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Abstract: The purpose of this paper is to introduce the logarithmic mean of two convex functionals that
extends the logarithmic mean of two positive operators. Some inequalities involving this functional mean
are discussed as well. The operator versions of the functional theoretical results obtained here are imme-
diately deduced without referring to the theory of operator means.
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1 Introduction

The mean theory arises in various contexts and recently has extensive developments and various applica-
tions. It attracts many mathematicians by its interesting inequalities and nice properties. See [1] for recent
advances in mathematical inequalities. The mean theory was introduced first time for positive real numbers
for over the last few centuries [2]. Afterward, it has been extended from positive real numbers to positive
operator arguments, see [3,4] for instance.

For over the last few years, many operator means have been extended from the case where the variables
are positive operators to the case where the variables are convex functionals, see [5–11]. Such functional
extensions were investigated in the sense that if ( )m A B, is an operator mean between two positive linear
operators A and B acting on a complex Hilbert space H, then the extension of ( )m A B, when A and B are
replaced by two convex functionals f and g, respectively, is a functional �( )f g, that satisfies the following
connection-relationship:

� � � �( ) = ( ), ,A B m A B,

where the notation �A refers to the convex quadratic function generated by the positive linear operator A,
i.e., � ( ) = ( / )〈 〉x Ax x1 2 ,A for all ∈x H .

This functional approach, which was investigated under a convex point of view, stems its importance in
different facts. First, its related results can be proved in a fast and nice way by virtue of the convex character
of the functional approach. Second, its related operator version, which coincides with the previous one, can
be immediately deduced without referring to the techniques of the operator mean theory. Third, as it is well
known the operator mean theory has been investigated when the involved operators act on a Hilbert space.
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However, the functional mean theory works when the referential space is just a locally convex topological
vector space E, especially if E is a real or complex normed vector space. In this paper, this latter point will be
explored and explained in a detailed manner.

The present manuscript is organized as follows: Section 2 is devoted to state some basic notions from
convex analysis that will be needed throughout the next sections. Section 3 deals with the primordial and
typical example of convex functional generated by a positive linear operator. In Section 4, we recall some
means with functional arguments that were recently investigated in the literature. Section 5 discusses
further properties about the three standard arithmetic/harmonic/geometric functional means. Section 6
displays the logarithmic mean with convex functional variables that extends the logarithmic mean of
positive operators. Section 7 deals with some inequalities involving the previous logarithmic functional
mean. As already pointed before, the operator versions of all functional results obtained in this paper are
immediately deduced without any more tools. Otherwise, the present work highlights the importance of the
convex analysis when applied to the theory of operator/functional means.

2 Background material from convex analysis

We collect in this section some basic notions and results about the Fenchel duality in convex analysis. For
more details, we refer the interested reader to [12–16] for instance.

Let E be a real or complex locally convex topological vector space and E⁎ its topological dual. The
notation 〈 〉.,. refers to the bracket duality between E and E⁎. Throughout the following, we set

� � � �≕ ∪ {+∞} ≕ ∪ {−∞ +∞}, , .

We also denote by � E the set of all functionals defined from E into �.

• As usual in convex analysis, we extend here the structure of the field � to � by setting, for any �∈a ,

+ (+∞) = +∞ (+∞) − (+∞) = +∞ ⋅(+∞) = +∞a , , 0 ,

and the total order of � is extended to � by, ≤a b if and only if − ≥b a 0, with the usual convention
−∞ ≤ ≤ +∞a , for any �∈a b, . We pay attention here to the fact that ≤a b is not equivalent to

− ≤a b 0, by virtue of the convention (+∞) − (+∞) = +∞.

• Let �→f E: be a given functional. As usual, we say that f is convex if

(( − ) + ) ≤ ( − ) ( ) + ( )f t x ty t f x tf y1 1

whenever ∈x y E, and ∈ [ ]t 0, 1 . For a subset C of E, we denote by �→EΨ :C the indicator function of C
defined by ( ) =xΨ 0C if ∈x C and ( ) = +∞xΨC else. It is easy to see that the set C is convex if and only if ΨC
is a convex functional. Furthermore, if C is convex, then f is convex on C if and only if +f ΨC is convex. By
virtue of the definition of the indicator function and its properties, it is henceforth enough to consider
functionals defined on the whole space E.

• We denote by fdom the effective domain of f defined by = { ∈ ( ) < +∞}f x E f xdom : and we say that f is
proper if f does not take the value −∞ and f is not identically equal to +∞. Clearly, if f is proper, then

≠ ∅fdom . Furthermore, if f is a convex functional, then fdom is a convex set, but the converse is not
always true. For example, if E is a normed space and we take ( ) = −∥ ∥f x x , then =f Edom is a convex set
while f is not a convex function.

• The notation ( )EΓ0 stands for the set of all convex lower semi-continuous (l.s.c) proper functionals defined
on E. It is well known that ∈ ( )f EΓ0 if and only if the epigraph of f, namely, �( ) ≕ {( ) ∈ ×f x λ Eepi , :

( ) ≤ }f x λ , is convex and closed in �×E . It is not hard to see that if C is a nonempty convex closed subset

of E, then ΨC belongs to ( )EΓ0 and vice versa. It is easy to check that ( )EΓ0 is a convex cone of � E. That is,
if ∈ ( )f g E, Γ0 and ≥α 0 is a real number, then + ∈ ( )f g EΓ0 and ∈ ( )α f E. Γ0 .
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• Let �→f E: . The Fenchel conjugate (or dual) of f is the functional �→f E:⁎ ⁎ defined by

R R∀ ∈ ( ) ≕ { 〈 〉 − ( )} = { 〈 〉 − ( )}
∈ ∈

x E f x e x x f x e x x f xsup , sup , .
x E x f

⁎ ⁎ ⁎ ⁎ ⁎

dom

⁎

It is worth mentioning that if ( ) = −∞f x0 for some ∈x E0 , then ( ) = +∞f x⁎ ⁎ for any ∈x E⁎ ⁎. For fixed
∈x E, the real maps R↦ ( ) ≕ 〈 〉 − ( )x ϕ x e x x f x,x

⁎ ⁎ ⁎ are linear affine and l.s.c and so f ⁎ is convex and l.s.c
as a supremum of a family of convex and l.s.c functionals, even if f is or not convex l.s.c. The following
inequality, known as Fenchel inequality,

R 〈 〉 ≤ ( ) + ( )e x x f x f x,⁎ ⁎ ⁎ (2.1)

holds for any ∈x E and ∈x E⁎ ⁎. It is easy to check that ( + ) = −f c f c⁎ ⁎ for any �∈c . Furthermore, if for
>α 0 we define ( )( ) ≕ ( )f x αf xα. and ( )( ) ≕ ( / )f α x αf x α. , then one can easily check that

( ) = ( ) =α f f α f α α f. . and . . .⁎ ⁎ ⁎ ⁎ (2.2)

The duality map ↦f f ⁎ is point-wisely increasing and convex. That is, for any �∈f g, E and ∈ [ ]t 0, 1 we
have, ≤ ⇒ ≤f g g f⁎ ⁎ and

(( − ) + ) ≤ ( − ) +t f tg t f tg1 1 ,⁎ ⁎ ⁎ (2.3)

where the notation ≤f g refers to the partial point-wise order defined by: ≤f g if and only if ( ) ≤ ( )f x g x ,
i.e., ( ) − ( ) ≥g x f x 0, for any ∈x E.

• For �→f E: we denote by f ⁎⁎ the bi-conjugate (or bi-dual) of f defined from E into � by

R∀ ∈ ( ) ≕ { 〈 〉 − ( )}
∈

x E f x e x x f xsup , .
x E

⁎⁎ ⁎ ⁎ ⁎
⁎ ⁎

It is worth mentioning that, by definition, f ⁎⁎ is not the conjugate of f ⁎, and so whenever we speak for the
Fenchel duality, we use only the duality 〈 〉.,. between E and E⁎ and that between E⁎ and E⁎⁎ is omitted,
unless E is a reflexive Banach space, i.e., =E E⁎⁎ as Banach spaces case for which the two preceding
dualities coincide. The following inequality ≤f f⁎⁎ holds true. We sometimes call f ⁎⁎ the convex closure
of f, i.e., f ⁎⁎ is the greatest convex l.s.c function less than f. Furthermore, ∈ ( )f EΓ0 if and only if =f f⁎⁎ .

• Let ∈x fdom . The notation ∂ ( )f x refers to the sub-differential of f at x defined by

R∂ ( ) ≕ { ∈ ( ) ≥ ( ) + 〈 − 〉 ∈ }f x x E f z f x e x z x z E: , , for any .⁎ ⁎ ⁎

Note that ∂ ( )f x is a subset of E⁎ always convex and closed but possibly empty. However, if the topological
interior of fdom , denoted by ( )fint dom , is not empty then ∂ ( ) ≠ ∅f x for any ∈ ( )x fint dom . The following
equivalence

R∈ ∂ ( ) ⇔ ( ) + ( ) = 〈 〉x f x f x f x e x x,⁎ ⁎ ⁎ ⁎

holds true. If ∈ ∂ ( )x f x⁎ , then ∈ ∂ ( )x f x⁎ ⁎ , with reverse implication provided that ∈ ( )f EΓ0 .

• Let ∈x fdom and ∈d E. The directional derivative of f in the direction d at x is defined by

′( ) ≕
( + ) − ( )

↓
f x d f x td f x

t
, lim ,

t 0

provided that this limit exists. We say that f is Gâteaux-differentiable, in short G-differentiable, at x if
the map ↦ ′( )d f x d, is linear continuous, i.e., ′( ) = 〈 〉f x d z d, ,⁎ for some ∈z E⁎ ⁎. Such z⁎ is unique and
we set ≕ ∇ ( )z f x⁎ , which is called the G-gradient of f at x. If f is convex and G-differentiable at x, then
∂ ( ) = {∇ ( )}f x f x . Inversely, if f is convex and ∂ ( )f x is a singleton, then f is G-differentiable at x and ∂ ( ) =f x
{∇ ( )}f x .

• Let �∈f g, E. The inf-convolution of f and g is defined by

∀ ∈ ( ) ≕ { ( ) + ( − )}
∈

x E f g x f z g x z□ inf .
z E
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It is well known that ( ) = +f g f gdom □ dom dom . Furthermore, if f and g are convex, then so is f g□ ,
but ∈ ( )f g E, Γ0 does not imply ∈ ( )f g E□ Γ0 . Otherwise, the following relationship holds true

( ) = +f g f g□ .⁎ ⁎ ⁎ (2.4)

However, the relationship( + ) =f g f g□⁎ ⁎ ⁎ is not always true. Note that by (2.4)wehave( + ) = ( )f g f g□⁎ ⁎ ⁎ ⁎⁎.
Therefore,

( + ) = ⇔ ∈ ( )f g f g f g E□ □ Γ .⁎ ⁎ ⁎
0 (2.5)

In the literature, we can find a list of assumptions under which the condition ∈ ( )f g E□ Γ0 holds. For
example, if the following condition

( ) ∩ ≠ ∅ ∩ ( ) ≠ ∅f g f gint dom dom or dom int dom ,⁎ ⁎ ⁎ ⁎ (2.6)

holds, then ∈ ( )f g E□ Γ0 . For more information and details about this latter point, we refer the interested
reader to [14–16] for instance.

3 Generated function by linear operator

In this section, we consider a typical and interesting example of a convex functional generated by a linear
operator. Here, H denotes a real or complex Hilbert space. Following the Riesz representation, the bracket
duality here is the inner product of H, also denoted by 〈 〉.,. . We then denote by �( )H the space of all
bounded linear operators defined from H into itself. For �∈ ( )A H , we say that A is positive, and we write

≥A 0, if 〈 〉 ≥Ax x, 0 for any ∈x H . The positiveness of operators generates a partial order between self-
adjoint operators defined by: ≤A B if and only if A and B are self-adjoint and − ≥B A 0. We say that A is
strictly positive, and we write >A 0, if A is positive and invertible. If H is a finite dimensional space, then A
is strictly positive if and only if 〈 〉 >Ax x, 0 for any ∈x E, with ≠x 0. We denote by � ( )+ H⁎ the set of all
positive invertible operators in �( )H .

For every �∈ ( )A H we can derive a functional �A defined by

�∀ ∈ ( ) = 〈 〉x H x Ax x1
2

, ,A

which will be called the quadratic function generated by A. Note that, as we will see later, the coefficient
( / )1 2 appearing in �A play a good tool for a symmetrization reason when computing the conjugate of �A. It is
clear that � ( ) ≕ ∥ ∥x xI

1
2

2, where I is the identity operator of H and ∥⋅∥ is the Hilbertian norm of H.
The elementary properties of �A are summarized in the following proposition.

Proposition 3.1. Let �∈ ( )A B H, . Then the following assertions hold:
(i) Assume that A and B are self-adjoint. Then, � �≤ (≥)A B if and only if ≤ (≥)A B.
(ii) � � �+ = +A B A B and � �=α A αA for any real number α.
(iii) �A is continuous. Furthermore, �A is convex if and only if A is positive.
(iv) Assume that �∈ +A ⁎(H). Then the conjugate of �A is given by

�∀ ∈ ( ) = 〈 〉−x E x A x x1
2

, ,A
⁎ ⁎ ⁎ ⁎ 1 ⁎ ⁎

or, in short,

� �= − .A A
⁎ 1 (3.1)

(v) �A is G-differentiable at any ∈x H . If further A is self-adjoint, then �∇ ( ) =x AxA . So, ∂ ( ) = { }f x Ax
whenever A is (self-adjoint) positive.

(vi) Let �∈ +A B, ⁎(H). Then � � �= //□A B A B, where // ≕ ( + )− − −A B A B1 1 1 is called the parallel sum of A and B.
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Proof. The proofs of (i), (ii), (iii) and (v) are straightforward. For the proof of (iv), see [17] for instance. For
more details about (vi) we can consult [18,19]. □

Remark 3.2. By (3.1) we immediately deduce that � �= ≕ ∥⋅∥I I
⁎ 1

2
2. That is, ∥⋅∥

1
2

2 is self-conjugate. By using

the Fenchel inequality (2.1) it is not hard to check that ∥⋅∥
1
2

2 is the unique self-conjugate functional defined
on a Hilbert space.

We have the following result as well.

Theorem 3.3. Let �( ) × ( ) →H HΦ : Γ Γ H
0 0 and �( ) × ( ) →H HΨ : Γ Γ H

0 0 be two binary maps such that ( )f gΦ ,
≤ ( )f gΨ , for any ∈ ( )f g H, Γ0 . Assume that, for any �∈ ( )+A B H, ⁎ we have

� � � � � �( ) = ( ) =( ) ( )andΦ , Ψ , ,A B θ A B A B γ A B, ,

where �( ) ( ) ∈ ( )θ A B γ A B H, , , are self-adjoint. Then

( ) ≤ ( )θ A B γ A B, , .

Proof. Since �∈ ( )+A B H, ⁎ , by Proposition 3.1(iii) we have � � ∈ ( )H, ΓA B 0 . It follows that � �( ) ≤Φ ,A B
� �( )Ψ ,A B and so � �≤( ) ( )θ A B γ A B, , , with ( )θ A B, and �( ) ∈ ( )γ A B H, are self-adjoint. By Proposition 3.1(i),

we conclude that ( ) ≤ ( )θ A B γ A B, , and the proof is complete. □

Theorem 3.3 is a simple and central result which will be substantially used throughout this paper. It
shows how to obtain an operator inequality from an inequality involving convex functionals. The following
examples give more explanation about the use of this theorem as well as the preceding properties and
concepts. Further examples of interest will be seen in the next sections.

Example 3.4. Let �∈ ( )+A B H, ⁎ . Assume that ≤A B, then by Proposition 3.1(i), we have � �≤A B. By the
point-wise decrease monotonicity of the Fenchel duality we infer that � �≤B A

⁎ ⁎ and by (3.1) we deduce that
� �≤− −B A1 1. Again by Proposition 3.1(i) we conclude that ≤− −B A1 1. This means that the map ↦ −X X 1, for

�∈ ( )+X H⁎ , is operator monotone (increasing).

Example 3.5. For fixed ∈ [ ]t 0, 1 , we set

( ) = (( − ) + ) ( ) = ( − ) +f g t f tg f g t f tgΦ , 1 and Ψ , 1 .⁎ ⁎ ⁎

Following (2.3) we have ( ) ≤ ( )f g f gΦ , Ψ , for any ∈ ( )f g H, Γ0 . Since �∈ ( )+A B H, ⁎ , by Proposition 3.1(iii)
one has � � ∈ ( )H, ΓA B 0 . Furthermore, by Proposition 3.1(ii) and (3.1) we can write

� � �

� � �

( ) = ( ) = (( − ) + )

( ) = ( ) = ( − ) +

( )
−

( )
− −

θ A B t A tB
γ A B t A tB

Φ , , with , 1 ,
Ψ , , with , 1 .

A B θ A B

A B γ A B

,
1

,
1 1

According to Theorem 3.3 we conclude that ( ) ≤ ( )θ A B γ A B, , . This means that the map ↦ −X X 1, for
�∈ ( )+X H⁎ , is operator convex.

4 Functional means

In this section, we recall some functional means already investigated in the literature. Throughout this
section and the next ones, E denotes a real or complex topological locally convex vector space, as previous,
and H denotes a real or complex Hilbert space.

Let ( ) ∈ ( )f g E, Γ0 and ∈ ( )λ 0, 1 . The following expressions [7]

∫∇ ≕ ( − ) + ! ≕ (( − ) + ) # ≕
( )

( − )
!

−

f g λ f λg f g λ f λg f g πλ
π

t
t

f g t1 , 1 , sin
1

dλ λ λ
λ

λ t
⁎ ⁎ ⁎

0

1
1

(4.1)
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are known as the λ-weighted functional arithmetic mean, the λ-weighted functional harmonic mean and
the λ-weighted functional geometric mean of f and g, respectively. For = /λ 1 2, they are simply denoted by

∇ !f g f g, and #f g , respectively. For another definition of #f g as point-wise limit of an algorithm des-
cending from ∇f g and !f g we can refer to [5].

Remark 4.1.
(i) The λ-weighted functional geometric mean can be written as follows:

∫# = ! ( ) ∈ ( )f g f g ν t λd , 0, 1 ,λ t λ

0

1

where ( )ν tλ defines a family of probability measures on the interval ( )0, 1 defined by

( ) ≕
( )

( − )
∈ ( )

−

ν t πλ
π

t
t

t λd sin
1

d , 0, 1 .λ
λ

λ

1
(4.2)

(ii) Although the previous functional means can be defined, by the same expressions, even ∉ ( )f g E, Γ0 , we
restrict ourselves throughout this paper to assume that ∈ ( )f g E, Γ0 . In this case, ∇ !f g f g,λ λ and #f gλ

belong to ( )EΓ0 provided that ∩ ≠ ∅f gdom dom .

We extend the previous functional means on the whole interval [ ]0,1 by setting:

∇ = ! = # = ∇ = ! = # =f g f g f g f f g f g f g gand .0 0 0 1 1 1 (4.3)

We pay attention that these latter relations cannot be deduced from (4.1), by virtue of the convention
(+∞) = +∞0. . The previous functional means satisfy the following relationships:

∇ = ∇ ! = ! # = #− − −f g g f f g g f f g g f, , ,λ λ λ λ λ λ1 1 1 (4.4)

for any ∈ [ ]λ 0, 1 . The two first relationships of (4.4) are immediate and for the third one we can consult [7].
In particular, if = /λ 1 2, the three previous functional means are symmetric in f and g. Note that ∇ =f fλ

! = # =f f f f fλ λ . Furthermore, the following inequalities hold, see [7]

! ≤ # ≤ ∇f g f g f g,λ λ λ (4.5)

and ∇ ! # ∈ ( )f g f g f g E, , Γλ λ λ 0 provided that ∩ ≠ ∅f gdom dom . Denoting by mλ one of any mean among
∇ ! #, ,λ λ λ and utilizing (2.2), we can easily see that, for any >α 0,

= ( ) = ( )α fm α g α fm g f αm g α fm g α. . . and . . . .λ λ λ λ (4.6)

Otherwise, for any �∈ ( )+A B H, ⁎ , we have the following relationships:

� � � � � � � � �∇ = ! = # =∇ ! #, , ,A λ B A B A λ B A B A λ B A Bλ λ λ (4.7)

where

∇ ≕ ( − ) + ! ≕ (( − ) + ) # ≕ ( )− − − / − / − / /A B λ A λB A B λ A λB A B A A BA A1 , 1 ,λ λ λ
λ1 1 1 1 2 1 2 1 2 1 2 (4.8)

stands for the λ-weighted operator arithmetic mean, the λ-weighted operator harmonic mean and the
λ-weighted operator geometric mean of A and B, respectively. For = /λ 1 2, they are also simply denoted
by ∇ !A B A B, and #A B, respectively. The relationships (4.7) justify that the previous functional means are,
respectively, extensions of their related operator means. Furthermore, according to Theorems 3.3, (4.5) and
(4.7) immediately imply that the following operator inequalities

! ≤ # ≤ ∇A B A B A Bλ λ λ (4.9)

hold for any �∈ ( )+A B H, ⁎ and ∈ [ ]λ 0, 1 . It is worth mentioning that (4.9), which are well known in the
operator mean theory, are here again obtained in a simultaneous manner and under a convex point of view
that does not need to refer to the techniques of functional calculus.
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5 More properties for f g f g f g, ,λ λ λ∇ ! #

In this section, we will be interested in studying other properties of the functional means ∇ !f g f g,λ λ and
#f gλ . First, let �∈ ( )+A B H, ⁎ . It is well known that ∇ !A B A B,λ λ and #A Bλ are monotone increasing with

respect to both A and B [20]. Otherwise, obviously the map ( ) ↦ ∇A B A B, λ is linear affine while ( )A B,
↦ !A Bλ is operator concave, see [21], and so ( ) ↦ #A B A B, λ is also operator concave. In what follows, we
present the extensions of these latter operator properties for convex functionals. It is clear that ( ) ↦ ∇f g f g, λ
is linear affine and point-wisely increasing with respect to f and g. We now state the following result.

Proposition 5.1. Let ∈ ( )f g E, Γ0 and ∈ [ ]λ 0, 1 . Then the two binary maps ( ) ↦ !f g f g, λ and ( ) ↦ #f g f g, λ
are both separately point-wisely increasing.

Proof. Let ∈ ( )f f E, Γ1 2 0 be such that ≤f f1 2. By the point-wise decrease monotonicity of the map ↦f f ⁎, we
deduce ( − ) + ≤ ( − ) +λ f λg λ f λg1 12

⁎ ⁎
1
⁎ ⁎ and again (( − ) + ) ≤ (( − ) + )λ f λg λ f λg1 11

⁎ ⁎ ⁎
2
⁎ ⁎ ⁎, i.e., ! ≤ !f g f gλ λ1 2 ,

which means that ( ) ↦ !f g f g, λ is point-wisely increasing with respect to the first argument f. By virtue of
(4.4) we then deduce that ( ) ↦ !f g f g, λ is point-wisely increasing with respect to the second argument g,
too. This, with the relation of #f gλ given in (4.1) and the linearity of the integral, implies that ( ) ↦ #f g f g, λ
is separately point-wisely increasing. The proof is complete. □

In order to give another result of interest, we need to introduce the following notation:

� ≕ {( ) ∈ ( ) × ( ) = = }f g E E f E g E, Γ Γ : dom and dom .0 0
⁎ ⁎ ⁎ ⁎

Obviously, � is a cone, with �( ) ∈f g, if and only if �( ) ∈g f, . Note that � � �∈,A B for any
�∈ ( )+A B H, ⁎ . Furthermore, it is easy to check that � is convex, i.e., if �( ) ∈f g,1 1 and �( ) ∈f g,2 2 ,

then �(( − ) + ( − ) + ) ∈t f tf t g tg1 , 11 2 1 2 for any ∈ ( )t 0, 1 . We now state the following result.

Theorem 5.2. Let �( ) ∈f g, and ∈ [ ]λ 0, 1 . Then the two binary maps ( ) ↦ !f g f g, λ and ( ) ↦ #f g f g, λ are
both point-wisely concave.

Proof. By the same reasons as in the proof of the previous proposition, we need to prove that ( ) ↦ !f g f g, λ
is point-wisely concave with respect to the first argument f. By definition of !f gλ , with the help of (2.2) and
(2.4), we can write

! = (( − ) + ) = ( ( − ) )f g λ f λg f λ g λ1 . 1 □ . .λ
⁎ ⁎ ⁎ ⁎⁎ (5.1)

Since �( ) ∈f g, , it is easy to verify that condition (2.6) is satisfied here, i.e., ( ( − ) ) ∩λ fint dom 1 . dom⁎

( ) ≠ ∅λ g. ⁎ . It follows that ( − ) ∈ ( )f λ g λ E. 1 □ . Γ0 and so (5.1) becomes

! = ( − )f g f λ g λ. 1 □ . .λ (5.2)

Now, let �( ) ( ) ∈f g f g, , ,1 1 2 2 and ∈ ( )t 0, 1 . By (5.2) and the definition of the inf-convolution, we have for
any ∈x E

(( − ) + ) ! (( − ) + )( )

= {(( − ) + ) ( − )( ) + (( − ) + ) ( − )}

= {( − )( ( − )( ) + ( − )) + ( ( − )( ) + ( − ))}

≥ ( − ) ( ( − )( ) + ( − )) + ( ( − )( ) + ( − ))

= ( − )( ( − ) )( ) + ( ( − ) )( ) = ( − ) ! ( ) + ! ( )

∈

∈

∈ ∈

t f tf t g tg x
t f tf λ z t g tg λ x z

t f λ z g λ x z t f λ z g λ x z

t f λ z g λ x z t f λ z g λ x z

t f λ g λ x t f λ g λ x t f g x tf g x

1 1
inf 1 . 1 1 .

inf 1 . 1 . . 1 .

1 inf . 1 . inf . 1 .

1 . 1 □ . . 1 □ . 1 .

λ

z E

z E

z E z E

λ λ

1 2 1 2

1 2 1 2

1 1 2 2

1 1 2 2

1 1 2 2 1 1 2 2

Hence, the desired result. □
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Remark 5.3. Let �( ) ∈f g, . Then, for any ∈ ( )λ 0, 1 we have

∩ ⊂ ( # ) ⊂ ( − ) +f g f g λ f λ gdom dom dom 1 dom dom .λ (5.3)

Indeed, it is easy to see that ( ∇ ) = ∩f g f gdom dom domλ for any ∈ ( )λ 0, 1 . Otherwise, by using (5.2) it is
not hard to check that

( ! ) = ( − ) +f g λ f λ gdom 1 dom dom .λ

This, when combined with (4.5), yields (5.3).

Now remark that, for ∈ ( )f g E, Γ0 fixed, the map ↦ ∇t f gt is point-wisely affine (so convex and con-
cave). Otherwise, we have the following result.

Proposition 5.4. Let ∈ ( )f g E, Γ0 be fixed. Then the map ↦ !t f gt is point-wisely convex on [ ]0, 1 .

Proof. By definition we have ! = (( − ) + )f g t f tg1t
⁎ ⁎ ⁎. Since the map ↦ϕ ϕ⁎ is point-wisely convex and the

map ↦ ( − ) +t t f tg1 ⁎ ⁎ is point-wisely affine, the desired result follows immediately. □

Now, we construct a family of functional means which enjoys interesting properties. Let ∈ ( )f g E, Γ0
and ∈ [ ]λ 0, 1 be fixed. For ∈ [ ]s 0, 1 , we set

∫( ) = ! ( )+( − )G f g λ f g ν t, ; d ,s st s λ λ

0

1

1 (5.4)

where ( )ν td λ is defined by (4.2). Observe that ( ) =G f f λ f, ;s for any ∈ [ ]s λ, 0, 1 and ∈ ( )f EΓ0 . The family
( )G f g λ, ;s , when s describes the interval [ ]0, 1 , includes the functional means !f gλ and #f gλ in the sense

that ( ) = !G f g λ f g, ; λ0 and ( ) = #G f g λ f g, ; λ1 . The basic properties of the maps ↦ ( )s G f g λ, ;s are encap-
sulated in the following result.

Theorem 5.5. With the above, the following assertions are met:
(i) The map ↦ ( )s G f g λ, ;s is point-wisely convex on [ ]0, 1 .
(ii) For any ∈ [ ]s 0, 1 , we have

! ≤ ( ) ≤ ( ! )∇ ( # ) ≤ # (≤ ∇ )f g G f g λ f g f g f g f g, ; ,λ s λ s λ λ λ (5.5)

which refines the left inequality in (4.5).
(iii) We have

( ) = ! ( ) = #
∈[ ] ∈[ ]

G f g λ f g G f g λ f ginf , ; and sup , ; ,
s

s λ
s

s λ
0,1 0,1

(5.6)

where the infimum and supremum are taken for the point-wise order.
(iv) The map ↦ ( )s G f g λ, ;s is point-wisely monotone increasing.

Proof.
(i) Since the map ↦ !t f gt is point-wisely convex on[ ]0, 1 and the real-function ↦ + ( − ) ∈ [ ]s st s λ1 0, 1 is

affine, we deduce the desired result.
(ii) By the point-wise convexity of ↦ !t f gt , we get

! ≤ ! + ( − ) !+( − )f g sf g s f g1 .st s λ t λ1

If we multiply this latter inequality by ( )ν td λ and we integrate over ∈ [ ]t 0, 1 we get the middle
inequality of (5.5). The right inequality of (5.5) is obvious by virtue of the inequality ! ≤ #f g f gλ λ .
Now, let us show the left inequality of (5.5). For the sake of simplicity for the reader, we fix ∈ ( )f g E, Γ0

and we set ( ) = !s f gΦ s . By Proposition 5.4, Φ is point-wisely convex on [ ]0, 1 . With this, (5.4) takes the
following form:
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∫( ) = ( + ( − ) ) ( )G f g λ st s λ ν t, ; Φ 1 d .s λ

0

1

We can apply the integral Jensen inequality to this latter equality [22], and we then obtain













∫( ) ≥ ( + ( − ) ) ( )G f g λ st s λ ν t, ; Φ 1 d .s λ

0

1

(5.7)

We have

∫ ∫ ∫ ∫( + ( − ) ) ( ) = ( ) + ( − ) ( ) = ( ) + ( − )st s λ ν t s t ν t s λ ν t s t ν t s λ1 d d 1 d d 1 .λ λ λ λ

0

1

0

1

0

1

0

1

In another part, let us denote by Γ and B the standard special gamma and beta functions, respectively.
By (4.2), we get

∫ ∫( ) =
( )

( − ) =
( )

( + − )

=
( ) ( + ) ( − )

( )
=

( )
( ) ( − ) =

−t ν t πλ
π

t t t πλ
π

B λ λ

πλ
π

λ λ πλ
π

λ λ λ λ

d sin 1 d sin 1 , 1

sin Γ 1 Γ 1
Γ 2

sin Γ Γ 1 .

λ
λ λ

0

1

0

1

Substituting these in (5.7) we obtain

( ) ≥ ( + ( − ) ) = ( ) ≕ !G f g λ sλ s λ λ f g, ; Φ 1 Φ ,s λ

and the left inequality of (5.5) is obtained.
(iii) Since ( ) = !G f g λ f g, ; λ0 and ( ) = #G f g λ f g, ; λ1 , (5.6) is immediate from (5.5).
(iv) If ≤ < ≤s s0 11 2 , the point-wise convexity of ↦ ( )s G f g λ, ;s implies that

( ) − ( )

−
≥

( ) − ( )G f g λ G f g λ
s s

G f g λ G f g λ
s

, ; , ; , ; , ;
.s s s

2 1

0

1

2 1 1

This, with ( ) = !G f g λ f g, ; λ0 and (5.6), yields the desired result. The proof is complete. □

6 Logarithmic mean of two convex functionals

In this section, we introduce a logarithmic mean of two convex functionals. Let ∈ ( )f g E, Γ0 . As pointed out
in [7], the map ↦ #t f gt is point-wisely continuous on ( )0, 1 . We can then put the following.

Definition 6.1. Let ∈ ( )f g E, Γ0 . The expression

∫( ) ≕ #L f g f g t, dt

0

1

(6.1)

is called the logarithmic mean of f and g.

The terminology used in the preceding definition will be justified later. The basic properties of ( )L f g,
are embodied in the following result.

Proposition 6.2. Let ∈ ( )f g E, Γ0 . Then the following assertions hold:
(i) ( ) =L f f f, and ( ) = ( )L f g L g f, , .
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(ii) For any �∈c d, , ( + + ) = ( ) + ∇L f c g d L f g c d, , , where ∇ ≕
+c d c d
2 denotes the extension of the arith-

metic mean for any two real numbers.
(iii) Let >α β, 0, then

( ) = ( # ) ( # # )

( ) = ( # # ) ( # )

− −

− −

L α f β g α β L α β f α β g
L f α g β L f α β g α β α β

. , . . . , . ,

. , . . , . . ,

1 1

1 1

where # ≕α β αβ is the scalar geometric mean of α and β. In particular, one has

( ) = ( ) ( ) = ( )L α f α g α L f g and L f α g α L f g α. , . . , . , . , . .

Proof. (i) Since # =f f ft for any ∈ [ ]t 0, 1 , (6.1) gives ( ) =L f f f, . Making the change of variables = −t u1 in

(6.1) we deduce ∫( ) = # −L f g f g u, du0

1
1 . This with (4.4) implies ( ) = ( )L f g L g f, , .

(ii) and (iii) According to (2.2), with some basic operations and manipulations, we immediately deduce
the desired equalities. The details are straightforward and therefore omitted here. □

The following result contains more interesting properties of ( )L f g, .

Theorem 6.3. Let ∈ ( )f g E, Γ0 . Then
(i) If �( ) ∈f g, , then the binary map ( ) ↦ ( )f g L f g, , is separately point-wise increasing and separately

point-wise concave.
(ii) The functional arithmetic-logarithmic-harmonic inequality holds, i.e.,

! ≤ ( ) ≤ ∇f g L f g f g, . (6.2)

Thus, ( ) ∈ ( )L f g E, Γ0 provided that ∩ ≠ ∅f gdom dom .

Proof. (i) Follows from Proposition 5.1 and Theorem 5.2, with (6.1), respectively. (ii) By the right inequality
in (4.5), we have # ≤ ∇f g f gt t for all ∈ [ ]t 0, 1 . Integrating this latter inequality over ∈ [ ]t 0, 1 , and noting

that ∫ ∇ = ∇f g t f gdt0

1
we get the right inequality of (6.2). Now, we prove the left inequality of (6.2). First,

recall that we have ! = ( ∇ )f g f gt t
⁎ ⁎ ⁎. In another part, by (6.1) with the left inequality of (4.5) we get

∫ ∫ ∫( ) = # ≥ ! = ( ∇ )L f g f g t f g t f g t, d d d .t t t

0

1

0

1

0

1

⁎ ⁎ ⁎

According to (2.3), the duality map ↦ϕ ϕ⁎ is point-wisely convex. Following [22], such map satisfies the
integral Jensen inequality. Thus, we obtain













∫( ) ≥ ∇ = ( ∇ ) ≕ !L f g f g t f g f g, d .t

0

1

⁎ ⁎

⁎

⁎ ⁎ ⁎

From (6.1) we deduce that ( )L f g, is convex l.s.c, as integral of a family of convex l.s.c functionals.
Furthermore, from the right inequality in (6.2) we infer that ( )L f g, is proper whenever ∇f g is, i.e.,

∩ ≠ ∅f gdom dom . The proof is complete. □

The following result is as well of interest and justifies the terminology used in Definition 6.1.

Proposition 6.4. Let �∈ ( )+A B H, ⁎ . Then we have

� � �( ) = ( )L , ,A B L A B, (6.3)

where �A refers to the generated function of A previously defined, and
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∫( )≕ # = ( )/ − / − / /L A B A B t A F A BA A, d ,t

0

1

1 2 1 2 1 2 1 2 (6.4)

with ( ) =
−F x x

x
1

log for > ≠x x0, 1, and ( ) =F 1 1. That is, ( )L A B, is the operator logarithmic mean of A and B.

Proof. By (6.1), with the third relation in (4.7), we can write

� � � � � � �∫ ∫
∫

( ) = # = = ≕#
#

( )L t t, d d ,A B A t B A B A B dt L A B

0

1

0

1

,t
t

0

1

with

∫ ∫( ) = # = ( ) ≕ ( )/ − / − / / / − / − / /L A B A B t A A BA tA A F A BA A, d d ,t
t

0

1

1 2

0

1

1 2 1 2 1 2 1 2 1 2 1 2 1 2

where, for >x 0,









∫( ) ≕ = =

−
≠ ( ) =F x x t x

x
x

x
x Fd

log
1

log
if 1, 1 1.t

t

0

1

0

1

The proof is complete. □

In order to state another result of interest, we need the following lemma.

Lemma 6.5. Let >x 0 then we have

∫( )≕ ( ) =
( + )

+ ( )
ϕ x x πv v x π

π x
sin d 1

log
.v

0

1

2 2 (6.5)

Proof. We consider ∫( ) ≕ ( )ψ x x πv vcos dv
0

1
and we compute ( ) + ( )ψ x iϕ x , where = −i 12 . Elementary com-

putation of integral leads to

∫ ∫( ) + ( ) = = ( + ) =
− −

+
ψ x iϕ x x e v v iπ x v x

iπ x
d exp log d 1

log
.v iπv

0

1

0

1

Separating real part and imaginary part, we get the desired result, hence the proof is complete. □

In Definition 6.1, ( )L f g, is defined in terms of the weighted geometric functional mean. The following
result gives an expression of ( )L f g, in terms of the weighted harmonic functional mean.

Theorem 6.6. Let ∈ ( )f g E, Γ0 . Then

∫( ) = ! ( )L f g f g μ t, d ,t

0

1

(6.6)

where ( )μ t is the probability measure on ( )0, 1 defined by

( )( )
( ) ≕

( − ) +
−

μ t t

t t π
d d

1 log
.

t
t

2
1

2 (6.7)
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Proof. By (6.1) and the third relation in (4.1) we can write

∫ ∫ ∫( ) = # =
( )

( − )
!

−

L f g f g s πs
π

t
t

f g t s, d sin
1

d d ,s
s

s t

0

1

0

1

0

1
1

or, equivalently,








∫ ∫( ) =
!

( )
−

L f g
π

f g
t

πs t
t

s t, 1 sin
1

d d .t
s

0

1

0

1

This, with (6.5) and a simple reduction, yields

( )( )
∫ ∫( ) =

!

( − ) +

≕ ! ( )

−

L f g f g t

t t π
f g μ t, d

1 log
d .t

t
t

t

0

1

2
1

2
0

1

The fact that ( ) =L f f f, and ! =f f ft for any ∈ ( )t 0, 1 and ∈ ( )f EΓ0 implies that∫ ( ) =μ td 1
0

1
, i.e., ( )μ t is a

probability measure on ( )0, 1 . The proof is complete. □

The preceding theorem, when interpreted in terms of functional mean and operator mean, brings us
some information of great interest. In fact, first mention that the operator version of (6.6) is given in the
following.

Corollary 6.7. For any �∈ ( )+A B H, ⁎ we have

∫( ) = ! ( )L A B A B μ t, d ,t

0

1

(6.8)

where ( )L A B, is given by (6.4) and ( )μ t is defined in Theorem 6.6.

Proof. Taking �=f A and �=g B in (6.6), with the help of (6.3), we get

� � � � � � �∫ ∫
∫

( ) = ! ( ) = ( ) = =!
! ( )

( )L μ t μ t, d d .A B A t B A B A B μ t L A B

0

1

0

1

d ,t
t

0

1

The desired result follows. □

Now, let us observe the following remark which explains some interesting topics.

Remark 6.8. The Kubo-Ando theory for monotone operator means, [3], tells us that every operator mean
AσB can be written in the following form:

∫= ! ( )AσB A B p td ,t

0

1

(6.9)

where ( )p t is a certain probability measure on ( )0, 1 depending on the operator mean σ. This, when
combined with (6.8), gives us the explicit probability ( )μ t on ( )0, 1 corresponding to the logarithmic operator
mean ( )L A B, . Furthermore, combining (6.6) and (6.9) we can infer that ( )L f g, , previously defined, is a
reasonable extension of ( )L A B, when the positive operator variables A and B are replaced by convex
functional arguments f and g, respectively.

The following remark may be of interest as well.
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Remark 6.9. Theorem 6.6 may be a good tool again for bringing us some information about computation of
some integrals that are not simple to compute directly. Indeed, the fact that ( )μ td is a probability measure
on ( )0, 1 , with a simple decomposition, yields

( ) ( )( ) ( )
∫ ∫

+

=

( − ) +

=

− −

t

t π

t

t π

d

log

d

1 log

1
2

.
t

t
t

t0

1

2
1

2
0

1

2
1

2 (6.10)

By simple change of variables in these latter integrals, we get

∫ ∫
+ ( ( ))

=
+ ( ( ))

=

/ /

z z
π z

z z
π z

tan d
4 log tan

cot d
4 log cot

1
4

,
π π

0

2

2 2
0

2

2 2

and then

∫
( + )( + ( ) )

=

∞

u u
u π u

d
1 log

1
4

.
0

2 2 2

Another remark which gives more explanation about the interest of (6.6) is recited in what follows.

Remark 6.10. Let �( ) →Ψ: 0, 1 be defined by:

( )( )
∀ ∈ ( ) ( ) =

( − ) +
−

t Ψ t
t t π

0, 1 1

1 log
.

t
t

2
1

2 (6.11)

It is easy to see that Ψ is a symmetric density function on ( )0, 1 , i.e., ( ) ≥tΨ 0 and ( ) = ( − )t tΨ Ψ 1 for any

∈ ( )t 0, 1 and ∫ ( ) =t tΨ d 1
0

1
. Since ↦ !t f gt is point-wisely convex, see Proposition 5.4, we can then apply

the so-called Féjer-Hermite-Hadamard inequality, [23], to (6.6). In fact, for any ∈x E, we have

∫! ( ) ≤ ( )( ! )( ) ≤
! ( ) + ! ( )

/f g x t f g x t f g x f g xΨ d
2

.t1 2

0

1
0 1

This, with ! = ! = ! = !/f g f f g g f g f g, ,0 1 1 2 and (6.6), immediately yields again (6.2).

7 Further inequalities about L f g,( )

In this section, we give more inequalities involving ( )L f g, . We first state the following result which will be
needed in the sequel, see [10].

Lemma 7.1. Let ∈ ( )f g E, Γ0 . For each ∈ ( )t s, 0, 1 , we have

≤ ( ∇ − ! ) ≤ ∇ − ! ≤ ( ∇ − ! )r f g f g f g f g R f g f g0 ,t s s s t t t s s s, , (7.1)

where we set

  












≕
−

−
≕

−

−
r t

s
t
s

and R t
s

t
s

min , 1
1

max , 1
1

.t s t s, ,

Now, we are in the position to state the following result which concerns a refinement and reverse for the
right inequality in (6.2).
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Theorem 7.2. Let ∈ ( )f g E, Γ0 . Then for any ∈ ( )s 0, 1 we have








≤ −
∇ − !

( − )
≤ ∇ − ( ) ≤

∇ − !

( − )
I f g f g

s s
f g L f g I f g f g

s s
0 1

2 1
,

1
,s

s s
s

s s (7.2)

where we set

( )( )
∫ ∫≕ ( ) + ( − ) ( ) ( ) ≕

+

∈ ( )

−

−

I s ω t t s ω t t ω t
t π

td 1 d , 1

log
, 0, 1 .s

s s

t
t0 0

1

2
1

2

Proof. Using (6.10), it is easy to check that ∫∇ = ∇ ( )f g f g μ tdt0

1
, where ( )μ t is defined in Theorem 6.6. It

follows that

∫∇ − ( ) = ( ∇ − ! ) ( )f g L f g f g f g μ t, d .t t

0

1

This, with (7.1), yields

( ∇ − ! ) ≤ ∇ − ( ) ≤ ( ∇ − ! )a f g f g f g L f g b f g f g, ,s s s s s s

where we set

∫ ∫≕ ( ) ≕ ( )a r μ t b R μ td , d .s t s s t s

0

1

,

0

1

,

Let us remark that =Rt s
t
s, if ≥t s and =

−

−
Rt s

t
s,

1
1 if ≤t s. By the elementary techniques of integration, it is

not hard to check that

∫ ∫=
−

( ) + ( ) =
( − )

−

b
s

ω t t
s

ω t t
s s

I1
1

d 1 d 1
1

.s

s s

s

0 0

1

For computing as, we use the fact that

+ = +
−

−
=

( − ) + ( − )

( − )
r R t

s
t
s

t s s t
s s

1
1

1 1
1

.t s t s, ,

Multiplying by ( )μ td and integrating over ∈ ( )t 0, 1 , with the help of (6.10), we get + =
( − )

a bs s s s
1

2 1 . Other-
wise, by (6.10) again we can write

∫ ∫≤ ( ) + ( − ) ( ) =I s ω t t s ω t td 1 d 1
2

.s

0

1

0

1

Summarizing, we get (7.2), hence the proof is complete. □

Remark that (7.2) implies that ≤ ≤Is
1
4

1
2 for any ∈ ( )s 0, 1 . Taking =s 1

2 in (7.2) we immediately obtain

the following result, which refines the right inequality of (6.2).

Corollary 7.3. Let ∈ ( )f g E, Γ0 . Then one has

≤ ( − )( ∇ − ! ) ≤ ∇ − ( )I f g f g f g L f g0 2 , ,

or, equivalently, as an upper bound of ( )L f g, in convex combination of ∇f g and !f g

( ) ≤ ( − ) ∇ + ( − ) ! ≤ ∇L f g I f g I f g f g, 1 2 ,

where we set
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∫≕ = ( ) ≤ ≤I I ω t t I4 4 d , 1 2.
0

1
2

1
2

Note that the operator versions of Theorem 7.2 and Corollary 7.3 are immediate. Otherwise, the exact

value of the integral 







∫= ( ) ∈I ω t td ,

0
1
4

1
2

1
2

1
2 seems to be uncomputable.

Corollary 7.3 gives an upper bound of ( )L f g, . For giving a lower bound of ( ⋅ )L f g we need the following
lemma.

Lemma 7.4. Let ∈ ( )f g E, Γ0 and ∈ ( )t 0, 1 . Let ∈x E be such that ∂ ( ) ≠ ∅f x and ∂ ( ) ≠ ∅g x . Then, for any
∈ ∂ ( )x f x⁎ and ∈ ∂ ( )z g x⁎ , we have the following inequality:

� �( ≤ ) ∇ − # ≤ ( − )( ( )∇ ( ))f g f g t t x x x z0 1 , , ,t t g f
⁎ ⁎ (7.3)

where, for any ∈y E, ∈y E⁎ ⁎ and �→ ∪ {−∞ +∞}h E: , , we set

R� ( ) ≕ ( ) + ( ) − 〈 〉 ≥y y h y h y e y y, , 0.h
⁎ ⁎ ⁎ ⁎ (7.4)

Proof. This result was proved in [24]when E is a Hilbert space. The same proof works when E is an arbitrary
locally convex topological space. □

For ∈ ( )f g E, Γ0 , we also need to introduce the following notation:

R⋄ ( ) ≕ { 〈 〉 − ( )}
∈∂ ( )

f g x e x x g xsup , ,
x f x

⁎ ⁎ ⁎
⁎ (7.5)

with the usual convention (⋯) = −∞∅sup . The elementary properties of the law ( ) ↦ ⋄f g f g, are summar-
ized in the following result.

Proposition 7.5. Let ∈ ( )f g E, Γ0 . The following assertions hold:
(i) For any ∈x E, we have

⋄ ( ) = ( + ) ( )∂ ( )f g x g xΨ .f x
⁎ ⁎

(ii) Let �∈ ( )+A B H, ⁎ . Then one has

� � �⋄ = ⋄ ≕ −⋄
−with A B A AB A, 2 .A B A B

1

(iii) ⋄f g is not always convex.
(iv) ⋄ ≤f g g and so − ⋄B A B is positive for any �∈ ( )+A B H, ⁎ .

Proof.
(i) Follows from (7.5), with the definition of the conjugate duality.
(ii) We use (3.1) and Proposition 3.1(v) with some algebraic manipulations. The details are straightforward

and therefore omitted here.
(iii) It follows from (ii), since − −A AB A2 1 is not always positive.
(iv) It is a consequence of (i) and (ii). □

Before stating another main result, we mention the following remark which is of interest.

Remark 7.6. Since our involved functionals can take the values ±∞, we have to be careful with certain
critical situations. In fact, the equality − =f f 0 is not always true. Precisely, we have − =f f Ψ fdom by virtue
of the convention (+∞) − (+∞) = +∞. For the same reason, the equality − = −( − )f g g f is not always
true. Also, the inequality ≤f g is equivalent to − ≥g f 0 but it is not equivalent to − ≤f g 0.

We are now in the position to state the following result which reverses the right inequality in (6.2).
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Theorem 7.7. Let ∈ ( )f g E, Γ0 . Let ∈x E be such that ∂ ( ) ≠ ∅f x and ∂ ( ) ≠ ∅g x . Then, for any ∈ ∂ ( )x f x⁎ and
∈ ∂ ( )z g x⁎ we have

� �≤ ∇ ( ) − ( )( ) ≤ ( ( )∇ ( ))f g x L f g x x x x z0 , 1
6

, , .g f
⁎ ⁎ (7.6)

Or, equivalently,

≤ ∇ − ( ) ≤ ( ∇ − ( ⋄ )∇( ⋄ ))f g L f g f g f g g f0 , 1
6

. (7.7)

Proof. Integrating (7.3) side by side over ∈ [ ]t 0, 1 , with (6.1) and the fact that∫ ∇ = ∇f g t f gdt0

1
, we get (7.6).

We now prove (7.7). According to the previous remark, we begin by discussing some typical situations. Let
∈x E. If ∂ ( ) = ∅f x or ∂ ( ) = ∅g x , then by (7.3) we infer that ⋄ ( ) = −∞f g x or ⋄ ( ) = −∞g f x , respectively. In

this case, we have ( ⋄ )∇( ⋄ )( ) ∈ {−∞ +∞}f g g f x , . If ( ⋄ )∇( ⋄ )( ) = +∞f g g f x , then by the first part of Proposi-
tion 7.5(iv) we deduce that ( ) = +∞f x or ( ) = +∞g x and so all sides of (7.6) take the value +∞ at x. If
( ⋄ )∇( ⋄ )( ) = −∞f g g f x thus the two right sides of (7.6) are both equal to +∞, by virtue of the convention
( ) − (−∞) = +∞c for any �∈ ∪ {−∞ +∞}c , . It follows that (7.6) is satisfied at the point x, since ≤ +∞c for
any �∈ ∪ {−∞ +∞}c , . Now, assume that ∂ ( ) ≠ ∅f x and ∂ ( ) ≠ ∅g x . Then (7.6) is satisfied at x and it is then
equivalent to the following inequality:









� �≤ ∇ ( ) − ( )( ) ≤ ( )∇ ( )

∈∂ ( ) ∈∂ ( )
f g x L f g x x x x z0 , 1

6
inf , inf , .

x f x
g

z g x
f

⁎ ⁎
⁎ ⁎

(7.8)

By (7.4) and (7.5), we have

� �( ) = ( ) − ⋄ ( ) ( ) = ( ) − ⋄ ( )
∈∂ ( ) ∈∂ ( )

x x g x f g x x z f x g f xinf , , inf , .
x f x

g
z g x

f
⁎ ⁎

⁎ ⁎

Substituting this in (7.8) we get the right inequality of (7.7) at x. The proof is complete. □

By using Proposition 7.5(ii) we leave it to the reader the routine task to check that the operator version
of Theorem 7.7 may be recited as follows.

Corollary 7.8. For any �∈ ( )+A B H, ⁎ there holds

≤ ∇ − ( ) ≤ (( )∇( ) − ∇ )− −A B L A B AB A BA B A B0 , 1
6

.1 1 (7.9)

Remark 7.9. It is easy to check that the scalar version of (7.9) reads as follows: for any real numbers >a b, 0
we have

≤ ∇ − ( ) ≤ ( ∇ )(( ∇ ) − ( # ) )a b L a b a b a b a b0 , 2
3

,2 2

where ( )L a b, is the standard logarithmic mean of a and b, i.e., ( ) ≕
−

−
L a b, a b

a blog log , for ≠a b, and
( ) =L a a a, .

Now, we will be interested in refining the left inequality of (6.2). Let ∈ ( )f g E, Γ0 be fixed. For ∈ [ ]s 0, 1 ,
we set

∫( ) = ( ! ) ( )+( − )U f g f g μ t, d ,s st s

0

1

1 1
2

(7.10)

where ( )μ td is defined by (6.7). Remark that ( ) =U f f f,s for any ∈ ( )f EΓ0 and ∈ [ ]s 0, 1 . The map ↦ ( )s U f g,s
enjoys nice properties which we embody in the following result.
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Theorem 7.10. The following assertions hold true:
(i) The map ↦ ( )s U f g,s is point-wisely convex on [ ]0, 1 .
(ii) For any ∈ [ ]s 0, 1 , we have the inequalities

! ≤ ( ) ≤ ( ! )∇ ( ) ≤ ( )f g U f g f g L f g L f g, , , ,s s (7.11)

which refines the left inequality in (6.2).
(iii) We have

( ) = ! ( ) = ( )
∈[ ] ∈[ ]

U f g f g and U f g L f ginf , sup , , ,
s

s
s

s
0,1 0,1

(7.12)

where the infimum and supremum are taken for the point-wise order.
(iv) The map ↦ ( )s U f g,s is point-wisely monotone increasing.

Proof.

(i) By Proposition 5.4, with the fact that ↦ + ( − )s st s11
2 is affine for fixed ∈ [ ]t 0, 1 , we deduce that, for

any ∈ [ ]t 0, 1 , the family of maps ↦ ! + ( − )s f gst sΛ1
2

is point-wisely convex on [ ]0, 1 . Thus, ↦ ( )s U f g,s is

also point-wisely convex on [ ]0, 1 .
(ii) Since ↦ !t f gt is point-wisely convex, we can write

! ≤ ! + ( − ) !+ ( − )f g sf g s f g1 .st s t11
2

1
2

Multiplying this latter inequality by ( )μ td and integrating over ∈ [ ]t 0, 1 we obtain the middle inequality
in (7.11), since ! = !f g f g1

2
. The right inequality in (7.11) is immediate, since ! ≤ ( )f g L f g, . Now, we prove

the left inequality in (7.11). As for the proof of Theorem 5.5, we fix ∈ ( )f g E, Γ0 and we simply set
( ) = !s f gΦ s . By Proposition 5.4, Φ is point-wisely convex on [ ]0, 1 . In another part, (7.10) can be written

as follows:









∫( ) = + ( − ) ( )U f g st s μ t, Φ 1 d .s

0

1
1
2

Writing this equality point-wisely we can then use the integral Jensen inequality, see also [22], and
we get























∫( ) ≥ + ( − ) ( )U f g st s μ t, Φ 1 d .s

0

1
1
2 (7.13)

We have, by utilizing (6.7) and (6.10),









∫ ∫ ∫+ ( − ) ( ) = ( ) + ( − ) ( ) = + ( − ) =st s μ t s t μ t s μ t s s1 d d 1 d 1 .

0

1
1
2

0

1
1
2

0

1
1
2

1
2

1
2

Substituting this in (7.13) we obtain









( ) ≥ ≕ ! ≕ !U f g f g f g, Φ ,s

1
2

1
2

whence the left inequality in (7.11).
(iii) By (7.10), it is clear that ( ) = !U f g f g,0 and ( ) = ( )U f g L f g, ,1 . This, with (7.11), implies (7.12).
(iv) Let ∈ [ ]s s, 0, 11 2 be such that <s s1 2. Since ↦ ( )s U f g,s is point-wisely convex, we have

( ) − ( )

−
≥

( ) − ( )U f g U f g
s s

U f g U f g
s

, , , ,
.s s s

2 1

0

1

2 1 1
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By (iii) we have ( ) − ( ) ≥U f g U f g, , 0s 01 for any ∈ [ ]s 0, 11 , since ( ) = !U f g f g,0 . Hence the desired result, so
the proof is complete. □

Remark 7.11.We leave it to the reader the task for formulating in an immediate way the analog of Theorem
7.10 when the two convex functionals f and g are replaced by two positive invertible operators A and B,
respectively.
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