∈ ( )k τ k nτ, Γ . Now we show that �( ( ) ( ))k τ k nτ, contains ��( )Γ . We choose ∈ ( )M Γ 10i 1
satisfying

( ) = ∪ MΓ 10 Γ ,i i1 (3.1)

which is a disjoint union.
Let ( )f τ be ( ) = ( ∘ )( )k nτ k β τ . For distinct indices i and j, we assume that ∘ = ∘f M f Mi j. Then ∘ ∘ =k β Mi

∘ ∘k β Mj; so, ∘ =− −k βM M β ki j
1 1 . This means that �∈ ⋅ ( )− − ×βM M β Γ 10i j

1 1
1 and ∈ ( )− −M M β βΓ 10i j

1 1
1 . Since −M Mi j

1

∈ ( )Γ 101 , ∈ ( ) ∩ ( ) =− −M M β βΓ 10 Γ 10 Γi j
1

1
1

1 , which is a contradiction to (3.1). Therefore, all functions ∘f Mi are

distinct with distinct indices and � ��( ( ) ( )) = ( ( ) ∩ ( ))k τ k nτ n, Γ 10 Γ 101 0 . □

The following lemma tells us the behavior of ( )k τ .

Lemma 3.3. Let �′ ′ ∈a c a c, , , . Then the functions ( )k τ and ( )k nτ have the following properties:
(1) ( )k τ hasapoleat �/ ∈ ∪ {∞}a c with( ) =a c, 1 if andonly if( ) =a c, 1, ≡ ± ( )a 3 mod 10 , and ≡ ( )c 0 mod 10 .
(2) ( )k nτ has a pole at �′/ ′ ∈ ∪ {∞}a c if and only if there exist �∈a c, such that / = ′/ ′a c na c , ( ) =a c, 1,

≡ ± ( )a 3 mod 10 , and ≡ ( )c 0 mod 10 .
(3) ( )k τ has a zero at �/ ∈ ∪ {∞}a c with ( ) =a c, 1 if and only if ( ) =a c, 1, ≡ ± ( )a 1 mod 10 , and ≡ ( )c 0 mod 10 .
(4) ( )k nτ has a zero at �′/ ′ ∈ ∪ {∞}a c if and only if there exist �∈a c, such that / = ′/ ′a c na c , ( ) =a c, 1,

≡ ± ( )a 1 mod 10 , and ≡ ( )c 0 mod 10 .

Proof. First we prove that ( )k τ has a simple zero at ∞ and a simple pole at 3/10. From Table 1, ( )( )j τ10 has
a pole at x if and only if ( )k τ has a pole or zero at x. Since ( )( )j τ10 has a pole at∞, if ( )k τordx is nonzero, then
x is equivalent to ∞ under ( )Γ 100 . Among the elements of ( )SΓ 101 , ∞ and 3/10 are equivalent under ( )Γ 100 by
Lemma 3.1. It is easy to see that ( ) =∞k τord 1, thus we know that ( ) ≤/ k τord 03 10 . Since H∑ ( )

∈ ( ) ∗ k τordx xΓ 10 \1

= 0, ( ) = −/ k τord 13 10 .
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By Lemma 3.1, ( )k τ has a simple pole at a/c if and only if ( ) ≡ ±( ) ( )a c, 3, 0 mod 10 . Similarly, ( )k τ has
a simple zero at a/c if and only if ( ) ≡ ±( ) ( )a c, 1, 0 mod 10 . Hence, we proved (1) and (3).

We easily obtain (2) and (4) by (1) and (3). □

Hereafter, we fix the sets ( )SΓ 100 and ( )SΓ 101 of inequivalent cusps of ( )Γ 100 and ( )Γ 101 , respectively, as
follows:

{ }≔ ∞( )S , 0, 1
2

, 1
5Γ 100

and

{ }≔ ∞( )S , 0, 1
2

, 1
3

, 1
5

, 1
6

, 3
5

, 3
10

.Γ 101

Before proving Theorem 1.1 we check the action of ( )Γ 100 on the function ( )k τ in the following lemma.

Lemma 3.4. Let ∈ ( ) − ( )γ Γ 10 Γ 100 1 . Then ∘ ( ) = − / ( )k γ τ k τ1 .

Proof. Note that � �( ( ) ) = ( ( ))−γ γΓ 10 Γ 101
1 1 . Since

� �� �(( ∘ )( )) = ( ( ) ) = ( ( )) = ( ( ))−k γ τ γ γ k τΓ 10 Γ 10 ,1
1 1

there are four constants a b c, , , and d satisfying that








( ∘ )( ) =
( ) +

( ) +
= ±k γ τ ak τ b

ck τ d
a b
c d

Iand .
2

By Lemma 3.3 (1), ( )k τ has a pole at 3/10 and the q-expansion of ( ∘ )( ) = + ⋯−k γ τ q 1 . This means that we
may assume that =a 0, =c 1, and ≠b 0. Then






















=

+
= ±

b
d

b bd
d d b

0
1

1 0
0 1

,
2

2

so we have =d 0 and = ±b 1. Hence, ∘ = ± /k γ k1 . Suppose that ∘ = /k γ k1 . Using ∈ ( )γ Γ 100 and (1.5),













( ) = ( ∘ )( ) = − ∘ ( ) = ( ) −

( )
= − ( )( ) ( ) ( )j τ j γ τ

k
k γ τ k τ

k τ
j τ1 1 ;10 10 10

this is a contradiction to the fact that ( )( )j τ10 is a generator of the field of modular functions on ( )Γ 100 .
Therefore, ( ∘ )( ) = − / ( )k γ τ k τ1 . □

Until the proof of Theorem 1.1 ends, assume that n is a positive integer relatively prime to 10. We take

�∈ ( )σ SLa 2 such that 






≡ ( )
−

σ a
a
0

0
mod 10a

1
for any integer a relatively prime to 10. Then by [14, Proposi-

tion 3.36] we have a disjoint union such as















( ) ( ) = ⋃ ⋃ ( )

/
< | ≤ < /

( / )=

n
σ a b

n aΓ 10 1 0
0

Γ 10 Γ 10 0 .
a n b n a

a b n a

a1 1
0 0

, , 1

1

Let = ∏ ( + )
|

−d n p1p n
1 for prime p dividing n. Then 






[ ( ) ( ) ( )] =

n
dΓ 10 1 0

0
Γ 10 : Γ 101 1 1 . It is clear that σa

depends on ( )a mod 10 , and so we may take σa as follows:
















= ± = ±
− −

± ±σ σ1 0
0 1

, 3 10
10 33 .1 3

Then ∘ =±k σ k1 and ∘ = − /±k σ k13 by Lemma 3.4.
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We denote 





≔

/
α σ a b

n a0a b a, for integers a and b such that a is a positive divisor of n, ≤ < /b n a0 , and

( / ) =a b n a, , 1. Consider the polynomial ( )X τΨ ,n having an indeterminate X

∏ ∏( ( )) ≔ ( − ( ∘ )( ))
< | ≤ < /

( / )=

X k τ X k α τΨ , .n
a n b n a

a b n a

a b
0 0

, , 1

,

We just write ( ( ))X k τΨ ,n instead of ( )X τΨ ,n because �( ) ∈ ( ( ))[ ]X τ k τ XΨ ,n from the fact that all the coeffi-
cients of ( )X τΦ ,n are elementary symmetric functions of ∘k αa b, (i.e., they are invariant under the action
of ( )Γ 101 ).

Let Sm,0 be the set of cusps which ( )k mτ has a zero and ∞Sm, is the set of cusps which ( )k mτ . We denote
by rn the nonnegative integer

∑≔ − ( )
∈ ∩∞

r k τord ,n
s S S

s
n1, ,0

where Sm,0 is the set of cusps which ( )k mτ has a zero and ∞Sm, is the set of cusps which ( )k mτ . Here we
consider ( )k τ as a function on �( ( ) ∩ ( ))nΓ 10 Γ 101 0 and =r 0n if the set ∩ ∞S Sn,0 1, is empty. Then define the
polynomial

( ( )) = ( ) ( ( ))F X k τ k τ X k τ, Ψ , ,n
r

nn

that is, ( ) = ( )F X Y Y X Y, Ψ ,n
r

nn .
Now we are ready to prove our first theorem.

Proof of Theorem 1.1. Let ( )F X Y,n be the polynomial defined as before. Then it is easy to see that ( ) ∈F X Y,n
�[ ]X Y, , ( ) = ∏ ( + )

|
−F X Y n pdeg , 1X n p n

1 , and ( )F X Y,n is irreducible as a polynomial in X (resp. Y) over �( )Y
(resp. �( )X ); this is obtained in a similar way to that of [12, Theorem 10], so we omit the proof.

(1) First, we show that the modular equations of ( )k τ exist for all levels. Let �( ( ) ( ))f τ f τ,1 2 be the field of
modular functions on a certain congruence subgroup Γ for nonconstants ( )f τ1 and ( )f τ2 . The degree
� �[ ( ( ) ( )) ( ( ))]f τ f τ f τ, :1 2 1 (resp. � �[ ( ( ) ( )) ( ( ))]f τ f τ f τ, :1 2 2 ) of field of extension is the total degree d1
(resp. d2) of poles ( )f τ1 (resp. ( )f τ2 ) in Riemann surface H∗Γ\ .

Assume that ( ) = ( )f τ k τ1 and ( ) = ( )f τ k nτ2 for any positive integer n. By Lemma 3.2, �( ( ) ( )) =f τ f τ,1 2
�( ( ) ∩ ( ))nΓ 10 Γ 101 0 . From Lemma 2.2, one can have a polynomial ( )F X Y, such that ( ( ) ( )) =F k τ k nτ, 0,

( )F X Ydeg ,X is the total degree of poles ( )k nτ , and ( )F X Ydeg ,Y is the total degree of poles of ( )k τ . So we
obtain the modular equation ( )F X Y, of ( )k τ of level n.

(2) Assume that ≡ ± ( )n 1 mod 10 . As before, ( ( ))F X k τ,n is an irreducible polynomial in X over �( ( ))k τ with
( ( / ) ( )) =F k τ n k τ, 0n . Using ( ( ) ( )) =k nτ k τΨ , 0n , it is easy to see that ( / )k τ n is a root of ( ( ) ) ∈F k τ X,n

�[ ( )]X k τ, . Hence, there is a polynomial �( ( )) ∈ [ ( )]G X k τ X k τ, , such that ( ( ) ) = ( ( )) (F k τ X G X k τ F X, , ,n n
( ))k τ . By interchanging the places of X and ( )k τ , we have that ( ( )) = ( ( ) ) ( ( ) )F X k τ G k τ X F k τ X, , ,n n and
( ( ) ) = ( ( )) ( ( ) ) ( ( ) )F k τ X G X k τ G k τ X F k τ X, , , ,n n . So ( ( ))G X k τ, should be ±1. Suppose that ≔ ( ( )) =G G X k τ,

−1. Then ( ( )) + ( ( ) ) =F X k τ F k τ X, , 0n n . When = ( )X k τ , ( ( ) ( )) =F k τ k τ, 0n and ( )k τ is a root of ( ( ))F X k τ,n .
Since − ( )X k τ divides ( ( ))F X k τ,n , ( ( ))F X k τ,n is not irreducible by considering >d 1; this is a contra-
diction to the irreducibility of ( )F X Y,n . Hence, we get

( ) = ( )F X Y F Y X, , .n n

Now assume that ≡ ± ( )n 3 mod 10 . We already know that (− / ( ) ( )) =k nτ k τΨ 1 , 0n and (− / ( )k τΨ 1 ,n

( / )) =k τ n 0. Then �( ) (− / ( ) ) ∈ [ ( )]k τ F k τ X X k τ1 , ,d
n also has a root ( / )k τ n . Hence, ( ) (− / ( ) )k τ F k τ X1 ,d

n is
written as follows:









( ) −

( )
= ( ( )) ( ( ))k τ F

k τ
X G X k τ F X k τ1 , , ,d

n n
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for some �( ( )) ∈ [ ( )]G X k τ X k τ, , by using the fact that ( ( ))F X k τ,n is an irreducible polynomial with root
( / )k τ n .

Then








( ) + ( ) = − = ( )F X Y G X Y Y F
Y

X F X Ydeg , deg , deg 1 , deg ,X n X X
d

n Y n

and








( ) + ( ) = − = ( )F X Y G X Y Y F
Y

X F X Ydeg , deg , deg 1 , deg , ,Y n Y Y
d

n X n

where the second identity is obtained because (− / )Y F Y X1 ,d
n is written as

((− ) + + (− ) + (− ) + ( ))− ′
′

− ′ ′
′

− ′

C
C X Y C X Y C X Y C Y1 1 1 1 lower degree terms ,

d r

d
d r

r d d
s

s d r
r d

d d r s
s

d s

,
, 0, , ,0

n

n
n

n
1

1

where dm is the total degrees of pole of ( )k mτ , ≔r rn,

∑ ∑ ∑′ ≔ − ( ) ≔ ( ) ′ ≔ ( )
∈ ∩ ∈ ∩ ∈ ∩∞

r k nτ s k τ s k nτord , ord , and ord .
s S S

s
s S S

s
s S S

s
n n n, 1,0 1,0 ,0 1,0 ,0

Hence, ( ) + ( ) =G X Y G X Ydeg , deg , 0X Y and ≔ ( )G G X Y, is constant. Moreover, we obtain that =d
( ) = ( )F X Y F X Ydeg , deg ,X n Y n . By using that ( )F X Y,n is a primitive polynomial, = ±G 1. Since (− /F Y1 ,n

) = ⋅ ( )−X G Y F X Y,d
n ,








( ) = (− ) − = (− ) ( (− ) + ⋯) = (− ) + ⋯− − −F X Y G X F Y
X

G X Y X G X Y, , 1 1 .n
d

n
d d r d r d r d

Noting that ( ( ))X k τΨ ,n can be written as the following product:

( ) ( )∏ ∏ ∏ ∏− + ⋯ + + ⋯
< |

≡± ( )

≤ < /

( / )=

/

< |

≡± ( )

≤ < /

( / )=

− − /X ζ q X ζ q ,
a n

a
b n a

a b n a

n
ab a n

a n
a

b n a
a b n a

n
ab a n

0
1 mod 10

0
, , 1

0
3 mod 10

0
, , 1

2 2

we can get that the coefficient of −X Yd r d in ( )F X Y,n is given by

∏ ∏
< |

≡± ( )

≤ < /

( / )=

ζ .
a n

a
b n a

a b n a

n
ab

0
3 mod 10

0
, , 1

(3.2)

Hence, (3.2) should be (− ) − G1 d r . Denote by ΠΠ the double product

∏ ∏
< |

≡± ( )

≤ < /

( / )=

.
a n

a
b n a

a b n a
0
3 mod 10

0
, , 1

By [15, Lemma 6.7], in (3.2) ∏ ∏ =ζ 1n
ab . Since ∏ ∏ (− ) = (− )1 1 r, we have = (− )G 1 d. Hence,








( ) = −F X Y Y F
Y

X, 1 ,n
d

n

because n is odd and d is even.

(3) Now we focus on the congruence properties which the modular equation of ( )k τ satisfies. Let p be an
odd prime not 5. We denote ≡ ( )x y αmod for ∈x y R, if − ∈x y αR.
Write ( ) = ∑

=

∞k τ c an m
m

1 with integers cm. Since


























 ∑ ∑( ∘ )( ) = ∘ ( ) =

+
= ≡ = ( ∘ )( ) ( − )

≥ ≥

k α τ k σ b
p τ k τ b

p
c ζ q c q k α τ ζ1

0 mod 1 ,b
m

m p
bm

m
m p1, 1

1 1
1,0

m
p

m
p
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∏ ( − ( ∘ )( )) ≡ ( − ( ∘ )( )) ( − )

≡ ( − ( ∘ )( ) ) ( − )

≡ ( − ( )) ( − )

=

−

X k α τ X k α τ ζ

X k α τ ζ
X k τ ζ

mod 1

mod 1
mod 1 ;

b

p

b
p

p

p p
p

p
p

0

1

1, 1,0

1,0

in last congruence we use that



















∑ ∑ ∑( ∘ )( ) = = ≡ ≡ ( − )

≥ ≥ ≥

k α τ k τ
p

c q c q c q ζmod 1 .p
p

m
m

p

m
m
p m

m
m

m
p1,0

1 1 1

m
p

On the other hand,





∑= − ( ) =
≡ ± ( )

≡ ± ( )
∈ ∩∞

r k τ
p

p p
ord

0 if 1 mod 10 ,
if 3 mod 10 .s S S

s
n1, ,0

Hence,











( )

∏ ∏( ( )) = ( ) ( − ( ∘ )( ))

≡ ( ) ( − ( ))( − ( ∘ )( ))

≡ ( ) ( − ( ))( − ( ∘ )( ))

≡

( − ( ))( − ( )) ≡ ± ( )

( ) ( − ( )) + ≡ ± ( )

≡
( − ( ))( − ( ) ) ≡ ± ( )

( − ( ))( ( ) + ) ≡ ± ( )

= ≤ ≤ /

( )

F X k τ k τ X k α τ

k τ X k τ X k α τ
k τ X k τ X k σ pτ

X k τ X k pτ p

k τ X k τ X p

X k τ X k τ p
X k τ k τ X p

,

if 1 mod 10 ,

if 3 mod 10

if 1 mod 10 ,
1 if 3 mod 10 ,

p
r

a p b p a
a b

r p
p

r p
p

p

p p
k pτ

p p

p p

1, 0
,

,0

1

where ≡a b means that ≡ ( − )a b ζmod 1 p , because ( ) = ∑ ≡ ∑ ≡ (∑ ) = ( ) ( )k pτ c q c q c q k τ pmodm
pm

m
p pm

m
m p p .

We have that − ζ1 p divides ( ) − ( )F X Y H X Y, ,p p in �[ ]ζp and �( ) ∈ [ ]F X Y X Y, ,p , where





( ) =
( − )( − ) ≡ ± ( )

( − )( + ) ≡ ± ( )
H X Y

X Y X Y p
X Y XY p

,
if 1 mod 10 ,

1 if 3 mod 10 .p
p p

p p

Our result follows since p is the smallest integer which is divisible by − ζ1 p in �[ ]ζp . □

We study the property of ( )F X Y,p of odd prime level ≠p 5 in Proposition 3.5. It is helpful for finding
the modular equations in practice; it reduces the computation cost.

Proposition 3.5. Let p be an odd prime with ≠p 5 and ( ) = ∑
≤ ≤ +

F X Y C X Y,p i j p i j
i j

0 , 1 , be a modular equation of
level p. Then ( )F X Y,p satisfies the following:
(1) If ≡ ± ( )p 1 mod 10 , then

(a) ≠+C 0p 1,0 and ≠+C 0p0, 1 ,
(b) = =+ +C C 0p j j p1, , 1 for = … +j p1, 2, , 1,
(c) = =C C 0j j0, ,0 for = …j p0, 1, , .

(2) If ≡ ± ( )p 3 mod 10 , then
(a) ≠ ≠ ≠+ +C C C0, 0, 0p p p1, 0,1 1, 1 and ≠C 0p,0 ,
(b) = =+C C 0j j p0, , 1 for = … +j p0, 2, , 1,
(c) = =+C C 0p j j1, ,0 for = … − +j p p0, 1, , 1, 1.

Proof. Let = ( ) ∩ ( )pΓ Γ 10 Γ 101 0 . Since all statements below also hold for the case =p 3, we deal with the only
case of the prime ≥p 7.

Assume that the cusp a/c of Γ with ( )k τordx or ( )k pτordx is nonzero. Then c is a multiple of 10. Let
( ) = ( )f τ k τ1 and ( ) = ( )f τ k pτ2 . Define the sets ∞Sj, and Sj,0 for =j 1, 2 as Lemma 2.2. Then we know that
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{ } { }= =∞S S, , ,p p1,
3

10
3

10 1,0
1

10
1

10

and

















{ }
{ }

{ }
{ }

=

≡ ± ( )

≡ ± ( )

=

≡ ± ( )

≡ ± ( )
∞S

p

p
S

p

p

, if 1 mod 10 ,

, if 3 mod 10 ,

, if 1 mod 10 ,

, if 3 mod 10 .

p

p

p

p

2,

3
10

3
10

1
10

3
10

2,0

1
10

1
10

3
10

1
10

Moreover,

( ) = − ( ) = − ( ) = ( ) =/ / / /f τ f τ p f τ f τ pord 1, ord , ord 1, ord .p p3 10 1 3 10 1 1 10 1 1 10 1

We calculate ( )f τordx 2 ( = / / / /x p p1 10, 3 10, 1 10 , 3 10 ) as follows:

(1) ( ) = ( ) =/ ∞f τ k pτ pord ordp1 10 2 .

(2) 

































( ) = ∘ ( ) ( ) = ∘ ( ) = = −/ ( )

f τ k p b
p c τ k bp

c
pτ pord ord 00 1 3

10 ord 3
10

ord ,p q q q k pτ3 10 2
1

where b and c are integers such that − =c bp3 10 1.

(3) 



( ) =
≡ ± ( )

− ≡ ± ( )
/ f τ

p
p

ord
1 if 1 mod 10 ,

1 if 3 mod 10 ,1 10 2

because the width of 1/10 is p and



 







 




































































∘ ( ) = ∘ ( )

= ∘ ( ) = ∘
−

( )

=

∘ ( ) = + ⋯ ≡ ± ( )

/ ∘ ( ) = + ⋯ ≡ ± ( )

/

− − /

f τ k p τ

k p τ k
p t

y
t
p τ

k t
p τ ζ q p

k t
p τ ζ q p

1 0
10 1

0
0 1

1 0
10 1

0
10 1 10

1
0

1
0 , if 1 mod 10 ,

1 1
0 if 3 mod 10 ,

p
t p

p
t p

2

1

1

where �∈t y, such that + =t yp10 1 and ≤ ≤ −t p0 1.

(4) 



( ) =
− ≡ ± ( )

≡ ± ( )
/ f τ

p
p

ord
1 if 1 mod 10 ,

1 if 3 mod 10 ,3 10 2

because the width of 3/10 is p and

 





 





  




























































∘ ( ) = ∘ ( ) = ∘ ( ) = ∘
−

( )

=

/ ∘ ( ) = + ⋯ ≡ ± ( )

∘ ( ) = + ⋯ ≡ ± ( )

− − /

/

f τ k p τ k p p τ k
p t

y
t
p τ

k t
p τ ζ q p

k t
p τ ζ q p

3 2
10 7

0
0 1

3 2
10 7

3 2
10 7

3 2 3
10

1
0

1 1
0 if 1 mod 10 ,

1
0 , if 3 mod 10 ,

p
t p

p
t p

2

1

1

where �∈t y, such that + =t yp10 7 and ≤ ≤ −t p0 1.

Hence, the total degree of poles of ( )f τi is +p 1 for =i 1, 2, and the modular equation ( )F X Y,p of ( )k τ of
level p is written as:

∑( ) =
≤ ≤ +

F X Y C X Y, .p
i j p

i j
i j

0 , 1
,
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Now we have the information on Sj,0 and ∞Sj, for =j 1, 2 as follows:

(1) ∪ = ∪∞ ∞S S S S1, 1,0 2, 2,0.

(2) 





{ }

∩ =
≡ ± ( )

≡ ± ( )
∞S S

ϕ p

p

if 1 mod 10 ,

if 3 mod 10 .1, 2,0 3
10

(3)








{ }
{ }

∩ =

≡ ± ( )

≡ ± ( )

S S
p

p

, if 1 mod 10 ,

if 3 mod 10 .

p

p

1,0 2,0

1
10

1
10

1
10

Thus, we have

≠ ≠+ +C C0, 0,p p1,0 0, 1

= = ⋯= =+ + + +C C C 0,p p p p1,1 1,2 1, 1

and

= = ⋯= =C C C 0p0,0 0,1 0,

if ≡ ± ( )p 1 mod 10 . Moreover,

≠ ≠+C C0, 0,p p1, 0,1

= ⋯= = =+ + − + +C C C 0,p p p p p1,0 1, 1 1, 1

and

= = ⋯= =+C C C 0p0,0 0,2 0, 1

if ≡ ± ( )p 3 mod 10 .
By letting ( ) = ( )f τ k pτ1 and ( ) = ( )f τ k τ2 and repeating this similar calculation for ∞Sj, and Sj,0, the result

follows. □

We find the modular equations of levels 2 and 5 explicitly in Proposition 3.6 using the method presented
in Theorem 1.1 (1).

Proposition 3.6. Let ≔ ( )U k τ , ≔ ( )V k τ2 , and ≔ ( )W k τ5 . Then
(1) (modular equation of level 2)

− ( − − ) + =U U U V V1 2 0.2 2 2

(2) (modular equation of level 5)

− ( − + − ) − ( − − − + + )

+ ( − − + − − ) + ( − + + ) −

U U U U W U U U U U W
U U U U U W U U U W W

1 5 15 2 2 5 15 10 5
1 5 10 15 5 2 2 15 5 .

5 3 5 2 3 4 5 2

2 3 4 5 3 2 4 5 4 5

Proof.
(1) We consider ( ) ∩ ( )Γ 10 Γ 201 0 . If �/ ∈a c satisfies ≡ ± ( )a 3 mod 10 and ≡ ( )c 0 mod 20 , then a/c is equi-

valent to either 3/10 or 3/20 under ( ) ∩ ( )Γ 10 Γ 201 0 . Similarly, if �/ ∈a c satisfies ≡ ± ( )a 1 mod 10 and
≡ ( )c 0 mod 20 , then a/c is equivalent to either 1/10 or 1/20 under ( ) ∩ ( )Γ 10 Γ 201 0 . Moreover, the widths

of / / /1 20, 3 20, 1 10, and 3/10 are all 1. Hence, we have

( ) = ( ) = ( ) = − ( ) = −/ / / /k τ k τ k τ k τord ord 1, ord 1, ord 11 10 1 20 3 10 3 20

and

( ) = ( ) = −/ /k τ k τord 2 2, ord 2 2.1 20 3 20
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By Lemma 2.2, the modular equation ( )F X Y,2 is given by

∑( ) =
≤ ≤

F X Y C X Y, .
i j

i j
i j

2
0 , 2

,

Since there is no point x such that ( ) <k τord 0x and ( ) >k τord 2 0x , by Lemma 2.2 (1),C2,0 is nonzero, so
we may assume that C2,0 is 1. By substituting ≔ ( )X k τ and ≔ ( )Y k τ2 as q-expansions, we get that

= − = = =C C C C1, 2, 1, 1.0,1 1,1 2,1 0,2

(2) Under the group ( ) ∩ ( )Γ 1 Γ 501 0 , we may consider the points

=x 1
10

, 3
10

, 7
10

, 9
10

, 1
20

, 3
20

, 7
20

, 9
20

, 1
50

, 3
50

in � such that ( )k τordx is nonzero. Note that all widths of these points are 1. Hence,

( ) = ( ) = ( ) = ( ) = ( ) = −/ / / / /k τ k τ k τ k τ k τord ord ord ord ord 1,3 10 7 10 3 20 7 20 3 50

( ) = ( ) = ( ) = ( ) = ( ) =/ / / / /k τ k τ k τ k τ k τord ord ord ord ord 1,1 10 9 10 1 20 9 20 1 50

and

( ) = − ( ) =/ /k τ k τord 5 5, ord 5 5.3 50 1 50

Thus, we get the modular equation ( ) = ∑
≤ ≤

F X Y C X Y, i j i j
i j

5 0 , 5 , and C5,0 is nonzero because there is no
point x such that ( ) <k τord 0x and ( ) >k τord 5 0x by Lemma 2.2 (1). When we put =C 15,0 and substitute

≔ ( )X k τ and ( )k τ5 in ( )F X Y,5 , we conclude that

( ) = − ( − + − ) − ( − − − + + )

+ ( − − + − − ) + ( − + + ) −

F X Y X X X X Y X X X X X Y
X X X X X Y X X X Y Y

, 1 5 15 2 2 5 15 10 5
1 5 10 15 5 2 2 15 5 .

5
5 3 5 2 3 4 5 2

2 3 4 5 3 2 4 5 4 5

□

4 Class fields and evaluations: Proofs of Theorems 1.2, 1.3, and 1.4

For an imaginary quadratic field K with discriminant dK and positive integer N, let ( )K N be the ray class field

modulo N over K. Let H∈ ∩τ K be a root of a primitive equation + + =ax bx c 02 satisfying − =b ac d4 K
2 ,

where a b, , and c are integers. In this section, we show that ( )k τ generates ( )K 10 over K, and we work on
evaluation of ( )k τ .

Lemma 4.1. Let K be an imaginary quadratic field with discriminant dK and H∈ ∩τ K be a root of a primitive
equation + + =ax bx c 02 such that − =b ac d4 K

2 and �∈a b c, , . Let ′Γ be a congruence subgroup such that
( ) ⊂ ⊂ ( )′N NΓ Γ Γ1 . Suppose that ( ) =N a, 1. Then the field generated over K by all the values ( )h τ , where

�� ( )∈ ′h Γ is defined and finite at τ, is the ray class field modulo N over K.

Proof. See [16, Corollary 5.2]. □

Proof of Theorem 1.2. By Proposition 1.1, we have ���( ( )) = ( ( ))k τΓ 101 . Hence, ( )k τ satisfies the condition
of Lemma 4.1 when =N 10, and so we can conclude that for an imaginary quadratic field K with discrimi-
nant dK , the field ( ( ))K k τ is the ray class field modulo 10 over K when H∈ ∩τ K satisfies + + =aτ bτ c 02 ,

− =b ac d4 K
2 , and ( ) =a, 10 1. □

Now we evaluate ( )k τ for an imaginary quadratic quantity τ by proving Theorems 1.3 and 1.4.
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Proof of Theorem 1.3. Let ( )j 5 and ( )j 10 be the Hauptmoduln which are given in Table 1. We claim that the
following two identities are true:

( ) =
( ) − ( ) + ( ) +

( )
( )

( ) ( ) ( )

( )
j τ j τ j τ j τ

j τ
7 8 165

10 3 10 2 10

10 2 (4.1)

and

( ) =
( ( ) + ( ) + )

( )

( ) ( )

( )
j τ j τ j τ

j τ
250 3,125 .

5 2 5 3

5 5 (4.2)

First we show (4.1). Since [ ( ) ( )] = [ ( ) ( )]/[ ( ) ( )] = / =Γ 5 : Γ 10 Γ 1 : Γ 10 Γ 1 : Γ 5 18 6 30 0 0 0 0 0 , a Hauptmodul
( )( )j τ5 of level 5 is written as the fraction ( ( ))/ ( ( ))( )P j τ P j τ1

10
2

10 , where ( )P X1 and ( )P X2 are polynomials and
{ ( ) ( )} =P X P Xmax deg , deg 3X X1 2 . Note that both ( )( )j τ10 and ( )( )j τ5 have a simple pole at∞. Hence ( ) >P XdegX 1

( )P XdegX 2 and ( ) =P Xdeg 3X 1 . This implies that there is a polynomial ( ) = ( ) −A X Y P X Y, 2 ( )P X1 such that
( ( ) ( )) =( ) ( )A j τ j τ, 010 5 , ( ) = + +P X a X a X a2 2

2
1 0, and ( ) = ′ + ′ + ′ + ′P X a X a X a X a1 3

3
2

2
1 0.

Since

( ) = + + + + − − − − + ( )( ) −j τ q q q q q q q q O q1 2 2 2 4 210 1 2 3 4 5 7 8 9

and

( ) = − + + − + − + + − + ( )( ) −j τ q q q q q q q q q O q6 9 10 30 6 25 96 60 250 ,5 1 2 3 4 5 6 7 8 9

by substituting the q-expansions of ≔ ( )( )X j τ5 and ≔ ( )( )Y j τ10 to ( )A X Y, , we get the relation between
( )( )j τ10 and ( )( )j τ5 .
Now we show (4.2). Note that � � � �[ ( ( )) ( ( ))] = [ ( ( )) ( ( ))] =( )j τ j τ: Γ 1 : Γ 5 65

0 0 ; so, we can take the poly-
nomials of degree less than or equal to 6 similar to ( )P X1 and ( )P X2 in the case of (4.1). Since

( ) = + + + + + + + ( )−j τ q q q q q q O q744 196,884 21,493,760 864,299,970 20,245,856,256 333,202,640,600 ,1 2 3 4 5 6

(4.2) follows.
Combining (1.5), (4.1), and (4.2), we obtain our assertion. □

Remark 4.2. Identity (4.1) can be obtained by using the third formula in [11, Theorem 10.5]

















( )

( )
=

+ −

−

− −

η τ
η τ

k
k k

k
k k

5
1

1
1 4

6

6 2

2

2

2

and (1.5) because ( ) = ( ) / ( )( )j τ η τ η τ55 6 6. The function field �( ( ))Γ 100 is generated by ( )( )j τ10 and �( ( )) ⊂Γ 50
�( ( ))Γ 100 . Thus, ( )( )j τ25 is contained in �( ( ))Γ 100 , and so it is also written in terms of ( )( )j τ10 :









( ) = ( ( ) + )

( ) −

( )
( ) ( )

( )

( )
j τ j τ j τ

j τ
2 1 4 .5 10 2

10

10

Furthermore, ( )( )j τ25 belongs to the bigger field �( ( ))Γ 101 which is generated by = ( )k k τ , and thus it can
be written as the rational function in k as follows (this appears in [11, Theorem 10.5]):


















( ) =

+ − − −

−
( )j τ k k

k
k k

k
2 1 1 4

1
.5

2 2 2

2

Remark 4.3. [11, Theorem 5.26] contains (4.2). It also contains the relation between ( )j τ5 and ( )( )j τ5 :

( ) =
( + ( ) + ( ) )

( )

( ) ( )

( )
j τ j τ j τ

j τ
5 5 10 5 5 2 3

5

because ( )j τ5 is a modular function on ( )Γ 50 .
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Example 4.4. By Theorem 1.3, we can compute 






+ −k 1 3
2 and ( )k i .

(1) 






= ( + + + +

− + + + + + )

+ −k
α

α α α

α α α α

1
3

5 1,320 590 5 25 5 59

10,491,900 455,760 203,820 5 8,850 5 4,692,120 5 19,815 ,

1 3
2

0
0
2

0 0

0 0 0
2

0
2

where ≔ +α 2,728 5 6,1000
3 by using 







=
+ −j 01 3

2 , 






= − −( ) + −j 125 50 55 1 3
2 , and 







=( ) + −j 10 1 3
2

− − − −
+α

α
10

3
2,640 1,180 5

3
50 5

3
118
3

0

0
.

(2) ( ) = − − − + + + +k i β β β67 30 5 5 17,990 8,045 5 670 300 5 ,0 0 0

where ≔ +β 360 161 50 by using ( ) =j i 1728, ( ) = +( )j i 250 125 55 , and ( ) = + +( )j i 134 60 510

+10 360 161 5 .

(3) 














= + − −

+k 11 5 5 250 110 5i1
2

1
2

by using 






=
+j 1728i1
2 , 







= −( ) +j 250 125 5i5 1
2 , and 







= − −( ) +j 11 5 5i10 1
2 .

Proof of Theorem 1.4. We choose positive integers a and b such that = /r a b and ( ) =a b, 1. When p is a
prime factor of r, let =τ pτ0 (resp. /τ p) if |p a (resp. |p b). By finding the modular equation ( )F X Y,p in
Appendix A, let the polynomial ( ) ≔ ( ( ) )P T F k τ T,p (resp. ( ( ))F T k τ,p ) if |p a (resp. |p b). Then the solutions

…t t, , m1 of the equation ( ) =P T 0 which can be written in terms of radicals are candidates for the value ( )k τ0 .
Among them, we choose tj to have the smallest absolute value

∏−
( − )( − )( − )( − )

( − )( − )( − )( − )=

− − − −

− − − −
t q q q q q

q q q q
1 1 1 1
1 1 1 1j

n

M n n n n

n n n n0
1

0
10 9

0
10 8

0
10 2

0
10 1

0
10 7

0
10 6

0
10 4

0
10 3

for ≔q e πiτ
0

2 0; then tk is the value ( )k τ0 . One can repeat this procedure until getting ( )k rτ . □

Example 4.5. By Theorem 1.4, we have the value

( − ) = − − −
− − + +k α α α α α α3 1

2 2
1 4 2 4

2
,

2 2 3 4

where 






≔
+ −α k 1 3

2 is the value found in Example 4.4

= − ( − − − −

+ + + + + + )

α
α

α α α

α α α α

1
3

5 1,320 590 5 25 5 59

10,491,900 455,760 203,820 5 8,850 5 4,692,120 5 19,815 ,
0

0
2

0 0

0 0 0
2

0
2

and

≔ +α 2,728 5 6,100 .0
3
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