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Abstract: The self-mappings satisfying implicit relations were introduced in a previous study [Popa, Fixed point
theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Mat. Univ. Bacdu 7 (1997), 129-133]. In this study,
we introduce self-operators satisfying an ordered implicit relation and hence obtain their fixed points in the cone
metric space under some additional conditions. We obtain a homotopy result as an application.
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1 Introduction

The importance of the Banach contraction principle lies in the fact that it is an indispensable tool to check
the existence of solutions of differential equations, integral equations, matrix equations, and functional
equations, which are formed by mathematical modeling of real-word problems. There have been fixed
point theorists to enhance both the underlying space and contractive condition (explicit type) used by
Banach [1] under the effect of one of the structures like order metric structure [2,3], graphic metric
structure [4], multivalued mapping structure [5], a-admissible mapping structure [6], comparison
functions, and auxiliary functions

Recently, Huang and Zhang [7] introduced the structure of cone metric by replacing real numbers
with an ordering Banach space and established a convergence criterion for sequences in a cone metric
space to generalize the Banach fixed point theorem. Huang and Zhang [7] considered the concept of a
normal cone for their findings; however, Rezapour and Hamlbarani [8] omitted this concept in some
results by Huang. Many authors have investigated fixed point theorems and common fixed point theorems
of self-mappings for normal and non-normal cones in cone metric spaces [9-12].

On the other hand, Popa [13] introduced a new class of functions with three properties and obtained fixed
points of self-mappings satisfying an implicit relation under the effect of function from this new class. Popa
[13-15] obtained some fixed point theorems in metric spaces; however, investigation of fixed points of self-
mappings satisfying implicit relations in order metric structure was carried out by Beg and Butt [16,17], and some
common fixed point theorems were established by Berinde and Vetro [18,19] and Sedghi et al. [20].

In this study, we investigate fixed points of self-operators satisfying an ordered implicit relation in the
framework of the cone metric spaces. These results are supported by an example and an application in
homotopy theory.
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2 Preliminaries

Definition 2.1. A binary relation R over a set X # ¢ defines a partial order if it has following axioms:
(1) R is reflexive;

(2) R is antisymmetric;

(3) R is transitive.

A set having partial order R is known as a partially ordered set denoted by (X, R).

Let (&, ||I-|) be a real Banach space. A subset C of & is called a cone if and only if
(1) C+# ¢, closed and C # {0};
(2) foralla,b € R with a, b > 0 and g, £ € C, we have ao + bé € C;
(3) ¢n(-C) = {0}

Given C c &, the partial order < with respect to C is defined as follows:

o < ¢ if and only if é-0€C for all g,¢& € &.

We shall write o < ¢ to indicate that 0 < & but o # &, while 0 < & stands for £ — 0 € C* (interior of C).
The cone C is said to be a normal cone if there exists a positive constant K, such that

o < ¢ implies |o| < K|é]l, for all o,& € &.

Throughout this article, we let X = (X, R) and < being a partial order with respect to cone C defined
in&.If X< &, then R and < are identical, otherwise are different.

Definition 2.2. [7] A mapping d: X x X — & is said to be a cone metric if for all g, &, v, € X the following
conditions are satisfied:

(d1) 0 <d(o,¢) and d(o, &) = 0 if and only if 0 = &

(d2) d(o,&) =d(&, 0);

(d3) d(o,¢) <d(o,v) +d(v,0).

The cone metric space is denoted by (X,d).

Definition 2.3. [7] Let & be a real Banach space, (X, d) be a cone metric space, and ¢ € & with 0 « c.
A sequence {0y} is called a Cauchy sequence if there exists a natural number N € N, such that d(o,, 0,,) < ¢
for all n, m > N. The sequence {0} is said to be convergent if there exists an N € N, such that d(o,, 0) < c for
alln>Nand o € X.

3 Ordered implicit relations

Fixed point theorem involving implicit relations provides a formula to show the existence of a solution of
the nonlinear functional equation. In this regard, many authors have presented different fixed point
results, which then were applied to solve nonlinear functional equations [16-19,21,22].

Let (&, ||I-|l) be a real Banach space and B (&, &) be the space of all bounded linear operators T: & — &
with ||T||l; < 1, where ||-||; is the usual norm defined in B(&, &).

In this section, consistent with [13], we introduce the following:

Let A: E° — & be an operator, which satisfies the conditions given below.
(A1) 05 2 U5 and 05 < Vg = A (Vy, Uy, U3, Uy, Us, Ug) < A V1, U, U3, Us, Os, O).
(Ay) if either

A(o,v,v,0,0+0,0)<0



DE GRUYTER Cone metric spaces with applications in homotopy theory =— 297

or
Ao,v,0,v,0,0+V) <0,

then there exists T € B(E, &), such that 0 < T (v) (for all o, v € &).
(Az) Ao, 0, 0, g, 0,0)>0 whenever |a]| > 0.

Let G = {A:8° — E|A satisfies conditions A;, Ay, As).

Example. Let < be the partial order with respect to cone C, as defined in Section 2. Let (&, |-||) be a real
Banach space and A: &% — & is defined as

. 1
A (v, Uy, U3, Uy, Us, Ug) = U1 — & Max {U,, Vs, Uy, Us, Ug} for all v; e E@=1to 6) and a € {O, Ej
Then, the operator A € G:

(A). Let us <y and vg < ), then y, — Us € C and y, — Us € C. Now, we show that A (vy, v, U3, Us, Us, Ug) —
A1, U, U3, Us, Vs, ¥;) € C. Consider,

A V1, V2, U3, Uy, Us, Ug) — AUy, U, Uz, Us, Vs, V) = U1 — & MAX{V, U3, Uy, Us, Ug} — (U1 — a max{vy, Us, Vs, Vs Vg})
=amax{0, 0,0, y; — Us, J; — g} € C.

Thus, A V1, V2, Us, Us, Vs, ¥) < A1, U2, U3, Us, Us, Ug).
(A,). Let v,y € E be such that 0 < v, 0 < y. If A(y,v,v,y,y + v, 0) <0, then we have

-y +amax{v,v,y,y + v, 0} € C.

Forify = 0, then av € C. Thus, there exists T: & — & defined by T (v) =nv (0 < n < % and n = a is a scalar),
such that y < T (v). Now, if y # O, then — y + a max {v, v, y, y + v, 0} € C implies a(y + v) — y € C, which
then givesav — (1 — @)y € C. Thus, (1 — @)y < av, so there existsT: & — & defined by T (v) =nv (n = ﬁ is
a scalar), such that y < T (v).

(Aj3). Let v € & be such that ||| > 0 and consider 0 < A (v, 0, 0, v, v, 0), then v — @ max {0, 0, v, v, 0} € C.
This implies av < v, which holds whenever |v] > O.

Similarly, the operators A: &% — & defined by
(1) A1, v2, U3, Uy, Us, Ug) = U1 — aUz; & € [0,1);
(2) Ay, V2, U3, Uy, Us, Ug) = U — AU, — buz — cUy; a, b,c >0 with a+ b +c< 1
are members of G.

Following remark will be essential in the sequel.

Remark 3.1. If T € B(E, &), the Neumann series I + T + T? +..+ T" +... converges if | T|; < 1 and diverges
otherwise. Also if ||T|l; < 1, then there exists A > 0, such that |T|; <A< 1and |[T"; <A" < 1.

4 Results

Recently, Popa [13] has employed an implicit type contractive condition on self-mapping to obtain some
fixed point theorems. Ran and Reurings [2] have presented an analogue of the Banach fixed point theorem
for monotone self-mappings in an ordered metric space. Huang and Zhan [7] introduced the idea of the
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cone metric space and obtained analogues of the Banach fixed point theorem, Kannan fixed point
theorem, and Chatterjea fixed point theorem in a cone metric space. In this section, we prove some fixed
point results for ordered implicit relations in a cone metric space, which improve the results in [2,7,13]. We
derive these results under two different partial orders one defined in the underlying set and other in a real
Banach space.

Theorem 4.1. Let (X, d) be a complete cone metric space and C ¢ & be a cone. Let f: X — X. If there exist
T € B(&, &) with |T|, < 1, identity operators I: & — &, and A € G, such that for all comparable elements o,
KeX

(I-T)d(o,f(0))) <d(o, k) implies

Ad(f(0), f ), d(0,x),d(0,f(0)),dx, f(x)),d(o,fx),dk,f(0)) <0 (4.

and

(1) there exists o € X, such that oyRf (0y);
(2) for all o, x € X, 0Rx implies f (o)Rf (x);
(3) for a sequence {o,,} with o, — x* whose all sequential terms are comparable, we have 0,,Rx* for alln € N.

Then, x* = f(x*).

Proof. Let 0y € X be such that gyRf (0y). We construct a sequence {0,} by f(0,,_1) = 0,. Then, oyRo;. By
(4.1), for 0 = 0y, we have

(I = T)(d (00, f (00))) = (I - T)(d (0o, 01)) < d(0p, 07) implies

A(d(f (00), f (01)), d (00, 01), d (00, f (00)), d (01, f (01)), d (0o, f (01)), d (04, f (0p))) <O,
that is,

A(d (01, 07), d (0, 1), d (00, 01), d (01, 02), A (0, 02), d (01, 07)) < O. (4.2)
By (d3), we have

d (09, 02) < d (00, 01) + d (01, 02)
and so we rewrite (4.2) employing condition (A;) as follows:
A(d (01, 02), d (00, 01), d (09, 01), d (01, 02),d (00, O1) + d (01, ), 0) < O
and thus by (Aj), there exists T € B(&, &) with |T|; < 1, such that
d (01, 05) < T (d (00, 01)).
Since opR0y, assumption (2) implies 0y = f (0o)Rf (01) = 0, and by (4.1), for ¢ = 0;, we have

(I -T)d(oy, f(01)) =T - T)(d(01, 02)) < d(0y, 0,) implies

A(d(f (01), f (02)), d (01, 02), d (01, f (01)), A (02, f (02)), (0w, f (02)), d (02, f (01))) <O,
that is,

A(d (0, 03), d (01, 02), d (01, 02), (02, 03), d (01, 03), d (0, 02)) X 0.
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By (d3), we have
d(oy, 03) < d(0y, 03) + d (03, 03)
and (A,) implies
A(d (02, 03), d (031, 02), d (01, 02), d (03, 03), d (01, 02) + d (02, 03), 0) < 0.

By (A,), there exists T € B(&, &) with ||T|; < 1, such that

d (0, 03) < T(d (03, 02)) < T*(d (00, 07))-
By continuing this pattern, we can construct a sequence {o,}, such that
0,R0,,1 With 0,,, = f(0,) and

(I = T)(d(0n-1, f (On-1))) = (I = T)(d(On-1, On)) < d(Op-1, O)
implies
d(On, Ons1) < T(d(Op-1, ) < T?(d (On-2, On-1)) < =+ < T"(d (00, 01)).

For m, n ¢ N with m > n, consider

d(On, Om) < d(On, Op+1) + d(Ons1, Ops2)++-+d (Om-1, Om)
< T"(d (0o, 1)) + T"*1(d (0o, 01))+---+T™1(d (00, 01))
=(T" + T 4.+ T™ 1) (d (00, 07)),
<{T"A + T+---+Tm "1 4 ..)}(d (0o, 07))
={T"(I - TY'Y)}(d (09, 01)). (By Remark 3.1)

Since ||T|; < 1, so T" — 0 as n — oo. Thus, lim,_,.,d (0, 0;,) = 0, which implies that {0,} is a Cauchy
sequence in X. Since (X, d) is a complete cone metric space, there exists x* € X, such that 0, > x*asn —
oo, Thus, there exists a natural number N,, such that

d(oy, x*) < ¢ for all n > N..

We claim that

(I = T)(d(0n, f (0n))) < d(On, X").

We assume against our claim that

(I - T)(d(0n, f (09))) > d(0On, X")
and

(I = T)(d(0ns1, f (On41))) > d(Opy1, ™) for some n € N.
By (d3) and (4.1), we have

d(On, f(0n)) <d(Op, x*) + d(X*, f (0n))
< (I = T)(d(On, f (00))) + d(Ons1, f (Oni1))
< (I = T)(d(On, f (00))) + T(d(0n, f (00))))
=(I = T)(I + T)(d(0n, f (04))) = (I = TA)(d (0n, f (00)))-

Thus,

T?(d (0w, f (00))) < O,

which is an absurdity. Hence, for each n > 1, we have
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(I = T)(d(0y, f (0n))) < d(On, X*)
and
(I = T)(d(On+1, f (On+1))) < d(Ons1, X7).
Assume that ||d(x*,f(x*)|| > 0. By assumption (3), we have o0, < x* for all n € N, and then by (4.1), we get

Ad(f (0n), f (X)), A (On, X*), A (On, f (00)), AX*, f (X)), d(0n, f (7)), d(x*, f(00))) <O

or

A (Opi1, f (X)), d(On, X7), d(On, Ons1), d (X5, f (X)), d (O, f (X)), d (X, Op41)) < 0.

Letting n — oo, we have

A, f(x7)),0,0,d, f (7)), d(x", f (x7)), 0) < 0.

This is a contradiction to (As). Thus, ||d(x*,f(x*)| = 0. Hence, d(x*,f(x*)) = 0. It follows from (d1) that
x* = flx*). O

Theorem 4.2. Let (X,d) be a complete cone metric space and f be a self-mapping on X. If for all
comparable elements o, x € X, there exist T € B(E, &) with | T,|| < 1, identity operator I: & —» &, and A € G,
such that

(I-T)d(o,f(0))) <d(o, k) implies

Ad(f (0), f(k)), d(0, ), d(0, f (0)), d(x, f (x)), d (0, f(K)), d(x, f(0))) <O (4.3)

and

(1) there exists gy € X, such that f (0p)R0o;
(2) for any o, x € X, oRxk implies f (x)Rf (0);
(3) for a sequence {0,} with o, — x* whose all sequential terms are comparable, we have 0,Rx" for alln € N.

Then, f has a fixed point in X.

Proof. Let 0, be an initial point in X. Define the sequence {0,,} by 0,, = f(x,,_1) for all n. By assumption (1),
we have 01 = f (0p) R0y, and then, assumption (2) implies f (go)Rf (07), i.e., 01R0,. By (4.3), we have

(I - T)(d(f (00), 00)) = I = T)(d (01, 0p)) < d(01, 0p) implies

Ad(f (01), f (00)), d (01, 0p), d (01, f (01)), d (0o, f (00)), d (01, f (00)), d (0o, f (01))) <O

or

A(d (01, 02), d (0o, 01), d (01, 02), d (0o, 01), O, d(0p, 07)) < O.
By (d3), we have
d (0o, 02) < d(0y, 01) + d (01, 02)
and then using Aj;, we obtain

A(d (01, 02), d (00, 01), d (01, 02), d (00, 01), O, d (0o, 01) + d (01, 02)) < 0.
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By (A,), there exists T € B(&, &) with ||T|, < 1, such that
d (01, 02) < T(d (00, 01)).

Since 0;R0,, by assumption (2), we get 03R0,, and thus by (4.3)
(I - T)(d(0y, f(01))) = (I - T)(d(01, 02)) % d (01, ;) implies

ﬂ(d(f(o-l)af(o-z))’ d(o-ly 02)9 d(U],f(Ul)), d(0-23f(0-2))a d(al’f(OZ))’ d(O-Z’f(O-l))) <0.

By (d3)’ (ﬂl)’ and (ﬂZ)a we get
d (03, 03) = d (03, 05) < T (d (02, 01)) < T*(d (0, 01)).

By continuing the pattern, we construct a sequence {o,,}, such that

d(On, Ons1) < T(d(On-1, On)) < T2(d(On-2, On-1)) <+ T"(d (00, 01))-
Hence, by the same reasoning as in the proof of Theorem 4.1, we have x* = f(x*). O
Theorem 4.3. Let (X,d) be a complete cone metric space and f be a monotone self-mapping on X. If for all

comparable elements o, k € X, there exist T € B(E, &) with |T|, < 1, identity operator I: & —» &, and A € G,
such that

(I-T)(d(o,f(0))) <d(o, x) implies

Ad(f (0), f (k)), d (0, k), d(0, f(0)), d(x, f (x)), d (0, f(k)),d(x,f(0))) <O (4.4)

and
(1) there exists gy € X, such that oy Rf (0p) or f (0p)R0y;
(2) for a sequence {0,} with g, — x* whose all sequential terms are comparable, we have 0,Rx* for alln € N.

Then, f has a fixed point in X.

Proof. Let 0, be any point in X. Define the sequence {0} by 0, = f(0,,_,) for all n € N. By assumption (1), we
have gy Rf (0p) = 07. Also 0, R0, since f is monotone (either order preserving or order reversing). By (4.4),
we have

I - T)d(f (00), 00)) = (I = T)(d (01, 0p)) < d(0y, 0p) implies

Ad(f (00), f (01)), d (00, 01), d (00, f (00)), d (01, f (01)), d (00, f (01)), d (01, f (00))) %O,
that is,

A(d(0y, 02), d (09, 01), d (0o, 01), d (01, 02), d (0o, 02), d (01, 07)) < O.
By (d3) and (Ay),

ﬂ(d (01: 02)’ d(003 Ul)a d(UO’ Ul)’ d(O’], 02)) d(UO’ 02)9 0) <0.
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By (A,), there exists T € B(&, &) with ||T]; < 1, such that
d (01, 03) < T (d (00, 01)).
Since 0,R 0y, by assumption (2), we get 03R0; (since f is monotone), and thus, by (4.3)

(I-TNd(o, f (o) = U -T)d(0, 02) <d(0y, 02) implies

A ((d (f (01’ f (02), d (01’ 02)3 d (01’ f (01) )s d (0-23 f (0-2)’ d (015 f (0-2) ); d (0-2’ f (01) )) < 0.
By (d3), (Ay), and (A,), we get
d (03, 03) < T (d(02, 01)) < T?(d (00, 01)).
By following the same pattern, we construct a sequence {o,}, such that

d (On, Ons1) < T(d(Op-1, On)) < T*(d(Op-2, On-1)) <---< T"(d (00, 01)).

Rest of the proof is similar to the proof of Theorem 4.1. O

Remark 4.1. (1). Fixed point in Theorems 4.1-4.3 can be proved to be unique if additionally we assume
that for every pair of elements g, x € X, there exists either an upper bound or lower bound of o, k.
(2). If cone is taken as normal in the above theorems, then we can replace A5 by

A0, v,a,a+ &, a+v)<x0forall,oc<xc, é<c,v<canda < c.

The following example illustrates the main theorem.

Example. Let & = (R3, |-|) with ||o]| = max{(|ay|, |02, |o5])}, then (&, |.|) is a real Banach space. Define
C=1{(0,¢,v) eR3% g,& v >0}, then, it is a cone in &. Define the cone metric d by d(o, &) =
101 - &1, 102 = &1, los - &1}, where 0 = (01, 03, 03) and & = (§, &, &). Let X = {(0,0,0),(0,0,2), (0.4,0) }
& and define f by

1 1 1 1
f(o’ O’ O) - (Oa Oa ijf(oy O’ Zj - (Os Os Zjaf(os Za Oj - (Os Os O);

then the mapping f is monotone with respect to the partial order <. Let

o

0

S Wl

S W+
—_

Define T (0) = % and

lo1] o] |U3|} 1 1
T (0)| = max{ —, ——, — ¢ = — max {|oi|, |0z, |o3|} = =|T.
IT (o)l { 3° 73 3 3 {lo1l, 102, |os} 3|| l

Then, |T|| = 1 <1, and hence, T ¢ B(&, &). Also, T(C) < C. Now, if o = (0, 0, 0) and x = (0, 0, %) then

o < k. Also

d(o,f(0)) = (0, 0, %j d(x,f ) =1(0,0,0), d(x,f(0)=1(0,0,0), d(f(0),fx))=(0,0,0),
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T(d(o, f (0))) = 4L
= (0,0, ). t-n@@.f©@)) =(0,0,1) - (0,0, 1) = (0,0, %),

sV

a max {d (0, X)), d (0, f (), d(x, f (€)), d (0, f (), d (k. f (@)} = a max{[o, 0, %j [0, 0, %j 0,0, 0))}

_ [0, 0, lj.
4
Thus, for every a ¢ [o, ;) (I - T)(d (o, f(0))) < d (0, x) implies

d(f(0), f(x¥)) < amax{d (o, x)), d (o, f(0)),d(x, f (x)), d (o, f (x)), d(x, f (0))}.

Define

Ald(f (0), f (), d(0,x),d(0, f(0)),d, f (x)),d (o, f (), d, f(0)))
=d(f(0),f(x)) — amax{d(o, x)), d (o, f(0)),d(, f (x)), d(o, f k), d(x, f (0))}.

Then, (I - T)(d (o, f (0))) < d (0, x) implies
Ald(f (0), f (), d(0,x),d(0, f(0)),d, fx)),d(o,f(x)),dx,f (o)) <0.

Similarly, all other values of o, k satisfy the contractive condition of Theorem 4.3. Note that (O, 0, %} is
a fixed point of f.

Corollary 4.1. Let (X, d) be a complete cone metric space and f be a self-mapping on X. If for all comparable
elements o, k € X, there exist T € B(E, &) with |T|, < 1, identity operator I: & — &, and A € G, such that

(I-T)(d(o,f(0))) <d(o, x) implies

d(f (o), f () <T(d(0,x))

and

(1) there exists o € X, such that gy Rf (dy) or f (09)R0g;

(2) for all o, x € X, oRx implies f (0)Rf (x) or f (x)Rf (0);

(3) for a sequence {0,} with a,, — x* whose all sequential terms are comparable, we have 6,Rx* for alln € N.

Then, there exists x* € X, such that x* = f(x*).

5 Homotopy result
In this section, we derive a homotopy result by applying Corollary 4.1 of Theorem 4.1.

Theorem 5.1. Let (&, ||. ||) be a real Banach space and C c & be a cone. Let (X,d) be a cone metric space and
U c X is open. Assume that there exists T € B(E,E) with |T|l; < 1 and T(C) c C. Let the operator
h: U x [0, 1] — X satisfies the condition (1) of Corollary 4.1 in the first variable and

(1) o + h(a,0) for every a € U (0U denotes the boundary of U in X);

(2) there exists M > 0, such that
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Id(h(o, ), h(a, W)l < M|6 — |

for every 0 € U and p, 9 € [0,1];
(3) For some o € U if there exists x with ||d(o,x)| < r, then cRx, where r is the radius of open ball in U.

If h(-,0) has a fixed point in the open set U, then h(-,0) also has a fixed point in the open set U.

Proof. Let
E={0€]0,1]|0 = h(o, 8), for some o € U}.
Define the relation < in & bye < w if and only if |e| < |le| forall e, w € E. Next, 0 € B, since h(-,0) has a

fixed point in the open set U. So B is non-empty. Since d(o, h(a, 0)) = d(o, x), I — T)(d (0, h(o, 8))) < d(0, k)
for all oRxk, by Corollary 4.1, we have

d(h(o,0),h(k, 0)) < T(d(0, x)).

First, we show that B is closed in [0,1]. For this, let {8,};2; € B with 8,, — 0 € [0,1] as n — oo. It is necessary
to prove that 8 € B. Since 6, € B for n € N, there exists g,, € U with o, = h(0,,,0,,). Since h(o,-) is monotone, for
n, m € N, we have 0,,R0,. Since

(I = T)(d(0n, h(Om, O))) = (I = T)(d (O, Om)) < d(On, Om),
we have
d (h (O, Om), h(Op, O)) < T (d(0,0n))

and
d(On, O) = d(h(Op, 04), h(Om, Om)) < A (W (O, Br), h(Ony Om)) + d (W (O, Om)s h (O, Om)),
ld (On, o) | < M8y, — O | + IT (d (On, O)) I,

M
||d(0n’ Um)" < 7|9n - em |
17

Since {0,}2; is a Cauchy sequence in [0, 1], we have

lim d(oy, 0) = O,

n,m—oo

that is, d(oy, 0,,) < ¢, whenever n, m — oo, Hence, {0,,} is a Cauchy sequence in X. Since X is a complete cone
metric space, there exists ¢ € U with lim,_,.,d (0, 0) < c. Hence, 0,Ro for all n € N. Now, consider

d(0n, h(0, 8)) = d (h(gy, 6y), h(0, 0)) < d(h(0On, On), h(0n, 0)) + d(h(0n, 6), h(0, 0)),
Id (0w, h(c, )| <MI6, - 6] + IIT (d(0n, 0))]l.

So we have

lim d (o, h(o, 6)) = 0.

n—oo

Thus, d(o, h(o, 6)) = 0. Hence, 0 € B and so B is closed in [0, 1].
Next, we show that B is open in [0,1]. For this, let 8, € B. Then, we have the existence of 0, € U with h
(6,,01) = 0y. Since U is open, there exists r > 0, such that B(oy, r) € U. Now, assume

1 =d(0y, V) = inf{d (0y, £): & € AU}
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Then, r =1> 0. Fix ¢ > 0 with € < w Let 0 € (0, — €, 6; + €). Then,
o€ B(o,r)={0€X:|d(o,0)] <r}, as oRo.
Consider

d(h (01 9)’ Ul) = d(h (0, 0)’ h(al’ 91) < d(h (0’ 6)1 h(U, 91) + d(h (U’ 91)’ h(ol’ 91))’
Id (h(a, 6), o)l <Ml|6, - 6| + T (d (01, 0))| <Me + ||TIIL < L.

Thus, for every fixed § € (8; - €, 0, + &), h(-,t): B(o, 1) — B(0, r) has a fixed point in U and can be deduced
by applying Corollary 4.1. But this fixed point should be in U as in the previous case. Hence, 0, € B for any
6, € (8 - ¢, 0+ ¢) and so B is open in [0,1]. Thus, we showed that B is open as well as closed in [0, 1] and
by connectedness, B = [0, 1]. Hence, h(-,1) has a fixed point in U.
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