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Abstract: A triangular matroid is a rank-3 matroid whose ground set consists of the points of an ns;-con-
figuration and whose bases are the point triples corresponding to non-triangles within the configuration.
Raney previously enumerated the ns-configurations which induce triangular matroids for 7 < n < 15. In this
work, the enumeration is extended to configurations having up to 18 points. Several examples of such
configurations and their symmetry groups are presented, as well as geometric representations of the
triangular matroids induced by these configurations.
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1 Introduction

A (finite) incidence structure X is a triple (P, L, I), where P is a set of points, £ is a set of lines (or blocks),
and 7 is an incidence relation on P and £, i.e., 7 € P x L. Apair(p, L) € 7 is called a flag. In that case, we
say that the point p and the line L are incident. We may also say that p lies on L or that L contains p.

A (combinatorial) configuration C of type (v, ny) is an incidence structure of v distinct points and n
distinct lines. We further require that each point is incident with exactly r lines, each line is incident with
exactly k points, and any pair of distinct points is contained in at most one line. Consequently, any pair of
distinct lines has at most one common point.

If C can be (realized) embedded in the real projective plane in the sense of points and straight lines,
then we say that C is geometric. Clearly, every geometric configuration is combinatorial, but the converse is
not valid, see [1].

A configuration (v, ny) with v = n (and by a simple counting argument also r = k) is called a symmetric
configuration. In this case, we simply write ny-configuration.

A triangle in a configuration is a triple of non-collinear points {p;, p,, p3} in which every pair of distinct
points is contained in a line. For the sake of simplicity, we write p;p,ps to denote the triangle {p1, p>, p3}.
A configuration with no triangles is called a triangle-free configuration. In Figure 1, we see that each non-
collinear triple of points in the Fano configuration (left) forms a triangle. On the other hand, the Cremona-
Richmond configuration (right) has no triangles.

Two configurations C; = (P, £1) and C, = (P,, £L,) are said to be isomorphic if there is a bijection
a: P, — P, which maps £; onto £,. Here, a line L = {py,..., px} € L1 is mapped onto L* = {p{,..., p{}.
Thus, isomorphisms are incidence preserving maps. That is, p® € L* if and only if p € L. In this case,
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Figure 1: (@) The Fano 7s-configuration and (b) the Cremona-Richmond 155-configuration.

a is called an isomorphism mapping. If furthermore C = C; = C,, a is called an automorphism. The auto-
morphism group Aut(C) is formed by all automorphisms.

A subgroup G < Aut(C) may be seen as a group acting on points, lines, and flags. A G-orbit on points,
lines, or flags is called a point-, line-, flag-orbit, respectively. The configuration C is called point-, line-, or
flag-transitive, if Aut(C) is transitive on P, L, or the set of flags, respectively. Clearly, flag-transitivity
implies both point- and line-transitivity. If a configuration C has h; orbits of points and h, orbits of lines,
we say that C has (h;, hy)-orbits. If further h = h; = hy, then we simply say that C has h-orbits. If Aut(C)
contains a cyclic subgroup acting transitively on the points, then C is called cyclic.

Furthermore, a configuration C is called k-cyclic if there exists an automorphism a of order k such that
all orbits on points and lines under a are of the same size. In this setting, a cyclic n3-configuration is an n-
cyclic configuration. See [2] for more details.

To each (v, ny)-configuration C = (P, L), we assign another configuration known as the dual config-
uration. It is the (ny, v,)-configuration C* = (£, £), with the roles of points and lines reversed, but with
the same incidences. It is clear that C and C* have the same Levi graphs, except that the colors of classes
(the classes of points and lines) are reversed. If furthermore C is isomorphic to its dual C*, we say that C is
self-dual and the corresponding isomorphism is called a duality. Moreover, a polarity is a duality of order 2.
A configuration admitting a polarity is called self-polar.

We now turn our attention to the relation between ns-configurations and the class of rank-3 matroids. In
particular, we consider the class of rank-3 matroids called triangular matroids, defined recently by Raney [3].

In the literature, a matroid is a structure that is related directly to the notion of linear independence in
vector spaces. A matroid can be defined in many equivalent ways. Here, we define a matroid in terms of its
bases.

A (finite) matroid M is an ordered pair (&, B) of a finite set of elements &, called the ground set of M, and
a nonempty collection B8 of subsets of &, called bases (also called maximal independent sets), satisfying
the following so-called “basis exchange property:” If B; and B, are two distinct bases in B, then for every
a € B; - B,, there exists b € B, — B; such that (B; — {a}) U {b} is a basis in B.

Applying the basis exchange property repeatedly, one can show that any two bases in 8 share the same
cardinality. A matroid with bases of cardinality r is said to have rank r.

Matroid theory has been extensively related and applied to different areas of mathematics including
geometry, topology, group theory, and coding theory.

If C = (P, £) is any n3-configuration, then C defines a rank-3 linear (or vector) matroid M(C) = (&, B).

Here & = P = {p1,..., pn} and B consists of all of the non-collinear point triples p;p;px from #. A simple

n
3

induced by C. It is worth mentioning that M(C) is of rank 3 since each basis in 8B is formed by a triple of non-
collinear points in &.

counting argument shows that 8 contains ( ) - n triples. In this case, we say that the linear matroid M(C) is
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Table 1: n;-configurations inducing triangular matroids and the number of non-isomorphic triangular matroids induced by
n3-configurations

N #e(m) #ui(n) #mat(n)
7 1 0 0
8 0 0
9 3 0 0
10 10 1 1
1 31 0 0
12 229 1 1
13 2,036 1 1
14 21,399 4 4
15 245,342 220 173
16 3,004,881 6,053 2,634
17 38,904,499 166,286 19,930
18 4,126,028 101,910

A fundamental example of a matroid is a uniform matroid. Let & be a ground set of n elements and 8 be
the set of all possible k-subsets of &. Then (€, 8) defines a matroid called the uniform matroid U, ,.
In [3], Raney presented a special class of matroids, called triangular matroids, defined as follows:

Definition 1. Let C = (P, £) be an n3-configuration. A triangular matroid M;;(C), if it exists, is a matroid
(&, B) such that: (I) the ground set & is the set of points £ of C and (II) the collection of bases 8 is the set of
all non-triangular point triples in C.

In this setting, the work in [3] intended to answer the question: if C induces M;;;(C), then what are the
conditions on the triangles of C that must be satisfied?

We note that if C is any triangle-free ns-configuration, then C induces M;(C). In fact, M;(C) is iso-
morphic to U ,. This is because each triple of points in C forms a basis for Mi(C). Hence, the uniform
matroid U3, is constructed. See [3] for more details.

It is possible that two or more non-isomorphic ns-configurations produce isomorphic copies of some
induced triangular matroids. This is discussed in some detail in Section 2.

The search in [3] was established on n3-configurations for n < 15. In this work, we extend that list to up
to n < 18. Furthermore, we present some structural properties for the constructed configurations. We also
correct one miscalculated value which appeared in [3] (written in italics in Table 1).

Table 1 presents the main results of the search for triangular matroids induced by ns-configurations.
The new results are highlighted in bold. Here, #.(n) denotes the number of all non-isomorphic (combina-
torial) n3-configurations, #qi(n) denotes the number of n3;-configurations which induce triangular matroids,
and #mat(n) denotes the number of non-isomorphic triangular matroids induced from these n3-configura-
tions. Note that the entry for #. (18), namely, 530,452,205, was faded to indicate that a special search was
done in that case. That special search was used also for the casesn = 7 through n = 17 for further validation
of the results. This search is explained in Section 3.

2 Properties

We now discuss some of the main properties of n;-configurations which induce triangular matroids. In order
to keep the present work self-contained, we present some of the theoretical results related to triangular
matroids. For proofs and further discussion, the reader can see [3].

A complete quadrangle in a configuration is a set of four points a, b, ¢, and d, no three collinear, for
which all possible lines connecting each pair of distinct points exist. A near-complete quadrangle in a config-
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(a) (b)

Figure 2: A near-quadrangle and a near-pencil in a configuration. (a) Near quadrangle, (b) near-pencil.

uration is a complete quadrangle missing exactly one line connecting one pair of points. A near-pencil
in a configuration consists of the points of a line L and a point a not on L for which a is incident to all points
on L. Figure 2 shows a near-complete quadrangle and a near-pencil.

Theorem 1. An n3-configuration C induces a triangular matroid My;(C) if and only if C does not contain either
a near-complete quadrangle or a near-pencil.

If C satisfies the conditions of Theorem 1, then it induces M;;;(C) = (P, B), where P is the set of points in
C, and 8 is the set of all non-triangular triples of points in C.

Theorem 2. Let C be an n3-configuration with n triangles. If every point in C is incident to exactly three
triangles and no pair of points is incident to more than one triangle, then C is isomorphic to Cyi, where Cy; is
the configuration formed by the n triangles in C.

As an example of Theorem 2, we present one of the four 143-configurations inducing triangular ma-
troids. It is the cyclic 143-configuration (Figure 3) whose automorphism group is Cy, of order 14:

ll 12 13 14 l5 16 17 18 19 IlO lll 112 113 114
1 1 1 2 2 3 3 4 5 5 6 7 10 11
2 6 4 9 6 9 13 7 9 8 8 11 12
3 5 7 8 10 11 12 14 12 13 10 14 13 14

This configuration possesses 14 triangles, triangles t;, 6,..., tj4. Every point is contained in exactly three
triangles, and no pair of points is incident to more than one triangle:

b4 5] [} ty ts ts 1 ts ) tio tn tp b3 b
1 1 1 2 2 3 4 4 5 6 6 7 9 11
2 3 5 3 8 11 5 8 9 7 10 12 10 13

6 7 9 10 12 13 14 12 8 11 14 13 14

These triangles form another configuration on 14 points which is isomorphic to the cyclic one. It is an
isomorphic copy of the configuration in Figure 3.

Note that there exists no one-to-one correspondence between the triangular matroids themselves and
the n3-configurations which induce them. For instance, there are several triangle-free n;-configurations (for
n > 18) inducing the same exact uniform matroid on n points, see [4,5].

But this same idea is also applicable for smaller ns;-configurations. For that purpose, we present two
153-configurations (15A and 15B) in Figure 4.

Each of these configurations consists of six triangles inducing two isomorphic triangular matroids.
Figure 5 shows the geometric representations of the two isomorphic triangular matroids induced by config-
urations 154 and 15B. In the geometric representation, each collinear triple (that is, each non-basis element)
corresponds to a triangle in the configuration it was induced by.
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Figure 4: Two configurations of automorphism groups G x G (of order 4) and G (of order 2). (a) 15A, (b) 15B.

Figure 5: Two isomorphic triangular matroids induced by 15A (left) and 15B (right).
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3 The search

Assume that a list of all n;-configurations C (for some n > 7) is available at hand. One can test the config-
urations in the list for the tests stated in Theorem 1. This creates a (smaller or identical) list of all non-
isomorphic ns-configurations inducing all triangular matroids M;(C). We call this step “INDUCE.” This list
still can have isomorphic copies of triangular matroids (induced by several non-isomorphic configurations).
Hence, we do one last test to clean up the isomorphic copies of these triangular matroids. We call this step
“CLEAN UP.” These two steps were implemented independently by the two authors for 7 < n < 15, and by
the first author for n = 16 and n = 17. The results were in full agreement after all.

Another approach was to directly generate all n;-configurations inducing triangular matroids without
having (storing) the whole list of non-isomorphic n3-configurations. In what follows, we describe the main
steps of this (special) approach. This approach was initially applied for the case n = 18 as indicated in Table
1. The same approach was used again for the cases n = 7 through n = 17 for further validation.

An ns-configuration C can be represented by a {0, 1}-incidence matrix A with n rows and n columns
corresponding to points and lines, respectively. The (i, j)-entry of A is 1 if the point indexed i is incident with
the line indexed j. It is O otherwise.

As A is representing an ns-configuration, it has exactly three ones in each row and exactly three ones in
each column. Moreover, the dot product of two distinct rows (or two distinct columns) is at most one. Two
incidence matrices (and hence their corresponding configurations) are said to be isomorphic if one can be
obtained from the other by permuting the rows and the columns.

We now describe the search algorithm to classify the n3 configurations inducing non-isomorphic
triangular matroids. This algorithm can be considered as an example of the orderly generation method,
see [6]. It has two main parts: the generation and the isomorphism test.

The search first starts with the generation procedure which carries out a row-by-row (or a point-by-
point) backtrack search to consider all possible incidence matrices of ns-configurations having neither a
near-quadrangle nor a near-pencil. It starts initially with the empty matrix (all-zero entries), and it starts to
build a row at each step.

Once a row is constructed by the generation procedure, the algorithm performs another test to check
whether the created incidence matrix agrees with the canonical one. Here, canonical might have a different
meaning depending on what our canonical matrix is defined to be. One example (which we chose) is to
choose the lexicographically least form of the incidence matrix. If the incidence matrix is canonical, we
proceed to the next row and continue the search. Otherwise, we reject it and backtrack.

The algorithm ends up with a list of non-isomorphic ns;-configurations which induce triangular ma-
troids. This list is similar (up to isomorphism) to the list created by the INDUCE step. At this point, we take
that list again to the CLEAN UP step to produce all of the non-isomorphic triangular matroids induced by
these non-isomorphic n3;-configurations. This final CLEAN UP step is crucial since it is possible to produce
isomorphic copies of induced triangular matroids from non-isomorphic copies of n3-configurations as
discussed in Section 2.

We remark that we compute the lexicographically least representative of the isomorphism class of a
matrix using our own algorithm. The complexity of this algorithm is exponential in the size of the input. No
fast algorithm to solve this problem is known.

Moreover, the lexicographically least representative can be replaced by the canonical representative which
can be computed using the idea of canonical augmentation due to McKay [7]. In almost all cases these repre-
sentatives are different. We also tried this method using nauty [8] to compute the canonical representative. We
found that orderly generation using the lexicographically least representative worked better for us. This may not
be seen as a critique of “canonical augmentation.” We did not try very hard to make it work, so a comparison is
unfair. Again in either methods, no fast (i.e. polynomial) algorithm to solve this problem is known.
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4 Results

The main results of the search described in Section 3 are presented in Table 1.

The search was done on a single Mac Laptop (with a Processor 2.2 GHz). The CPU needed for the search
onn = 15, 16, 17, and 18 was 2 min, 26 min, 9 h, and 9.25 days, respectively.

We note that all the presented figures in this paper were produced manually. The main purpose of these
drawings is to emphasize some aspects such as symmetry of the groups and geometric realizations, if
possible. Further study is advised here to study in more detail whether the objects can be realized geome-
trically. But this direction is not the purpose of the presented work.

We present some of the ns-configurations inducing triangular matroids that were constructed using
the algorithm of Section 3 in what follows. But first, we present Table 2 which shows the triangle distri-
bution of ns-configurations inducing triangular matroids. Here, #tri(n) and #mat(n) are defined in the
same way as in Table 1. The two columns denoted by Ayi(n) and Apa¢(n) present the number (and multi-
plicity) of the triangles of the related ns-configurations. That is, an entry a* means that there are x n3
configurations inducing triangular matroids each of which have a triangles. For instance, the first
entry written as 20! means that the 105-configuration has 20 triangles and this type occurs once.

We might have (in the same table row) a* and @’ in the third and fourth columns, respectively, with
y < x. This means that we have several (y — x + 1) non-isomorphic ns;-configurations, each of whose in-
duced triangular matroids is shared by at least one other ns;-configuration. For instance, in the row ofn = 15
we have 6* (in Ayi(n)) and 63 (in Apa(n)). This means that there exist two non-isomorphic 15;-configurations,
each having six triangles, that produce isomorphic copies of the same induced triangular matroid. This fact
has already been discussed in Section 2 (Figure 4).

Table 3 gives the distribution of non-trivial automorphism groups of n3-configurations which only
produce non-isomorphic induced triangular matroids. The ‘ago’ column presents the automorphism group
orders while the ‘Aut’ column presents the automorphism group type. An entry a* in the ago column means
that we have x geometries with automorphism group order a. In the same corresponding position of the Aut
column, the group type is shown. The group types listed in the last column of Table 3 can be described using
the Gap-command “StructureDescription,” see [9] for further details.

We use C, and D, to denote the cyclic group of order n and the dihedral group of order 2n, respectively.
For groups H and K, let H : K be a split extension of H by K (with normal subgroup H).

Table 2: Triangle distribution of ns-configurations inducing triangular matroids

n  #tri(n) Dyi(n) Apat(n) #mat(n)
10 1 20! 20t 1
12 1 12 12! 1
13 1 13 13 1
14 4 6';10% 14 6'; 10%; 14! 4
15 220 QY 42; 645 79; 836; 938; 10%4; 117, 1229, 1318, 01 42; 63; 79; 829; 934; 1058; 1114, 1211, 137, 173
1410; 15! 14%; 15!
16 6,053  3l, 44, 526, 106, 7401, 81053, 91602, 1(j1501, 3L; 44, 512, 631, 797, 8277, 9587, 10834, 11531, 2,634
11796; 12324; 13139; 1462; 1520; 1618 12171; 1347; 1424; 157; 1611
17 166,286 (1, 26; 318, 4172, 5901, (4595, 714986, 832868, 01; 22; 32; 48, 522, 77, 7240, 8876, 2685, 19,930
944726, 138145, 1119183, 126514, 132303, 141140, 15523, (6036, 116296, 122777, 13619, 14176, 1572,
16'85; 17'8; 182 1634; 17%; 18!
18 4,126,028 (%, 19; 2109, 3856, 46293, 535717, (148976, 7430096, 0l; 11 22; 35; 414, 530, 693, 7306, 81239, 101,910
8836226, 91070498, 1()881174, 11463553, 1171309, 1355145, 95013, 1()16845, 1133667, 129435, 1311366, 142879,
1417702; 155685; 162017; 17534; 1887; 1927; 209; 15703;

21 22 162165 1757; 18'8; 19%; 20%; 21%; 22!
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Table 3: Automorphism group types (excluding trivial groups)

n ago Aut
10 120 Ss
12 72 (C3 x A4) : C2
13 39 C13:C3
14 4,8,14 Cs, Day s
15 2%5,39, 45, 4,5, GG GxG GG,
63, 6°, 8,82, 10, Ce» S3, Dy, G X G x G, Ds,
24,30, 482,720 G x Ay, G x Ds, G x 54, S¢
16 2114 319 48 4, 6, G, G, GxG, GG,
64, 82, 8, 12, 16, S3, Dy, C4 x G, Dg, G,
32,32, 96 (Cex G): G, SDyg, (C4x Cp) : G) : G
17 2288 34 419 4, G G, Gx G, G
6, 122,17 S3, Dg, G
18 2568 349 413 £9 67, G, G, G x G, Cyy S3,
64, 82,122, 182, 24, Ce, G x G x G, Dg, Gg, G X G x S3,
482,72,1442 G x5, (55%55):6G,5 xS,

We now present some properties of some of the n3-configurations inducing non-isomorphic triangular
matroids. In what follows, we write nj-configuration to denote an n3-configuration whose automorphism
group order is x.

4.1 145-configurations inducing triangular matroids

For the 143-configurations, there is a unique 143-configuration which induces a triangular matroid with a
transitive group. Its automorphism group is Cy, of order 14. Hence, it has one orbit on points (and one orbit
on lines as well). It is the 143*-configuration presented in Figure 3. It is cyclic as it has a transitive auto-
morphism group Cy4.

Figure 6 shows one of the four 14;-configurations (namely, 145 with six triangles) which induces the
triangular matroid described by its geometric representation. This configuration has 4-orbits with auto-
morphism group D, of order 8. Points of the same color belong to the same point-orbit.

C € ® )

U ® 4D
(a) (b)

Figure 6: The 145-configuration which induces a triangular matroid. (a) 145-configuration, (b) induced a triangular matroid.

®
@)
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4.2 153-configurations inducing triangular matroids

There are 220 15s5-configurations inducing triangular matroids. Among these we found several examples of
configurations inducing isomorphic triangular matroids. Thus, we cleaned up this list to get exactly 173
153-configurations which induce non-isomorphic triangular matroids. There are only two configurations
among these with transitive groups. Namely, these are the ones with automorphism groups S¢ and G x Ds
of orders 720 and 30, respectively.

An example of a 155-configuration which induces a triangular matroid is already presented in Figure 1.
It is the Cremona-Richmond 15§2°-conﬁguration. Its automorphism group (Se) is transitive on its flags (hence
on points and on lines). This configuration is the smallest triangle-free configuration. Hence, its induced
triangular matroid is the uniform matroid on 15 points.

Figure 7 presents the unique 153-configuration. It induces a triangular matroid whose geometric re-
presentation is also presented. As it can be seen, it has ten triangles. It has five points incident with three
triangles, five points incident with two triangles, and five points incident with only one triangle. This
configuration has 3-orbits as it has three point-orbits (of the same size 5) under the action of Cs. The three
point-orbits are shown in the figure as different colors. Its automorphism group can be generated by
16141292511 37)(4 8 13 15 10).

We next present the unique 15)°-configuration which induces a triangular matroid. These two structures
are shown in Figure 8. The automorphism group here is D5 of ago 10. Some points in the diagram of the
configuration were duplicated to show a better presentation of the structure of the group which can be
generated by

(123 14)(4 7)(6 15)(8 9)(10 12)(11 13) and (1 3)(2 11)(4 9)(5 6)(7 13)(8 14)(12 15).

It induces two point-orbits of lengths 10 and 5. These two orbits are shown in two different colors in the
diagram. Each point of the configuration is incident to two triangles where the number of triangles is 10. The
geometric representation of the induced triangular matroid is also presented. As it can be seen, it has ten
triangles. It is in fact an (15,, 103)-configuration.

There is a unique 15}*-configuration which induces a triangular matroid. It has 14 triangles. Figure 9
shows this configuration along with its induced triangular matroid. It has (4, 3)-orbits under its auto-
morphism group Dy of order 12. Again, we give different colors to points in different orbits.

Note that in the geometric representation of the induced triangular matroid, four collinear points in the
geometric representation means that each of the four possible point triples taken from these four points
defines a triangle in the configuration. For instance, any point triples taken from the four collinear points
(complete quadrangle) {3, 4, 12, 15} defines a triangle in the configuration.

Figure 7: The 153-configuration with ago 5 inducing a triangular matroid. (a) 153-configuration, (b) induced triangular matroid.
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Figure 9: The 15%2—conﬁguration along with its induced triangular matroid. (a) 15%27conﬁguration, (b) induced triangular matroid.

The unique 153°-configuration is drawn in Figure 10. The automorphism group C; x Ds is transitive on
this configuration. It has one orbit on points and one orbit on lines.

This configuration has 15 triangles. Each point is incident to three triangles, with no pair of points
incident to a triangle more than once. Its triangles are blocks of another 1553 configuration isomorphic to this
153°-configuration, see Theorem 2.

The 15 triangles of this configuration are as follows:

4 t t3 ty ts ts t; tg to tio ti ti ti3 tiy tis

1 1 1 2 2 2 3 3 3 4 5 5 6 6 7
10 12 13 4 5 11 6 10 12 7 8 7 9 8
11 14 15 9 12 15 8 13 14 13 11 14 10 15 9

sy

4.3 163-configurations inducing triangular matroids

There are 2,634 165-configurations inducing non-isomorphic copies of triangular matroids. Among these
there are four configurations with transitive automorphism groups. Their automorphism group orders are
16, 32,32, and 96.
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Figure 10: The unique 153°-configuration.

One of the four configurations with a transitive automorphism group is the cyclic 16X°-configuration.
This configuration is presented in Figure 11. Its automorphism group is Ci¢ and it is flag-transitive. It has 16
triangles inducing an isomorphic 163-configuration.

There are two 163’-configurations (16A and 16B) inducing non-isomorphic triangular matroids. The
automorphism groups for 164 and 16B are (Cg x () : G, and SDy¢ (the semidihedral group of order 32),
respectively. Both configurations have 16 triangles in the setting of Theorem 2. These two groups are
transitive (but not cyclic). Figure 12 presents these two configurations.

The 163-configuration inducing a triangular matroid with the largest automorphism group order is
presented in Figure 13. Its automorphism group ((C4 x C4) : G) : G, of order 96 is flag-transitive. It has 16
triangles.

4.4 173-configurations inducing triangular matroids

In this case, we found 166,286 17-configurations inducing triangular matroids. Applying the CLEAN UP
procedure results in exactly 19,930 configurations inducing non-isomorphic triangular matroids. Among
these, we found two 177-configurations with the automorphism group Dg of order 12. One is the unique
triangular-free (self-polar) configuration on 17 points. The other one is a self-polar configuration with 14
triangles. Both have 4-orbits and the length of their orbits on points and lines is 6, 6, 3, and 2. Figure 14
shows their incidence matrices.

Figure 11: The unique cyclic 16}°-configuration inducing a triangular matroid.
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Figure 13: The unique 163°-configuration inducing a triangular matroid.

ll 13 ]5 llJ 116 ,17 lZ 14 ZS 110 Ill llZ Ib ]15 17 14 lld ll 12 l-’l 115 116 ll7 13 ,5 ZS 111 112 113 ]6 114 17 ,‘? llU
1]X 1]x
2|x| X X 2 (x| [Xx X
6| |X| [X X 41 |IX[X X
11 X[ [Xx X 15 X|X X
16 X|X X 16 X| X X
17 X| X X 17 X | X X
3[X x| Ix 3[X x| X
7] [X X X 50 [X X X
10 X x| |Xx 8 X X X
12 X X X 11 X X|X
13 X X X 12 X x| X
15 X XX 13 X X X
4 X[ [X X 6 X[X][X
9 x| |X X 14 X | X |X
14 X | X X 7 X X X
5 X X[X 9 X X X
8 XX X 10 X X X

Figure 14: The incidence matrices of (a) the unique triangle-free 1%-configuration and (b) a self-polar 17;-configuration with 14
triangles.
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4.5 183-configurations inducing triangular matroids

In this case, we see a considerable increase in the number of n3-configurations inducing triangular ma-
troids. We found (up to isomorphism) 4,126,028 18;-configurations which induce triangular matroids, and
101,910 non-isomorphic triangular matroids in total. There are 23 triangle distributions in this case.

We first present a 6-cyclic (in the terminology of [2]) 18§-conﬁguration which induces a triangular
matroid. Its automorphism group is Cq of order 6. It has three orbits on points and three orbits on lines
where each orbit has length 6. Figure 15 shows this configuration which happens to be a self-polar con-
figuration. The point-orbits are presented as different colors. We also present the geometric representation
of the induced triangular matroid.

We found three flag-transitive configurations among the 4,126,028 18s-configurations. Their auto-
morphism groups are Cig, Cig, and (S3 x S3) : G, with orders 18, 18, and 72, respectively. We also found one
point-transitive and another line-transitive configuration. Both of these have S5 x S, as their automorphism
group with order 144.

Figure 16 shows a realization for the 18%>-configuration which is flag transitive. It has six triangles where
each point is incident to exactly one triangle.

The other two flag-transitive configurations have automorphism group C;g. They are cyclic configura-
tions having 18 triangles each, but their respective triangular matroids are non-isomorphic. We present
these two configurations in Figure 17.

Figure 16: The unique 185%-configuration inducing a triangular matroid.



1578 — Abdullah Alazemi and Michael Raney DE GRUYTER

Figure 18 shows two incidence matrices associated with the two 18}*-configurations; both configura-

tions have the automorphism group S; x S,;. The configurations 18L and 18P are line-transitive ((2,1)-orbits)
and point transitive ((1,2)-orbits), respectively. Configuration 18L has two point-orbits of length 12 and 6. On
the other hand, configuration 18P has two line-orbits of length 12 and 6. In fact, these two configurations are
dual. By dual configuration, we mean that the roles of points and lines in the dual configuration are

Figure 17: Two cyclic 18%-configurations with 18 triangles inducing non-isomorphic triangular matroids.

Liib|ls|l)ls |l |17 |ls |l |holh |ha|hs|ha|hs|he| h7|hs bl ko |la |6 |ho|hi|ha|ha|hs|he by |hsh s | 15 | 17 | Is | 1o |
1X[X|X 1]X
2[X X|X 2|X[ |X X
4] x| [x X 31X X X
6 X| [X X 4] XX X
10 X X| X 50 [x] |x X
1 X X| X 6 X|X X
12 X x| [X 7 X|X X
13 X x| [x 8 X[X X
15 X X X 9 X X X
16 X X X 10 X X X
17 X X| [X 11 X X X
18 X x| [X 12 X X X
3[X XX 13 X X X
50 X X|X 14 x| X X
7 X XX 15 X X X
8 X X[ X 16 X X X
9 X X |X 17 x| [x X
14 X X|X 18 x| [x X
(a) (b)

Figure 18: Two dual 183**-configurations inducing non-isomorphic triangular matroids. (a) 18L, (b) 18P.
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Figure 19: Two geometric representations of triangular matroids induced by (a) 18L and (b) 18P.
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Ll |l L)l |Ishle |7 |l |ho|hi|h2|hs|ha|hs |he|hz|hs Ll |lalle)ls|ls |17 |ls | 1o |hafho|n |ha|hs|hs | he|hz| hs
1[X[X[X 11X X
21X X|X 2 (x| |X X
4] x| x| |x 31X X X
6 X| [X]X 4] [X|Xx X
3[X XX 50 x| [x X
5] X X|X 8 X[ X X
7 X X|X 6 X X[X
8 X X|X 7 X X |X
9 X X |X 9 X X X
14 X XX 10 X X X
10 X[ [x][ [x 11 X X X
11 X x| [X 12 X X X
12 x| x| [X 13 X X X
13 X x| [x 14 X X|X
15 X X X 15 X X X
16 X X X 16 X X X
17 X x| |x 17 X X X
18 X X [Xx 18 X X|X
(a) (b)

Figure 20: A pair of dual 184%-configurations. (a) An incidence matrix associated with an 1848-configuration inducing a triangular
matroid. It is (3, 2)-orbits and it consists one of the six 3-regular graphs on 8 points. (b) The dual of (a).

reversed. The configuration 18L consists of three (43, 6,)-subconfigurations (or complete quadrangles),
while configuration 18P consists of three (6,, 43)-subconfigurations (or complete quadrilaterals).

The geometric representations of the induced triangular matroids by the dual pair 18L and 18P are
presented in Figure 19.

Another example of a dual pair of 18;-configurations inducing non-isomorphic triangular matroids is
presented in Figure 20. This time we provide the incidence matrices associated with this dual pair of
18%%-configurations.

Acknowledgments: The authors would like to thank the two referees for the helpful suggestions and
comments.
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