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Abstract: In this paper, we give a boundedness criterion for the potential operator 7% in the local general-
ized Morrey space LM},{(},},(F) and the generalized Morrey space M,,,(I') defined on Carleson curves I', re-
spectively. For the operator 79, we establish necessary and sufficient conditions for the strong and weak
Spanne-type boundedness on LM},{%},(F) and the strong and weak Adams-type boundedness on M, ,(I).
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1 Introduction

LetI'={t e C : t = t(s), 0 < s <l < oo} be arectifiable Jordan curve in the complex plane C with arc-length
measure v(t) = s, where [ = vI' = lengths of I'. We denote

I'i¢,ry=TnB(,r), tel, r>0,
where B(t,r) = {z € C : |z — t| < r}. We also denote for brevity vI(t, r) = |T(t, 1)|.
A rectifiable Jordan curve I is called a Carleson curve if the condition
vI(t,r) < cor

holds for all t € T and r > 0, where the constant ¢, > 0 does not depend on t and r.
Let f € LI°(T"). The maximal operator M and the potential operator 72 on I' are defined by

MF() = sup(I(t, 1)) jv<r)|dv(r)
t>0 )
and

f(T)dv(T)
d [t — 7'«

7°f(t) =

, O<acxl,

respectively.
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Maximal operator and potential operator in various spaces, in particular, defined on Carleson curves
have been widely studied by many authors (see, for example, [1-14]).

The main purpose of this paper is to establish the boundedness of potential operator 7%, 0 < a < 1
in local generalized Morrey spaces LM;,’f‘(;,}(I‘) defined on Carleson curves I'. We shall give characterizations

for the strong and weak Spanne-type boundedness of the operator 7% from LM% (T) to LM (T),

1<p<g<co,1/p-1/g=a and from the space LM{/(T) to the weak space WLM_9 (T), 1< ¢ < oo,
1-1/q = a. Also, we study Adams-type boundedness of the operator 7% from generalized Morrey spaces
Mp’ﬁ(r) to Mq,ﬁ(l‘),l < p < g < 0o, and from the space M; ,(T') to the weak space WMqﬁ(I‘), 1<q<oo.We
shall give characterizations for the Adams-type boundedness of the operator 7¢ in generalized Morrey
spaces, including weak versions.

By A < B we mean that A < CB with some positive constant C independent of appropriate quantities. If
A < Band B < A, we write A = B and say that A and B are equivalent.

2 Preliminaries

Morrey spaces were introduced by C. B. Morrey [15] in 1938 in connection with certain problems in elliptic
partial differential equations and calculus of variations. Later, Morrey spaces found important applications
to Navier-Stokes and Schrédinger equations, elliptic problems with discontinuous coefficients, and poten-
tial theory.

Let L,(I'), 1 < p < oo be the space of measurable functions on I' with finite norm

1/p

Wi = | [FoPave
r

Definition 2.1. Let 1 < p < 00, 0 < A <1, [r; = min {1, r}. We denote by L, (') the Morrey space, and by
ij, A(l) the modified Morrey space, the set of locally integrable functions f on I' with the finite norms

A -4
Iz, = sup r#lfll,aerys  WflE, o = sup [Pl 7 Ifln,we,n)s

tel,r>0 tel,r>0

respectively.

Note that (see [16,17]) Ly, o(T) = L,.o(T) = Ly(D),
LpaT) = Lya(D) N Ly(D) and IIflg, @ = max{lfis, ), Ifl,m}

and if A <0 or A > 1, then Ly (T) = I:p,;l(l“) = 0, where O is the set of all functions equivalent to O on T.
We denote by WL, (T') the weak Morrey space, and by Wf,p, A(l) the modified Morrey space, as the set of
locally integrable functions f on I’ with finite norms

1/p
Ifllwz, ;@) = supB sup |r* I dv(r) | ,
B>0 tel,r>0
{Tel(t,r):If (1) |>B}
1/p
Vhui,o = supf sup |0 [ dvee)
B>0  tel,r>0

{Tel(t,r):If (1) |>B}
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Samko [14] studied the boundedness of the maximal operator M defined on quasimetric measure
spaces, in particular on Carleson curves in Morrey spaces Ly (I'):

Theorem A. Let ' be a Carleson curve,1 < p < 00,0 < a < 1and0 < A < 1. Then M is bounded from L, 5(T')
to pr/\(r).

Kokilashvili and Meskhi [18] studied the boundedness of the operator 7% defined on quasimetric
measure spaces, in particular on Carleson curves in Morrey spaces and proved the following:
Theorem B. Let T" be a Carleson curve,1 <p < q< 00,0 <a<1,0 <A< g,% = %and% -
operator I* is bounded from the spaces Ly 3 (T') to Ly 3,(I').

% = a. Then the

The following Adams boundedness (see [19]) of the operator 7* in Morrey space defined on Carleson
curves was proved in [20].

1-1
—.
(I Ifi<p< %, then the condition % - é = ﬁ is sufficient and in the case of infinite curve also necessary

for the boundedness of the operator 1% from Ly, (T') to Ly A(T).

Theorem C. Let I’ be a Carleson curve,0 < a <1,0<A<1-aandl1<p<

(2) If p = 1, then the condition1 — é = % is sufficient and in the case of infinite curve also necessary for the

boundedness of the operator I* from Ly z(T') to WLy A(T').

The following Adams boundedness of the operator 7¢ in modified Morrey space L},,A(F) defined on
Carleson curves was proved in [16], see also [17].

Theorem D. Let I' be a Carleson curve,0 < a <1,0<A<1-aandl1<p< %
() If1<pc< %, then the condition a < % - é < ﬁ is sufficient and in the case of infinite curve also

necessary for the boundedness of the operator I from Ep,,\(l‘) to L~q,,1(I‘).
a

(2) If p = 1, then the conditiona < 1 - % <13 is sufficient and in the case of infinite curve also necessary for

the boundedness of I® from Ly A(T) to WL, A(D).

We use the following statement on the boundedness of the weighted Hardy operator:

H,g(t) = jg(s)w(s)ds, 0<t<oo,

t

where w is a weight.
The following theorem was proved in [21].

Theorem 2.1. Let v;, v, and w be weights on (0,00) and vy(t) be bounded outside a neighborhood of the origin.
The inequality

esssup vo(t)H,g(t) < C esssupvy(t)g(t) .1)
t>0 t>0

holds for some C > 0O for all non-negative and non-decreasing g on (0, co) if and only if
B := supv,(t) L)ds
£>0 esssup (1)

§<T<00

Moreover, the value C = B is the best constant for (2.1).
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3 Local generalized Morrey spaces
We find it convenient to define the local generalized Morrey spaces in the form as follows, see [21,22].

Definition 3.2. Let 1 < p < oo and ¢(¢, r) be a positive measurable function on I' x (0, co). Fixed ty € T', we
denote by LM9(T) (WLM{9(T)) the local generalized Morrey space (the weak local generalized Morrey

space), the space of all functions f € L},"C(F) with finite quasinorm

1 1
IflLasicod ) = sup Iz, eeo,ry)
po®) r>0 @(to, 1) (VI(ty, 1) )% e
Fhyzar oy = Sup —— L i
wLM% () = WLp(L(to,7)) |+
ro® r>0 @(to, ) (vI(to, r))% e

Definition 3.3. Let 1 < p < oo and ¢(t, r) be a positive measurable function on T x (0, co). The generalized
Morrey space M, ,(I') is defined as the set of all functions f ¢ L},"C(F) by the finite norm

I sup !
. 1
"7 tenrso @(t, 1) (VI(E, 1))p

IF Iz rce,ry) -

Also, the weak generalized Morrey space WM, (') is defined as the set of all functions f € L},"C(F) by the
finite norm

1
If lwn,, = sup If lwz,rce,r)) -

ter,r>0 @(t, 1) (VI(t, r))%
It is natural, first the set of all, to find conditions ensuring that the spaces LM I{,{O(I},(F) and M, ,(I') are non-

trivial, that is, consist not only of functions equivalent to O on I.

Lemma 3.1. [23] Let ty € T and ¢(t, r) be a positive measurable function on T x (0, co). If

sup 1 1 =00 forsome r>0 (3.2
r<T<co (P(fo, r (vI'(to, r))‘lu ’ .

then LM{9(T) = ©.

Remark 3.1. We denote by Q, ), the set of all positive measurable functions ¢ onT x (0, co) such that for all
r>o0,

Hl 1
< 00.

@(to, T) (VI(to, T))?

Loo(r,00)

In what follows, keeping in mind Lemma 1, for the non-triviality of the space LM/{%)(T') we always assume
that ¢ € Qp joc.

Lemma 3.2. [23] Let ¢(t, r) be a positive measurable function on T x (0, co).

@ If
sup 1 1 =o0o forsome r> 0 and forall t €T (3.3)
r<T<00 QD(t, T) I, 1) )’1” ’ .
then M ,(T) = ©.
@) If
sup @(t,7)' = oo for some r> 0 and for all t €T, (3.4)

O<t<r

then M ,(T) = ©.
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Remark 3.2. We denote by Q, the sets of all positive measurable functions ¢ onT x (0, co) such that for all
r>0,

sup L 1
tel (p(t’ T) (Vr(t, T) )ﬁ

<oco and suplet, ) o < o,
tel’

Lo(r,00)

respectively. In what follows, keeping in mind Lemma 2, we always assume that ¢ € Q,.

A function ¢ : (0, 00) — (0, 00) is said to be almost increasing (resp. almost decreasing) if there exists
a constant C > 0 such that

@(r) < Cp(s) (resp. @(r) = Co(s)) for r <s.

Let 1 < p < co. Denote by G, the set of all almost decreasing functions ¢ : (0, co) — (0, co) such that
te(0,00) t%(p(t) € (0, 0o) is almost increasing.

Seemingly, the requirement ¢ € G, is superfluous but it turns out that this condition is natural. Indeed,
Nakai established that there exists a function p such that p itself is decreasing, that p(t)t"/? < p(T)T™? for
all0 < t < T < oo and that LMJ%(T) = LMJ%(T), Mp,4(T) = Mj, ,(T).

By elementary calculations we have the following, which shows particularly that the spaces LM

P>
WLM{{%), My, ,(T) and WM, ,(T) are not trivial, see, for example, [23-25].

Lemma 3.3. [23] Let ¢ € Gp, 1 < p < 00, Ty = I'(to, 10) and xy, be the characteristic function of the ball I, then
Xr, € LMJ9(T) n My, ,(T). Moreover, there exists C > O such that

1
—— < lXg, wzaie) < lxe, lmfg) <
¢(ro) ' ‘

(1)

and

1 o
— < g, Iwm,, < IXg, Ingy, < ——-

(1) o(ro)

4 Maximal operator in the spaces LM,"\(I) and M), ,(I)

We denote by L, ,(0,00) the set of all functions g(t), t > 0 with finite norm

I8z, 0,000 = €SSSUPV(E)E(L)
t>0

and Ly (0, 00) = Ly,,1(0, ©0). Let M(0,00) be the set of all Lebesgue-measurable functions on (0, co) and
M0, co) its subset consisting of all non-negative functions on (0, co). We denote by M*(0, co; T) the
cone of all functions in 91*(0, oco) which are non-decreasing on (0, co) and

A ={p e M*0,00; 7) : tl_ig{rfp(t) =0}

Let u be a continuous and non-negative function on (0, co). We define the supremal operator S, on
g € M(0, co) by

(Sug) (®) = Iuglr t,c00s ¢ € (0, 00).

The following theorem was proved in [26].
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Theorem 4.2. Let vy, v, be non-negative measurable functions satisfying 0 < |[vilL(,00) < 00 foranyt > 0 and
let u be a non-negative continuous function on (0, o).
Then the operator S, is bounded from L, ,,(0, 00) to Le,1,(0, 00) on the cone A if and only if

V2SIV lIzL . o) IEes(0,00) < 00 (4.5)

The following Guliyev-type local estimate for the maximal operator M is true, see for example, [27,28].

Lemma 4.4. Let T be a Carleson curve,1 < p < co and ty € I'. Then for p > 1 and any r > O the inequality

IMSllL, o) S Wl wio.2n) + 1 sup T f o, ) (4.6)

T™>2r

holds for all f € LP°(T).
Moreover, for p = 1 the inequality

IMFlwz,cior) S Wfllnwicozn) + 7 SUP Ty wo,m) 4.7)

T™>2r

holds for all f € LI°°(I).

Proof. Let 1 < p < co. For arbitrary ball I'(¢o, ) let f = fi + f5, where fi = fyy(, , and fo = fXC(l‘(to,Zr))'
IMSll, o) < IMAlL o) + IMEIL ) -
By the continuity of the operator M : Ly(I') — L,(I') from Theorem A we have
IMfillL, o) S Wl mio2r)-

Let y be an arbitrary point from I'(ty, 7). If T'(y, T) N U(T(to, 2r)) #+ @, then T > r. Indeed, if z € T(y, T) N
C(F(tO,Zr)), thent>|y-z|2|t-z|-|t-y|>2r-r=r.

On the other hand, I'(y, 7) N C(l"(to, 2r)) c I'(to, 21).Indeed, z € T'(y, T) N D(1"(t0, 2r)), then we get|t — z| <
ly—zl+|t-yl<T+71<21.

Hence,

Mf(y) < Zsupi -[ If(z)|dv(z) = 2sup —— _[[f(z Ydv(z) < 2sup 1! J-[f(z)ldv(z).
™r r(tO; 2t ) T(to.20) ™>2r r(th o) ™>2r o)

Therefore, for all y € I'(¢ty, T) we have
M£(y) < 2supt! j If(2)|dv(z). (4.8)
™>2r I(to,)

Thus,

IMSllL, o) S Wl wio.2n) + rp| supt! JV(Z)|dV(Z) .
™>2r (o)

Let p = 1. It is obvious that for any ball I'(¢y, r)
IMfllwe, o) < IMAlwL o,y + IMEIwL o) -
By the continuity of the operator M : Li(I') - WL(T') from Theorem A we have
IMfillwryry < Wfllzyro,2r) -

Then by (4.8) we get inequality (4.7). (|
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Lemma 4.5. Let " be a Carleson curve,1 < p < co andty € T. Then for p > 1and anyr > 0 inT, the inequality

1 1
IMSll, o) S 17 SUP T 2N llL,rico,1)) (4.9)

™>2r

holds for all f € LP*(T).
Moreover, for p = 1 the inequality

IMflwe,rior) < 7 SUP T Hf Lo ) (4.10)

™>2r

holds for all f € LI°“(T).

Proof. Let 1 < p < co. Denote

1 _
Mi=rbsupr? [F@Idv@), Mo = -
™>2r o)

Applying Holder’s inequality, we get

1
p

M < rposupTr j If (2)[Pdv(z)
™2r
[(to,7)

On the other hand,

1
p

resupTr _[Lf(z) Pdv(z) | = r’l’ESup TI]JJM”LAF(M’)) =~ Ma.

T>2r T>2r
I(to,T)
Since by Lemma 4.4
IMFlL, o) < Mi+ Ma,
we arrive at (4.9).
Let p = 1. The inequality (4.10) directly follows from (4.7). O

The following theorem is valid.

Theorem 4.3. Let T’ be a Carleson curve,1 < p < 0o, to € I' and (¢,, ¢,) satisfies the condition

sup 7 ressinf @, (to, 5)s» < Co,(to, 1), (4.11)

r<T<00 T<S<00

where C does not depend on r. Then for p > 1 the operator M is bounded from LM%, (T) to LM%, (T') and for
p = 1 the operator M is bounded from LMl{ff;,}l(F) to WLMl{fg,}Z(F).

Proof. By Theorem 4.2 and Lemma 4.5, we get

1 1
IMSfllLago) ) < sup @,(to, 1 sup Tolf L, o) < SUP @t 1) eIl o) = Iflao @
r>0

™>r r>0 e
if p e (1, c0) and

IMf lwafe) @) < Sug) ®,(to, 1)1 sup T f Ly, ) < SU(I)D @,(t, N W lLyeor) = "f"LMl{fg’l(T)
r> ™>r r>

if p=1. O

From Theorem 4.3, we get the following.
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Corollary 4.1. Let T be a Carleson curve, 1 < p < oo and ¢,, ¢, € Q,, satisfies the condition

sup T-vessinf o, (t, s)s% < Co,(t, 1), (4.12)

r<T<00 T<S<00

where C does not depend on t and r. Then for p > 1the operator M is bounded from My, , () to My, ,, (I') and for
p = 1the operator M is bounded from M, (I') to WM ,,(T).

Corollary 4.2. LetT be a Carleson curve,1 < p < co and ¢ € Gy,. Then for p > 1 the operator M is bounded on
M,,o(T') and for p = 1 the operator M is bounded from My ,(I') to WM, ,(T).

5 Fractional integral operator in the spaces LM}(I) and M, (I
5.1 Spanne-type results

The following local estimate is true, see for example, [28].

Theorem 5.4. Let T be a Carleson curve,1 < p <co,toel,0<a< i, é = i —aand fe L},"C(F). Then for
p>1
(o)
12 oy < Cre _[ T 0 f o) AT (5.13)
2r
and for p =1
(o]
17w, ritor)) < Cri I T7%71||f||L1(F(t0,r))dTa (5.14)

2r

where C does not depend on f, ty e T and r > 0.

Proof. For a given ball I'(to, r), we split the function f as f=fi + o, where fi = fry, 20 o = Koo 2
and then

Iof(t) = T°(t) + I°6H(0).

Letl<p<o0,0<ac< %,% = % - a. Since f; € Ly(I), by the boundedness of the operator 7* from L,(T’)
to Ly(T') (see Theorem B) it follows that

(o]

1 _1_
17l my < Clfill,a@y = Clfllz,mo2ry) < Cra J 0 flL, o, AT, (5.15)

2r

where the constant C is independent of f.
Observe that the conditions z € I'(ty, r), y €b (T'(to, 2r)) imply

1 3

—lz-yl<|t-yl < =|t-2z.

2| vyl <t -yl 2I I
Then for all z € I'(¢y, r) we get

1-a
|I“f2<z)|s@j [ ey,

Careo.2r)
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By Fubini’s theorem, we have

0

[ e-yerrmnay = | romavmeo | ra-Zdr:T | o

Careo.2) Cerceo,2n) lt=yl 2r 2rsft-yl<t

N

T | ronyyrerar.

2r T(to,T)

Applying Holder’s inequality, we get

| 1=yl < [Ulhyeen i e

Careo.2r) 2r

and for all z € I'(ty, )

IEH@] < [l rim 7 -dr. (5.16)
2r

Moreover, for all p € [1, co) the inequality

(oe]
I 7% L, ritor)) < ra IT"%"lllfllL,,(r(to,de (5.17)
2r
is valid. Thus, from (5.15) and (5.17) we get inequality (5.13).

Finally, in the case p = 1 by the weak (1, g)-boundedness of the operator 7¢ (see Theorem B) it follows
that

(o8]
17wz, o) < Cllfillzry < Cre J‘T7%71||f||L1(F(t0,T))dTa (5.18)
2r
where C does not depend on t; and r. Then from (5.17) and (5.18) we get inequality (5.14). O
Theorem 5.5. Let I' be a Carleson curve,1 <p < oco,tp e I,0 < a < %,% = % —a, 9, € Qpioc, @5 € Qg loc and
the pair (@,, @,) satisfy the condition
° ess inf ¢ (to, 5)sP dr
J TesE — < Co,(to, 1), (5.19)
Tq T

r
where C does not depend on't, and r. Then for p > 1 the operator I* is bounded from LM} (T') to LM}f%) (') and
for p = 1 the operator I is bounded from LMl{f};,}l(F) to WLMY) (T).

Proof. By Theorems 2.1 and 5.4 with vy(r) = @,(to, 1)}, w(r) = @,(to, r)~'r~» and w(r) = r7 we have for p > 1

_ _1_ 1.1
12 Ny, ) < sug) @5(to, 1) IS T Nflz,rieos)) ds < 511(1)J @,(to, 1) e lf L ity = WAl o
r> r>
r

and for p =1

(e9]

_ _1_ 1
12 M) oy < SU(I)) @,(to, 1) IS T yrite,s)) dS < SU(P)) @,(t0, N Uf Lo,y = |Ur||LMff$§(r)' O
r> r>

r

From Theorem 4.3 we get the following.
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Corollary 5.3. Let I' be a Carleson curve,1 <p < 00, 0 < a < %, é = % -a, ¢, € Qp, ¢, € Qg and the pair
(@), ®,) satisfy the condition
®ess inf@,(t, s)sp d
_[““‘”—1— < C,(t, 1), (5.20)
Tq T

r

where C does not depend on t and r. Then for p > 1 the operator 1 is bounded from My, (T) to My, ,,(T') and for
p = 1 the operator I* is bounded from M, () to WMg,,,(T).

For proving our main results, we need the following estimate.
Lemma 5.6. Let I be a Carleson curve and Ty := I'(to, 1o), thenrg < I (t) for every t € To.

Proof. If t,y €Iy, then |t —y| < |t —to| + |to — Y| < 2rp. Since 0 <a <1, we get rg‘l < 29t — y|-Q,
Therefore,

T%,(t) = Ixro(y)lt -yl ldv(y) = Ilt -yl ldv(y) = co2!4rg. .
r I

The following theorem is one of our main results.

Theorem 5.6. Let I' be a Carleson curve,0 < a < 1,ty € T and p, q € [1, 00).

1.Ifl1<p< % and % = % — a, then condition (5.20) is sufficient for the boundedness of the operator 1% from
LMI{,{O(I},I(F) to WLM(%Z(I‘). Moreover, if 1 < p < i, condition (5.20) is sufficient for the boundedness of the
operator I°® from LM},{‘}},I(F) to LM;?;;Z(F).

2. If the function @, € G,, then the condition

rép,(r) < Copy(r), (5.21)

for allr > 0, where C > 0 does not depend on r, is necessary for the boundedness of the operator I* from
LM}, (T) to WLM{) (T) and LM} (T) to LMf3) (D).

3. Letl<p< % and% = i - a. If ¢, € G, satisfies the regularity condition

(o]

_[ sl (s)ds < Creg,(r), (5.22)

r

for all r > 0, where C > 0 does not depend on r, then condition (5.21) is necessary and sufficient for the
boundedness of the operator T from LM;,‘,O(,},l(F) to WLM&{%Z(F). Moreover, if1 < p < %, then condition (5.21)
is necessary and sufficient for the boundedness of the operator I° from LM%, (T) to LM% ().

Proof. The first part of the theorem is proved in Theorem 5.3.
We shall now prove the second part. Let [y = [(to, 1o) and t € [,. By Lemma 5.6, we haver§ < CT %, (1)-
Therefore, by Lemmas 3.3 and 5.6

@,(10)
¢,(r0)

1§ < (WIo))#IL X, Iy < @)L Ky, Inay, < P2(10) IXr, Ingy, <

or

roa < Qoz(ro)

< for all 1y > 0 & 1§,() < @,(1) for all 1 > 0.
‘Pl("o)

Since this is true for every r, > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem. O
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Remark 5.3. If we take ¢,(r) = r's" and o,(r) = r's’ at Theorem 5.6, then conditions (5.22) and (5.21) are
equivalentto0 <A <1 - ap and% = g, respectively. Therefore, we get Theorem C from Theorem 5.6.

5.2 Adams-type results
The following pointwise estimate plays a key role where we prove our main results.

Theorem 5.7. Let T be a Carleson curve,1 <p < 00,0 <a<1land f € L},O"(l“). Then
O] < MO + € [554 Wm0 05, (5.23)
r

where C does not dependon f,t € T andr > 0.

Proof. Write f = f; + f5, where fi = i, and fo = f{er.r))- Then
Tf(t) = T°h(t) + T°h(1).

For 74 (t), following Hedberg’s trick (see for instance [29, p. 354]), for all z € T we obtain |7%(z)| <
Cir*Mf(z). For 7%,(z) with z € D from (5.16) we have

I7%h(z)] < I It =yl f(y)ldy < C J‘sa_%_luf"Lp(F(t,s))dS, (5.24)

Cree,2m) 2r

which proves (5.23). O
The following is a result of Adams type for the fractional integral on Carleson curves (see [28]).

Theorem 5.8. (Adams-type result) LetT' be a Carleson curve,1 <p < g < 00,0 < a < %and let ¢ € Q satisfy
condition

sup 1 less info(t, s)s < Co(t, r), (5.25)
r<T<00 T<S<00
and
I 18 Yp(t, T)rdT < Cras, (5.26)

r
where C does not depend ont € T and r > 0. Then for p > 1 the operator 7% is bounded from Mp ﬁ(l‘) to
Mq (p;(l’) and for p = 1 the operator I* is bounded from M, ,(T') to WMq Wl](l“).

Proof. Let1 < p < oo and f € M, ,(I'). By Theorem 5.7, inequality (5.23) is valid. Then from condition (5.26)
and inequality (5.23) we get
[Tof(t)] < r*Mf(t) + J‘S“7%71|lf||L,,(r(z,s))dS

r
[ee]

< FMO) + Il IS“‘1¢(t, s)bds
b9

r

<rEMF(E) + 1 7olfln oo
p.pP

(5.27)
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M 1(I)
p,P

MF ()

Hence, choosing r = [ ] for every t € T', we have

1-2

1T (6] < MFO) Il -

Hence, the statement of the theorem follows in view of the boundedness of the maximal operator M in
My, ,(T') provided by Theorem 3, by virtue of condition (5.25).

1-£ b1 p 1-P »
”Iaf"Mq (p;(l‘) < “f“Mq 1(T) sup ¢(t: ryar q”Mf"[q‘p(r(t’r)) < "f”Mq %(r) "Mf”Z/[
f P P9

@ S Wfllr 1o
p.oP  tel,r>0 p.oP

if1<p<q<ooand

1-1 11 1 1-1 1
”Iaf"WMq ﬁ(r) < ”f"Ml,qq,(F) t;HpO (P(t, I’) qar q||Mf||§VL1(r(t,,)) < |lf||M1,q<p(F) ||Mf||}1w1’¢(r) < ”f“ML(p(F)
j ,r>

if p=1<g < co. O
The following theorem is another of our main results.

Theorem 5.9. Let I be a Carleson curve,0 < a <1,1<p < q <ooand ¢ € Q.
1. If p(t, r) satisfies condition (5.25), then condition (5.26) is sufficient for the boundedness of the operator 1%
from Mp qD%(l") to WMq ﬁ(l"). Moreover, if 1< p < q < 0o, then condition (5.26) is sufficient for the bound-

edness of the operator I* from Mp’(P;,(I“) to Mq’(p;(l“).
2. If ¢ € Gp, then the condition
rep(r)r < Cras, (5.28)
for allr > 0, where C > 0 does not depend on r, is necessary for the boundedness of the operator I'* from
Mp,(p%(l“) to WMW%(F) and from Mp’(p%(l“) to Mq’ﬁ(l“).
3. If ¢ € Gy satisfies the regularity condition

(o]

J.s“‘%p(s)%ds < Creo(r)», (5.29)

r

for all r > 0, where C > 0 does not depend on r, then condition (5.28) is necessary and sufficient for the
boundedness of the operator I from Mp (p%(l‘) to WMq ﬁ(I‘). Moreover, if 1< p < q < oo, then condition

(5.28) is necessary and sufficient for the boundedness of the operator I* from Mp (p%(l") to Mq ﬁ(l‘).

Proof. The first part of the theorem is a corollary of Theorem 5.8.
We shall now prove the second part. Let [, = I'(t, 1p) and ¢ € [,. By Lemma 5.6, we have r§ < I "‘)(ro(t).
Therefore, by Lemmas 3.3 and 5.6 we have

r& < (V(To)) a7, Irym < o) 17, lar e P(ro)s Iy, Il IO P(ro)
q,¢ b,
or
_a
r8p(o)ra <1 for all i, >0 & r¢r)r <1,77.

Since this is true for every t € I and ry > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem. O

The following is a result of Adams type for the fractional integral on Carleson curves.
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Theorem 10. (Adams-type result). Let I' be a Carleson curve, 0 < a < 1,1 < p < q < oo and ¢ € Q,, satisfy
condition (5.25) and

rip(t, r) + Is""%p(t, s)ds < Co(t, )i, (5.30)
r
where C does not depend ont € T and r > 0. Then for p > 1 the operator I is bounded from Mp"p%(l") to
Mqﬁ(I‘) and for p = 1 the operator I* is bounded from M, ,(T) to WMqﬁ(F).

Proof. Let1 < p < oo and f € M, ,(I'). By Theorem 5.7, inequality (5.23) is valid. Then from condition (5.26)
and inequality (5.23), we get
[Tof()] < r*Mf(t) + IS“’%’1|UF||L,,(F<t,s)>dS < M) + IIfllng, or) J‘s‘H(p(t, s)ds. (5.31)

r r

Thus, by (5.30) and (5.31) we obtain

A

17 (O)] < min {g(t, NI MEE), @(t, DPIflw, ,m | < sup min {ri-ME), réllfl, ,m
0 (5.32)

(MEE)H Iy

where we have used that the supremum is achieved when the minimum parts are balanced. From Theorem
4.3 and (5.32), we get

1-2 P
”Iaf"M 1(D) < ”f”Mq 1(T) "Mf”ﬁ/[ 1(T) < ”f"M 1(T)»
999 PP p.9P npP

if1<p<q< ooand
7 e o) < Wl IMF gy S 170
ifp=1<g< co. O
The following theorem is another of our main results.

Theorem 5.11. Let I be a Carleson curve,0 < a <1,1<p < q < oo and ¢ € Q.

1. If p(t, r) satisfies condition (5.25), then condition (5.30) is sufficient for the boundedness of the operator 1*
from Mp (P;(I‘) to Mq (p;(l‘). Moreover, if 1 < p < q < 0o, then condition (5.30) is sufficient for the bounded-
ness of the operator 1% from Mp,(p%(l") to Mq’ﬁ(l").

2. If ¢ € Gp, then the condition

rep(r)r < Co(r), (5.33)
for allr > 0, where C > 0 does not depend on r, is necessary for the boundedness of the operator I'“ from
M 1(T)toWM :1(T)andfromM 1(I)toM i(T).

D.pp 4,99 D.pp 4,91

3. If ¢ € G, satisfies the regularity condition (5.29), then condition (5.33) is necessary and sufficient for the

boundedness of the operator 1% from Mp (p%(l") to WMq ﬁ(l"). Moreover, if 1 < p < q < oo, then condition

(5.33) is necessary and sufficient for the boundedness of the operator I* from Mp (p;(l") to Mq g0;(1‘).

Proof. The first part of the theorem is a corollary of Theorem 5.10.
We shall now prove the second part. Let I, = T'(t, 1p) and t € I. By Lemma 5.6 we have r§ < CT %X, ().
Therefore, by Lemmas 3.3 and 5.6 we have

1§ < WIT0) L%, Iy < @) IL%, I 1y € @il @) < @(o)e >
.99 9P
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or
rg(p(ro)%*% <lforall p,>0¢e rg(p(ro)% < <p(r0)%.

Since this is true for every t € I and ry > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem. O

Remark 5.4. If we take ¢(r) = rA~!in Theorem 5.9, then condition (5.29) is equivalent to0 < A < 1 — ap and

condition (5.28) is equivalent to % - é = % Therefore, from Theorem 5.9 we get Theorem C.

Remark 5.5. If we take ¢(r) = [r]{"1 in Theorem 5.9, then condition (5.29) is equivalent to0 < A < 1 — a and

condition (5.28) is equivalent to a < % - % < ﬁ Therefore, from Theorem 5.9 we get Theorem D.
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