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Abstract: The latest developments in algebra and graph theory allow us to ask a natural question, what is
the application in real world of this graph associated with some mathematical system? Groups can be used
to construct new non-associative algebraic structures, loops. Graph theory plays an important role in various
fields through edge labeling. In this paper, we shall discuss some applications of bipartite graphs, related
with Latin squares of Wilson loops, such as metabolic pathways, chemical reaction networks, routing and
wavelength assignment problem, missile guidance, astronomy and x-ray crystallography.
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1 Introduction

Ruth Moufang, German geometer, introduced Quasigroup to associate with non-desarguesian plane signifi-
cantly. Naturally, this mathematical structure is the generalization of frequently studied algebraic system,
group. After the origination, mathematicians discussed it with combinatorial analysis, projective plane,
experimental design, algebra, topology, etc. All algebraic nets are the examples of Quasigroups. People
worked on different algebraic structures, initiated from magma or groupoid, in the interval 1900 to 1970 and
all these developments culminated after the appearance of Moufang loops and Bol loops. Loop theory has
not only history of 70 years but also moving in the direction of well-known research areas with modernity.

Let = be a non-empty set such that with a binary operation ¢, (Z, ©) is a groupoid thatis vV a, € = we have
a o B € E. If the system of equations p ¢ a = g and B ¢ p = g have unique solutions for a and § then (£, ¢) is
known as Quasigroup. Furthermore, if there exists a unique identity element € € Z, then (&, o) is said to be a
loop. For each a € E, the elements a’, a" ¢ Esuch that a’ o a = a o a” = ¢ are called left and right inverses of a
respectively. £ is known as Wilson loop (WL) if and only if it obeys the Wilson Identity (WI);

ao(aof) =(aoao(Boy), Va,B,yveE
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equivalently;
Boa)oa=((voPp)oa) o(yoa), Va,B,v€E

Any loop = satisfying a o (B o a) = (a o B) o ais flexible loop V a, € E. Sets R, = {p € &; po(aof)=(poa)o
B va,BeELRy={p€E; ac(pof)=(aop)of Va,B € E}and R, ={p € 5; (aof)op = ac(fop) Va,p € £}
are said to be left, middle and right nucleus, respectively. The set X = X, N Xy N X; consists of all elements that
associate with any other two elements and is called the nucleus of =. For Wilson loop we have X = X, = Xy = X;.
Z is weak inverse property loop if and only if (@ ¢ B) ¢ v = € implies a ¢ (Boy) =€V a, B, v € E. £ is called
conjugacy closed loop if the sets of left and right translations are closed under conjugation.

Asworked by Goodaire and Robinson [1, Theorem 1], aloop = is a Wilson loop iff it is weak inverse property
loop [2, p. 295][3, p. 132] and conjugacy closed loop [4, p. 843]. Originally Wilson loop is introduced by E. L.
Wilson in [5, Theorem 5] where it is also given that a Moufang loop [6, p. 42][7, p. 194] is Wilson loop if and only
if a> € RV a € £. The developments of loop theory remained eclipsed under the fast moving research horizon
of the theory of groups. After the completion of the list of simple groups, the research environment is getting
more suitability for the structures of non-associative models like loops and Quasigroups. In the literature of
loop theory, the groups are being used to derive new families of loops.

In the recent time researchers are using computers rapidly for mostly used applications and the second
approach is graph theory. We can understand many real world applications by associating with several
graphs. Graph theory is the extensively used branch of mathematics. In 1735, Koinsber bridge’s problem
gave the origin of graph theory and later on researchers did work on Eulerian graph, complete graph and
bipartite graph comprehensively. After Leonhard Euler’s work, Cauchy and L’Huilier played an important
role to initiate a new branch, topology, of mathematics tremendously. Arthur Cayley was first mathematician
who used trees for chemical composition in theoretical chemistry. Sylvester used term "graph" first time in his
work and Frank Harary wrote an eminent book on graph theory in 1969 to connect mathematicians, biologists,
computer experts, chemists, engineers and social scientists see Figure 1.
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Figure 1: A module of a protein interaction graph.
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Graph I' = (%, Y) is known as a simple graph if it does not contain loops and multiple edges where 2 and
Y are respectively sets of vertices and edges of I'. A simple graph I = (Z, Y) is said to be complete if there is an
edge between any pair of distinct vertices. Secondly, I = (X1, X, E) is bipartite (or 2-mode network or bigraph)
ifvVe € Yhasoneendin X and the otherin X, where the sets X1, X, are disjoint [8, p. 2][9, p. 225]. Equivalently,
T is bipartite if it does not contain any odd length cycle. For instance, Ky, is a complete bipartite graph with
cardinality of both X1, X, is n. Graph, I = (X1, X, Y) is balanced bipartite graph if |2 | = |X,|. Bipartite graphs
can be used broadly to consider bioentities, signal transduction, gene regulation, evolutionary relationships,
metabolic pathways, gene expression etc. as vertices and their correlation as edges within a network.

Now biologists can understand more about yeast-two-hybrid [10, p. 246], protein-protein interactions
(PPIs) for particular organisms [11, p. 822][12, p. 4570][13, p. 4880][14, p. 212][15, p. 624]. Microarrays and RNA-
seq [16, p. 57][17, p. 201] with the help of bipartite graphs. Graph theory is a companionable and prolific tool
to handle chemical reaction networks (CRNs) [18, p. 2309]. Absolutely, it has become an important structure
to study in different fields specially computer science and chemistry.

In the modern world, it seems impossible to discuss properties of classical random graphs associated
with the models of real-world complex networks. Instead of classical random graphs bipartite graphs can be
used to overcome this difficulty [19, p. 800]. Bipartite graphs are very expedient to decode the code words
in advance coding theory and Query Log Analysis, Personnel Assignment Problem, Optimal Assignment
Problem. A factor graph (subclass of bipartite graph) and belief network are very closed to each other. They
give us probabilistic decoding of low-density parity-check and turbo codes in [20, p. 143]. Inspired by [21, p.
332] for projective geometry, taking into account the fact that every Levi graph is the bipartite graph, we are
able to model the incidences between points and lines in a configuration.

Document/Word Graphs are the bipartite graphs where (say) X, and X, respectively consists of docu-
ments and words, e = (vq, v») € Y represents word v, is in the document v, . Edge labeling of a simple graph
I'=(X,Y)isamapping, © : Y — &, from Y to &, set of integers or symbols. And with this © the graph I' is
called edge-labeled graph. For an healthier understanding of graph labeling, its consequences and algebraic
properties see [22-27]. Without any restriction, algebraic operation, we can assign a Wilson Latin square to
a complete bipartite graph through edge labeling. In Figure 2, we label an element (-1, 1) as an edge with
respect to any two arbitrary vertices A and B so K4 4 is desired bipartite graph for table 1 with Figure 2.

Table 1: Wilson loop of order 4.

| (1,0 | (1,1) | (1,0) | (1,) |
| ,) [ 1,0 [ (1Y) | (1,0 |
(-1,0) | (-1,1) | (1,1) | (1,0)
(-1,1) | (-1,0) | (1,0) | (1,1)

Figure 2: Edge (-1, 1).

A path from u to v in the simple graph I is a sequence of edges (o, {1), ({1, ¢2)5 ({2, (3), +ovs (Gn-15 {m)
in I', where m is a nonnegative integer, and {, = u and {;» = v. It can be denoted by {y, {1, {3, -.., {m-15 {m
and has length m. In case of directed graphs, we say a path is increasing if the sequence of its edge labels is
non-decreasing. Good edge-labeling is an edge-labeling in which for any two distinct vertices u, v we have at
most one increasing (u, v)-path. Subcubic {Cs, K5 3}-free graphs, planar graphs of girth at least 6, C3-free
outerplanar graphs, forests are the examples of graphs which admit the good edge-labeling and help us to
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overcome RWA (Routing and Wavelength Assignment) problem for UPP-DAG [25, 28-30]. Graph labeling plays
a vital role in a number of applications like data base management, communication network addressing,
circuit design, x-ray crystallography, astronomy, radar and missile guidance. For further information see [31-
33].

2 Main results

Let ¥; and ¥, be respectively groups under multiplication and addition. Moreover ¥, is abelian group. The
function b : ¥ x ¥1; — ¥, with;

(L, Fh=(F,1b=0, VF €Y,
is called a factor set. Binary operation ¢ on ¥; x ¥, can be defined, with the help of b, as follows;
(Fi,vi)o(Fa,v)=(F1F2,vi+va+(F1,F2b) VF1,F2e Vi andV vy, vy € Vs

Clearly the resulting groupoid is a loop denoted by (¥1, ¥,, b) with neutral element (1, 0). Note that (f , v)?
=(F, -v-(F, F1)b) is the inverse of (£, v) in (¥;, ¥>, b). The following theorem provides construction of
the Wilson loops.

Theorem 1. Letb : ¥; x ¥, — ¥, be a factor set. Then (¥, ¥, b) is Wilson loop if and only if

(Fr b+ (P Fb+(FaF 2 (FaF )™ o+ (P ek s, (Fa-FaF3) ™t
=(F o P+ (Fas FaF 3+ (FrFaF 3, (Fr-FaF3) ™ b+ (1, (FaF2) .

Proof. Let (¥1, ¥, b) is the Wilson loop so it satisfies the identity
(Fi,v)o((Fi,vi) o (F2,va)) =((F1,vi) o (F3,v3)) o (F1,vi) o (F2,v2) o (F3,v3)))
for al] (Fl, Vl)y (FZ’ VZ), (F3’ V3) S (lyly IIIZ’ b)‘

Now

(Fi,v)o((Fiv)o(Fa,v2)) = (F1,vi) o (FaF 2, vi+va + (Fa, F2)b)
=(FL,v)o((F1F2) ™ ~vi—va = (F1, F2)b = (F1F 2, (F1F2)™")b)
=(FLv)o(F Fit—vi-va—(F1, Fab = (F1F 2, F 3 F1b)
=(F1-F Fivi-vi-va—(FL, Fb=(F1F 2, F2 F i+ (F e, F3 F1)b)

=(F1 P va = (P, Fo = (FaF 2, FFT o+ (F 1, F3E YD)

and
((F1,vi)o(F3,v3)) o ((F1,vi) o ((Fa,v2) o (F3,v3))
=(F1F3,vi+vs+(F1, F3h) o ((F1,ve) o (FaF 3, v +vs+(Fa, F3)h))
=(FaFsvi+vs+(F1, F3)0)o((Fu-FaFs,vi+va+vs+(Fa, F3)b+(F1,FaF3))
=(F1F3,vi+vs+(Fi, F3)o((Fi-FaF3) ™ -vi—va-v3 = (Fa, F3)b
~(F1, FaF3)=(F1-FaF3, (F1-FaF3) ™)
=(F1Fsvi+vs+(F 1, F3) o (P52t - Fit —vi-va—vs = (F2, F3)b = (F 1, FaF 3)b
~(F1-FaF3,F53'F2 - F 1))
=((F1F)F3 F P vi+vs+ (F, P —vi—va-vs—(F2, F3)o = (F1, F2F 3)b
~(F1-F2F3,F3'F2 - F1')b)
=(F1-F3' FT (Fu Fa)b = (Fa, Fa)o = (Fu FaF 3o = (F1- FaF 3, F3 P2t - Fi'b
Vot (F1F 3, F5' 3 - F1'h)
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Using both results in the above Wilson identity

(Fi b3+ (P, Fb+ (Pl 2, (Pl ) ™ o+ (FaFs,(Fa-FaF3)™ b
=(F o P+ (FasFaF 3+ (F1FaF s, (Fa-FaF3) o+ (1, (FaF2) ™ o)

Which is the required identity. The converse is easy to verify. O

2.1 Wilson factor set

A factor setb : ¥; x ¥; — ¥, with equation (1) is called Wilson factor-set. If |¥;| = 2° where s is the whole
number then equation (1) reduces to

(Fi Fab+(Fu, Fob+(FiF2, FiF b+ (F1F3, F1-FaF3)h
=(F2, F3b+(F1, FaF 3 +(F1-FaF3, F1-Fa2F3)b+(F1, FiF2)b. )]

This Wilson-factor set is very helpful in construction of Wilson loops by the following manner.

Proposition 1. Let ¥, be an additive abelian group with cardinality k, positive integer greater than 1, and O #
p € ¥,.Let V1 = {1, 3} be the multiplicative group where 3 = cosm+isinn. We define functionb : ¥1x¥1 — ¥,
by

p,if (F1,F2)=(3,2);

(F1,F2)p = { 0,if (F1,F2)=(1,1),(1,20),3,1).

Then (¥1, V>, b) is a flexible, non-associative Wilson loop with nucleus X = (1, v)Vv € ¥, andV F 1, F ; €
v,.

Let ¥; = {1, 3}, multiplicative group, and ¥, = {0, 1, 2, 3, ..., n — 1}, additive abelian group of modulo n,
table 2 shows a pattern of Wilson loops of even orders.

Proposition 2. Let ¥, be an additive abelian group with |¥,| > 2, and order of p is greater than 2 where
0+#pe W, Let V1 = {1, p1, p2, 03} be the Klein group. Defineb : ¥1 x ¥1 — ¥, by

b, lf(lL 1, F 2) = (@1! @3)) (@3’ @2)’ (@29 @1);
(F1,F2)b =19 -p, if(F1, F2) = (p1, 92), (02, 93), (93, p1);

0, otherwise.

Then (¥, ¥,, b) is a non-flexible (implies non-associative) Wilson loop with nucleus X = (1,v)Vv € ¥,
andV F 1, F, € V1.

Proof. Following table shows that function b is obviously Wilson-factor set.

b |1 p1 p2 @3
1 0 O 0 0
1|0 O -p p
2|10 p 0 -p
3|0 -p p O

To show that (¥, ¥, b) is Wilson loop we verify equation (2). Since b is factor set, there is nothing to
prove when 3 = 1;

(Fi, Fao+(FiFa, FaF b+ (Fi, FaF2b=(F1, Fab + (F1F 2, F1F )b + (F1, F1F 2)b.
When 5 =1;
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Table 2: Wilson loop of order 2n.

o 1,0 Ly 1,2 @3 .. @2 @, G0 3,1 @2 @3 .. @Gn2 @Gn1)
1,0) (1,0 1Ly 1,2 1,3 .. @,n2 @1,n1) (30 3,1 G2 @G3 .. @Gn2 3Gn1)
(1,1) 1,1 1,2 1,30 (1,4 .. (@01 (1,0 31 3,2 @3 G4 .. Gn1) (30
1,2) 1,2 1,3 1,4 @5 .. 10 1,1) 3,2) 3,3) G4 G5 .. G0 3,1
(1,3) 1,3) 1,49 @5 @6 .. @11 1,2) 3,3) 3,4) 35 @6 .. G 32

1,n-2) | 1,n-2) (1,n-1) (1,00 (1,1) .. (@04 @,n3) Gn2) Gn1) 30 G1) .. Gns) @GOn3)
1) | 1,01 (10 (@11 (1,2 .. @1,n3) (1,n2) Gn1) (G0 @1y G2 .. @Gn3) 3Gn2)
(3,0 (3,0) g1y G2 383 .. Gn2 Gn1) @1Q,n1) (1,0 1,1 1,2 ... (@,n-3) (1,n-2)
3,1 31 G2 G3 G4 .. Gn1) (30 (1,0) (1,1) 1,2 @,3) .. (@,n2) (@1,n-1)
3,2 3,2 33 G4 G5 .. G0 31 (1,1 1,2 13 @4 .. (@,n1) (1,0

3,3) 3,3) (3,4) 3,5 G .. 3,1 3,2) 1,2) (1,3) (1,4) 15 .. (1,0) (1,1)

G@n2 | Gn2 G@n1) @0 @1 .. Gn4 Gn3) @,n3) @,n2 @,n1) (1,00 .. (1,05 (1,n-4)
Gn1y|3@n1y G@o Gy G2 ... @Gn3) Gn2 @02 @n1) 10 @1 .. (@n4) (@1,n3)

(Fi, Fab+(F1, FOb+(FiFs, F1F3)b=(F1, F3)b + (F1F3, FiF3)b + (F1, F1)b.
Similarly it can be proved for F; = 1.

When /3 = p1;

(F1, pb+(F 1, F2b+ (F1F 2, FaF b+ (F1p1, FaF 2 p1)b
=(Fa, o1+ (F1, Fapb+(F1-Fap1,F1-Fap1)b+(F1, F1F2)b.

Putting F 1 = p2, F 2 = ps3 in the last identity, we have

(Fi,p0b+(F1, F2)b +(F1F 2, FaF b+ (Fip1, FiF2-p1)b
= (p2, p1)b + (92, P30 + (P293, P203)0 + (P21, 2 * P391)P
=p-p+0+(p2p1, 02 - P391)0
= (p201, 02 - P3p1)b
= (p3, 1)p

(Fa, o+ (F1, Fap1o+(F1Fap1, F1Fapb+(F1, F1F2)b
= (p3, p1)b + (P2, 30100 + (P2 - P301, P2 * P3P1)0 + (2, P23

= —p +(p2, P31 + (2, P293)P
= =p +(p2, p2)b + (2, p1)b
Similarly we can check other cases when f 3 = p1. By using same procedure for F , f 1 we can verify (2). Thus

(¥1, ¥, b) is Wilson loop. (¥1, ¥,, b) is non-commutative, non-associative Wilson loop. As let Vv € ¥, and
0 76 b, p 7é -p

((p1, V) 0 (92, V) ¢ (1, V) = (P12, V+V + (1, p2)0) © (p1, V)



DE GRUYTER On applications of bipartite graph associated with algebraic structures =— 63

Figure 3: Complete bipartite graph K»0,20.

= (p3,2v-p)o(p1,V)
= (p3p1,2v—-p + Vv +(p3, p1)h)
= (sz 3v- Zp) (3)

(01, V) 0 ((p2, v) © (1, V) = (p1, V) 0 (2901, v+ V + (92, p1)b)
= (p1,v) o (p3,2v+p)
= (p2,3v+Dp +(p1, p3)b)
= (p2,3v +2p) (4)

from (3) and (4)
((p1, V) © (2, V) © (91, V) # (1, V) © (02, V) © (1, V)).

It implies that (¥, ¥, b) is not flexible and (p1, v), (2, v) are not in X. Similarly ((p1, v)o (g3, v))o (01, V)
# ((p1, V) o (g3, V) © (91, v) gives (p3, v) alsonot in X. FinallyV f 1, f , € Y1 and Vv,, v3 € ¥,

(,v)o(Fi,va))o(Fa,v3) = (F1F 2, v+va +v3+(F 1, F2)P) = (1, v) o (F1,v2) o (F2,v3))
shows that (1, v) € X represents star graph through above mentioned edge labeling. O

Example: If ¥; = {1, p1, 02, p3} and ¥, = {0, 1, 2, 3, 4}, with modulo 5, then K5 »¢ is the associated graph
see Figure 3. Let ¥; = {1, p1, 02, p3}, Klein four group, and ¥, = {0, 1, 2,3, ..., n — 1}, additive abelian
group of modulo n, table 3 also shows a pattern of Wilson loops.

We can recapitulate all the above discussion in the table 4.

3 Conclusion

This article deals with the application of graph theory in the pure mathematics. In particular the aim is to
discover those algebraic structures and quasigroups which are closely associated with bipartite graphs. We
have shown that graph labeling is a powerful tool to understand algebraic object namely the Wilson loop.
The field is quite open in the sense, one can discover more connections between these two areas.

Acknowledgment: The authors are grateful to the anonymous referee for their valuable comments and
suggestions that improved this paper.

This research was supported by the Applied Basic Research (Key Project) of Sichuan Province under grant
2017JY0095 and the Soft Science Project of Sichuan Province under grant 2017ZR0041. Also this research is
supported by Higher Education Commission of Pakistan under NRPU project "Properties of Ranking Ideals"
via Grant No.20 - 3665/R&D/HEC/14/699.



DE GRUYTER

Zhang et al.

iujun

64 — X

@un (€U o@D @D 0D @Uun  (euld) (put) o @) (1Y) (LUuY) (uld) (ul) (ui) v (€0)  @W) @) (0') () (eut) v (@) (I'E)  (0'F)  (1-w'Es) | (1utee)
(v @un @ 0N (U (U Gute) Gutd) o (1) (1Y) (utd)  (euld)  (utd)  (euttd) v (@) (1) (0W)  (Tut)  (ewtd)  (p-uttd) o (1€G)  (0%)  (1-uftd)  (g-uted) | (c-uted)
@n @p oD D D En @Y ) ST G (€)@Y) (€W @) v @) 9 (W) @) @) @) (%) (§') ) (e9) | (€'9)
agn  ©p ToED En €D @n 09 ul) @) €9 @) @) @) @) v 0 W) G €)@ () T (5) € @) | (@)
on (@un oED ED @D @ @) (@ud) (€19 @) @) () @) () vt (§) () (€) (@W) (0'F)  (ut) o (ptE)  (€'99) (@) (1) | (1)
@Guy @un o €D @m0 0N (@u)  utd) @) @) (09 (utd)  (0)  (ut) v (') (€) (@) (1) (uEd) (ut) v (€%9) (@) (1) (0'%9) | (0'%9)
Ut  (@utd) (€)@ @) () @u'n (ewn v @D 'm0 U (EwE) (putd) o (1) (09)  (1ut)  (cuttd) () (euttd) vt (@) (1) (0°) (1wt | (1)
[@utd) (eutd) (@) @) (1Y) @ut)  (eun) eyt @' (') U @u) (utd)  (Suttd) o (0E)  (utd)  (@uttd)  (euttd)  (euttd)  (puttd) v (1) (0°)  (T-utid)  (gu'td) | (guttd)
€9 @9 o ) G @Y @n o ' ' @' (€D @) (0%) v (§') () (€) (@) @) @) (9') () (1) (€') | (E)
@ @ ) ) @) (€@ oy e D ') €D @D (0) @) o ) (€)@ 1) @) () () (') (€)@ ) | @)
@ ) v (1) @) (€ @9 0D @uD T (D €D @D @D @uE) (@uE) v (€5)  @9) @) () (%) Q) v (1) (€9) @) (1) | (1)
0 (utd) o) (€)@Y) @) un @un vt €D @) ' 01 (Ut (ew) v @) (19 (0'F)  (@wd)  (ut)  @uEd) v (€7) (@) (1) (0) | (0°7)
(eu?d) (pued) o (1) (0 (LU (cutd) (ut)  (cuttd) v (€'99) (@) (1tG)  (0')  (cu'n)  (eu'n) v (@D (') (0D (u'n) (@) (gutd) v (@) (1) (1) (1-ute) | (1-utTe)
(uTd) (U)o (07) (U)W (euTd) () (W) v () (1Y) (0'FY)  (Lw'E)  (eu'D)  (ruw'n v @D 0 @UT) @uD (EuY) muid) v (1'6) (019) @uld)  (zule) | (ul)
@) (W) (W) ') (€W (@@) () (@) @) 9 () @) @n a'p o ') ') @D €D @) @) 99 ) @) (€19) | ()
0%  (uw) o) (€)@ @) @) @) (') () @) @) o ' Tt ') 'y €D @D @) @) ) @) €1 @) | @)
(-ued)  (ue) o (gW) (@) (@) (0) (1) (0d) v (§') () (e9) (@) (') (1u'D) ¢y €y @n oy @ guwl) @) (€19 @) @) | )
(Tued) (eud) (@) @) () (u)  (0%9)  (utd) v (1) (€') (@) () (i) (eu'n) vt (€' (@D 'n 01 (Ul (@ur) v (€)@ @) (019 | (079)
(Cued) (eu'td) () (@) () (uEd)  (@uI)  (euTd) v (@) (1) (0%)  (uT) (@utd)  (eutd) v (@) (1) (019)  (ute)  (u'ny (ewn) v @D ') (O @) | ()
(eU'e) (pured) v (IE)  (0FF)  (LUES)  (U'E) (eu'T)  (puld) v (1) (0F0)  (UT)  (@uT) (euld) (putd) v (1) (019)  (uld) @ut)  (ewn)  (pun) v @D (1) @uT) (@u) | (@)
@) @) (9 (§F) () () @) @) o (9) () () €)@ @) () () ) (€)@ (0309 B C ) I 2 I () (0] (€D
@) () () () (€)@ @) () (€)@Y) (€)@ @) @) ) @) €@ @) ' o T ' ') (€) @D @1
00)  (putd) o () (€'%) (@) (1) (') (uig) o (1) (€) @) @) () @wtd) vt () (e @) @) (' eyt w'n (€' @D (' a'n
(ued) (u'td) v (€)@Y) (1) (0'%)  (u) (eutd) v (€99 @) (@) (09 (@ud) (utd) v (€)@Y) @) (1Y) (' @wn) v €' @D (' (3] (9]
(W) (U)o () (@) () (0%) (1) (pud) v (€%9) @) @) (0'%)  (ud) (@uttd) v (€19) (@) @) () @u'n et €' @n D (0 °

‘ut7 19pJo Jo doo) uosjip :€ aqel
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Table 4: Complete bipartite graphs associated with loops.

Multiplicative Group Additive group Loop p | -p | Bipartite graph | Star graph
¥ ={1,3} ¥, ={0,1} (Y1, ¥2,0) | 1 1 Ky 4 Ky,
¥, ={1,3} ¥, ={0,1,2} (W1, ¥r,b) | 2 1 Ko 6 K3
¥ ={1,3} ¥, ={0,1, 2,3} (¥1,¥,,b) | 3 1 Ks s K4
¥, ={1,3} ¥, ={0,1,2,3,...,n-1} | (¥1,¥5,b) | n-1 | 1 Kon,2n Kin

¥ = {1, p1, 92, p3} ¥, ={0,1,2} (¥1,¥2,b) | 2 1 Kiz,12 Ki,3

Y1 ={1, p1, 02,93} ¥, ={0,1,2,3} (¥1,¥2,b) | 3 1 Ki6,16 Ki4

Y1 ={1, p1, 02, 93} ¥, ={0,1,2,3,4} (Y1, ¥2,0) | 4 | 1 K>0,20 K5

¥ ={1,p1,902,03} | ¥2={0,1,2,3,...,n-1} | (¥1,¥2,b) [ n-1 | 1 Kin,an Ki.n
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