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1 Introduction and preliminaries

The study of common fixed points of mappings satisfying certain contractive conditions has been at the
center of vigorous research activity; see [1-4]. The term coupled fixed point that was familiarized and
studied by Opoitsev [5,6] and then by Guo and Lakhsmikantham [7] has been a center of attraction by
many authors regarding the application potential of it [8—16]. Recently, the studies on the coupled
common fixed point theory and its applications appeared in [17-21].

In this article, we establish some coupled common fixed point results by using weakly increasing
mappings with two variables. Several examples and an application to integral equations indicating the
usability of the new theory are also provided.

Now, let us recall some basic concepts and notations, which will be used in the sequel.

Definition 1.1. [7] An element (u, v) € X* is said to be a coupled fixed point of a mapping A: X* — X if
u=A(u,v)and v = A(v, u).

Definition 1.2. [17] An element (u, v) € X* is called a coupled common fixed point of mappings A, B:
X? - Xif A(u, v) = Bu, v) = u and A(u, v) = B(u, v) = v. The set of all coupled common fixed points of A and
B is indicated by F (A, B).

Definition 1.3. [17] Let (X, <) be an ordered set. Two mappings A, B: X? - X are said to be weakly
increasing with respect to < if

A(u,v)<B(A(u,v),A(v,u)) and B(u,v)<A(B(u,v), B(v,u))

hold for all (u,v) € X2
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Following Su [22], we define the set ¥ = {):[0, +o0) — [0, +o0):1)] that satisfies the conditions (i)-(iii)}, where
(i) is nondecreasing,
(ii) Y(t) = 0 if and only if ¢t = O,
(iii) is subadditive, that is, Y(t + s) < P(t) + P(s) for all t, s € [0, +o0).

The set @ = {¢:[0, +o0) — [0, +o0):¢p is a nondecreasing and right upper semi-continuous function
with Y(t) > ¢(t) for all t > 0, where p € P}.

Throughout the article, (X, d, <) states an ordered metric space where d is a metric on X and < is a
partial order on the set X. In addition, we say that (x,y) € X2 is comparable to (u,v) € X?if x<u and y <V, or
u=<x and v<y. For brevity, we denote by (x, y) < (u, v) or (x, ¥) > (u, v).

If d is a metric on X, then 8: X x X* — [0, +oo), defined by 8((x,y),w,v)) = d(x,u) + d(y,v) for all
(x,y),(u,v) € X°, is also a metric on X°.

Now, we define Su type contractive pairs, which will be utilized in our main results.

Definition 1.4. Let (X, d, <) be an ordered metric space and A, B: X> — X be given mappings. We say that
(A, B) is a Su type contractive pair if, for all comparable pairs (x, y),(u, v) € X2,

YAAX y), B, V) < %qb(o(x, Yo, v)) M

holds, where

6((x,y), (W, v)), 6((x,y), AKX, y), Ay, x))),
0.y, 1, v) = max 6((u,v), (B(u,v), B(v,u))),
VY= {5<(x,y),<B<u,v),B<v,u)>)}

1
2[+6((w,v), (A, ), A(y, X))

Remark 1.5. By the definition of Q(x, y, u, v), it is obvious that

Qlx,y,u,v) =Qy, x, v, u).

2 Existence of a common solution to systems of integral equations

The following is one of the main results.

Theorem 2.1. Let (X, d, <) be an ordered complete metric space, A, B: X*> — X weakly increasing mappings
with respect to < and (A, B) be a Su type contractive pair. If A (or B) is continuous, then ¥(A, B) + &.

Proof. Let uy, vo, € X Define sequences {u,} and {v,} in X by
Wn+1 = A(“Zm VZn), Wn+2 = B(u2n+1; V2n+l)

and
Vonel = A(VZn, u2n), Vone2 = B(V2n+1’ V2n+1)

for all n > 0. Since A and B are weakly increasing, we have

Up <Un+1 and VnXVns1, N2 1. (2)
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Suppose that u,, # u,.; and v, # v, for all n > 0 Then, for n = 2m + 1 using (1) and (2), we have

Eb (d (um un+1)) = l/) (d (u2m+1’ u2m+2))
=Y (d (A (uzm, Vam)s B (Uam+1, Vams1))) 3)

1
< Ed) (Q (u2m’ Voms Uom+1, V2m+1))y

where

Q (Uam, Vams Uoms1s Vams1) = MAX{S ((Uam, Vom), (Uom+15 Vam+1))s
6 ((Uam, Vam), (A (Uams Vom)s A (Vams Uom)))

6 ( (u2m+1, V2m+l)y (B (u2m+1y V2m+1)’ B (V2m+1y u2m+1)))y
1
5 [6 ((Uams Vom)s (B (Uams1, Vam+1)s B (Vamet, Uoms1)))

+ 6 ((Uam+15 Vome1)s (A (Uam, Vam), A (Vam, Uzm))) 1}
= mHX{(S((uzm, VZm)’ (u2m+ly V2m+1))y 6((u2my V2m)a (u2m+1, V2m+l)),
0 ((Uam+15 Vame1)s (Uama2s Voms2))s

1
5 [5 ( (uZm’ VZm)’ (u2m+2’ V2m+2))

+ 6((u2m+1y V2m+1)’ (u2m+l, V2m+1))] }
Since

O ((Uam+1, Vams1)s Uomst, Vame)) = d (Uamets Vamer) + d (Vame1, Uomar) = O

and

8 ((Uams vam)s (Uam+25 Vam+2)) = d (Uams Uam+2) + d (Vams Vams2)
< d(u2m’ u2m+1) + d(u2m+1: u2m+2)
+ d(VZm’ V2m+1) + d(V2m+1’ V2m+2)
= 6 ((Uzm» Vam)s (Uam+15 Vome1))
+ 6((u2m+1, V2m+l)’ (u2m+2, V2m+2))y

we obtain
Q(u2m, Vams Uom+1, V2m+1) = maX{a((“Zma VZm)’ (u2m+1, V2m+1)), 6((u2m+1’ V2m+1)’ (u2m+2, V2m+2))}-
Similarly, by (1) and (2), we obtain

Y (d (Vs Vae1)) = P (d (Vamsts Voms2))
= l/) (d (A (Vam, Uam), B (Vams1, Uoms1)))

1
< E(pb (Q (VZm’ Ums Vam+1, u2m+1)) (4)

1
= 54)(0 (Uams Voms Uoma1, V2m+l))-

Summing the inequalities (3) and (4) and using the subadditivity property of i, we obtain

Y (d (Uzn+1, Uzm2) + A (Vame1, Vams2)) < D (Q (Uams Vams Uzms1s Vams1))- (5)
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If QUams Vams Uzmets Vamet) = 0((Uzme1> Vame1)»(Uame2s Vams2) fOr some m, then by (5), we obtain

l/) (5((u2m+1a V2m+1)y (u2m+2y V2m+2))) < ¢ (6 ((u2m+ly V2m+1)a (u2m+2’ V2m+2)))
< ¢(5((u2m+ly V2m+1)a (u2m+2’ V2m+2)))-

Since i is nondecreasing,
6 ((Uam+1, Vam1)s (Uams2, Vam+2)) < 6 ((Uams1s Vamst)s (Uame25 Vams2)),s
which is a contradiction. Then,
Q (Uam, Vams Uzms1s Vams1) = 8 ((Uams Vam), (Uame1 Vome1))
and so, by (5),
P (8 ((n, V)5 (Uns1, Vns1))) < @ (8 ((Un-1, V1), (Un, Vi)))- (6)

Set 6, := {6((UnyVn),(Uns1,Vnar))}. Then, the sequence {6,} is decreasing. Thus, there exists r > 0 such
that lim,,_,..6, = r. Suppose that r > 0. Letting n — oo in (6), we deduce

l/)(r) < nlglololp(s((un, Vn), (un+1’ Vn+1)))
< lim ¢ (8 ((Un-1, Vn-1)> (Un, Wa))) < @ (1),

n—-oo
a contradiction, and hence, r = 0, that is,

lim 6 ((un, V), (Un+1s Vae1)) = lim [d Uy, Upsq) + d Vg, Vos1)] = 0. @

n—oo n—oo

To prove that {u,} and {v,,} are Cauchy sequences, it is sufficient to show that {u,,} and {v,,} are Cauchy
sequences in (X, d). Suppose, to the contrary, that at least one of {u,,} or {v,,} is not Cauchy sequence. Then,
there exists an € > 0 for which we can find subsequences {tsm,}, {Uz,} of {Uzn} and {Vam,}, {van,} Of {v2}, such that
1y is the smallest index for which ny > my > k and

d (uan’ u2mk) +d (Van’ Vka) =&,

(8)
d (uZI’lk—I’ u2mk) +d (Van—l, V2mk) <E.

By using the triangle inequality and (8), we obtain

€ < d (uznk’ uzmk) + d (Vznk, V2mk)

< d (Wamy, Uan-1) + d (Uone-1, Uan) + d (Vamgs Vane-1) + d (Van—1, Vony)

<€+ Oyt
Taking k — oo in the above inequality and using (7), we deduce
klim [d (uznk’ u2mk) +d (Vznk’ Vzmk)] =& 9

Again, from the triangle inequality, we have
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d (Uany, Uom,) + d (Vans Vam,)
<d (Uany u2nk+1) +d (Uznk+1, uan+2) +d (Uan+2, u2mk+1) +d (u2mk+1, uzmk)
+d (Vo Vanr1) + d (Vanrts Vams2) + d (Vangs2s Vamgs1) + d (Vamgs 1, Vamy)
< 8oy + Oongsr + Oomy + d(u2nk+2’ Uznk+1) + d(u2nk+1: u2mk+1)
+d (Van+2: Van+1) +d (Van+1’ V2mk+1)
< Oomy + 260m41 + Oomy + d(uznku, u2mk) + d(uzmk, u2mk+1)
+d (V2nk+1, Vka) +d (Vzmk, V2mk+1)
< 8oy + 26am11 + 260m, + d (Wongr1, Uaner2) + d (Uangr2s Uom,)
+d (Vznk+1, Van+2) +d (Vznk+2, Vka)

< 252nk + 262mk + 462nk+1 + d(uan, uka) + d(Vznk, Vzmk).

Letting k — oo in the above inequality and using (7) and (9), we have

hm [d (uznk+2, u2mk+1) +d (Vznk+z, V2mk+l)] =&,
111’1‘1 [d (u2nk+1’ u2mk+1) +d (VanJrl’ V2mk+1)] =g,
(10)
hm [d (u2nk+l, uka) +d (V2nk+lx Vka)] =&,
l

hm d (uan+2, u2mk) +d (V2nk+29 Vka)] = €.
Since (Uzm,, Vam,) X (Uan, 41, Van+1) fOr nyg > my, using (1), we obtain

Y (d (Uzmk+1, Uznk+2)) =y (d (A (uzmk, Vzmk), B (u2nk+1, V2nk+1) ) )

1 (11)
< E(p (Q (u2mk, Vka, u2nk+l, V2nk+l)),

where

Q (u2mky Vomys Uang+15 V2nk+1)
= max{6 ( (u2mk’ Vka)’ (u2nk+1’ V2nk+1))’
) ( (uka’ vak) ’ (A (u2mk’ V2mk)’ A (Vkas uka) ) )3

) ( (u2nk+1, V2nk+1), (B (Uznk+1, Vznk+1), B (Van+1, u2nk+1) ) ),
1
5 [5 ( (u2mk, Vka), (B (u2nk+1, V2nk+1), B (Van+lx u2nk+1) ))

+6 ( (u2nk+1, V2nk+1)y (A (u2mka Vka) ’ A (Vka, u2mk) ) ) ] }
= max{6 ( (u2mk’ Vka)’ (u2nk+l’ Van+l)), 6 ( (u2mk’ Vka), (u2mk+1, V2mk+l)),

) ( (uznk+1, Vznk+1), (uznk+2, Vznk+z)),
1
E [5 ( (Uka, V2mk)y (u2nk+2a Van+2))

+ 5((u2nk+1, Vznk+1), (u2mk+1, V2mk+1))]}-
Again, since (Vam,, Uym,) < (Vang+1, Uan+1)> BY (1), we also have

lI) (d (VkaH, V2nk+2)) = l/) (d (A (Vka, u2mk), B (V2nk+1, u2nk+l) ) )

1 (12)
= 5(1) (Q (u2mk, Vomgs Uang+15 V2nk+1))-
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Summing the inequalities (11) and (12) and using the subadditivity property of i, we obtain
Y (d (Womyr15 Uangs2) + d (Vamsts Vamr2) ) < @ (Q (Uamys Vames Uangsts Vangr1) ) -
Now, by using (7), (9) and (10) and letting k — oo in the above inequality, we deduce
P(e) < klggo Y (d (uzmk+1, uan+2) +d (Vzmk+1, V2nk+2))

< lim ¢ (Q (u2mk’ Vomyes Wong+1» Van+1))
k—o0

<¢(max{e, 0,0,¢) = P(e),

which implies € = 0 a contradiction with € > 0. Therefore, {u,} and {v,} are Cauchy sequences in X.
Now, we prove the existence of coupled common fixed point of A and B.

Owing to the completeness of (X, d), there exist u, v € X such that

limu,=u and lim v,=v. (13)

n—oo n—oo

Without loss of generality, we assume that A is continuous. Now we have
u = lim wy = lim A (o, Van) = A[lim Uy, lim VZnJ =A(u,v)
n—-oo n—-oo n—oo n—-oo
and

v = lim vyp,1 = lim A (vap, Upn) = A[lim Von, lim u2,,] = A(v, u).
n—oo

n—oo n—oo n—-oo

We now assert that d(u, B(u, v)) = d(v, B(v, u)) = 0. To establish the claim, assume that d(u, B(u, v)) > 0
and d(v, B(v, u)) > 0. Since (u, v) € X* is comparable to its own, from (1), we obtain

Y(dw,Bu,v))) =pd@Awu,v), Bu,v))) < %¢(Q(u, v, u,v)), (14)

where

Q, v,u,v) =max {6 ((u, v), (U, v)), 6((u,v), (A, v), Av, u))),
6((u,v), (B(u,v), B(v,u))), %[6((11, v), (B(u,v), B(v,u)))

+6(Wu,v), (A, v), A(v,u)))1}
=6((u,v), (B(u,v),B(v,u))).

Again, since (v, u) < (v, u), by (1), we have
Y(d(v,Bv,u))) =pd@AWV,u),Bv,u)) < %tl)(Q(u, v, u,v)). (15)

Thus, it follows from (14) and (15) that
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Ydw,Bu,v)) +dv,Gv,u)) <pQW,v,u,v))
=¢ (6 (W, v), (B(u,v),B(v,u))))
=¢(du,Bu,v)) +d(, B(v,u))),

which implies d(u, B(u, v)) = d(v, B(v, u)) = 0
Therefore, u = A(u, v) = B(u, v) and v = A(v, u) = B(v, u) O

Example 2.2. Let X = [0,1] be equipped with the usual metric and the partial order defined by

x<y if and only if y < x.

Define mappings A, B: X> — X by A(u,v) = ”ZV and B(u,v) = ”;V. Then, A and B are weakly
increasing with respect to < and continuous.
Also, (4, B) is a Su type contractive pair. Indeed, for all comparable (x, y), (u, v) € X3,

X+y u+v

4 3
6(x,y), W, v)), 6((x,y), (Alx,y), Ay, x))),
6((u,v), (B(u,v), B(v,u))),

1{ §((6,y), B, v), B(v,w))) }
2| +6((w,v), (A6, y), Ay, 0)))

YA, y), B, v))) = < %ux —ul+ly - V) = %d)(ﬁ((x, Y), @ v)))

1
< —¢|max
59

- %qb(Q(X, Yo, v)),

where Y (t) =t and ¢ (t) = % Thus, all the hypotheses of Theorem 2.1 are fulfilled. Therefore, A and B have
a coupled common fixed point, which is (0,0).

Definition 2.3. Let (X, d, <) be an ordered metric space. We say that (X, d, <) is regular if each
nondecreasing sequence {x,} with d(x,,x) — 0 implies that x,, <x for all n.

We replace the continuity of A (or B) with the regularity of (X, d, <) in the following theorem.

Theorem 2.4. Let (X, d, <) be an ordered complete metric space, A, B: X*> — X weakly increasing mappings
with respect to < and (A, B) be a Su type contractive pair. If (X, d, <) is regular, then A and B have a coupled
common fixed point.

Proof. Let uy, vy € X. Define sequences {u,,} and {v,,} in X by
Uoni1 = A(Uan, Van)s Uonsa = B (Uani1s Vani1)
and
Vans1 = A (Vans Uan)s Vansa = B (Vans1, Vani1)
for all n > 0. Following the proof of Theorem 2.1, we can show that the sequences {u,} and {v,} are

nondecreasing, lim,,_,..u, = u and lim,_,..v, = v. Since (X, d, <) is regular, we deduce that (u,,v,) is
comparable to (u, v) for all n. From (1), we obtain

Y (d (Uans1, B, v))) = P (d (A (U, Von), Bu, v))) < %¢(Q(uzn, Vons U, V), (16)
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where

Q (Uzn, Vo, U, v) = max {6 ((Uzn, van), U, v)), 6 ((Uzns Van)s ((Uzn+15 Vans1))),
6((11, V)’ (B (u’ V)a B(V’ u)))a %[5((1[2”, VZn)’ (B (ll, V), G(Va u)))

+6((U, ), (Uans1, Vans1)) 1}
Again, by (1), we obtain
(A1, BV, 1)) = (A Vi ), BOS0)) € 25 (Q o Vo s )): 17)
Thus, it follows from (16), (17) and the subadditivity property of i that
Y (d (uzns1, B, v)) + d(Vans1, B(v, w))) < ¢(Q(Uan, Van, U, V).
Taking n — oo in the above inequality, we obtain

Y(du, Bu,v)) +d(v, B, u)))
< lim ¥ (d (uzns1, B, v)) + d (Vans1, B(v, u)))

< lim ¢ (Q (uzn, Von, U, v))

<P 6 ((u,v), (Bu,v),B(v,u))))
=¢(du,Bu,v)) +d(, B(v,u))),

which implies that d(u, B(u,v)) + d(v,B(v,u)) = 0, that is, u = B(u,v) and v = B(v, u).
Since (u, v) < (u, v), by (1), we deduce

YA, v),u) =yPdAWu,v),Bu,v))) < %¢(Q(u, v, u,v)), (18)

where
Qu,v,u,v) =6(u,v), (A, v), Alv, u))).

Again, by (1),

YA, u),v)) =@V, u),Bv,w)) < %¢(Q(u, v, u,v)). (19)
Hence, it follows from (18), (19) and the subadditivity of y that
YA, v),u) +dAWV,w),v) <pQW,v,u,v)) = du, A, v)) + d(v, Av, u))),
which implies d(u, A(u, v)) = d(v, A(v, u)) = 0. This completes the proof. O
Example 2.5. Let X = [0,+c0) be equipped with the usual metric and the partial order defined by
x<y if and only if y < x.

Define mappings 4, B: X*> — X by
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and

u+v
—, ifu>v,
B(u,v)z{ 5

o, if u<v.

Then, A and B are weakly increasing with respect to < and discontinuous.
Now we demonstrate that (A4, B) is a Su type contractive pair. For all comparable (x, y), (u, v) € X2

X+y u+v

6 5

5((x,y), u,v), 6(0x, ), A, y), Ay, X))),
6((w,v), (B(u,v), Bv,u))),

1{ 6((x,y), B(u,v), B(v,u)))

YA Y), B, v))) = < éux U+ ly - V) = %qb(&((x, V), (1, v)))

< %q,') max 1
2| +6((u,v), (A(x, y), Ay, x)))

- %(P(Q(x, you,v)),

where P (t) =t and ¢ (t) = % Thus, all the hypotheses of Theorem 2.4 are fulfilled. Therefore, A and B
have a coupled common fixed point.

If we replace Q(x, y, u, v) with d(x, y) + d(u, v) in Theorem 2.1 (or Theorem 2.4), then we obtain the
following corollary, which is an extended version of the main result of Isik and Turkoglu [23].

Corollary 2.6. Let (X, d, <) be an ordered complete metric space and A, B: X*> — X be weakly increasing
mappings with respect to < such that

Y dAKX,y),Bu,v))) < %d)(d(x, y) +du,v)) (20)

for all comparable (x, y), (u, v) € X?, where ) € ¥ and ¢ € ®. Assume that one of the following conditions is
satisfied:

(a) A (or B) is continuous;

(b) (X, d, <) is regular.

Then, A and B have a coupled common fixed point.

If we choose Y(t) = t and ¢(t) = kt in Corollary 2.6 for k € [0,1), then we obtain the following result,
which is an extended version of the main result of Bhaskar and Laksmikantham [24].

Corollary 2.7. Let (X, d, <) be an ordered complete metric space and A, B: X?> > X be weakly increasing
mappings with respect to <, such that

d(AK, ), B, v)) < g[d(x, y) + d(u V)] @)

for all comparable (x, y), (u, v) € X°, where k € [0,1). Assume that one of the following conditions is satisfied:

(a) A (or B) is continuous;
(b) (X, d, <) is regular.

Then, A and B have a coupled common fixed point.
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3 Applications

Consider the following coupled systems of integral equations:

b
u(s)=j Hy(s,r, u(r), v(r)dr,
‘ (22)

b
v(s) = f Hy(s, 1, v(r), u()dr,

and

b
u(s) = f Hy(s, 1, u(r), v(r)dr,
‘ (23)

b
v(s) = _[ Hy(s,r,v(r), u(r))dr,

wheres eI =[a, b H,H: IxIxR xR —-R and b >a > 0.
In this section, we present an existence theorem for a common solution to (22) and (23) that belongs to
X = C(I, R) (the set of continuous functions defined on I) by using the obtained result in Corollary 2.6.
We consider the operators A, B: X*> — X given by

b
A(u,v)(s) = _[ H(s,r,u(r),v(r))dr,u,ve X,sel,
and
b
B(u,v)(s) = I H(s,r,u(r),v(r)dr,u,veX,sel.

Then, the existence of a common solution to the integral equations (22) and (23) is equivalent to the
existence of a coupled common fixed point of A and B.
It is well known that X, endowed with the metric d defined by

d(u,v) = supu(s) - v(s)]
sel
for all u, v € X is a complete metric space. X can also be equipped with the partial order < given by

u,v € X,u<v if and only if u(s) >v(s), for all s eI. (24)

Recall that it is proved that (X, d, <) is regular (see [25]).

Suppose that the following conditions hold:
(A) H,H: I xI xR xR — R are continuous;
(B) for all s, r € I, we have

b b
H(s,r,u(r),v()) > H{s, r, I H(r, T,u(t), v(1))dr, I H(r, T, v(1), u(‘r))drj,

and

b b
Hy(s,r,u(r),v(r)) = H{s, r, I H(r, 7, u(t), v(r))dr, j H(r, 1,v(1), u('r))drj;



DE GRUYTER Existence of a common solution to systems of integral equations via fixed point results = 259

(C) for all comparable (x, y), (u, v) € X? and for every s, r € I, we have
1
|Hy (s, 1, x(r),y (1) - Hy(s, r,u(r),v(n)P < ZY(S’ N(x () —u@)| + |y - v)?,

where y: I? — R* is a continuous function satisfying

b 1
sup y(s,rydr < b

sel a -

Theorem 3.1. Assume that the conditions (A)-(C) are satisfied. Then, the integral equations (22) and (23)
have a common solution in X.

Proof. From the condition (B), the mappings A and B are weakly increasing with respect to <. Indeed, for
all s € I, we have

A(u, v)(s)

b
j Hi(s, r,u(r), v(r))dr

\

a

b b b
I H{s, r,j H(r, T,u(T),V(T))dT,I H(r, T,V(T),u(T))dTJdr

b
I Hy(s,r,A(u,v)(r), A(v, u)(r))dr
=B(A(u,v), A(v,u))(s),

and so A(u,v)<B(A(u,v), A(v, u)). Similarly, one can easily see that B(u, v) <A (B(u, v), B(v, u)).
Let (x, y) be comparable to (u, v). Then, by (C), for all s € I, we deduce

b 2
IA(x, y)(s) - B, V)(s)I’ < U [Hy(s, 7, x(r), y(r)) — Hy(s, r, u(r), v(r))| drj
b b
< j 12drj IH(s, 7, (1), () — Hys, 7, u(r), v(n)Pdr

b
<(b-a j %y(s, P (X() - u)] + () — vin)dr

1 b 2

<o b-a j y(s, )(dx, w) + d(y, v)idr
1 b

<=(b - a)sup(j y(s, r)drj(d(x, u) + d(y, v))>?
4 sel a

< %(d(x, W + dy, ).

Therefore, by the above inequality, we obtain

2
(Sup |A(x,y)(s) = B(u, v)(s) Ij < %(d(x, u) +d(y,v))?>.

sel

Putting ¥(t) = £ and ¢ (t) = %, we obtain

YAF X Y), G, 1)) < %qb(d(x, W+ d(y, v)) (25)
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for all comparable (x, y), (u, v) € X2. Hence, all the hypotheses of Corollary 2.6 are satisfied. So A and B
have a coupled common fixed point, that is, the integral equations (22) and (23) have a common solution
in X. O

Example 3.2. Consider the following systems of integral equations in X = C(I = [0, 1], R)

1
u(s)zj[sz+ ro,1 w1 o) Jdr’
0 1+r 81+3lu(r)] 81+5v(r)|
1 1
8 8

. (26)
v(s):j [Sz+ ro,1 v lu()| ]dr,
0 1+r 1+ 3lv(n)| 1+ 5lu(r)|
and
1
u(s) = ‘[ 2+ r. 1 Ju®l [v(nl dr
0 T+r 91+7u@)| 1+9v(n)] 27)

1
9
1
V(S)=J(Sz+ r +l lv(r)] +l u()| jdr
0 1+r 91+7lvn)| 91+ 9u®)|

The systems (26) and (27) are particular cases of systems (22) and (23), respectively, where

1_uml 1 Ol
1+r 81+3u@| 81+5vE)]

Hi(s, 1, u(r), V(1) = 52 +

and

r 1 Ju@l 1 vl
1+r 91+7u@| 91+9v@)|

Hy(s,r,u(r),v(r) = s> +

Clearly, H; and H, are continuous, that is, the condition (A) is satisfied. Also, one can easily prove that
the condition (B) holds with respect to the relation < defined by (24).
For all (x, y), (u, v) € X? with x > u, y > v and for every s, r € I, we obtain

|H1(S’ r, X(r)’ )’(r)) - HZ(S’ r, u(r)’ V(r))|2
1 x| 1yl 1 Ju()] 1 v

2

18 1+3x(r)] 81+5ly(r)| 91+7ul)| 91+9v()|

(Ix() —u@®| +lyr) —vm))?

<

N~ 0|

Yy, n(x@) —u@| +lyr) - vnl?,
where y(s, r) = 1/2, so that

1
sup y(s,r)dr < 1.
sel 0

Thus, all conditions of Theorem 3.1 are satisfied. Therefore, the coupled systems (26) and (27) have a
common solution in X.
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