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Abstract: In this paper, we present a rough set model based on fuzzy ideals of distributive lattices. In fact, we
consider a distributive lattice as a universal set and we apply the concept of a fuzzy ideal for de�nitions of
the lower and upper approximations in a distributive lattice. A novel congruence relation induced by a fuzzy
ideal of a distributive lattice is introduced. Moreover, we study the special properties of rough sets which
can be constructed by means of the congruence relations determined by fuzzy ideals in distributive lattices.
Finally, the properties of the generalized rough sets with respect to fuzzy ideals in distributive lattices are also
investigated.
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1 Introduction
It is well known that the real world problems under consideration are full of indeterminacy and vagueness.
In fact, most of the problems that we deal with are vague rather than precise. In the face of so many
uncertain data, classical methods are not always successful in dealing with them, because of various types of
uncertainties presented in these problems. As far as known, there are several theories to describe uncertainty,
for example, fuzzy set theory, rough set theory and other mathematical tools. Over the years, many experts
and scholars are looking for some di�erent ways to solve the problem of uncertainty.

Rough set theory was �rst introduced by Pawlak [1] which is an extension of set theory, as a new
mathematical approach to deal with uncertain knowledge and has attracted the interest of researchers and
practitioners in various �elds of science and technology. In rough set theory, rough sets can be described by
a pair of ordinary sets called the lower and upper approximations. However, these equivalence relations in
Pawlak rough sets are restrictive in some areas of applications. To solve this issue, somemore general models
have been proposed, such as quantitative rough sets based on subsethood measure, generalized rough sets
based on relations and so on [2, 3]. Nowadays, rough set theory has been applied to many areas, such as
knowledge discovery, machine learning, approximate classi�cation and so on [4–6]. In particular, many
researchers applied this theory to algebraic structures.Wang [7] investigated the topological characterizations
of generalized fuzzy rough sets. Zhu and Hu [8] introduced the notion of Z-soft rough fuzzy BCI-algebras
(ideals), which is an extended notion of soft rough BCI-algebras (ideals) and rough fuzzy BCI-algebras
(ideals), and investigated roughness in BCI-algebraswith respects to a Z-soft approximation space. Shao et al.
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introduced the notions of rough �lters, multi-granulation rough �lters, and rough fuzzy �lters in pseudo-BCI
algebras [9]. The lower and upper approximations in various hyperstructures were also discussed by many
authors in many literatures [10–12]. Furthermore, some authors considered rough sets in a fuzzy algebraic
system, such as [13, 14] studied some types of fuzzy covering rough set models and their generalizations over
fuzzy lattices. The generalization of Pawlak rough set was introduced for two universes on general binary
relations. Thus, equivalence relations should be extended to two universes for algebraic sets. It follows from
this point of view that Davvaz [15] and Yamak et al. [16] put forward the notion of set-valued homomorphism
for groups and rings, respectively.

In particular, Davvaz applied the notion of fuzzy ideal of a ring for de�nitions of the lower and upper
approximations in a ring and studied the characterizations of the approximations [17]. In 2014, Xiao et al. [18]
studied rough setmodel on ideals in lattices. In [18], let I bean ideal in a lattice L. Then θI is a joint-congruence
on L. θI is a congruence on L if and only if L is distributive. Based on these congruences, they discussed the
algebraic properties of rough sets induced by ideals in lattices. Since fuzzy set is an extension of classical
set, it is meaningful to use fuzzy set instead of classical set. Be inspired of [17, 18], we focus on discussing
the algebraic properties of rough sets induced by fuzzy ideals in distributive lattices. A novel congruence
relation U(µ, t) induced by a fuzzy ideal µ of a distributive lattice is introduced. Some properties of this
congruence relation are also investigated. Further,wediscuss the lower andupper approximations of a subset
of a distributive lattice with respect to a fuzzy ideal. Some characterizations of the above approximations are
made and some examples are discussed.

This paper is organized as follows. In Section 2, we recall some concepts and results on lattices, fuzzy sets
and rough sets. In Section 3, we study the rough sets which are constructed by a novel congruence relation
U(µ, t). In particular, in Section 4, we introduce a special class of set-valued homomorphism with respect to
a fuzzy ideal and discuss the properties of the generalized rough set.

2 Preliminaries
In this section, we recall some basic notions and results about lattices, fuzzy sets and rough sets. Throughout
this paper, L is always a distributive lattice with the minimum element 0.

De�nition 2.1. [19] Let L be a lattice and ∅ ≠ I ⊆ L. Then I is called an ideal of L if it satis�es the following
conditions: for any x, y ∈ L,

(1) x ∈ I and y ∈ I imply x ∨ y ∈ I;
(2) x ∈ L and x ≤ y imply x ∈ I.

Let A, B be subsets of L, we de�ne the join and meet as follows:

A ∨ B = {a ∨ b|a ∈ A, b ∈ B} and A ∧ B = {a ∧ b|a ∈ A, b ∈ B}.

Let I, J be ideals of L, then I ∨ J is an ideal of L [18].

De�nition 2.2. [19] Let L be a lattice. A relation R is called an equivalence relation on L if for all a, b, c ∈ L,

(1) Re�exive: (a, a) ∈ R;
(2) Symmetry: (a, b) ∈ R implies (b, a) ∈ R;
(3) Transitivity: (a, b) ∈ R, (b, c) ∈ R implies (a, c) ∈ R.

An equivalence relation R is called a congruence relation on L, if for all a, b, c, d ∈ L, (a, b) ∈ R, (c, d) ∈ R,
then (a ∨ c, b ∨ d) ∈ R and (a ∧ c, b ∧ d) ∈ R.

De�nition 2.3. [20] Let µ be a fuzzy set of a lattice L. Then µ is called a fuzzy sublattice of L if µ(x∧y)∧µ(x∨y) ≥
µ(x) ∧ µ(y), for all x, y ∈ L.
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Let µ be a fuzzy sublattice of L. Then µ is a fuzzy ideal of L, if µ(x ∨ y) = µ(x) ∧ µ(y) for all x, y ∈ L.

Proposition 2.4. [20] Let µ be a fuzzy sublattice of a lattice L. Then µ is a fuzzy ideal of L if and only if x ≤ y
implies that µ(x) ≥ µ(y), for all x, y ∈ L.

Proposition 2.5. [21] Let µ be a fuzzy set of a lattice L. Then µ is a fuzzy ideal of L if and only if any one of the
following sets of conditions is satis�ed: for all x, y ∈ L,

(1) µ(0) = 1 and µ(x ∨ y) = µ(x) ∧ µ(y);
(2) µ(0) = 1, µ(x ∨ y) ≥ µ(x) ∧ µ(y) and µ(x ∧ y) ≥ µ(x) ∨ µ(y).

Let µ be a fuzzy subset of a lattice L and t ∈ [0, 1]. Then the set µt = {x ∈ L|µ(x) ≥ t} is called a t-level subset
of µ.

Remark 2.6. A fuzzy set µ is a fuzzy ideal of a lattice L if and only if every subset µt is an ideal of L for all
t ∈ [0, 1].

De�nition 2.7. [1] Let R be an equivalence relation on the universe U and (U, R) be a Pawlak approximation
space. A subset X ⊆ U is called de�nable if R*X = R*X; otherwise, X is said to be a rough set, where two
operators are de�ned as:

R*X =
{
x ∈ U

∣∣[x]R ⊆ X}, R*X =
{
x ∈ U

∣∣[x]R ∩ X ≠ ∅
}
.

De�nition 2.8. [1] Let X and Y be two non-empty sets and B ⊆ Y. Let T : X → P*(Y) be a set-
valued mapping, where P*(Y) denotes the family of all non-empty subsets of Y. The lower and upper
approximations T(B) and T(B) are de�ned by

T(B) = {x ∈ U|T(x) ⊆ B},
T(B) = {x ∈ U|T(x) ∩ B ≠ ∅},

respectively. If T(B) ≠ T(B), then the pair (T(B), T(B)) is said to be a generalized rough set.

3 A novel congruence relation induced by a fuzzy ideal in a
distributive lattice

In this section, we introduce a novel congruence relation U(µ, t) induced by a fuzzy ideal µ in a distributive
lattice.We de�ne the join andmeet of two non-empty subsets in a lattice as follows: A∨B = {a∨b|a ∈ A, b ∈
B}, A ∧ B = {a ∧ b|a ∈ A, b ∈ B}.

De�nition 3.1. Let µ be a fuzzy ideal of L. For each t ∈ [0, 1], the set

U
(
µ, t
)
=
{
(x, y) ∈ L × L

∣∣∨{µ(a)|a ∨ x = a ∨ y, ∃a ∈ L} ≥ t}
is called a t-level relation of µ.

Example 3.2. Let L = {0, a, b, c, 1}. We de�ne the binary relation ≤ in the following Hasse diagram. It is easy
to check that L is a distributive lattice. Let µ = 1

0 + 0.8
a + 0.6

b + 0.4
c + 0

1 . Then it is clear that µ is a fuzzy ideal
of L. Choose t = 0.9, then we have U(µ, 0.9) = {(0, 0), (a, a), (b, b), (c, c), (1, 1)}. Thus U(µ, 0.9) is called a
0.9-level relation of µ.
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Now we prove that U(µ, t) is a congruence relation on L.

Lemma 3.3. Let µ be a fuzzy ideal of L and t ∈ [0, 1]. Then U(µ, t) is a congruence relation on L.

Proof. It is easy to see that µ(0) = 1 and for any x ∈ L,
∨

a∨x=a∨x
µ(a) =

∨
µ(a) ≥ µ(0) = 1 ≥ t. From De�nition

3.1, we get that (x, x) ∈ U(µ, t), i.e., U(µ, t) is re�exive. Obviously, U(µ, t) is symmetric. Let (x, y) ∈ U(µ, t)
and (y, z) ∈ U(µ, t). Then we have ∨

a∨x=a∨y
µ(a) ≥ t,

∨
b∨y=b∨z

µ(b) ≥ t,

and so
( ∨
a∨x=a∨y

µ(a)
)
∧
( ∨
b∨y=b∨z

µ(b)
)
≥ t. Since µ is a fuzzy ideal of L, we obtain that

( ∨
a∨x=a∨y

µ(a)
)
∧
( ∨
b∨y=b∨z

µ(b)
)
=

∨
a∨x=a∨y,b∨y=b∨z

(
µ(a) ∧ µ(b)

)
=

∨
a∨x=a∨y,b∨y=b∨z

µ(a ∨ b).

For a ∨ x = a ∨ y, b ∨ y = b ∨ z, we have a ∨ b ∨ x = a ∨ b ∨ y, a ∨ b ∨ y = a ∨ b ∨ z. Thus a ∨ b ∨ x = a ∨ b ∨ z,
i.e., c ∨ x = c ∨ z, where c = a ∨ b ∈ L. It follows that

t ≤
∨

a∨x=a∨y,b∨y=b∨z
µ(a ∨ b) ≤

∨
c∨x=c∨z

µ(c),

and so
∨

c∨x=c∨z
µ(c) ≥ t. According to De�nition 3.1, we get that (x, z) ∈ U(µ, t). Therefore, U(µ, t) is an

equivalence relation on L. Now we show that U(µ, t) is a congruence relation on L. Let (x, y) ∈ U(µ, t) and
(u, v) ∈ U(µ, t). Then ∨

a∨x=a∨y
µ(a) ≥ t,

∨
b∨u=b∨v

µ(b) ≥ t,

and so ( ∨
a∨x=a∨y

µ(a)
)
∧
( ∨
b∨y=b∨z

µ(b)
)
≥ t.

Further, we have( ∨
a∨x=a∨y

µ(a)
)
∧
( ∨
b∨u=b∨v

µ(b)
)
=

∨
a∨x=a∨y,b∨u=b∨v

(
µ(a) ∧ µ(b)

)
=

∨
a∨x=a∨y,u∨y=b∨v

µ(a ∨ b).

For a ∨ x = a ∨ y, b ∨ u = b ∨ v, we have a ∨ b ∨ (x ∨ u) = a ∨ b ∨ (y ∨ v), i.e., c ∨ (x ∨ u) = c ∨ (y ∨ v), where
c = a ∨ b ∈ L. Hence,

t ≤
∨

a∨x=a∨y,u∨y=b∨v
µ(a ∨ b) ≤

∨
c∨(x∨u)=c∨(y∨v)

µ(c).

Consequently,
∨

c∨(x∨u)=c∨(y∨v)
µ(c) ≥ t, which implies that (x ∨ u, y ∨ v) ∈ U(µ, t).

Further, let (x1, y1) ∈ U(µ, t) and (x2, y2) ∈ U(µ, t). Then∨
b∨x1=b∨y1

µ(b) ≥ t,
∨

c∨x2=c∨y2
µ(c) ≥ t.

So ( ∨
b∨x1=b∨y1

µ(b)
)
∧
( ∨
c∨x2=c∨y2

µ(c)
)
≥ t.
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For b ∨ x1 = b ∨ y1 and c ∨ x2 = c ∨ y2, we have

(b ∨ x1) ∧ (c ∨ x2) = (b ∨ y1) ∧ (c ∨ y2).

On the other hand, since L is a distributive lattice, we have[
(b ∧ c) ∨ (x1 ∧ c) ∨ (x2 ∧ b)

]
∨ (x1 ∧ x2) =

[
(b ∧ c) ∨ (y1 ∧ c) ∨ (y2 ∧ b)

]
∨ (y1 ∧ y2).

Since (b ∨ x1) ∧ c = (c ∨ y1) ∧ c and (c ∨ x2) ∧ b = (c ∨ y2) ∧ b, we have

(b ∧ c) ∨ (x1 ∧ c) ∨ (x2 ∧ b) = (b ∧ c) ∨ (y1 ∧ c) ∨ (y2 ∧ b).

Notice that µ is a fuzzy ideal of L, we get that

µ[(b ∧ c) ∨ (x1 ∧ c) ∨ (x2 ∧ b)] = µ(b ∧ c) ∧ µ(x1 ∧ c) ∧ µ(x2 ∧ b).

It follows from b ∧ c ≤ b, x1 ∧ c ≤ c, x2 ∧ b ≤ b that

µ(b ∧ c) ∧ µ(x1 ∧ c) ∧ µ(x2 ∧ b) ≥ µ(b) ∧ µ(c).

Thus

t ≤
( ∨
b∨x1=b∨y1

µ(b)
)
∧
( ∨
c∨x2=c∨y2

µ(c)
)

=
∨

b∨x1=b∨y1 ,c∨x2=c∨y2

(
µ(b) ∧ µ(c)

)

≤
∨

b∨x1=b∨y1 ,c∨x2=c∨y2

(
µ(b ∧ c) ∧ µ(x1 ∧ c) ∧ µ(x2 ∧ b)

)

≤
∨

[(b∧c)∨(x1∧c)∨(x2∧b)]∨(x1∧x2)=[(b∧c)∨(y1∧c)∨(y2∧b)]∨(y1∧y2)

(
µ(b ∧ c) ∧ µ(x1 ∧ c) ∧ µ(x2 ∧ b)

)
≤

∨
a∨(x1∧x2)=a∨(y1∧y2)

µ(a),

and therefore (x1∧x2, y1∧y2) ∈ U(µ, t). According to the abovediscussing,we get thatU(µ, t) is a congruence
relation on L.

Remark 3.4. In Lemma 3.3, we say x is congruent to y mod µ, written x ≡t y (mod µ) if∨
a∨x=a∨y

µ(a) ≥ t.

It follows from De�nition 3.1 and Lemma 3.3 that we can get many useful properties of these congruence
relations. We denote by [x](µ,t) the equivalence class of U(µ, t) containing x of L.

Lemma 3.5. Let µ be a fuzzy ideal of L and t ∈ [0, 1]. Then for all x, y ∈ L,

(1) [x](µ,t) ∨ [y](µ,t) ⊆ [x ∨ y](µ,t);
(2) [x](µ,t) ∧ [y](µ,t) ⊆ [x ∧ y](µ,t).

Proof. The proof is easy, and we omit the details.

Let µ be a fuzzy ideal of L and t ∈ [0, 1]. Then U(µ, t) is a congruence relation on L. Thus, when U = L
and R is the above equivalence relation (congruence relation), then we use (L, µ, t) instead of approximation
space (U, R).

De�nition 3.6. Let µ be a fuzzy ideal of L, t ∈ [0, 1] and ∅ ( X ⊆ L. Then

U(µ, t)(X) = {x ∈ L|[x](µ,t) ⊆ X}
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and

U(µ, t)(X) = {x ∈ L|[x](µ,t) ∩ X ≠ ∅}

are called the lower approximation and the upper approximation of the set X with respect to µ and t, respectively.
It is easy to know that U(µ, t)(X) ⊆ X ⊆ U(µ, t)(X).

Lemma 3.7. Let µ and ν be two fuzzy ideals of L such that µ ⊆ ν and t ∈ [0, 1]. Then [x](µ,t) ⊆ [x](ν,t) for all
x ∈ L.

Proof. Let a ∈ [x](µ,t). Then we have (a, x) ∈ U(µ, t), i.e.,
∨

b∨a=b∨x
µ(b) ≥ t. Since µ ⊆ ν, we have µ(b) ≤ ν(b).

Thus
∨

b∨a=b∨x
ν(b) ≥

∨
b∨a=b∨x

µ(b) ≥ t, which implies that (a, x) ∈ U(ν, t), i.e., a ∈ [x](ν,t). Therefore, [x](µ,t) ⊆

[x](ν,t).

From Lemma 3.7, we get the the following conclusion easily.

Lemma 3.8. Let µ and ν be two fuzzy ideals of L such that µ ⊆ ν, t ∈ [0, 1] and ∅ ( X ⊆ L. Then

(1) U(ν, t)(X) ⊆ U(µ, t)(X);

(2) U(µ, t)(X) ⊆ U(ν, t)(X);
(3) U(µ, t)(X) ∪ U(ν, t)(X) ⊆ U(µ ∩ ν, t)(X);

(4) U(µ ∩ ν, t)(X) ⊆ U(µ, t)(X) ∩ U(ν, t)(X).

The following example shows that the containedness in (3) and (4) of Lemma 3.8 need not be an equality.

Example 3.9. Consider the lattice L in Example 3.2, let µ = 1
0 +

0.6
a + 0.8b + 0.4c + 01 , ν =

1
0 +

0.8
a + 0.5b + 0.3c + 01 .

Then it is clear that µ and ν are fuzzy ideals of L. Choose t = 0.8, then we have

U(µ, 0.8) = {(0, 0), (a, a), (b, b), (c, c), (1, 1), (0, b), (a, c)},
U(ν, 0.8) = {(0, 0), (a, a), (b, b), (c, c), (1, 1), (0, a), (b, c)}.

Thus

U(µ ∩ ν, 0.8) = {(0, 0), (a, a), (b, b), (c, c), (1, 1)}.

If X = {0, c}, then

U(µ ∩ ν), t(X) = {0, c}, U(µ, t)(X) ∩ U(ν, t)(X) = {0, a, b, c}.

Therefore U(µ ∩ ν, t)(X) $ U(µ, t)(X) ∩ U(ν, t)(X). Further, if X = {c, 1}, then

U(µ, t)(X) ∪ U(ν, t)(X) = {1}, U(µ ∩ ν, t)(X) = {1, c}.

Hence U(µ, t)(X) ∪ U(ν, t)(X) $ U(µ ∩ ν, t)(X).

The following de�nition is from Zadeh’s expansion principle.

De�nition 3.10. Let µ and ν be two fuzzy sets over L. De�ne µ ∨ ν over L as follows:

(µ ∨ ν)(x) =
∨

x=a∨b

(
µ(a) ∧ ν(b)

)
for all x ∈ L.
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Now we investigate the operations of lower approximations and upper approximations of the set X with
respect to µ and t, respectively.

Proposition 3.11. Let µ and ν be two fuzzy ideals of L, t ∈ [0, 1] and ∅ ( X ⊆ L. Then

(1) U(µ ∨ ν, t)(X) ⊆ U(µ, t)(X) ∩ U(ν, t)(X);

(2) U(µ ∨ ν, t)(X) ⊇ U(µ, t)(X) ∪ U(ν, t)(X).

Proof. Since L is a distributive lattice, we have that µ ∨ ν is a fuzzy ideal of L. Let x ∈ L. Then (µ ∨ ν)(x) =∨
x=a∨b

(µ(a) ∧ ν(b)) ≥ µ(x) ∧ ν(0). Notice that ν is a fuzzy ideal of L, we obtain that ν(0) = 1. It follows that

(µ ∨ ν)(x) =
∨

x=a∨b

(
µ(a) ∧ ν(b)

)
≥ µ(x) ∧ ν(0) ≥ µ(x) ∧ ν(0) = µ(x)

and so µ ⊆ µ ∨ ν. In a similar way, we have ν ⊆ µ ∨ ν. According to Lemma 3.8, we get that U(µ ∨ ν, t)(X) ⊆
U(µ, t)(X) ∩ U(ν, t)(X) and U(µ ∨ ν, t)(X) ⊇ U(µ, t)(X) ∪ U(ν, t)(X).

Proposition 3.12. Let µ and ν be two fuzzy ideals of L, t ∈ [0, 1] and ∅ ( X ⊆ L. Then

(1) U(µ, t) ∩ U(ν, t) is a congruence relation on L;
(2) U(µ, t) ∩ U(ν, t)(X) ⊇ U(µ, t)(X) ∪ U(ν, t)(X);

(3) U(µ, t) ∩ U(ν, t)(X) ⊆ U(µ, t)(X) ∩ U(ν, t)(X).

Proof. It is straightforward.

Theorem 3.13. Let µ and ν be two fuzzy ideals of L, t ∈ [0, 1] and ∅ ( X ⊆ L. Then

(1) U(µ ∩ ν, t)(X) = U(µ, t) ∩ U(ν, t)(X);

(2) U(µ ∩ ν, t)(X) = U(µ, t) ∩ U(ν, t)(X).

Proof. (1) We �rst show that U(µ, t) ∩ U(ν, t)(X) ⊆ U(µ ∩ ν, t)(X). Let x ∈ U(µ, t) ∩ U(ν, t) and y ∈ [x](µ∩ν,t).
Then (x, y) ∈ U(µ ∩ ν, t), ∨

a∨y=a∨x
(µ ∩ ν)(a) ≥ t, i.e.,

∨
a∨y=a∨x

(
µ(a) ∧ ν(a)

)
≥ t.

Thus,

∨
a∨y=a∨x

µ(a) ≥ t and
∨

a∨y=a∨x
ν(a) ≥ t.

Hence, y ∈ [x](µ,t) and y ∈ [x](ν,t). So y ∈ [x](µ,t)∩(ν,t), and therefore y ∈ X, which implies that x ∈
U(µ ∩ ν, t)(X). Therefore, U(µ, t) ∩ U(ν, t)(X) ⊆ U(µ ∩ ν, t)(X).

Next we show that U(µ ∩ ν, t)(X) ⊆ U(µ, t) ∩ U(ν, t)(X). Let x ∈ U(µ ∩ ν, t)(X) and x′ ∈ [x](µ,t)∩(ν,t). Then
x′ ∈ [x](µ,t) and x′ ∈ [x](ν,t), i.e., ∨

a∨x′=a∨x
µ(a) ≥ t and

∨
b∨x′=b∨x

ν(b) ≥ t.

For a ∨ x′ = a ∨ x and b ∨ x′ = b ∨ x, we have

(a ∨ x′) ∧ (b ∨ x′) = (a ∨ x) ∧ (b ∨ x).

Since L is a distributive lattice and µ and ν are fuzzy ideals of L, we have

x′ ∨ (a ∧ b) = x ∨ (a ∧ b) and µ(a ∧ b) ≥ µ(a), ν(a ∧ b) ≥ ν(b),
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i.e.,
t ≤
( ∨
a∨x′=a∨x

µ(a)
)
∧
( ∨
b∨x′=b∨x

ν(b)
)

≤
∨

x′∨(a∧b)=x∨(a∧b)

(
µ(a) ∧ ν(b)

)

≤
∨

x′∨(a∧b)=x∨(a∧b)

(
µ(a ∧ b) ∧ ν(a ∧ b)

)
=

∨
x′∨(a∧b)=x∨(a∧b)

(µ ∩ ν)(a ∧ b).

Thus x′ ∈ [x](µ∩ν,t), then x′ ∈ X, which implies that x ∈ U(µ, t) ∩ U(ν, t)(X). Thus

U(µ, t) ∩ U(ν, t)(X) ⊆ U(µ ∩ ν, t)(X).

Therefore, U(µ ∩ ν, t)(X) = U(µ, t) ∩ U(ν, t)(X).

(2) Let x ∈ U(µ ∩ ν, t)(X). Then there exists x′ ∈ [x](µ,t)∩(ν,t) ∩ X, i.e., x′ ∈ X and (x, x′) ∈ U(µ ∩ ν, t), so

∨
a∨y=a∨x

(µ ∩ ν)(a) ≥ t, i.e.,
∨

a∨y=a∨x

(
µ(a) ∧ ν(a)

)
≥ t.

Thus, ∨
a∨x=a∨x′

µ(a) ≥ t and
∨

a∨x=a∨x′
ν(a) ≥ t.

Hence, x′ ∈ [x](µ,t) and x′ ∈ [x](ν,t), which implies that x ∈ U(µ, t) ∩ U(ν, t)(X). So

U(µ ∩ ν, t)(X) ⊆ U(µ, t) ∩ U(ν, t)(X).

In a similarway,wehaveU(µ ∩ ν, t)(X) ⊇ U(µ, t) ∩ U(ν, t)(X). Therefore,U(µ ∩ ν, t)(X) = U(µ, t) ∩ U(ν, t)(X).

Theorem 3.14. Let µ be a fuzzy ideal of L and t ∈ [0, 1]. Then

U(µ, t)(µt) = µt = U(µ, t)(µt).

Proof. It is easy to know that U(µ, t)(µt) ⊆ µt ⊆ U(µ, t)(µt). Nowwe show that U(µ, t)(µt) ⊆ µt ⊆ U(µ, t)(µt).
Let x ∈ U(µ, t)(µt). Then [x](µ,t) ∩ µt ≠ ∅, which means that there exists y ∈ µt and y ∈ [x](µ,t), i.e., µ(y) ≥ t
and

∨
a∨y=a∨x

µ(a) ≥ t. So there exists a ∈ L such that µ(a) ≥ t satisfying a ∨ y = a ∨ x. Then we have a ∈ µt.

Since µ is a fuzzy ideal of L, we have µt is an ideal of L and a∨y ∈ µt. Thus a∨x ∈ µt. Since x ≤ a∨x, we have
x ∈ µt, which implies that U(µ, t)(µt) ⊆ µt. Therefore, U(µ, t)(µt) = µt. Further, let x ∈ µt and y ∈ [x](µ,t).
Then (x, y) ∈ U(µ, t), i.e.,

∨
b∨x=b∨y

µ(b) ≥ t. So there exists b ∈ L such that µ(b) ≥ t satisfying b ∨ y = b ∨ x.

Then we have b ∈ µt and b ∨ y ∈ µt. Since y ≤ a ∨ y, we have y ∈ µt. So [x](µ,t) ⊆ µt, which implies that
x ∈ U(µ, t)(µt). Hence µt ⊆ U(µ, t)(µt). From the above, U(µ, t)(µt) = µt = U(µ, t)(µt).

Theorem 3.15. Let µ and ν be two fuzzy ideals of L and t ∈ [0, 1]. Then µt = U(µ, t)(µ ∩ ν)t.

Proof. It is easy to know that (µ ∩ ν)t = µt ∩ νt. Now we show that µt = U(µ, t)(µt ∩ νt). Let x ∈ µt, y ∈ νt.
Then µ(x) ≥ t. Since µ is a fuzzy ideal of L, we have µt is an ideal of L. Further, x∧ y ≤ x and x∧ y ≤ y, we have
x∧y ∈ µt and x∧y ∈ νt, i.e., x∧y ∈ µt∩νt. Since x∨x = x∨ (x∧y), we have

∨
a∨x=a∨(x∧y)

µ(a) ≥ µ(x) ≥ t, which

implies that x ∧ y ∈ [x](µ,t). Thus [x](µ,t) ∩ (µt ∩ νt) ≠ ∅. So x ∈ U(µ, t)(µt ∩ νt), that is, µt ⊆ U(µ, t)(µt ∩ νt).
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On the other hand, it is easy to see that U(µ, t)(µt ∩ νt) ⊆ U(µ, t)(µt). Moreover, it follows from Theorem 3.14
that U(µ, t)(µt) = µt. So U(µ, t)(µt ∩ νt) ⊆ µt. Therefore, µt = U(µ, t)(µt ∩ νt), i.e., µt = U(µ, t)(µ ∩ ν)t.

Corollary 3.16. Let µ and ν be two fuzzy ideals of L and t ∈ [0, 1]. Then νt ⊆ U(µ, t)(µt ∨ νt).

Proof. Since µ and ν are two fuzzy ideals of L, wehave µt and νt are ideals of L. Further, since L is a distributive
lattice, we have µt ∨ νt is an ideal of L. Let x ∈ µt and y ∈ νt. Then x ∨ y ∈ µt ∨ νt. On the other hand,∨
b∨x=b∨(x∨y)

µ(b) ≥ µ(x) ≥ t, which implies that x∨y ∈ [x](µ,t). Thus [x](µ,t)∩(µt∨νt) ≠ ∅. So y ∈ U(µ, t)(µt∨νt).

Therefore, νt ⊆ U(µ, t)(µt ∨ νt).

In the following discussion, we denote by ↓ a = {x ∈ L|x ≤ a} for a ∈ L.

Theorem 3.17. Let µ be a fuzzy ideal of L, t ∈ [0, 1]. Then

(1) U(µ, t)(↓ a) = µt for each a ∈ µt;
(2)

⋃
a∈µt

U(µ, t)(↓ a) ⊆ µt.

Proof. (1) Since µ is a fuzzy ideal of L, we have µt is an ideal of L. It follows from the de�nition of ↓ a that ↓ a
is an ideal and ↓ a ⊆ µt for each a ∈ µt. It follows from the Theorem 3.15 that U(µ, t)(↓ a) = µt.

(2) Let a ∈ µt. Then ↓ a ⊆ µt. It is easy to see that U(µ, t)(↓ a) ⊆ U(µ, t)(µt). Follows from Theorem 3.14,
we obtain that U(µ, t)(µt) = µt. Thus U(µ, t)(↓ a) ⊆ µt. Therefore,

⋃
a∈µt

U(µ, t)(↓ a) ⊆ µt.

Theorem 3.18. Let µ and ν be two fuzzy ideals of L and t ∈ [0, 1]. Then the followings are equivalent:

(1) µ ⊆ ν;
(2) νt = U(µ, t)(νt);
(3) νt = U(µ, t)(νt).

Proof. (1)⇒ (2) Let µ ⊆ ν and x ∈ U(µ, t)(νt). Then [x](µ,t) ∩ νt ≠ ∅. This means that there exists a ∈ νt such
that a ∈ [x](µ,t), i.e., ∨

b∨a=b∨x
µ(b) ≥ t.

Since µ ⊆ ν, we have ∨
b∨a=b∨x

ν(b) ≥
∨

b∨a=b∨x
µ(b) ≥ t.

So there exists b ∈ L such that ν(b) ≥ t satisfying b ∨ a = b ∨ x, i.e., b ∈ νt. So b ∨ a = b ∨ x ∈ νt. Since
x ≤ b ∨ x, we have x ∈ νt. Hence, U(µ, t)(νt) ⊆ νt. On the other hand, it is easy to see that νt ⊆ U(µ, t)(νt).
Therefore, νt = U(µ, t)(νt).

(2) ⇒ (1) If νt = U(µ, t)(νt), it follows from Theorem 3.14 and Theorem 3.15 that µt = U(µ, t)(µt ∩ νt) ⊆
U(µ, t)(νt) = νt. Therefore, µ ⊆ ν.

(2) ⇒ (3) Let νt = U(µ, t)(νt), x ∈ νt and a ∈ [x](µ,t). Assume that a ∉ νt, then a ∈ ̸ U(µ, t)(νt). Thus,
[x](µ,t) ∩ νt = ∅, this implies that a ∉ U(µ, t)(νt) = νt, which contradicts with x ∈ νt. Thus a ∈ νt. Hence,
[x](µ,t) ⊆ νt, this means that x ∈ U(µ, t)(νt). Thus νt ∈ U(µ, t)(νt). On the other hand, it is easy to see that
U(µ, t)(νt) ⊆ νt. Therefore, νt = U(µ, t)(νt).

(3)⇒ (2) Assume that νt = U(µ, t)(νt). Let x ∈ U(µ, t)(νt). Then [x](µ,t)∩ νt ≠ ∅, whichmeans that there exists
a ∈ νt such that a ∈ [x](µ,t). Since νt = U(µ, t)(νt), we have [x](µ,t) = [a](µ,t) ⊆ νt, so x ∈ U(µ, t)(νt) = νt, i.e.,
U(µ, t)(νt) ⊆ νt. On the other hand, it is easy to see that νt ⊆ U(µ, t)(νt). Therefore, νt = U(µ, t)(νt).
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Theorem 3.19. Let µ, ν and ω be fuzzy ideals of L such that µ ⊆ ω and t ∈ [0, 1]. Then

U(µ, t)(U(ν, t)(ωt)) = U(ν, t)(ωt) = U(ν, t)(U(µ, t)(ωt)).

Proof. Since µ ⊆ ω, we have µt ⊆ ωt. It follows from Theorem 3.14 that U(µ, t)(ωt) = ωt. So U(ν, t)(ωt) =
U(ν, t)(U(µ, t)(ωt)). Next we show that U(µ, t)(U(ν, t)(ωt)) = U(ν, t)(ωt). First of all, we prove that U(ν, t)(ωt)
is an ideal of L. Since ω is a fuzzy ideal of L, we have ωt is an ideal of L. On the other hand, it is easy to see
that a ∨ b ∈ U(ν, t)(ωt) for all a, b ∈ U(ν, t)(ωt). Let c ∈ L, d ∈ U(ν, t)(ωt) and c ≤ d. Then there exists
e ∈ [d](ν,t) ∩ ωt. Now let f ∈ [c](ν,t). Then e ∧ f ∈ [d](ν,t) ∧ [c](ν,t) ⊆ [c ∧ d](ν,t) = [c](ν,t). Since e ∧ f ≤ e, we
have e∧ f ∈ ωt. Thus [c](ν,t)∩A ≠ ∅, this means that c ∈ U(ν, t)(ωt). Thus U(ν, t)(ωt) is an ideal of L. Further,
µt ⊆ ωt ⊆ U(ν, t)(ωt). It follows from Theorem 3.14 that U(µ, t)(U(ν, t)(ωt)) = U(ν, t)(ωt).

Theorem 3.20. Let µ, ν and ω be fuzzy ideals of L such that µ ⊆ ω and t ∈ [0, 1]. Then

U(µ, t) ∩ U(ν, t)(ωt) = U(µ, t)(ωt) ∩ U(ν, t)(ωt).

Proof. Let x ∈ U(µ, t)(ωt)∩U(ν, t)(ωt). Since µ andω are two fuzzy ideals of L and µ ⊆ ω, we have µt ⊆ ωt. It
follows fromTheorem 3.14 that x ∈ ωt∩U(ν, t)(ωt) = ωt ⊆ U(ν, t) ∩ U(ν, t)(ωt). So U(µ, t)(ωt)∩U(ν, t)(ωt) ⊆
U(µ, t) ∩ U(ν, t)(ωt). It follows from Proposition 3.12 that U(µ, t) ∩ U(ν, t)(ωt) = U(µ, t)(ωt)∩U(ν, t)(ωt).

Theorem 3.21. Let µ and ν be two fuzzy ideals of L such that µ ⊆ ν and t ∈ [0, 1]. If ∅ ( A ⊆ L, then

U(µ, t)(νt ∩ A) = U(µ, t)(νt) ∩ U(µ, t)(A).

Proof. It is easy to see thatU(µ, t)(νt∩A) ⊆ U(µ, t)(νt)∩U(µ, t)(A). Nowweshow thatU(µ, t)(νt)∩U(µ, t)(A) ⊆
U(µ, t)(νt∩A). Let x ∈ U(µ, t)(νt)∩U(µ, t)(A). Since ν is a fuzzy ideal of L, we have νt is an ideal of L. It follows
from Theorem 3.14 that x ∈ νt ∩ U(µ, t)(A). Thus x ∈ νt and x ∈ U(µ, t)(A), i.e., [x](µ,t) ∩ A ≠ ∅. Thus there
exists a ∈ A such that a ∈ [x](µ,t), which implies that

∨
b∨a=b∨x

µ(b) ≥ t. This means that there exists b ∈ L

such that µ(b) ≥ t satisfying b ∨ a = b ∨ x, i.e., b ∈ µt. Since µ ⊆ ν, we have µt ⊆ νt. Thus b ∈ νt and
b ∨ a = b ∨ x ∈ νt. Since a ≤ b ∨ a, we have a ∈ νt. So a ∈ A ∩ νt, it follows that x ∈ U(µ, t)(νt ∩ A). And
therefore U(µ, t)(νt ∩ A) = U(µ, t)(νt) ∩ U(µ, t)(A).

Theorem 3.22. Let µ be a fuzzy ideal of L and t ∈ [0, 1]. If A, B are ideals of L and µt ⊆ A ∪ B, then

(1) U(µ, t)(A) ∨ U(µ, t)(B) = U(µ, t)(A ∨ B);
(2) U(µ, t)(A) ∨ U(µ, t)(B) ⊆ U(µ, t)(A ∨ B).

Proof. (1) Let x ∈ U(µ, t)(A)∨U(µ, t)(B). Then there exist y ∈ U(µ, t)(A) and z ∈ U(µ, t)(B) such that x = y∨z,
i.e., [y](µ,t) ∩ A ≠ ∅ and [z](µ,t) ∩ B ≠ ∅, which means that there exist a ∈ A and b ∈ B such that a ∈ [y](µ,t)
and b ∈ [z](µ,t), i.e., ∨

y′∨a=y′∨y
µ(y′) ≥ t,

∨
z′∨b=z′∨z

µ(z′) ≥ t.

For y′ ∨ a = y′ ∨ y, z′ ∨ b = z′ ∨ z, we have (y′ ∨ z′) ∨ (a ∨ b) = (y′ ∨ z′) ∨ (y ∨ z) = (y′ ∨ z′) ∨ x. Thus

t ≤
( ∨
y′∨a=y′∨y

µ(y′)
)
∧
( ∨
z′∨b=z′∨z

µ(z′)
)

≤
∨

(y′∨z′)∨(a∨b)=(y′∨z′)∨(y∨z)

(
µ(y′) ∧ µ(z′)

)
≤

∨
(y′∨z′)∨(a∨b)=(y′∨z′)∨x

µ(y′ ∨ z′).
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So a ∨ b ∈ [x](µ,t). Thus [x](µ,t) ∧ (A ∨ B) ≠ ∅, i.e., x ∈ U(µ, t)(A ∨ B). Therefore, U(µ, t)(A) ∨ U(µ, t)(B) ⊆
U(µ, t)(A ∨ B). Next we show that U(µ, t)(A ∨ B) ⊆ U(µ, t)(B). Since A and B are ideals of L and L is a
distributive lattice, we have A∨B is also an ideal of L. Since µt ⊆ A∪B, we have µt ⊆ A∪B ⊆ A∨B. According
to Theorem3.14,we get thatU(µ, t)(A∨B) = A∨B ⊆ U(µ, t)(A)∨U(µ, t)(B). Therefore,U(µ, t)(A)∨U(µ, t)(B) =
U(µ, t)(A ∨ B).

(2) It follows from Theorem 3.15 that U(µ, t)(A ∨ B) = A ∨ B. Since U(µ, t)(A) ∨ U(µ, t)(B) ⊆ A ∨ B, we have
U(µ, t)(A) ∨ U(µ, t)(B) ⊆ U(µ, t)(A ∨ B).

Let µ and ν be two fuzzy ideals of L and t ∈ [0, 1]. The composition of U(µ, t) and U(ν, t) is de�ned as follows:

U(µ, t) * U(ν, t) =
{
(x, y) ∈ L × L

∣∣∣∣∃z ∈ L such that (x, z) ∈ U(µ, t) and (z, y) ∈ U(ν, t)}
It is not di�cult to check that U(µ, t)*U(ν, t) is a congruence relation on L if and only if U(µ, t)*U(ν, t) =

U(ν, t) * U(µ, t).

Theorem 3.23. Let µ and ν be two fuzzy ideals of L, t ∈ [0, 1] and U(µ, t) * U(ν, t) = U(ν, t) * U(µ, t).

(1) If A is a non-empty subset of L, then U(µ, t) * U(ν, t)(A) ⊆ U(µ, t)(A) ∩ U(µ, t)(A).

(2) If A is a sublattice of L, then U(µ, t)(A) ∩ U(µ, t)(A) ⊆ U(µ, t) * U(ν, t)(A).

Proof. (1) Let x ∈ U(µ, t) * U(ν, t)(A) and a ∈ [x](µ,t). Since x ∈ [x](ν,t), we have a ∈ [x](µ,t)*(ν,t). Thus a ∈ A.
So x ∈ U(µ, t)(A). In a similar way, we have x ∈ U(ν, t)(A). Therefore,

U(µ, t) * U(ν, t)(A) ⊆ U(µ, t)(A) ∩ U(µ, t)(A).

(2) Let x ∈ U(µ, t)(A) ∩ U(µ, t)(A). Then there exist y, z ∈ A such that y ∈ [x](µ,t) and z ∈ [x](ν,t), i.e.,∨
a∨y=a∨x

µ(a) ≥ t,
∨

b∨z=b∨x
ν(a) ≥ t.

For a ∨ y = a ∨ x, b ∨ z = b ∨ x, we have (z ∨ y) ∨ a = (z ∨ x) ∨ a, (z ∨ x) ∨ b = x ∨ b. Hence∨
(z∨y)∨a=(z∨x)∨a

µ(a) ≥
∨

a∨y=a∨x
µ(a) ≥ t,

and ∨
(z∨x)∨b=x∨b

ν(a) ≥
∨

z∨b=x∨b
ν(b) ≥ t.

Thus (z ∨ y) ∈ [z ∨ x](µ,t), (z ∨ x) ∈ [x](ν,t), i.e., (z ∨ y) ∈ [x](µ,t)*(ν,t). Since A is a sublattice of L, we have
z ∨ y ∈ A. Thus z ∨ y ∈ [x](µ,t)*(ν,t) ∩ A, i.e., x ∈ U(µ, t) * U(ν, t)(A). Therefore, U(µ, t)(A) ∩ U(µ, t)(A) ⊆
U(µ, t) * U(ν, t)(A).

The following example shows that the containedness in Theorem 3.22 (2) and Theorem 3.23 need not be
an equality.

Example 3.24. Consider the lattice in Example 3.2. Let µ = 1
0 + 0.8

a + 0.6
b + 0.4

c + 0
1 and ν = 1

0 + 0.7
a + 0.8

b +
0.3
c + 0

1 . Then it is clear that µ and ν are fuzzy ideals of L. Choose t = 0.8, then µt = {0, a} and νt = {0, b}.
Now let A = {a, b}, B = {0, b}. Then we have µt ⊆ A ∪ B and A ∨ B = {a, b, c}. Thus

U(µ, t)(A) ∨ U(µ, t)(B) = ∅ and U(µ, t)(A ∨ B) = {b, c}.

Therefore,

U(µ, t)(A) ∨ U(µ, t)(B) ⊆ U(µ, t)(A ∨ B).
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Let A = {a, b, c}. Then U(µ, t)(A) = {b, c}, U(ν, t)(A) = {a, c}, and

U(µ, t) * U(ν, t)(A) = ∅, U(µ, t)(A) ∩ U(ν, t)(A) = {c}.

Therefore, U(µ, t) * U(ν, t)(A) ⊆ U(µ, t)(A) ∩ U(µ, t)(A).
Let A = {a, c} be a sublattice of L. Then U(µ, t)(A) = {0, a, b, c}, U(ν, t)(A) = {a, c}, and

U(µ, t)(A) ∩ U(µ, t)(A) = {b, c} and U(µ, t) * U(ν, t)(A) = {0, a, b, c}.

Therefore, U(µ, t)(A) ∩ U(µ, t)(A) ⊆ U(µ, t) * U(ν, t)(A).

Theorem 3.25. Let µ and ν be two fuzzy ideals of L, t ∈ [0, 1], U(µ, t) * U(ν, t) = U(ν, t) * U(µ, t) and A be an
ideal of L.

(1) If µt ⊆ A, then U(µ, t) * U(ν, t)(A) = U(µ, t)(A) ∩ U(ν, t)(A).

(2) If µt , νt ⊆ A, then U(µ, t) * U(ν, t)(A) = U(µ, t)(A) ∩ U(ν, t)(A).

Proof. (1) Let x ∈ U(µ, t)(A)∩U(ν, t)(A) and x′ ∈ [x](µ,t)*(ν,t). Then there exists y ∈ L such that x′ ∈ [y](µ,t) and
y ∈ [x](ν,t). So

∨
x′∨d=y∨d

µ(d) ≥ t and y ∈ A, which means that there exists d ∈ L such that µ(d) ≥ t satisfying

x′ ∨ d = y ∨ d. Thus d ∈ µt. Since A is an ideal of L and µt ⊆ A, we get that y ∨ d ∈ A. Further, since x′ ∨ d =
y∨d ≥ x′, we have x′ ∈ A. So x ∈ U(µ, t) * U(ν, t)(A). Therefore, U(µ, t)(A)∩U(ν, t)(A) ⊆ U(µ, t) * U(ν, t)(A).
On the other hand, it follows from Theorem 3.23 that U(µ, t) * U(ν, t)(A) = U(µ, t)(A) ∩ U(ν, t)(A).

(2) Let x ∈ U(µ, t) * U(ν, t)(A). Then there exist x′ ∈ A and y ∈ L such that x′ ∈ [y](µ,t) and y ∈ [x](ν,t).
So y ∈ U(µ, t)(A). Since A is an ideal of L and µt ⊆ A, it follows from Theorem 3.15 that U(µ, t)(A) = A.
So y ∈ A. Thus x ∈ U(ν, t)(A). Since U(µ, t) * U(ν, t) = U(ν, t) * U(µ, t), we have x ∈ U(µ, t)(A). Therefore,
U(µ, t) * U(ν, t)(A) ⊆ U(µ, t)(A)∩U(ν, t)(A). FromTheorem3.23,we get thatU(µ, t) * U(ν, t)(A) = U(µ, t)(A)∩
U(ν, t)(A).

Proposition 3.26. Let µ be a fuzzy ideal of L and t ∈ [0, 1]. Then

(1) [0](µ,t) is an ideal of L;
(2) [0](µ,t) = µt.

Proof. (1) Let x, y ∈ [0](µ,t). Then x ∨ y ∈ [0](µ,t) ∨ [0](µ,t) ⊆ [0∨ 0](µ,t) = [0](µ,t). Thus, x ∨ y ∈ [0](µ,t). Now let
x ∈ L, a ∈ [0](µ,t) and x ≤ a. Then (a, 0) ∈ U(µ, t), i.e.,

∨
a∨c=0∨c

µ(c) ≥ t. For a ∨ c = 0 ∨ c, we have x ≤ a ≤ c.

Thus
∨

x∨d=0∨d
µ(d) ≥ µ(c) ≥ t, i.e., x ∈ [0](µ,t). Therefore, [0](µ,t) is an ideal of L.

(2) We �rst show that µt ⊆ [0](µ,t). Let x ∈ µt. Then µ(x) ≥ t. Thus
∨

a∨x=a∨0
µ(a) ≥ µ(x) ≥ t. It follows from

De�nition 3.1 that (0, x) ∈ U(µ, t), i.e., x ∈ [0](µ,t). Therefore, [0](µ,t) ⊆ µt. Now we prove that [0](µ,t) ⊆ µt.
Let y ∈ [0](µ,t). Then (y, 0) ∈ U(µ, t), i.e.,

∨
a∨y=a∨0

µ(a) ≥ t. For a ∨ y = a ∨ 0, we know that y ≤ a. Since µ is a

fuzzy ideal of L, we have µ(y) ≥ µ(a). Thus µ(y) ≥
∨

a∨y=a∨0
µ(a) ≥ t, i.e., y ∈ µt. Therefore, [0](µ,t) ⊆ µt.

4 Generalized roughness in distributive lattices with respect to
fuzzy ideals

In this section, we investigate generalized roughness in a distributive lattice L with respect to a fuzzy ideal
µ and t, where t ∈ [0, 1]. Let J be a distributive lattice and η : L → P*(J) be a set-valued mapping, where
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P*(J) denotes the family of all non-empty subsets of J. Let µ be a fuzzy ideal of J, t ∈ [0, 1] and X be a
non-empty subset of J. We denote ηtµ(x) = {b ∈ [a](µ,t)|a ∈ η(x)} for all x ∈ L. Obviously, ηtµ is a set-
valued mapping from L to P*(J). Further, η(x) ⊆ ηtµ(x) for all x ∈ L. Thus, ηtµ(X) = {x ∈ L|ηtµ(x) ⊆ X} and
ηtµ(X) = {x ∈ L|ηtµ(x) ∩ X ≠ ∅} are called generalized lower and upper approximations of X with respect to µ
and t, respectively. In this section, J is always a distributive lattice andP*(J) denotes the set of all non-empty
subsets of J.

De�nition 4.1. Let η : L →P*(J) be a mapping. Then

(1) η is called a ∨-homomorphic set-valued mapping if η(x) ∨ η(y) ⊆ η(x ∨ y) for all x, y ∈ L.
(2) η is called a ∧-homomorphic set-valued mapping if η(x) ∧ η(y) ⊆ η(x ∧ y) for all x, y ∈ L.

η is called a homomorphic set-valued mapping if it is both a ∨-homomorphic set-valued mapping and a ∧-
homomorphic set-valued mapping.

Theorem 4.2. Let µ and ν be fuzzy ideals of J, t ∈ [0, 1] and η : L → P*(J) be a homomorphic set-valued
mapping. Then

(1) ηtµ is a homomorphic set-valued mapping.
(2) ηtµ ∩ ηtν is a homomorphic set-valued mapping.

Proof. (1) Let x, y ∈ L and z ∈ ηtµ(x) ∨ ηtµ(y). Then there exist x′ ∈ ηtµ(x) and y′ ∈ ηtµ(y) such that z = x′ ∨ y′.
It follows from the de�nition of ηtµ that there exist a ∈ η(x), b ∈ η(y) such that x′ ∈ [a](µ,t) and y′ ∈ [b](µ,t),
i.e., ∨

x′∨c=a∨c
µ(c) ≥ t,

∨
y′∨d=b∨d

µ(d) ≥ t.

For x′ ∨ c = a ∨ c, y′ ∨ d = b ∨ d, we have (x′ ∨ y′)∨ (c ∨ d) = (a ∨ b)∨ (c ∨ d). Since µ is a fuzzy ideal of J, we
get that µ(c ∨ d) = µ(c) ∧ µ(d). Thus,

t ≤ (
∨

y′∨d=b∨d
µ(c)) ∧ (

∨
y′∨d=b∨d

µ(d))

≤
∨

(x′∨y′)∨(c∨d)=(a∨b)∨(c∨d)

(µ(c) ∧ µ(d))

=
∨

(x′∨y′)∨(c∨d)=(a∨b)∨(c∨d)

µ(c ∨ d),

and so z = x′ ∨ y′ ∈ [a ∨ b](µ,t). Since η is a homomorphic set-valued mapping, we have a ∨ b ∈ η(x)∨ η(y) ⊆
η(x ∨ y). Thus z = x′ ∨ y′ ∈ ηtµ(x ∨ y). Therefore, ηtµ(x) ∨ ηtµ(y) ⊆ ηtµ(x ∨ y). In a similar way, we have
ηtµ(x) ∧ ηtµ(y) ⊆ ηtµ(x ∧ y). Hence, ηtµ is a homomorphic set-valued mapping.

(2) Let x, y ∈ L and z ∈ (ηtµ ∩ ηtν)(x) ∨ (ηtµ ∩ ηtν)(y). Then there exist x′ ∈ (ηtµ ∩ ηtν)(x) and y′ ∈ (ηtµ ∩ ηtν)(y)
such that z = x′ ∨ y′, which means that there exist a, b ∈ η(x) and c, d ∈ η(y) such that x′ ∈ [a](µ,t) ∩ [b](µ,t)
and y′ ∈ [c](µ,t) ∩ [d](µ,t). Thus

x′ ∨ y′ ∈
(
[a](µ,t) ∨ [c](µ,t)

)
∩
(
[b](ν,t) ∨ [d](ν,t)

)
⊆ [a ∨ c](µ,t) ∩ [b ∨ d](ν,t).

Since η is a homomorphic set-valued mapping, we have a ∨ c, b ∨ d ∈ η(x) ∨ η(y) ⊆ η(x ∨ y). It follows
that z ∈ (ηtµ ∩ ηtν)(x ∨ y), and so (ηtµ ∩ ηtν)(x) ∨ (ηtµ ∩ ηtν)(y) ⊆ (ηtµ ∩ ηtν)(x ∨ y). In a similar way, we have
(ηtµ ∩ ηtν)(x) ∧ (ηtµ ∩ ηtν)(y) ⊆ (ηtµ ∩ ηtν)(x ∧ y). Therefore, ηtµ ∩ ηtν is a homomorphic set-valued mapping.

Theorem 4.3. Let µ be a fuzzy ideal of J, t ∈ [0, 1] and η : L →P*(J) be a homomorphic set-valued mapping.
If ∅ ( X, Y ⊆ J, then
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(1) ηtµ(X) ∨ ηtµ(Y) ⊆ ηtµ(X ∨ Y);
(2) ηtµ(X) ∧ ηtµ(Y) ⊆ ηtµ(X ∧ Y).

Proof. Let c ∈ ηtµ(X) ∨ ηtµ(Y). Then there exist x ∈ ηtµ(X) and y ∈ ηtµ(Y) such that c = x ∨ y. Thus there exist
x′ ∈ X, y′ ∈ Y and a ∈ η(x), b ∈ η(y) such that x′ ∈ [a](µ,t), y′ ∈ [b](µ,t). So x′ ∨ y′ ∈ [a ∨ b](µ,t) ∩ (A ∩ B) and
a ∨ b ∈ η(x) ∨ η(y) ⊆ η(x ∨ y). Hence, ηtµ(x ∨ y) ∩ (A ∩ B) ≠ ∅, i.e., c ∈ ηtµ(X ∨ Y). Therefore, ηtµ(X) ∨ ηtµ(Y) ⊆
ηtµ(X ∨ Y).

(2) The proof is similar to that of (1).

Proposition 4.4. Let µ and ν be fuzzy ideals of J, t ∈ [0, 1] and η : L → P*(J) be a homomorphic set-valued
mapping. If ∅ ( X ⊆ J and µ ⊆ ν, then

(1) ηtν(X) ⊆ ηtµ(X).

(2) ηtµ(X) ⊆ ηtν(X).

Proof. It is straightforward.

According to Proposition 4.4, we can get the following result easily.

Corollary 4.5. Let µ and ν be fuzzy ideals of J, t ∈ [0, 1] and η : L → P*(J) be a homomorphic set-valued
mapping. If ∅ ( X ⊆ J, then

(1) ηtµ(X) ∪ ηtν(X) ⊆ ηtµ∩ν(X).

(2) ηtµ∩ν(X) ⊆ ηtµ(X) ∩ ηtν(X).

Lemma 4.6. Let µ and ν be fuzzy ideals of J, t ∈ [0, 1] and η : L → P*(J) be a homomorphic set-valued
mapping. Then

ηtµ∩ν(x) ⊆ ηtµ(x) ∩ ηtν(x)

for all x ∈ L.

Proof. Let x ∈ L and a ∈ ηtµ∩ν(x). Then there exists b ∈ η(x) such that a ∈ [b](µ∩ν,t), i.e.,
∨

a∨c=b∨c
(µ∩ ν)(c) ≥ t.

On the other hand,

t ≤
∨

a∨c=b∨c
(µ ∩ ν)(c) =

∨
a∨c=b∨c

(
µ(c) ∧ ν(c)

)
=
( ∨
a∨c=b∨c

µ(c)
)
∧
( ∨
a∨c=b∨c

ν(c)
)
,

that is, ∨
a∨c=b∨c

µ(c) ≥ t and
∨

a∨c=b∨c
ν(c) ≥ t,

whichmeans that a ∈ [b](µ,t) and a ∈ [b](ν,t). And so, a ∈ ηtµ(x)∩ηtν(x). Therefore, ηtµ∩ν(x) ⊆ ηtµ(x)∩ηtν(x).

From Lemma 4.6, we get the following result.

Theorem 4.7. Let µ and ν be fuzzy ideals of J, t ∈ [0, 1] and η : L → P*(J) be a homomorphic set-valued
mapping. If ∅ ( X ⊆ J, then

(1) ηtµ∩ν(X) ⊇ ηtµ ∩ ηtµ(X).

(2) ηtµ∩ν(X) ⊆ ηtµ ∩ ηtµ(X).

Lemma 4.8. Let µ be a fuzzy ideal of J, t ∈ [0, 1] and η : L → P*(J) be a homomorphic set-valued mapping.
Let x ∈ L. Then the following statements are equivalent:
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(1) η(x) ⊆ µt;
(2) ηtµ(x) = µt.

Proof. (1)⇒ (2) Let a ∈ ηtµ(x). Then there exists b ∈ η(x) ⊆ µt such that a ∈ [b](µ,t), that is,
∨

a∨c=b∨c
µ(c) ≥ t,

whichmeans that there exists c ∈ J such that µ(c) ≥ t satisfying a∨c = b∨c. Thus c ∈ µt and a∨c = b∨c ∈ µt.
Since a ≤ a∨c, wehave a ∈ µt. Therefore, ηtµ(x) ⊆ µt. Nextwe show that µt ⊆ ηtµ(x). Let f ∈ µt. Since η(x) ≠ ∅,
we have there exists d ∈ η(x) ⊆ µt, i.e., µ(d) ≥ t. On the other hand, since µ be a fuzzy ideal of J, we have
µ(f ∨ d) = µ(f ) ∧ µ(d) ≥ t. Thus

∨
f∨e=d∨e

µ(e) ≥ µ(f ∨ d) ≥ t. So f ∈ [d](µ,t). Hence, f ∈ ηtµ(x), i.e., µt ⊆ ηtµ(x).

Therefore, ηtµ(x) = µt.

(2)⇒ (1) Let g ∈ η(x). Since g ∈ [g](µ,t), we have g ∈ ηtµ(g) ⊆ µt. Therefore, η(x) ⊆ µt.

Theorem 4.9. Let µ and ν be fuzzy ideals of J, t ∈ [0, 1] and η : L → P*(J) be a homomorphic set-valued
mapping. If µt ⊆ X ⊆ J and η(x) ⊆ µt for all x ∈ L, then ηtµ(x) = ηtµ(x) = L.

Proof. According to Lemma 4.8, we get the conclusion easily.

Theorem 4.10. Let µ and ν be fuzzy ideals of J, t ∈ [0, 1], µ ⊆ ν and η : L → P*(J) be a homomorphic
set-valued mapping. If x ∈ η(x) for all x ∈ L, then the following are equivalent:

(1) η(x) ⊆ νt for all x ∈ νt;
(2) ηtµ(νt) = νt.

Proof. (1) ⇒ (2) Let x ∈ ηtµ(νt). Then ηtµ(x) ⊆ νt. Since x ∈ η(x) ⊆ ηtµ(x), we have x ∈ νt. Now let a′ ∈ νt.
Then for any y ∈ ηtµ(x), there exists a′ ∈ η(x) such that y ∈ [a′](µ,t), i.e.,

∨
y∨c=a′∨c

(µ)(c) ≥ t, which means that

there exists c ∈ J such that µ(c) ≥ t satisfying y ∨ c = a′ ∨ c. Thus c ∈ µt. Since µ ⊆ ν, we have µt ⊆ νt. On
the other hand, since η(x) ⊆ νt, we have a ∨ c ∈ νt. So y ∈ νt. Thus, ηtµ(νt) ⊆ νt. Therefore, ηtµ(νt) = νt.

(2) ⇒ (1) Let x ∈ νt and y ∈ η(x). Since η(x) ⊆ ηtµ(x), we have y ∈ ηtµ(x). On the other hand, ηtµ(νt) = νt, we
have ηtµ(x) ⊆ νt. Thus y ∈ νt. Therefore, η(x) ⊆ νt for all x ∈ νt.

5 Conclusion
The study of rough sets in the distributive lattice theory is an interesting topic of rough set theory. In this
paper, we introduce the special class of rough sets and generalized rough sets with respect to a fuzzy ideal in
a distributive lattice, that is the universe of objects is endowed with a distributive lattice and a congruence
relation is de�ned with respect to a fuzzy ideal. The main conclusions in this paper and the further work to
do are listed as follows.

(1) A novel congruence relation U(µ, t) induced by a fuzzy ideal µ of a distributive lattice is introduced.
(2) Roughness in distributive lattices with respect to fuzzy ideals are investigated,
(3) Generalized roughness in distributive lattices with respect to fuzzy ideals are investigated.
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