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Abstract:A graph is said to be NSSD (=non-singular with a singular deck) if it has no eigenvalue equal to zero,
whereas all its vertex-deleted subgraphs have eigenvalues equal to zero. NSSD graphs are of importance in
the theory of conductance of organic compounds. In this paper, a novel method is described for constructing
NSSD molecular graphs from the commuting graphs of the Hv-group. An algorithm is presented to construct
the NSSD graphs from these commuting graphs.
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1 Introduction
Beginning in 1970s, graph spectra found noteworthy applications in chemistry, mainly in the area of molec-
ular orbital theory [1, 2]. One of the most recent developments along these lines are the model of Fowler et
al. [3], describing the electrical current created by the injection of ballistic electrons via external contacts
into an unsaturated conjugated molecule. Within this model, the considered molecule is predicted to be an
insulator for all single-π-electron connections, if the underlyingmolecular graph belongs to the class of NSSD
graphs. Let G be a simple graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G). Its adjacency
matrix A = (aij) is de�ned so that aij = 1 if the vertices vi and vj are adjacent, and aij = 0 otherwise [4].
The eigenvalues of A, denoted by λ1, λ2, . . . , λn are said to be the eigenvalues of the graph G and to form the
spectrumofG [4]. Thenullity of a graphG, denotedby η(G), is thenumber of eigenvalue that are equal to zero.
If noneof these eigenvalues is equal to zero, i.e., η(G) = 0 then the graph is said to benon-singular. Otherwise,
it is singular. The graph G is an NSSD graph (aNon-Singular graph with a SingularDeck) if it is non-singular,
and if all its vertex-deleted subgraphsG−vi , i = 1, 2, . . . , n are singular [5–7]. The termNSSDwas introduced
in [8], motivated by the search for carbon molecules in the Huckel model. The �rst step in the history of the
development of hyperstructure theorywas the 8th congress of Scandinavianmathematician from1934,when
Marty [9] put forward the concept of hypergroup, analyzed its properties and showed its utility in the study
of groups, algebraic functions, and rational fractions. Eventually, hyperstructure theory found applications
in the �eld of cryptography, geometry, graphs, hypergraphs, binary relations, theory of fuzzy sets, coding
theory, automata theory, etc. The correspondence between hyperstructure and binary relations is implicity
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contained in Nieminen [10] who associated hypergroups to connected simple graphs; for further work in this
direction see [11–14]. In 1990, Vougiouklis introduced the concept of Hv-structure [13]. The main idea of Hv-
structures is in establishing a generalization of the other algebraic hyperstructures. In fact, some axioms
related to these hyperstructures are replaced by their corresponding weak axioms.

Various classes of NSSD graphs and their construction are described in recent articles [6, 15]. Some
necessary and su�cient conditions are obtained for a two-vertex-deleted subgraph of an NSSD graph G to
remain anNSSDby considering triangles in the inverseNSSD G−1 [16]. In this paper, we present a newmethod
for constructing NSSD graphs, utilizing hyperstructure theory and commuting graphs. We also present an
algorithm written in GAP language to construct NSSD graphs from these commuting graphs. The paper is
structured as follows. In Section 2, we consider an Hv-group.We discuss its commuting graphs and establish
some NSSD graphs. We present some algorithms. Using these algorithms we determine NSSD graphs. In
Section 3, we �nd some NSSD molecular graphs from these commuting graphs. Conclusions are made in
Section 4.

2 Commuting graphs on Hv-group and an algorithm to determine
NSSD graphs

In this section we discuss some metric properties of commuting graphs on Hv-group. Recall that in a
commuting graph, two elements are joined by an edge if they commute with each other. For further study
of commuting graphs see [17–22].

Let J be a non-empty set. A hyperoperation on a non-empty set J is a mapping ◦ : J × J → P*(J), where
P*(J) denotes the set of all non-empty subsets of J. If U, V are non-empty subsets of J and x ∈ J, then we
de�ne

U ◦ V =
⋃
x∈U
y∈V

x ◦ y, x ◦ V = {x} ◦ V and V ◦ x = V ◦ {x} .

An algebraic hyperstructure (J, ◦) is said to be an Hv-group if it satis�es the following properties

(1) (J, ◦) is weakly associative, i.e., s ◦ (t ◦ u) ∩ (s ◦ t) ◦ u ≠ ∅, for all s, t, u ∈ J.
(2) x ◦ J = J = J ◦ x, for all x ∈ J.

The dihedral group of order 2n is given by, D2n = 〈a, b : an = b2 = 1, ab = ba−1〉. We have constructed
an Hv-group (D2n , ◦), where D2n is the dihedral group and ◦ is the hyperoperation such that ◦ : D2n × D2n →
P*(D2n) de�ned by

x ◦ y =
{
xy, xy−1, a, a−1, a2, a−2, b

}
for all x, y ∈ D2n , (1)

where on the right–hand side, a, a−1, a2, a−2, and b are �xed elements of D2n, while x, y are any two general
elements of D2n. In what follows, we discuss the properties of commuting graph of this Hv-group. In the
remainingpart of this paper, theHv-group (D2n , ◦) is denotedbyH\. First of all,wehave to �nd those elements
that commute with each other. The elements of D2n are of the type ai, aib, for i ∈ {1, 2, . . . , n}. Therefore,
the compositions of the elements of this Hv-group are possibly of the types ai ◦ aj, ai ◦ ajb, aib ◦ ajb, for
i, j ∈ {1, 2, . . . , n}. We �rst consider the compositions ai ◦ aj, aj ◦ ai and �nd those elements that commute
with each other. Note that

ai ◦ aj =
{
ai · aj , ai · a−j , a, a−1, a2, a−2, b

}
=
{
ai+j , ai−j , a, a−1, a2, a−2, b

}
, (2)

and

aj ◦ ai =
{
aj · ai , aj · a−i , a, a−1, a2, a−2, b

}
=
{
aj+i , aj−i , a, a−1, a2, a−2, b

}
. (3)
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If j = i + 1, then the equations (2) and (3) become

ai ◦ aj =
{
a2i+1, a, a−1, a2, a−2, b

}
, (4)

aj ◦ ai =
{
a2i+1, a, a−1, a2, a−2, b

}
. (5)

Thus ai commutes with ai+1 for all i ∈ {1, 2, . . . , n}. Similarly, for each i ∈ {1, 2, . . . , n}, we can see that ai

commutes with aj, where j = i+1, i−1, i+2, i−2, and also for j = n
2 + i, if n is an even integer. In an analogous

manner, one can check the other compositions and �nd the elements that commute with each other.
Let Γ be a subset of the Hv-group (D2n , ◦). The vertices of the commuting graph are the elements of Γ,

where any two di�erent vertices s, t ∈ Γ are joined by an edge if s ◦ t = t ◦ s. The degree degG(s) of a vertex
s ∈ V(G) of a graph G is the number of �rst neighbors of s. The following two theorems explain about the
degree of each vertex in the commuting graph G = C(H\, H\).

Theorem 1. Let H\ = (D2n , ◦) be an Hv-group for an even integer n ≥ 6 and G = C(H\, H\) be a commuting
graph. Then

(1) degG(ai) =
{

6 if i ≠ n, n/2,
n + 5 if i = n, n/2.

(2) degG(aib) =
{
8 if i ≠ n, n/2,
7 if i = n, n/2 .

Proof. (1) For an even integer n ≥ 6, each ai commutes with ai+1, ai−1, ai+2, ai−2, a n
2 +i. Also ai commutes with

aib if i ≠ n, n2 whereas e, a n
2 commute with aib for all i ∈ {1, 2, . . . , n}.

(2) Each aib commutes with ai+1b, ai−1b, ai+2b, ai−2b, a n
2 +ib, ai, e, and a n

2 . Therefore, degG(aib) = 8 if
i ≠ n, n2 and degG(aib) = 7 if i = n, n2 .

Theorem 2. Let H\ = (D2n , ◦) be an Hv-group for an odd integer n ≥ 5 and G = C(H\, H\) be a commuting
graph. Then

(1) degG(ai) =
{

5 if i ≠ n,
n + 4 if i = n.

(2) degG(aib) =
{
6 if i ≠ n,
5 if i = n .

Proof. Relations (1) and (2) follow by straightforward calculations.

Now, we present some algorithms to construct NSSD graphs from these commuting graphs. These algorithms
are written in the GAP language.

Algorithm 1 Dihedral Group
Input : n
Output : Dihedral group of order 2n

1. f := FreeGroup( "a", "b" );
2. g := f /[f .1n , f .22, (f .1 * f .2)2];
3. Unbind(a);
4. a := g.1; b := g.2; assign variables

Algorithm (1) gives us dihedral group of order 2n. Here in this algorithm we have to give the input value
of n and we get the dihedral group of order 2n. Now, we give an algorithm to de�ne the hyperoperation given
in Eq. (1). This Algorithm (2) gives us the product of two elements under the hyperopeation de�ned in Eq.
(1).
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Algorithm 2 Hyperoperation
Input : two elements x, y ∈ g
Output : The image of (x,y) under the hyperoperation ” ◦ ”, i.e., x ◦ y.

1. H := The function of (x, y)
2. De�ne the local variable ” ◦ ”
3. if x in g and y in g then
4. ◦ := The hyperoperation de�ned as in Eq. (1);
5. �; return ◦; end;

Algorithm 3 Adjacency Matrix
Input : Any subset U of this Hv-group
Output : The adjacency matrix for the commuting graph of U.

1. T := function(U)
2. local S, M, n, i, j, k;
3. n is the order of the subset U;
4. M is the identity matrix of order n;
5. for i in [1..n-1] do
6. for j in [i+1..n] do
7. if the elements at ith and jth position in U commutes then
8. M[i][j] := 1;
9. M[j][i] := 1; �;

10. od; od;
11. for k in [1..n] do
12. M[k][k] := 0;
13. od; return M; end;

Algorithm (3) presents the pseudo-code for the adjacency matrix of a commuting graph G = C(H\, U).
Here subset U is the input value and the output value is the adjacency matrix for the commuting graph of U.
Now, the following algorithm (4) shows that wether the commuting graph is NSSD graph or not.

Algorithm (4) is the pseudo-code forNSSDgraph. In this algorithm the input value is the adjacencymatrix
of a commuting graph and it returns true if the corresponding graph is NSSD graph otherwise it returns false.
Using these algorithms present in this paper, we can �nd the NSSD graphs. For example, if we consider the
dihedral group for an integer n = 4 and de�ne the hyperoperation using algorithm (2). Now, consider the
subset U = {a, a3, b, ab} of the Hv-group H\ = (D8, ◦) and �nd the adjacency matrix for the commuting
graph G = C(H\, U) using algorithm (3), we get

M =


0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0

 .
When we use algorithm (4) to check wether it is NSSD graph or not, it returns ”true”. The corresponding
graph is depicted in Figure 1.

Now, consider theHv-groupH\ = (D2n , ◦), for an integer n ≥ 2. In Table 1, we present the number of NSSD
graphs, obtained from the commuting graphs of the Hv-group H\ = (D2n , ◦), with the help of Algorithm 4.
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Algorithm 4 NSSD Graph
Input : An adjacency matrix
Output : Is corresponding graph NSSD graph or not.

1. RemRowCol := function(M,c)
2. local A, i; A := StructuralCopy(M);
3. for i in [1..Length(A)] do
4. Remove ith Row and ith Column of matrix M;
5. od; return A; end;
6. IsNSSD := function(M) local A, eig, eigsp, c, i, j;
7. ”c” is the counter;
8. ”eig” are the Eigenvalues of M;
9. if 0 is an eigenvalue of M then return false;

10. else c := c+1; �;
11. for i in [1..Length(M)] do
12. ”A” is the matrix obtained by deleting ith Row and ith Column of M;
13. ”eigsp” are the Eigenvalues of A;
14. if 0 is an eigenvalue of A then c := c+1; �;
15. od; if c=Length(M)+1 then
16. return true; else return false;
17. �; end;

Table 1: Number of NSSD graphs for di�erent values of n.

n Order of No. of subsets who’s No. of
graph commuting graph is NSSD NSSD graphs

2 2 6 1
3 2 11 1

4 2 1
4 2 22 1

4 5 2
5 2 29 1

4 54 2
6 2 46 1

4 84 2
7 2 41 1

4 262 2
6 374 7
8 130 15
10 4 1

8 2 62 1
4 409 2
6 416 7
8 80 11
10 4 1
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Figure 1: NSSD graphs.

By using Table 1, we calculate the number of NSSD graphs of di�erent orders for di�erent values of
n. In addition, we compute the number of subsets, who’s commuting graph is NSSD. Similarly, from these
commuting graphs one can �nd more NSSD graphs of higher order by choosing greater value of n. Now, we
present some NSSD molecular graphs obtained from these commuting graphs.

3 NSSD molecular graphs
As mentioned in previous section, NSSD graphs are encountered within a theory of conductivity of organic
substances [3, 6]. In view of this, it is of particular interest to design NSSD graph that are molecular graphs,
i.e., graphs whose vertices and edges pertain to carbon atoms and carbon–carbon bonds, respectively [1, 23,
24]. Hyperstructure theory has been earlier much used in the chemistry, see [25–28]. In this section our main
purpose is to construct NSSD molecular graphs from the above described commuting graphs. The following
theorems related to construct NSSD graphs from the commuting graphs of a non-abelian group Ω.

Theorem 3. Let G1 = C(Ω, U) and G2 = C(Ω, V) be two commuting graphs, such that G2 is an empty graph
and |G1| = |G2|. If each element of V commutes with exactly one element of U, then the commuting graph
G′ = C(Ω, U ∪ V) is an NSSD graph.

Proof. Since each element of the subset V commuteswith exactly one element ofU and G2 is an empty graph,
it follows that each vertex in V is a pendent vertex of the commuting graph G′. If v is a pendent vertex of a
graph G′, adjacent to the vertex u, then [29, 30]

η(G′) = η(G′ − v − u). (6)

If we apply Eq. (6) to each but one pendent vertex of the graph G′, then we get a connected graph with two
vertices. Therefore, nullity of the graph G′ is zero. So G′ is a non-singular graph.

Now, consider the vertex deleted subgraph G′ − x. If x ∈ V, then x is a pendent vertex, so applying the
Eq. (6) to each pendent vertex of the graph G′ − x, we obtain a graph with single vertex. Therefore, the nullity
of G′ − x is 1. If x ∈ U, then there exists an isolated vertex of the graph G′ − x, Therefore, the nullity of G′ − x
is 1. Hence G′ is a non-singular graph with a singular deck.

Theorem 4. If the commuting graphs G1 = C(Ω, U) and G2 = C(Ω, V) are two NSSD graphs, such that there
exists exactly one element u ∈ U that commutes with exactly one element v ∈ V, then the commuting graph
G′ = C(Ω, T) is an NSSD graph, where T = U ∪ V.

Proof. Clearly, G′ is obtained by joining a vertex u ∈ G1 with a vertex v ∈ G2. The following relation gives the
characteristic polynomial [23, 24]

P(G′, λ) = P(G1, λ)P(G2, λ) − P(G1 − u, λ)P(G2 − v, λ). (7)

Both graphs G1 and G2 are NSSD graphs, so they are non-singular, i.e., P(G1, 0) ≠ 0, P(G2, 0) ≠ 0. Moreover,
each vertex deleted subgraph is singular, so P(G1 − u, 0) = 0 and P(G2 − v, 0) = 0. Consequently, we get
P(G′, 0) ≠ 0, and this implies that G′ is non-singular. Now, consider the vertex deleted subgraph G′ − x. If
x = u, then G′−u is singular, because G1−u is singular. Similarly, if x = v, then the subgraph G′−v is singular.
Let x ∈ T, such that x ≠ u, v. Assume that x ∈ U, then from Eq. (7)

P(G′ − x, λ) = P(G1 − x, λ)P(G2, λ) − P(G1 − x − u), λ)P(G2 − v, λ).
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Figure 2: NSSD graphs with 2, 4, and 6 vertices.

We have P(G1 − x, 0) = 0, because G1 is an NSSD graph. Therefore, P(G′ − x, 0) = 0, which shows that the
subgraph G′ − x is singular. Hence G′ is an NSSD graph.

Now, using these results and the algorithmspresented in section (2),we construct theNSSDmolecular graphs
from the commuting graphs of the Hv-group H\. Consider the Hv-group H\ = (D2n , ◦), where D2n is the
dihedral group for n = 16 and ◦ is the hyperoperation de�ned as in Eq. (1). In addition, de�ne the following
sets of vertices for which the commuting graphs give NSSD molecular graphs with 2, 4, and 6 vertices:

Γ1 =
{
a, a3

}
,

Γ2 =
{
a5, a7, a8, a10

}
,

Γ3 =
{
a, a3, a5, a7, a8, a10

}
,

Γ4 =
{
a, a3, a5, a6, a5b, a7b

}
,

Γ5 =
{
a2, a3, a5, a7, a9, a10

}
,

Γ6 =
{
a, a2, a10, ab, a2b, a4b

}
,

Γ7 =
{
a, a2, a3, a5, a15, a2b

}
.

Here the commuting graphs Gi = C(H\, Γi) , i = 1, 2, . . . , 7, result the NSSD graphs given in Figure 2.

For instance, we specify the construction of the graph G3, whose vertex set is Γ3. Since the graphs G1,
G2 are NSSD and only one element a3 ∈ Γ1 commutes with exactly one element a5 ∈ Γ2. So, the commuting
graph corresponding to Γ3 = Γ1 ∪ Γ2 is NSSD. Thus, the graph G3 is the path of the form a − a3 − a5 −
a7 − a8 − a10. In an analogous manner, one can establish the structure of the remaining graphs from the set
{Γi | i = 1, 2, . . . , 7}. One can determine these graphs using algorithm (4). We now list the sets of vertices for
which the commuting graphs yield NSSD graphs with 8 vertices.

Γ8 =
{
a, a2, a3, a5, a15, a2b, a5b, a7b

}
,

Γ9 =
{
a, a3, a5, a7, a9, a10, a3b, a5b

}
,

Γ10 =
{
a5, a6, a5b, a6b, a13b, a14b, a12b, a12

}
,

Γ11 =
{
a2, a3, a5, a7, a9, a10, a2b, a7b

}
,

Γ12 =
{
a, a3, a5, a7, a9, a10, ab, a7b

}
.

For these sets of vertices the commuting graphs Gi = C(H\, Γi) , i = 8, 9, . . . , 12, are the NSSD graphs
depicted in Figure 3.

For instance, Γ8 =
{
a, a2, a3, a5, a15, a2b, a5b, a7b

}
is the set of vertices for the commuting graph G8.

Since the commuting graphs of the subsets Γ7 and Γ′ = {a5b, a7b} NSSD. Also there exists only one element
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Figure 3: NSSD graphs with 8 vertices.

a5b ∈ Γ′ that commuteswith only one element a2b ∈ Γ7. Thus the commuting graphof the subset Γ8 = Γ7∪Γ′

is NSSD. These structural features fully determine the NSSD graph G8. The other graphs can be analysed and
determined in a similar manner.

The following sets of vertices pertain to commuting graphs resulting in NSSD molecular graphs with 10
vertices.

Γ13 =
{
a, a3, a5, a7, a9, a10, ab, a5b, a7b, a13b

}
,

Γ14 =
{
a, a3, a5, a7, a9, a10, a3b, a5b, a11b, a13b

}
,

Γ15 =
{
a2, a3, a5, a6, a7, a9, a10, a2b, a3b, a14

}
,

Γ16 =
{
a5, a6, a7, a9, a12, a5b, a6b, a13b, a14b, a12b

}
,

Γ17 =
{
a2, a3, a5, a7, a9, a10, a12, a13, a15, a12b

}
,

Γ18 =
{
a, a3, a4, a6, a7, a9, a11, a13, a14, a14b

}
.

Consider now the Hv-group H\ = (D2n , ◦), where D2n is the dihedral group for n = 20 and ◦ is the
hyperoperation, and de�ne the following set of vertices of this Hv-group for which the commuting graphs
give NSSD graphs with 10 vertices.

Γ19 =
{
a3, a5, a7, a9, a11, a12, a14, a15, a9b, a11b

}
,

Γ20 =
{
a, a2, a3, a5, a6, a7, a9, a12, ab, a6b

}
,

Γ21 =
{
a, a2, a3, a5, a6, a8, a19, a2b, a5b, a6b

}
,

Γ22 =
{
a, a2, a4, a5, a11, a2b, a3b, a5b, a11b, a12b

}
,

Γ23 =
{
a3, a5, a7, a9, a11, a12, a14, a15, a19, a7b

}
,

Γ24 =
{
a3, a5, a7, a9, a11, a12, a14, a15, a7b, , a12b

}
.

The commuting graphs Gi = C(H\, Γi), i = 13, 14, . . . , 24, lead to the NSSD graphs depicted in Figures 4
and 5.

In order to construct NSSD graphs with 12 vertices from these commuting graphs, consider the Hv-group
H\ = (D2n , ◦), for n = 20 and de�ne the following sets of vertices.

Γ25 =
{
a, a2, a3, a5, a19, a2b, a5b, a7b, a9b, a11b, a13b, a14b

}
,
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Figure 4: NSSD graphs with 10 vertices.

Figure 5: NSSD graphs with 10 vertices.

Γ26 =
{
a, a2, a3, a5, a6, a8, a16, a19, a2b, a8b, a9b, a11b

}
,

Γ27 =
{
a, a2, a3, a5, a6, a8, a16, a19, a2b, a8b, a9b, a16b

}
,

Γ28 =
{
a, a2, a3, a5, a6, a8, a19, a2b, a8b, a9b, a11b, a18b

}
,

Γ29 =
{
a, a2, a3, a5, a6, a19, a2b, a6b, a8b, a9b, a16b, a17b

}
,

Γ30 =
{
a, a2, a3, a5, a6, a8, a19, a2b, a6b, a7b, a9b, a16b

}
,

Γ31 =
{
a, a2, a3, a5, a6, a15, a19, a2b, a6b, a8b, a9b, a15b

}
,

Γ32 =
{
a, a2, a3, a5, a7, a19, a2b, a4b, a7b, a9b, a11b, a14b

}
,

Γ33 =
{
a, a2, a3, a5, a6, a8, a15, a19, a2b, a6b, a7b, a15b

}
,

Γ34 =
{
a, a2, a3, a5, a7, a15, a16, a19, a2b, a4b, a7b, a14b

}
,

Γ35 =
{
a, a2, a3, a5, a7, a18, a19, a2b, a4b, a7b, a14b, a18b

}
Γ36 =

{
a, a2, a3, a5, a6, a11, a17, a2b, a6b, a7b, a8b, a10b

}
,

Γ37 =
{
a, a2, a3, a5, a7, a8, a11, a17, a2b, a8b, a17b, a18b

}
,

Γ38 =
{
a, a2, a3, a5, a7, a8, a19, a2b, a7b, a8b, a10b, a17b

}
,

Γ39 =
{
a2, a5, a6, a7, a9, a11, a12, a15, a2b, a6b, a12b, a14b

}
.

The commuting graphs Gi = C(H\, Γi) , i = 25, 26, . . . , 39, yield the NSSD graphs with 12 vertices
depicted in Figures 6 and 7.
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Figure 6: NSSD graphs with 12 vertices.

Figure 7: NSSD graphs with 12 vertices.

At the end, consider the Hv-group H\ = (D2n , ◦), for n = 20, and de�ne the following sets of vertices to
construct the NSSD graphs with 12 and 14 vertices.

Γ40 =
{
a, a2, a3, a5, a8, a11, a2b, a7b, a8b, a9b, a11b, a17b

}
,

Γ41 =
{
a3, a5, a7, a9, a11, a12, a14, a15, a19, a7b, a11b, a15b

}
,

Γ42 =
{
a2, a3, a7, a8, a12, a13, a7b, a8b, a12b, a13b, a14b, a16b, a17b, a18b

}
.

Also, consider the Hv-group H\ = (D2n , ◦), for n = 24 and de�ne the following set of vertices to construct an
NSSD graph with 16 vertices:

Γ43 =
{
a3, a4, a9, a10, a15, a16, a17, a3b, a4b, a9b, a10b, a17b, a18b, a20b, a21b, a22b

}
The commuting graphs Gi = C(H\, Γi), i = 40, . . . , 43, are the NSSD molecular graphs with 12, 14, and 16
vertices, given in Figure 8.

Remark 1. There are a lot of NSSD graphs but we have shown only a few here. One can �nd NSSD graphs of
higher order by choosing high values of n.
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Figure 8: NSSD graphs with 12, 14, and 16 vertices.

4 Conclusion
In this article we have de�ned an Hv-group and discussed its commuting graph. We have constructed NSSD
molecular graphs from the commuting graph of this Hv-group. Also we have de�ned an algorithm that can
constructNSSDgraphs. In this paper,wehave considered ahyperoperation ondihedral groupgiven inEq. (1).
For feature work in this direction on can use another hyperoperation and determine di�erent NSSD graphs.
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