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Abstract: This paper focuses on finite-order meromorphic solutions of nonlinear difference equation
( ) + ( ) ( ) = ( )( )f z q z e f z p zΔn Q z

c , where p q Q, , are polynomials, ≥n 2 is an integer, and fΔc is the forward
difference of f. A relationship between the growth and zero distribution of these solutions is obtained.
Using this relationship, we obtain the form of these solutions of the aforementioned equation. Some
examples are given to illustrate our results.

Keywords: difference equations, meromorphic solutions, exponential polynomials

MSC 2020: 2020, 39B32, 30D35

1 Introduction and main results

In 2010, Yang and Laine [1] studied the existence of finite-order entire solutions of the differential-
difference equation

( ) + ( ) = ( )f z L z f h z, ,n (1.1)

where ( )L z f, is a linear differential-difference polynomial in f with small meromorphic coefficients, ( )h z is
a meromorphic function of finite order, and ≥n 2 is an integer. It is proved that if ≥n 4, then equation (1.1)
has at most one admissible entire solution of finite order. In particular, the equation

( ) + ( ) ( + ) = ( )f z q z f z p z1 ,2

where ( ) ( )p z q z, are polynomials, has no transcendental entire solutions of finite order. This paper results
in an extensive focus on the integrability of nonlinear difference equations (see, e.g., [2–8]). For example,
assuming that ( ) = +h z p e p eα z α z

1 21 2 , the authors in [2–5] gave some conditions how to judge the existence
of admissible finite-order entire solutions of (1.1), where p p α α, , ,1 2 1 2 are constants. If the condition
admissible solution is omitted, that is, the coefficients of ( )L z f, are not small functions of f,
Wen, Heittokangas, and Laine [7] proved that every finite-order meromorphic solution of the difference
equation

( ) + ( ) ( + ) = ( )( )f z q z e f z c p zn Q z (1.2)

is entire, and classified these entire solutions in terms of its growth and zero distribution, see Theorem A.
For the convenience of our statement, we recall some notions and definitions.
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Let f be a meromorphic function in the complex plane � . It is assumed that the reader is familiar with
the basic notations and the main results of the Nevanlinna theory, such as ( ) ( ) ( )m r f N r f T r f, , , , , , the first
and second main theorems, etc.; see, e.g., [9,10]. The notations ( )σ f and ( )λ f denote, respectively, the
order and the exponent of convergence of zeros of f. An entire function of the form

( ) = ( ) + ⋯+ ( )( ) ( )f z P z e P z e ,Q z
k

Q z
1 k1 (1.3)

where ( ) ( )( = … )P z Q z j k, 1, ,j j are polynomials in z such that { ( ) ≤ ≤ } = ≥Q z j k smax deg : 1 1j is called an
exponential polynomial of degree s. Denote

�= { + ∈   ≢ }

= { ≢ }

( )

( )

e d d α α
e α α

Γ : , polynomial, const. ,
Γ : polynomial, const. .

α z

α z
1

0

Theorem A. [7] Let ≥n 2 be an integer, �∈ { }c \ 0 , and let ( ) ( )(≢ ) ( )p z q z Q z, 0 , be polynomials such that ( )Q z
is not a constant. Then we identify finite-order entire solutions f of (1.2) as follows:
(a) every solution f satisfies ( ) =σ f Qdeg and is of mean type;
(b) every solution f satisfies ( ) = ( )λ f σ f if and only if ( ) ≢p z 0;
(c) a solution ∈f Γ0 if and only if ( ) ≡p z 0. In particular, this is the case if ≥n 3;
(d) if a solution ∈f Γ0, and if g is any other finite-order entire solution of (1.2), then =f ηg , where =−η 1n 1 ;
(e) if f is an exponential polynomial solution of the form (1.3), then ∈f Γ1. Moreover, if ∈f Γ \Γ1 0, then

( ) =σ f 1.

A variant of Theorem A was obtained by Liu [11]. Considering the differential-difference equation

( ) + ( ) ( + ) = ( )( ) ( )f z q z e f z c p z ,n Q z k (1.4)

Liu proved the following result.

Theorem B. [11] Let ≥ ≥n k2, 1 be an integer, �∈ { }c \ 0 , and let ( ) ( )(≢ ) ( )p z q z Q z, 0 , be polynomials such
that ( )Q z is not a constant. Then every finite-order transcendental entire solution f of (1.4) should satisfy
results (a), (b), and (d) of Theorem A. Moreover,
(i) a solution ∈ { ( ) ≢ }( )f B z e B α α: , polynomials, const.α z if and only if ( ) ≡p z 0. In particular, this is case

if ≥n 3;
(ii) if f is an exponential polynomial solution of the form (1.3), then ∈ { ( ) + ( )( )f B z e h z B α h: , ,α z

≢ }αpolynomials, const. .

The purpose of this paper is to classify finite-order meromorphic solutions of the difference equation

( ) + ( ) ( ) = ( )( )f z q z e f z p zΔ ,n Q z
c (1.5)

where n p q Q c, , , , satisfy the hypotheses of Theorem A, ( ) = ( + ) − ( )f z f z c f zΔc . Our results show that
meromorphic solutions of (1.5) have different structure from equations (1.2) and (1.4). Note that every
finite-order meromorphic solution of (1.5) is entire by comparing the poles of both sides of (1.5). Now we
state our results as follows.

Theorem 1.1. Let ≥n 2 be an integer, �∈ { }c \ 0 , and let ( ) ( )(≢ ) ( )p z q z Q z, 0 , be polynomials such that ( )Q z is
not a constant. Then every finite-order nonconstant entire solution f of (1.5) has the following properties.
(i) ( ) = ( ( ))σ f Q zdeg and f is of mean type;
(ii) ( ) = ( )λ f σ f if and only if ( ) ≢p z 0;
(iii) ( ) = ( ) −λ f σ f 1 if and only if ( ) ≡p z 0. In particular, this is the case if ≥n 3.

Theorem 1.2 is a direct result of the proof of result (iii) of Theorem 1.1, see Section 2. It gives the
expression of finite-order entire solutions of (1.5) in the case ≥n 3 or ( ) ≡p z 0.
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Theorem 1.2. Let ( ) ( ) ( )n p z q z Q z c, , , , satisfy the hypotheses of Theorem 1.1. If ≥n 3 or ( ) ≡p z 0, then every
finite-order nonconstant entire solution f of (1.5) is of the form

( ) = ( )f z A z e ,ωz s

where =s Qdeg , ω is a nonzero constant, and ( )(≢ )A z 0 is an entire function satisfying ( ) = ( ) =σ A λ A
−Qdeg 1. In particular, if =Qdeg 1, then ( )A z reduces to a polynomial.

Remark 1.1. Examples 1.1–1.3 show that the difference equation (1.5) does have such solution defined as
Theorem 1.2.

Example 1.1. The equation ( ) + ( ) =f z e f zΔ 0z
c

2 2
has a solution ( ) = ( − )f z e e1 cz z2 2

, where c is a nonzero

constant such that =e 1c2
. Here, ( ) = ( − ) = = ( ) −λ f λ e σ f1 1 1cz2 .

Example 1.2. The equation ( ) + ( + ) ( ) =f z z e f z1 Δ 0βz
c

2 2 has a solution ( ) = − ( + )f z c z e1 βz, where c β, are
nonzero constants such that =e 1βc . Here, ( ) = = ( ) −λ f σ f0 1.

Example 1.3. The equation ( ) + ( ) =f z e f z2 Δ 0z
c

2 has a solution ( ) =f z ez, where = −c log 2. Here, ( ) =λ f
=0 ( ) −σ f 1.

Now we consider the expression of finite-order entire solution of (1.5) in the case =n 2 and ( ) ≢p z 0.
From Theorem 1.1, it follows that every finite-order entire solution f satisfies ( ) = ( ) =λ f σ f Qdeg . So, it is
plausible to consider the exponential polynomial solutions of (1.5).

Theorem 1.3. Let ( )(≢ ) ( )(≢ ) ( )p z q z Q z0 , 0 , be polynomials such that ( )Q z is not a constant. If f is an expo-
nential polynomial solution of (1.5) of the form (1.3), then f is of the form

( ) = ( ) + ( )f z H z e H z ,ω z
1 01 (1.6)

where H H,1 0 are nonconstant polynomials, ω1 is a nonzero constant satisfying =e 1ω c1 .

Remark 1.2. Example 1.4 shows that entire solutions of the form (1.6) do exist.

Example 1.4. The equation ( ) + ( + ) ( ( + ) − ( )) = ( + + )f z z e f z f z z z1 1 3 2πiz2 2 2 2 2 has a solution ( ) =f z
+ + − ( + )z z z e3 2 1 πiz2 2 .

The remainder of this paper is organized as follows. In Section 2, we use some known results to give
the proof of Theorem 1.1. The proof of Theorem 1.3 is given in Section 3, and its key reasoning relies on
Steinmetz’s results on the Nevanlinna characteristic of exponential polynomials.

2 Proof of Theorem 1.1

The following lemmas will be used to prove Theorem 1.1, in which, Lemma 2.1 is the difference version of
the logarithmic derivative lemma due to Chiang and Feng; Lemma 2.4 is called the Hadamard factorization
theorem.

Lemma 2.1. [12] Let ( )f z be a finite-order meromorphic function in the complex plane, and c be a fixed
nonzero constant. Then, for each >ε 0, we have





















( + )

( )
+

( )

( + )
= ( ) + ( )( )− +m r f z c

f z
m r f z

f z c
O r O r, , log .σ f ε1
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Lemma 2.2. [13] Let ( )f z be a transcendental meromorphic function of finite order. Then

( ( + )) = ( ( )) + ( ( ))T r f z c T r f z S r f z, , , ,

where ( ( ))S r f z, denotes any quantity satisfying ( ) = ( ( ))S r f o T r f, , as → ∞r , possibly outside of a set of
finite logarithmic measure.

Lemma 2.3. [14] Let ( ) ( ) ( = … ) ( ≥ )f z g z j n n, 1, , 2j j be entire functions satisfying the following conditions.
(i) ∑ ( ) ≡

=
( )f z e 0j

n
j

g z
1 j ;

(ii) The order of fj is less than that of ( )− ( )eg z g zt k for ≤ ≤ ≤ < ≤j n t k n1 , 1 .

Then ( ) ≡  ( = … )f z j n0, 1, ,j .

Lemma 2.4. [14] Let ( )f z be an entire function of finite order. Then ( ) = ( ) ( )f z u z ev z , where ( )u z is the
canonical product of ( )f z formed with the zeros of f, and ( )v z is a polynomial of degree at most ( )σ f .

Proof of Theorem 1.1. Let f be a finite-order nonconstant entire solution of (1.5). If ≡fΔ 0c , then we get f is
transcendental, which contradicts that =f pn is a polynomial by (1.5). So we have ≢fΔ 0c .

Proof of (i). From Lemma 2.1 and (1.5), it follows that for each >ε 0,











( ) = ( ( ) − ( ) )

≤ ( ) +
( )

( )
+ ( ( )) + ( )

≤ ( ) + ( ( )) + ( ) + ( )

( )

( )

( ) ( )− +

nm r f m r p z q z e f

m r e m r f z
f z

m r f z O r

m r e m r f z O r O r

, , Δ

, , Δ , log

, , log ,

Q z
c

Q z c

Q z σ f ε1

(2.1)





















( ) =
( ) − ( )

( ) ( )

≤
( )

+ ( ( )) + ( )

≤ ( ( )) + ( ( )) + ( )

≤ ( + ) ( ( )) + ( ) + ( )

( )

( )− +

m r e m r p z f z
q z f z

m r
f z

m r f z O r

T r f z nm r f z O r
n m r f z O r O r

, ,
Δ

, 1
Δ

, log

, Δ , log
1 , log .

Q z
n

c

c

n

c
σ f ε1

(2.2)

Hence, by (2.1) and (2.2), we get ( ) = ( ( ))σ f Q zdeg , and f is of mean type, that is, its type ( ) = ∈
→∞

( )
( )

τ f lim
r

T r f
r

,
σ f

( +∞)0, .

Proof of (ii) “⇒.” Suppose that ( ) ≡P z 0, then (1.5) can be represented as









( ) + ( )

( + )

( )
− =− ( )f z q z e f z c

f z
1 0.n Q z1 (2.3)

By (2.3), we get











( + )

( )
= ( )N r f z c

f z
O r, log .

Then, combining Lemma 2.1, we get for each >ε 0,











( + )

( )
= ( ) + ( )( )− +T r f z c

f z
O r O r, log .σ f ε1 (2.4)

Hence, from (2.3) and (2.4), it follows that for each >ε 0,

































( − )

( )
=

( )
≤

( )

( )
+ ( ) = ( ) + ( )

( ) ( )

( )

( )− +n N r
f z

N r
q z e

T r f z
f z

O r O r O r1 , 1 , 1 , Δ log log .
Q z f z

f z

c σ f ε
Δ

1
c

(2.5)

By (2.5), we get ( ) < ( )λ f σ f , which contradicts the condition ( ) = ( )λ f σ f . So ( ) ≢P z 0.
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Proof of (ii) “⇐.” Since ( ) ≢P z 0, from Lemma 2.1, (1.5), and the second main theorem related to three
small functions [9, Theorem 2.5], we get for each >ε 0,





























































( ) = ( ) ≤ + ( ) +
−

+ ( )

≤ + + ( )

≤ + ( ) + ( )

≤ + ( ) + ( ) + ( )( )− +

nT r f T r f N r
f

N r f N r
f P

S r f

N r
f

N r
f

S r f

N r
f

T r f S r f

N r
f

m r f O r S r f

, , ¯ , 1 ¯ , ¯ , 1 ,

¯ , 1 ¯ , 1
Δ

,

¯ , 1 , Δ ,

¯ , 1 , , .

n
n

n
n

c

c

σ f ε1

(2.6)

(2.6) implies that ( ) ≤ ( )σ f λ f . Then from the fact ( ) ≥ ( )σ f λ f , we get ( ) = ( )σ f λ f .

Proof of (iii). First, we prove that if ≥n 3, then ( ) ≡p z 0. In fact, if ( ) ≢p z 0, then by (2.6), we get
( ) = ( ) + ( )( )− +T r f O r S r f, ,σ f ε1 , which yields ( ) ≤ ( ) −σ f σ f 1. This is a contradiction.

Second, from result (ii) of Theorem 1.1, it is easy to obtain that ( ) < ( )λ f σ f if and only if ( ) ≡P z 0. So,
we only prove ( ) = ( ) −λ f σ f 1 provided ( ) ≡P z 0.

Since ( ) ≡P z 0, we get ( ) < ( )λ f σ f . From this equality and Lemma 2.4, it yields

( ) = ( ) ( )f z A z e ,α z (2.7)

where ( )α z is a polynomial, ( )(≢ )A z 0 is the canonical product of f formed with the zeros of f, such that

( ) = ( ) = ( ) < ( ) = ( ) = ≔σ A λ A λ f σ f α σ f Q s, deg deg . (2.8)

Substituting (2.7) into (1.5), we get

( ) + ( ) ( ( + ) − ( )) =( ) ( )+ ( ) ( + )− ( ) ( + )A z e e q z e A z c e A z e 0,n nα z na z α z Q z α z c α z a b zs
s

s s
s

0 0 0 (2.9)

where ( ) = + ( ) ( ) = + ( )α z a z α z Q z b z Q z,s
s

s
s

0 0 . Here, a b,s s are nonzero constants, α Q,0 0 are polynomials
of degree ≤ −s 1. By (2.8), (2.9), and Lemma 2.3, we get = +na a bs s s, and

( ) + ( ) ( ( + ) − ( )) =( )+( − ) ( ) ( + )− ( )A z q z e A z c e A z 0.n Q z n α z α z c α z10 0 (2.10)

Next, we divide three cases to complete the proof.

Case 1. − >s 1 0 and ( ) < −σ A s 1. If ( ( ) + ( − ) ( )) < −Q z n α z sdeg 1 10 0 , then by ( ( + ) − ( )) = −α z c α z sdeg 1,
Lemmas 2.2, 2.3, and (2.10), we get ( ) ( + ) ≡q z A z c 0, which contradicts the fact that ( ) ≢q z 0 and ( ) ≢A z 0.
Similarly, if ( ( ) + ( − ) ( )) = −Q z n α z sdeg 1 10 0 , then by Lemmas 2.2, 2.3, and (2.10), it yields ( ) ( ) ≡q z A z 0,
and we again have a contradiction.

Case 2. < − ≤ ( )s σ A0 1 . It follows from (2.10) that





















( + )

( )
≤

( )
= ( )N r A z c

A z
N r

q z
O r, , 1 log .

Then by Lemma 2.1, we get for each >ε 0,











( + )

( )
= ( ) + ( )( )− +T r A z c

A z
O r O r, log .σ A ε1 (2.11)

Combining (2.10) and (2.11), we get for each >ε 0,







































( − )
( )

≤
−

+ ( )

≤
−

+ ( ) + ( )

≤ ( ) + ( ) + ( )

( + )

( )

( + )− ( )

( + )− ( ) ( )

( + )

( )− +

( + )− ( ) ( )− +

n N r
A z

N r
e

O r

N r
e

O r O r

T r e O r O r

1 , 1 , 1
1

log

, 1 log

, log .

A z c
A z

α z c α z

α z c α z A z
A z c

σ A ε

α z c α z σ A ε

1

1

(2.12)
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Hence, from ( ( + ) − ( )) = −α z c α z sdeg 1, (2.8), and (2.12), it follows ( ) ≤ −λ A s 1. Since ( ) = ( ) ≥ −λ A σ A s 1,
we get ( ) = ( ) = − = ( ) −λ f λ A s σ f1 1.

Case 3. − =s 1 0. By (2.8), we get ( ) = ( ) <σ A λ A 1. If ( )A z is transcendental, then ( )A z has infinitely many

zeros. But (2.12) implies ( ) = ( )
( )

N r O r, logA z
1 . This is a contradiction. So ( )A z is a polynomial and ( ) =λ f

( ) = = ( ) −λ A σ f0 1. □

3 Proof of Theorem 1.3

Following Steinmetz [15], the exponential polynomial (1.3) can be normalized in the form

( ) = ( ) + ( ) + ⋯+ ( )f z H z H z e H z e ,ω z
m

ω z
0 1

s
m

s
1 (3.1)

where ≤ …m k ω ω, , , m1 are pairwise different leading coefficients of the polynomials ( )( ≤ ≤ )Q z j k1j of
degree s, ( )( ≤ ≤ )H z j m0j are either exponential polynomials of degree ≤ −s 1 or ordinary polynomials in
z. So, we have ( ) ≢ ( ≤ ≤ )H z j m0 1j .

Set = { … }W ω ω, , m1 , = ∪ { }W W 00 . The convex hull of the set W, denoted by ( )co W , is the intersection
of all convex sets containing W. If W contains finitely many elements, then ( )co W is either a compact
polygon with nonempty interior or a line segment. We denote by ( ( ))C co W the perimeter of ( )co W . When

( )co W is a line segment, ( ( ))C co W equals to twice the length of this line segment.

Theorem C. [15] Let f be given by (3.1). Then

( ) = ( ( )) + ( )T r f C co W r
π

o r,
2

.
s

s
0

Theorem D. [15] Let f be given by (3.1). If ( ) ≢H z 00 , then









 = ( )m r

f
o r, 1 ;s

while if ( ) ≡H z 00 , then









 = ( ( )) + ( )N r

f
C co W r

π
o r, 1

2
.

s
s

In order to prove Theorem 1.3, we need Lemmas 3.1 and 3.2. As one may observe, the proof of Lemma
3.1 is somewhat similar to that of [7, Lemma 4.5].

Lemma 3.1. Let f be given by (3.1), and be a solution of (1.5), where =n 2. If the points …ω ω0, , , m1 are
collinear, then =m 1.

Proof. Suppose contrary to the assertion that ≥m 2. Without loss of generality, we assume that =ω k ωi i
( = … )i m1, , , where ω is a nonzero complex number, ki are distinct nonzero real numbers such that >k ki j

for >i j. Set ( ) = + ( )Q z b z Q zs
s

0 , where ( )Q z0 is a polynomial of degree ≤ −s 1. Substituting the expression
(3.1) of f into (1.5), we get

















∑ ∑( ) ( ) = ( ) − ( ) ( ) + ( )
=

( + ) ( )

=

( + )H z H z e P z q z e l z e l z e ,
i j

m

i j
k k ωz Q z b z

t

m

t
b k ω z

, 0
0

1

i j
s

s
s

s t
s

0 (3.2)

where = ( ) = ( + ) − ( ) ( ) = ( + ) − ( )( + ) −k l z H z c H z l z H z c e H z0, , t t
ω z c ω z

t0 0 0 0 t
s

t
s ( = …t m1, , ).
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Now we divide two cases >k 0m and <k 0m to derive a contradiction. Considering the similarity of
proofs in these two cases, we only discuss the case >k 0m in detail.

Let = { + = … }A k k i j m: , 0, 1, ,i j , we have





= ( − { }) =
  >

  <
A k A k k

k k
max 2 , min 0 , 0,

2 , 0.m
1 1

1 1
(3.3)

From the proof of Theorem 1.1, we get ≢fΔ 0c , which implies that at least one of …l l, ,m 0 is not vanishing.

Case 1. ( ) = ⋯= ( ) ≡l z l z 0m 1 . Then we have ( ) ≢l z 00 , which implies ( ) ≢H z 00 . If ≠k ω b2 m s, then by (3.2),
(3.3), and Lemma 2.3, we get ( ) ≡H z 0m

2 , which contradicts ( ) ≢H z 0m . If =k ω b2 m s, then by (3.2), (3.3),
and Lemma 2.3, we get ( ) ≡H z 01 , which also contradicts ( ) ≢H z 01 .

Case 2. At least one of …l l, ,m 1 is not vanishing. Set = { ∈ { … } ( ) ≢ }t m l zΛ 0, 1, , : 0t , then Λ is a nonempty
set. Denote =t max Λ0 .

Subcase 2.1. ( ) ≢l z 00 . If there exists some ∈ { }j tΛ\0 0 such that = +k ω b k ω2 m s j0 , then by (3.2), (3.3),
Lemma 2.3, and the fact

− + > { − + = … − }k k k k k k i t2 max 2 : 0, , 1 ,m j t m j i 00 0 0

we get ( ) ( ) ≡( )q z e l z 0Q z
t0
0 , which contradicts ( ) ≢q z 0. If = +k ω b k ω2 m s t0 , then by (3.2), (3.3), Lemma 2.3,

and the fact

{ − + = … } > ( − { })k k k i t Amin 2 : 0, , min 0 ,m t i 00

we get ( ) ≡H z 01 , which contradicts ( ) ≢H z 01 .

Subcase 2.2. ( ) ≡l z 00 and ( ) ≢H z 00 . Using the similar proof to subcase 2.1, we get a contradiction.

Subcase 2.3. ( ) ≡l z 00 and ( ) ≡H z 00 . Then by (3.2), (3.3), and Lemma 2.3, we get there exists some
∈ { }j Λ\ 00 such that = +k ω b k ω2 m s j0 . Otherwise, we have ( ) ≡H z 0m

2 , which contradicts ( ) ≢H z 0m . While

if = +k ω b k ω2 m s j0 , then by (3.2), (3.3) and the fact

= { … + ≤ < ≤ } < { − + = … }k k k k k i j m k k k i t2 min 2 , , 2 , : 1 min 2 : 1, , ,m i j m j i1 1 00

we get ( ) ≡H z 01
2 , which contradicts ( ) ≢H z 01 . □

Lemma 3.2. Let f be given by (3.1). If f is a solution of (1.5), where =n 2, then =m 1.

Proof. Suppose contrary to the assertion that ≥m 2. Substituting the expression (3.1) of f into (1.5), we get

∑ ∑( ) ≔ ( ) − ( ) = ( ) + ( ) ( ) = − ( ) ( ) = − ( ) ( )
=

+ ≠

( + ) ( ) ( )

=

F z f z p z M z H z H z e q z e f z q z e l z eΔ ,
i j

ω ω

m

i j
ω ω z Q z

c
Q z

j

m

j
ω z2

, 0
0

0
i j

i j
s

j
s (3.4)

where ( )M z is either an exponential polynomial of degree ≤ −s 1 or ordinary polynomial in z,
( ) = ( + ) − ( )( + ) −l z H z c e H zj j

ω z c ω z
jj

s
j

s ( = …j m0, 1, , ), =ω 00 . From the proof of Theorem 1.1, we get ≢fΔ 0c ,
which implies that at least one of …l l, ,m 0 is not vanishing.

Set

= { … + + ≠ = … }X ω ω ω ω ω ω i j m, , , : 0, , 1, , ,m i j i j1 1

= { + + ≠ = … }X ω ω ω ω i j m: 0, , 1, , ,i j i j2

= { … … } = { … }Y ω ω ω ω Y ω ω, , , 2 , , 2 , 2 , , 2 .m m m1 1 1 2 1

It is obvious by convexity that

( ( )) ≤ ( ( )) ( ( )) ≤ ( ( )) ( ( )) = ( ( )) ( = )C co X C co X C co Y C co Y C co X C co Y j, , , 1, 2 .j j2 1 2 1 (3.5)
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If ( ) = ⋯= ( ) ≡l z l z 0m 1 , then we have ( ) ≢l z 00 , which implies ( ) ≢H z 00 . From the fact ( ) = − ( ) ( ) ( )F z q z l z eQ z
0

and Theorem C, we get








= ( )N r
F

o r, 1 .s

On the other hand, by (3.4), Theorems C and D, we get













=

( ( )) + ( )   ( ) ≡

( ( )) + ( )   ( ) ≢
N r

F

C co X o r M z

C co W o r M z
, 1 , 0,

2 , 0.

r s

r s

1 2π

0 2π

s

s

This yields a contradiction. So, there exists some ∈ { … }t m1, ,0 such that ( ) ≢l z 0t0 . Set = { ∈ { … }t mΛ 1, , :1
( ) ≢ }l z 0t . Denote by T the set consisted of nonzero elements ( ∈ )ω t¯ Λt 1 and = ∪ { }T T 00 . It is obvious that

( ( )) ≤ ( ( ))   ( ( )) ≤ ( ( ))C co T C co W C co T C co W, .0 0

By (3.4), Theorems C and D, we get


























( )

=
( )

+ ( ) =
( ( )) + ( ) ( ) ≡

( ( )) + ( ) ( ) ≢
N r

F z
N r

f z
O r

C co T o r l z

C co T o r l z
, 1 , 1

Δ
log

, 0,

, 0.c

r s

r s
2π 0

0 2π 0

s

s (3.6)

Case 1. Suppose that ( ) ≢M z 0, then by (3.4) and Theorem D, we get











( )
= ( )m r

F z
o r, 1 .s (3.7)

So, by Theorem C, (3.4), (3.6), and (3.7), we get

















( ( )) + ( ) = ( ( )) = ( ( )) + ( ) =
( )

+ ( )

=
( ( )) + ( ) ( ) ≡

( ( )) + ( ) ( ) ≢

C co W r o r T r f z T r F z O r T r
F z

O r

C co T o r l z

C co T o r l z

2
2π

2 , , log , 1 log

, 0,

, 0,

s
s

r s

r s

0

2π 0

0 2π 0

s

s

which contradicts ( ( )) ≥ ( ( )) ≥ ( ( ))C co W C co T C co T0 0 .

Case 2. Suppose that ( ) ≡M z 0, then by (3.4) and Theorem D, we get


























( )

=
( ) − ( )

=
( ( )) + ( ) ( ) ≢

( ( )) + ( ) ( ) ≡
N r

F z
N r

f z p z

C co X o r H z

C co X o r H z
, 1 , 1 , 0,

, 0.

r s

r s2

1 2π 0

2 2π 0

s

s (3.8)

Subcase 2.1. If ( ) ≡H z 00 , then we must have ( ) ≡l z 00 . So, by (3.6) and (3.8), we get ( ( )) = ( ( ))C co T C co X2 .
From this equality and (3.5), it follows that

( ( )) = ( ( )) ≥ ( ( )) = ( ( )) = ( ( ))C co Y C co W C co T C co X C co Y1
2

,2 2 2

which is a contradiction.

Subcase 2.2. If ( ) ≢H z 00 and ( ) ≡l z 00 , then by (3.6) and (3.8), we get ( ( )) = ( ( ))C co T C co X1 . From this
equality and (3.5), we get

( ( )) = ( ( )) ≥ ( ( )) = ( ( )) = ( ( )) ≥ ( ( ))C co Y C co W C co T C co X C co Y C co Y1
2

,2 1 1 2

which is a contradiction.

Subcase 2.3. If ( ) ( ) ≢H z l z 00 0 , then by (3.6) and (3.8), we get

( ( )) = ( ( ))C co T C co X .0 1 (3.9)
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By Lemma 3.1 and ≥m 2, we know that ( )co W0 cannot reduce to a line segment. Hence, ( )co W0 is a polygon
with nonempty interior.

If 0 is not a boundary point of ( )co W0 , then we have ( ) = ( )co W co W0 . From this equality, (3.5) and (3.9),
it follows that

( ( )) ≤ ( ( )) = ( ( )) ≤ ( ( )) = ( ( )) = ( ( ))C co Y C co Y C co X C co W C co W C co Y1
2

,2 1 1 0 2

which is a contradiction. So, 0 is a boundary point of ( )co W0 . Since ( )co W0 is a polygon with nonempty
interior, we denote the nonzero corner points of ( )co W0 by … ( ≤ )u u t m, , t1 , such that ≤ <u0 arg 1

<⋯< <u u πarg arg 2t2 . Hence,

( ( )) = | | + | − | + ⋯+ | − | + | |−C co W u u u u u u .t t t0 1 2 1 1 (3.10)

Set = { … }Y u u u u, 2 , , 2 ,t t3 1 1 . Since …u u, , t1 are corner points of ( )co W0 and < ( = … − )+u u j targ arg 1, , 1j j 1 , we
know that the points …u u2 , , 2 t1 must be corner points of ( )co Y3 , and ( )co Y3 may have other corner points.
So by (3.10), we get

( ( )) > | − | + | − | + ⋯+ | − | + | − | > ( ( ))−C co Y u u u u u u u u C co W2 2 2 2 2 2 .t t t t3 1 1 2 1 1 0 (3.11)

Then, by ⊂Y Y3 1, (3.5), and (3.11), we get

( ( )) = ( ( )) ≥ ( ( )) > ( ( )) ≥ ( ( ))C co X C co Y C co Y C co W C co T ,1 1 3 0 0

which contradicts (3.9). □

Proof of Theorem 1.3. The condition ( ) ≢p z 0 and result (iii) of Theorem 1.1 imply =n 2. Then by Lemma
3.2, we get =m 1, that is,

( ) = ( ) + ( )f z H z H z e ,ω z
0 1

s
1 (3.12)

where ( ) ( )(≢ )H z H z, 00 1 are either exponential polynomials of degree ≤ −s 1 or ordinary polynomials in z.
Substituting (3.12) into (1.5), we get

( ) + ( ) ( ) + ( ) ( ) + ( ) ( ) = ( ) − ( )( ) ( ) ( + )H z e H z H z e q z e l z e q z e l z e p z H z2 ,ω z ω z Q z b z Q z ω b z
1
2 2

0 1 0 1 0
2s s

s
s

s
s

1 1 0 0 1 (3.13)

where ( ) = + ( )Q z b z Q zs
s

0 , ( )Q z0 is a polynomial of degree ≤ −s 1, ( ) = ( + ) − ( ) ( ) =l z H z c H z l z,0 0 0 1
( + ) − ( )( + ) −H z c e H zω z c ω z

1 1
s s

1 1 . From the proof of Theorem 1.1, we get ≢fΔ 0c , which implies that at least one
of l l,1 0 is not vanishing.

Claim I. We claim that ( ) ≢l z 01 . Otherwise, we have ( ) ≢l z 00 , which implies ( ) ≢H z 00 . If =b ω2s 1, then by
(3.13) and Lemma 2.3, we get ( ) ( ) ≡H z H z 00 1 , which yields ( ) ≡H z 01 . This contradicts ( ) ≢H z 01 . So

≠b ω2s 1. Then by (3.13) and Lemma 2.3, we get ( ) ≡H z 01
2 , which contradicts ( ) ≢H z 01 .

Claim II. We claim that ( ) ≢H z 00 . Otherwise, we have ( ) ≡l z 00 . If =b ωs 1, then by (3.13) and Lemma 2.3,
we get ( ) ≡p z 0, which contradicts the hypotheses of Theorem 1.3. So ≠b ωs 1. Then by (3.13) and Lemma

2.3, we get ( ) ≡H z 01
2 , which contradicts ( ) ≢H z 01 .

Now we divide two cases to complete the proof of Theorem 1.3.

Case 1. ( ) ≡l z 00 . Since ∉ { + }ω ω ω b2 , s1 1 1 , by (3.13) and Lemma 2.3, we get ( ) ( ) ≡H z H z 00 1 , which
contradicts Claims I or II.

Case 2. ( ) ≢l z 00 . If + =ω b 0s1 , then by ∉ { − }ω ω ω2 ,1 1 1 , (3.13), and Lemma 2.3, we get ( ) ≡H z 01
2 , which

contradicts ( ) ≢H z 01 . So, we have + ≠ω b 0s1 .

Subcase 2.1. Suppose that ≠b ωs 1, then we get ∉ { + }ω ω b ω b2 , ,s s1 1 1 . Hence, by (3.13) and Lemma 2.3, we
get ( ) ( ) ≡H z H z 00 1 . This is a contradiction.
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Subcase 2.2. Suppose that =b ωs 1, then by (3.13) and Lemma 2.3, we get









( ) + ( ) { ( + ) − ( )} =

( ) ( ) + ( ) { ( + ) − ( )} =

( ) − ( ) =

( ) ( + ) −

( )

H z q z e H z c e H z
H z H z q z e H z c H z

p z H z

0,
2 0,

0.

Q z ω z c ω z

Q z
1
2

1 1

0 1 0 0

0
2

s s
0 1 1

0 (3.14)

From the second and third equations of (3.14), we obtain that ( )H z0 is a nonconstant polynomial. Solving
the second equation of (3.14) yields that

( ) = ( ) ( )H z G z e ,Q z
1 0 (3.15)

where ( ) = ( )
( ) − ( + )

( )
G z q zH z H z c

H z2
0 0

0
is a nonzero polynomial. Substituting (3.15) into the first equation of (3.14),

we get

( ) + ( ){ ( + ) − ( )} =( + ) − + ( + )− ( )G z q z G z c e G z 0.ω z c ω z Q z c Q z2 s s
1 1 0 0 (3.16)

If ≥s 2, then by (3.16), Lemma 2.3, and the fact that

( ( + ) − ) = − ( ( + ) − ( )) = { ( )} − ≤ −ω z c ω z s Q z c Q z Q z sdeg 1, deg deg 1 2,s s
1 1 0 0 0

we get ( ) ( + ) ≡q z G z c 0, which contradicts ( ) ≢q z 0. So =s 1 and ( )H z1 is a polynomial. Suppose that H1 is a
constant, it follows from Claim I that ≠e 1ω c1 . Then by the first and second equations of (3.14), we obtain
that q is a constant and = −H Hdeg deg 10 0 . But the latter equality cannot hold. So H1 is a nonconstant
polynomial. Finally, comparing the degree of polynomials of the first and second equations of (3.14), we
get = −H qdeg deg 11 and =e 1ω c1 . Theorem 1.3 is thus proved. □
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