DE GRUYTER Open Math. 2019; 17:1361-1373 8

Open Mathematics

Research Article

Mohammed Ali* and Musa Revvashi

L^p estimates for maximal functions along surfaces of revolution on product spaces

https://doi.org/10.1515/math-2019-0118 Received June 10, 2018; accepted October 18, 2019

Abstract: This paper is concerned with establishing L^p estimates for a class of maximal operators associated to surfaces of revolution with kernels in $L^q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$, q > 1. These estimates are used in extrapolation to obtain the L^p boundedness of the maximal operators and the related singular integral operators when their kernels are in the $L(log L)^{\kappa}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ or in the block space $B_q^{0,\kappa-1}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$. Our results substantially improve and extend some known results.

Keywords: maximal functions, L^p boundedness, Rough kernels, surfaces of revolution, extrapolation

MSC: Primary 42B20; Secondary 40B25, 47G10

1 Introduction and main results

Let $n, m \ge 2$, and let \mathbb{R}^N (N = n or m) be the N-dimensional Euclidean space. Let \mathbb{S}^{N-1} be the unit sphere in \mathbf{R}^N equipped with the normalized Lebesgue surface measure $d\sigma = d\sigma(\cdot)$. Also, let x' = x/|x| for $x \in \mathbf{R}^n \setminus \{0\}$, y' = y/|y| for $y \in \mathbf{R}^m \setminus \{0\}$.

Let $K_{\Omega,h}(x,y) = \Omega(x',y')|x|^{-n}|y|^{-m}h(|x|,|y|)$, where h is a measurable function on $\mathbb{R}^+ \times \mathbb{R}^+$ and Ω is an integrable function on $\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}$ that satisfies

$$\int_{\mathbf{S}^{n-1}} \Omega(x',.)d\sigma(x') = \int_{\mathbf{S}^{m-1}} \Omega(.,y')d\sigma(y') = 0 \quad and$$

$$\Omega(rx,ty) = \Omega(x,y) \quad for \quad all \quad r,t>0.$$
(1.2)

$$\Omega(rx, ty) = \Omega(x, y) \text{ for all } r, t > 0.$$
 (1.2)

For suitable mappings ϕ , ψ : $\mathbf{R}^+ \to \mathbf{R}$, consider the singular integral operator $T^{P_1,P_2}_{\Omega,h,\phi,\psi}$ defined, initially for C_0^{∞} functions on $\mathbf{R}^{n+1} \times \mathbf{R}^{m+1}$, by

$$T_{\Omega,h,\phi,\psi}^{P_1,P_2}(f)(\overline{x},\overline{y}) = p.v \int_{\mathbf{R}^n \times \mathbf{R}^m} e^{iP_1(u)+iP_2(v)}$$

$$\times f(x-u,x_{n+1}-\phi(|u|),y-v,y_{m+1}-\psi(|v|))K_{\Omega,h}(u,v)dudv,$$

where $(\overline{x}, \overline{y}) = (x, x_{n+1}, y, y_{m+1}) \in \mathbf{R}^{n+1} \times \mathbf{R}^{m+1}$ and $P_1 : \mathbf{R}^n \to \mathbf{R}$, $P_2 : \mathbf{R}^m \to \mathbf{R}$ are two real-valued polynomials.

When $P_1(u)=0$ and $P_2(v)=0$, we denote $T^{P_1,P_2}_{\Omega,h,\phi,\psi}$ by $T_{\Omega,h,\phi,\psi}$. Also, when $\phi(t)=\psi(t)=t$, then $T_{\Omega,h,\phi,\psi}$ (denoted by $T_{\Omega,h}$) is just the classical singular integral operator introduced by Fefferman in [1] in which he

^{*}Corresponding Author: Mohammed Ali: Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, Jordan, E-mail: myali@just.edu.jo

Musa Reyyashi: Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, Jordan, E-mail: musa-reyyashi@yahoo.com

obtained the L^p boundedness of $T_{\Omega,h}$ for all $1 whenever <math>\Omega$ satisfies some regularity conditions and $h \equiv 1$. As a matter of fact, the systematic study of such operator began by Fefferman in [1], and then it was elaborated very much by Fefferman and Stein in [2]. Subsequently, the investigation of the L^p boundedness of $T_{\Omega,h}$ under very various conditions on Ω and h has attracted the attention of many authors. For example, it was proved in [3] that $T_{\Omega,h}$ is bounded on $L^p(\mathbf{R}^n \times \mathbf{R}^m)$ for $1 when <math>\Omega \in L(\log L)^2(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ and h satisfies certain integrability-size condition. Furthermore, the authors of [3] established the optimality of the condition in the sense that the space $L(\log L)^2(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ cannot be replaced by $L(\log L)^{2-\varepsilon}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ for any $0 < \varepsilon < 2$. For more information about the importance and the recent advances on the study of such operators, the readers are refereed (for instance to [1–5], and the references therein).

On the other side, the study of the singular integrals on product spaces along surfaces of revolution has been started. For example, if ϕ and ψ are in $C^2([0,\infty))$, convex and increasing functions with $\phi(0)=\psi(0)=0$, then Al-Salman in [4] showed that $T_{\Omega,1,\phi,\psi}$ is bounded on $L^p(\mathbf{R}^{n+1}\times\mathbf{R}^{m+1})$ $(1< p<\infty)$ provided that $\Omega\in L(\log L)^2(\mathbf{S}^{n-1}\times\mathbf{S}^{m-1})$. Recently, Al-Salman improved this result in [6]. In fact, when ϕ , ψ are given as in [4], he verified the L^p boundedness of $T_{\Omega,h,\phi,\psi}$ for all $p\in(1,\infty)$ under the conditions $\Omega\in L(\log L)(\mathbf{S}^{n-1}\times\mathbf{S}^{m-1})$ and $h\in L^2(\mathbf{R}^+\times\mathbf{R}^+,\frac{drdt}{rt})$ with $\|h\|_{L^2(\mathbf{R}^+\times\mathbf{R}^+,\frac{drdt}{rt})}\leq 1$.

The maximal operator that related to our singular integral operator is $\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2}$ that given by

$$\mathcal{M}^{P_1,P_2}_{\Omega,\phi,\psi}(f)(\overline{x},\overline{y}) = \sup_{h \in U} \left| T^{P_1,P_2}_{\Omega,h,\phi,\psi}(f)(\overline{x},\overline{y}) \right|,$$

where
$$U = \left\{h \in L^2(\mathbf{R}^+ \times \mathbf{R}^+, \frac{drdt}{rt}); \|h\|_{L^2(\mathbf{R}^+ \times \mathbf{R}^+, \frac{drdt}{rt})} \le 1\right\}$$
.

Again, when $P_1(u) = 0$ and $P_2(v) = 0$, we denote $\mathfrak{M}_{\Omega,\phi,\psi}^{P_1,P_2}$ by $\mathfrak{M}_{\Omega,\phi,\psi}$. Also, when $\phi(t) = \psi(t) = t$, then $\mathcal{M}_{\Omega,\phi,\psi}$ reduces to the classical maximal operator denoted by \mathcal{M}_{Ω} . Historically, The operator \mathcal{M}_{Ω} was introduced by Ding in [7] in which he proved the L^2 boundedness of \mathcal{M}_{Ω} whenever $\Omega \in L(\log L)^2(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$. This result was improved independently by Al-Qassem and Pan in [8] and by Al-Salman in [9]. Precisly, they showed that \mathcal{M}_{Ω} is of type (p,p) for all $p \geq 2$ provided that $\Omega \in L(\log L)(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$. Moreover, they pointed out that the condition $\Omega \in L(\log L)(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ is optimal in the sense that the exponent 1 in $L(\log L)(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ cannot be replaced by any smaller positive number $\tau < 1$ so that \mathcal{M}_{O} is bounded on $L^2(\mathbf{R}^{n+1} \times \mathbf{R}^{m+1})$. Also, an improvement of the result in [7] was obtained by Al-Qassem in [10]. Indeed, Al-Qassem established the $L^p(2 \le p < \infty)$ estimates for the class \mathcal{M}_{Ω} whenever Ω belongs to the block space $B_a^{(0,0)}(\mathbf{S}^{n-1}\times\mathbf{S}^{m-1})$ for some q>1. Furthermore, he proved that the condition $\Omega\in B_a^{(0,0)}(\mathbf{S}^{n-1}\times\mathbf{S}^{m-1})$ is nearly optimal in the sense that the operator \mathcal{M}_{Ω} may lose the L^2 boundedness if Ω is assumed to be in the space $B_q^{(0,\varepsilon)}(\mathbf{S}^{n-1}\times\mathbf{S}^{m-1})$ for some $-1<\varepsilon<0$. Recently, it was found in [6] that the maximal operator $\mathcal{M}_{\Omega,\phi,\psi}$ is bounded on $L^p(\mathbf{R}^{n+1}\times\mathbf{R}^{m+1})$ for any $p\geq 2$ if $\Omega\in L(\log L)(\mathbf{S}^{n-1}\times\mathbf{S}^{m-1})$, and ϕ,ψ are in $C^2([0,\infty))$, convex and increasing functions with $\phi(0)=\psi(0)=0$. Very recently, when $\phi(t)=\psi(t)=t$, Al-Dolat and et al. found in [11] that the L^p $(p \ge 2)$ boundedness of $\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2}$ is obtained under the condition $\Omega \in L(\log L)(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}) \cup B_q^{(0,0)}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ with q > 1. Subsequently, the investigation of the L^p boundedness of $\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2}$ under weak conditions has received much attentions from many mathematicians. For the significance of considering the integral operators $\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2}$, we refear the readers to consult [8] and [11–13], among others.

The main result of this work is formulated as follows:

Theorem 1.1. Let $\Omega \in L^q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$, q > 1 and satisfy the conditions (1.1)-(1.2) with $\|\Omega\|_{L^1(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})} \le 1$, and let $\mu = \mu_q(\Omega) = \log(e + \|\Omega\|_{L^q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})})$. Assume that ϕ , ψ are in $C^2([0, \infty))$, convex and increasing functions with $\phi(0) = \psi(0) = 0$. Let $P_1 : \mathbf{R}^n \to \mathbf{R}$ and $P_2 : \mathbf{R}^m \to \mathbf{R}$ be two real-valued polynomials of degrees d_1, d_2 , respectively. Then there exists a constant $C_{p,q} > 0$ such that

$$\left\| \mathcal{M}_{\Omega,\phi,\psi}^{P_{1},P_{2}}(f) \right\|_{L^{p}(\mathbf{R}^{n+1}\times\mathbf{R}^{m+1})} \leq C_{p,q} (1+\mu) \|f\|_{L^{p}(\mathbf{R}^{n+1}\times\mathbf{R}^{m+1})}$$
(1.3)

for all $p \ge 2$, where $C_{p,q} = \left(\frac{2^{1/q'}}{2^{1/q'-1}}\right)^2 C_p$ and C_p is a positive constant that may depend on the degrees of the polynomials P_1 , P_2 but it is independent on Ω , ϕ , ψ , q, and the coefficients of the polynomials P_1 , P_2 .

We remark that by the result in Theorem 1.1 and using an extrapolation argument, we get that $\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2}$ is bounded on $L^p(\mathbf{R}^{n+1} \times \mathbf{R}^{m+1})$ for $2 \le p < \infty$ if $\Omega \in L(\log L)(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}) \cup B_q^{(0,0)}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ for some q > 1.

Here and henceforth, the letter C denotes a bounded positive constant that may vary at each occurrence but independent of the essential variables.

2 Preliminary lemmas

In this section, we present and prove some lemmas used in the sequel. The first lemma can be derived by applying the same technique that Al-Qassam and Pan used in [14, pp. 64-65].

Lemma 2.1. Let $\Omega \in L^q(\mathbf{S}^{N-1})$, q > 1 be a homogeneous function of degree zero on \mathbf{R}^N with $\|\Omega\|_{L^1(\mathbf{S}^{N-1})} \le 1$, and let $\phi: \mathbf{R}^+ \to \mathbf{R}$ be a $C^2([0,\infty))$, convex and increasing function with $\phi(0) = 0$. Consider the maximal function $\mathcal{N}_{\Omega,\phi}$ given by

$$\mathcal{N}_{\Omega,\phi}f(\overline{z}) = \sup_{\mathbf{j} \in \mathbf{Z}} \int_{\substack{j < |y| < 2^{j+1}}} \left| f(z - y, z_{N+1} - \phi(|y|)) \right| \frac{\left| \Omega(y) \right|}{\left| y \right|^N} dy.$$

Then for p > 1 and $f \in L^p(\mathbf{R}^{N+1})$ there exists a positive number C_p such that

$$\|\mathcal{N}_{\Omega,\phi}(f)\|_{p} \leq C_{p} \|f\|_{p}$$
.

Lemma 2.2. Assume that ϕ , ψ are $C^2([0,\infty))$, convex and increasing functions with $\phi(0) = \psi(0) = 0$. Let $\Omega \in L^q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}), \ q > 1 \ and \ satisfy \ the \ conditions (1.1)-(1.2) \ with \ \|\Omega\|_{L^1(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})} \le 1.$ Then for all $f \in \mathbb{R}^{m-1}$ $L^p(\mathbf{R}^{n+1} \times \mathbf{R}^{m+1})$ and p > 1, the maximal function

$$\mathcal{N}_{\Omega,\phi,\psi}f(\overline{x},\overline{y}) = \sup_{i,j\in\mathbf{Z}} \iint\limits_{\Lambda_{i,i}} \left| f(x-u,x_{n+1}-\phi(|u|),y-v,y_{m+1}-\psi(|v|)) \right| \frac{\left| \Omega(u,v) \right|}{\left| u \right|^n \left| v \right|^m} du dv$$

satisfies

$$\|\mathcal{N}_{\Omega,\phi,\psi}(f)\|_{p} \leq C_{p} \|f\|_{p}$$
,

where $\Lambda_{i,j} = \left\{ (u,v) \in \mathbf{R}^n \times \mathbf{R}^m : 2^i \le |u| \le 2^{i+1}, 2^j \le |v| \le 2^{j+1} \right\}$ and the positive constant C_p is independent of the functions $\dot{\phi}$, ψ and Ω .

It is easy to prove the above lemma by using Lemma 2.1 and the inequality $\mathcal{N}_{\Omega,\phi,\psi}f(\overline{x},\overline{y}) \leq \mathcal{N}_{\Omega,\psi} \circ \mathcal{N}_{\Omega,\phi}f(\overline{x},\overline{y})$, where $\mathcal{N}_{\Omega,\phi}f(\overline{x},\overline{y}) = \mathcal{N}_{\Omega,\phi}f(\cdot,\overline{y})(\overline{x}), \mathcal{N}_{\Omega,\psi}f(\overline{x},\overline{y}) = \mathcal{N}_{\Omega,\psi}f(\overline{x},\cdot)(\overline{y}), \text{ and } \circ \text{ denotes the composition of operators.}$ A significant step toward proving Theorem 1.1 is to estimate the following Fourier transform:

Lemma 2.3. Let $\Omega \in L^q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$, q > 1 and satisfy the conditions (1.1)-(1.2) with $\|\Omega\|_{L^1(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})} \le 1$, and let $\mu = \mu_q(\Omega) = \log(e + \|\Omega\|_{L^q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})})$. Assume that ϕ , ψ are arbitrary functions on \mathbf{R}^+ , and assume also that $P_1 = \sum_{|\alpha| \le d_1} a_{\alpha} x^{\alpha}$ is a polynomial of degree $d_1 \ge 1$ such that $|x|^{d_1}$ is not one of its terms and $\sum_{|\alpha| = d_1} |a_{\alpha}| = 1$; and $P_2 = \sum_{|\beta| \le d_2} b_{\beta} y^{\beta}$ is a polynomial of degree $d_2 \ge 1$ such that $|y|^{d_2}$ is not one of its terms and $\sum_{|\beta| = d_2} |b_{\beta}| = 1$ 1. For $i, j \in \mathbf{Z}$, define $\mathcal{J}_{i,j,\Omega,\phi,\psi} : \mathbf{R}^{n+1} \times \mathbf{R}^{m+1} \to \mathbf{R}$ by

$$\mathcal{J}_{i,j,\Omega,\phi,\psi}(\overline{\xi},\overline{\eta}) = \int\limits_{1}^{2^{2\mu}} \int\limits_{1}^{2^{2\mu}} \left| \int\limits_{\mathbf{S}^{n-1}\times\mathbf{S}^{m-1}} \Omega(u,v) \mathcal{A}_{i,\Omega,\phi}(r,u,\xi.u,\xi_{n+1}) \mathcal{B}_{j,\Omega,\psi}(t,v,\eta.v,\eta_{m+1}) d\sigma(u) d\sigma(v) \right|^2 \frac{drdt}{rt},$$

where

$$\mathcal{A}_{i,\Omega,\phi}(r,u,\xi.u,\xi_{n+1}) = e^{-i\left[P_1(2^{-(i+1)\mu}ru) + (2^{-(i+1)\mu})ru\cdot\xi + \phi(2^{-(i+1)\mu}r)\xi_{n+1}\right]}$$

and

$$\mathcal{B}_{j,\Omega,\psi}(t,\nu,\eta.\nu,\eta_{m+1}) = e^{-i\left[P_2(2^{-(j+1)\mu}t\nu) + (2^{-(j+1)\mu})t\nu\cdot\eta + \psi(2^{-(j+1)\mu}t)\eta_{m+1}\right]}.$$

Then, a positive constant C exists such that

$$\sup_{(\overline{\xi},\overline{\eta})\in \mathbf{R}^{n+1}\times\mathbf{R}^{m+1}} \mathcal{J}_{i,j,\Omega,\phi,\psi}(\overline{\xi},\overline{\eta}) \leq C\mu^2 2^{(i+j+2)/4q'}.$$

Proof. On one hand, it is trivial to get that

$$\mathcal{J}_{i,j,\Omega,\phi,\psi}(\overline{\xi},\overline{\eta}) \leq C \int_{1}^{2^{2\mu}} \int_{1}^{2^{2\mu}} \left(\int_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}} |\Omega(u,v)| d\sigma(u) d\sigma(v) \right)^{2} \frac{drdt}{rt} \\
\leq C\mu^{2} \|\Omega\|_{1}^{2} \leq C\mu^{2}. \tag{2.1}$$

Also, it is easy to see that

$$P_1(\gamma ru) - P_1(\gamma rz) + \gamma ru \cdot \xi - \gamma rz \cdot \xi = (\gamma r)^{d_1} \left(\sum_{|\alpha| = d_1} a_{\alpha} u^{\alpha} - \sum_{|\alpha| = d_1} a_{\alpha} z^{\alpha} \right) + \gamma r(u - z) \cdot \xi + H(u, z, r, \xi),$$

with $\frac{d^{d_1}}{dr^{d_1}}H(u,z,r,\xi)=0$ and $\gamma=2^{-(i+1)\mu}$. Without lossing of generality, we may assume that $d_1>1$. Hence, by Van der-Corput Lemma, we obtain

$$\left|\int_{1}^{2^{2\mu}} \mathcal{A}_{i,\Omega,\phi}(r,u,\xi,u,\xi_{n+1}) \overline{\mathcal{A}_{i,\Omega,\phi}(r,z,\xi,z,\xi_{n+1})} \frac{dr}{r}\right| \leq C \left| \gamma^{d_1} \sum_{|\alpha|=d_1} a_{\alpha} \left(u^{\alpha} - z^{\alpha} \right) \right|^{-1/d_1}.$$

Combine the last inequality with the trivial estimates

$$\left|\int\limits_{1}^{2^{2\mu}}\mathcal{A}_{i,\Omega,\phi}(r,u,\xi.u,\xi_{n+1})\overline{\mathcal{A}_{i,\Omega,\phi}(r,z,\xi.z,\xi_{n+1})}\frac{dr}{r}\right|\leq C\mu,$$

we deduce

$$\left|\int\limits_{1}^{2^{2\mu}}\mathcal{A}_{i,\Omega,\phi}(r,u,\xi.u,\xi_{n+1})\overline{\mathcal{A}_{i,\Omega,\phi}(r,z,\xi.z,\xi_{n+1})}\frac{dr}{r}\right| \leq C\mu^{1-\theta}\left|\gamma^{d_1}\sum_{|\alpha|=d_1}a_{\alpha}\left(u^{\alpha}-z^{\alpha}\right)\right|^{-\theta/d_1}$$

for any $0 < \theta < 1$. In the same manner, we derive

$$\left|\int\limits_{1}^{2^{2\mu}}\mathcal{B}_{j,\Omega,\psi}(t,v,\eta,v,\eta_{m+1})\overline{\mathcal{B}_{j,\Omega,\psi}(t,w,\eta,w,\eta_{m+1})}\frac{dt}{t}\right|\leq C\mu^{1-\theta}\left|2^{-(j+1)\mu d_2}\sum_{|\beta|=d_2}b_{\beta}\left(v^{\beta}-w^{\beta}\right)\right|^{-\theta/d_2}.$$

Thus, using Hölder's inequality leads to

$$\left(\partial_{i,j,\Omega,\phi,\psi}(\overline{\xi},\overline{\eta})\right)^{q'} \leq \|\Omega\|_{q}^{2q'} \iint_{(\mathbf{S}^{n-1}\times\mathbf{S}^{m-1})^{2}} \left| \int_{1}^{2^{2\mu}} \int_{1}^{2^{2\mu}} \mathcal{A}_{i,\Omega,\phi}(r,u,\xi,u,\xi_{n+1}) \overline{\mathcal{A}_{i,\Omega,\phi}(r,z,\xi,z,\xi_{n+1})} \frac{dr}{r} \right| \times \mathcal{B}_{j,\Omega,\psi}(t,v,\eta,v,\eta_{m+1}) \overline{\mathcal{B}_{j,\Omega,\psi}(t,w,\eta,w,\eta_{m+1})} \frac{dt}{t} \left| \int_{1}^{q'} \sigma(u) d\sigma(z) \sigma(v) d\sigma(w). \tag{2.2}$$

Since $\sum_{|\alpha|=d_1} |a_{\alpha}| = \sum_{|\beta|=d_2} |b_{\beta}| = 1$, then by taking $\theta = 1/4\mu q'$, we have

$$\mathcal{J}_{i,j,\Omega,\phi,\psi}(\overline{\xi},\overline{\eta}) \le \|\Omega\|_q^2 \, 2^{(i+1)/4q'} 2^{(j+1)/4q'} \mu^{2-1/2\mu q'} \le C \mu^2 2^{(i+j+2)/4q'}. \tag{2.3}$$

We shall need the following Lemma which can be acquired by using the arguments employed in the proof of [6, Theorem 4.1] as well as [15, Theorem 1.6].

Lemma 2.4. Let $\Omega \in L^q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$, q > 1 and satisfy the conditions (1.1)-(1.2) with $\|\Omega\|_{L^1(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})} \le 1$. Assume that ϕ , ψ and μ are given as in Theorem 1.1. Then there exists a constant $C_{p,q} > 0$ such that

$$\|\mathcal{M}_{\Omega,\phi,\psi}(f)\|_{L^{p}(\mathbf{R}^{n+1}\times\mathbf{S}^{m-1})} \le C_{p,q}(1+\mu)\|f\|_{L^{p}(\mathbf{R}^{n+1}\times\mathbf{R}^{m+1})}$$
(2.4)

for $2 \le p < \infty$.

Proof. Choose collections of functions $\{\Phi_i\}_{i\in \mathbf{Z}}$ and $\{\Psi_j\}_{j\in \mathbf{Z}}$ defined on \mathbf{R}^n and \mathbf{R}^m , respectively with the following properties:

$$(i) \ \widehat{\varPhi}_i \ is \ supported \ in \ \left\{ \xi \in \mathbf{R}^n : |\xi| \in \mathfrak{I}_{i,\mu} = \left\lceil 2^{-(i+1)\mu}, \, 2^{-(i-1)\mu} \right\rceil \right\};$$

(ii)
$$\widehat{\Psi}_{j}$$
 is supported in $\{\eta \in \mathbf{R}^{m} : |\eta| \in \mathfrak{I}_{j,\mu}\}$;

(iii)
$$0 \le \widehat{\Phi}_i$$
, $\widehat{\Psi}_i \le 1$;

$$(iv) \sum_{i \in \mathbf{Z}} \left(\widehat{\boldsymbol{\Phi}}_i\right)^2(\xi) = \sum_{j \in \mathbf{Z}} \left(\widehat{\boldsymbol{\Psi}}_j\right)^2(\eta) = 1.$$

Define the multiplier operators $S_{i,i}$ in $\mathbf{R}^{n+1} \times \mathbf{R}^{m+1}$ via the Fourier transform given by

$$\widehat{S_{j,i}}(\overline{\xi},\overline{\eta})=\widehat{\Phi}_i(|\xi|))\widehat{\Psi}_j(|\eta|)).$$

Hence, for any $f \in \mathcal{C}_0^{\infty}(\mathbf{R}^{n+1} \times \mathbf{R}^{m+1})$, we have

$$\mathcal{M}_{\Omega,\phi,\psi}(f)(\overline{x},\overline{y}) \leq \sum_{i,j\in\mathbb{Z}} \mathcal{T}_{\Omega,\phi,\psi,j,i}(f)(\overline{x},\overline{y}),\tag{2.5}$$

where

$$\mathfrak{I}_{\Omega,\phi,\psi,j,i}(f)(\overline{x},\overline{y}) = \left(\iint_{\mathbf{P}^+ \vee \mathbf{P}^+} \left| \mathcal{W}_{\Omega,\phi,\psi,j,i}(f)(\overline{x},\overline{y}) \right|^2 \frac{drdt}{rt} \right)^{1/2},$$

$$\left(\mathcal{W}_{\Omega,\phi,\psi,j,i}(f)\right)(\overline{x},\overline{y}) = \sum_{s,l \in \mathbf{Z}_{n-1}} \iint_{\mathbf{X}^{m-1}} S_{j+l,i+s}(f)(x-ru,x_{n+1}-\phi(r),y-tv,y_{m+1}-\psi(t))\chi_{\mathfrak{I}_{s,\mu}\times \mathfrak{I}_{l,\mu}} \Omega(u,v)d\sigma(u)\sigma(v).$$

Therefore, by using [6, Theorem 4.1], we get

$$\left\| \mathcal{T}_{\Omega,\phi,\psi,j,i}(f) \right\|_{p} \le C_{p,q} \mu^{2-\varepsilon_{1}|j|} 2^{-\varepsilon_{2}|i|} \left\| f \right\|_{p} \tag{2.6}$$

for some constants $0 < \varepsilon_1$, $\varepsilon_2 < 1$ and for all $2 \le p < \infty$. Consequently, the inequality (2.4) follows by using (2.5) and (2.6).

3 Proof of Theorem 1.1

The proof of Theorem 1.1 mainly depends on the approaches employed in the proof of [11, Theorem 1.1], which have their roots in [16]. Precisely, we argue the mathematical induction on the degrees of the polynomials P_1 and P_2 .

If $d_1 = d_2 = 0$, then by Lemma 2.4, we directly attain

$$\left\| \mathcal{M}_{\Omega,\phi,\psi}^{P_{1},P_{2}}(f) \right\|_{p} \le C_{p,q} (1+\mu) \|f\|_{p}$$
 (3.1)

for all $p \ge 2$. Also, if $d_1 = 0$ or $d_2 = 0$, then by [17, Theorem 1.1], it is easy to satisfy the inequality (1.3) for all $p \ge 2$.

Now, assume that (1.3) is true for any polynomial P_1 of degree less than or equal to d_1 and for any polynomial P_2 of degree d_2 . We need to show that (1.3) is still true if $degree(P_1) = d_1 + 1$, and $degree(P_2) = d_2$. Without loss of generality, we may assume $P_1(x) = \sum_{|\alpha| \le d_1 + 1} a_{\alpha} x^{\alpha}$ is a polynomial of degree $d_1 + 1$ such

that $\sum_{|\alpha|=d_1+1} |a_\alpha| = 1$ and does not contain $|x|^{d_1+1}$ as one of its terms. Also, we may assume $P_2(y) = \sum_{|\beta| \le d_2} b_\beta y^\beta$

is a given polynomial of degree d_2 such that $\sum_{|\beta|=d_2} |b_\beta| = 1$ and does not contain $|y|^{d_2}$ as one of its terms. By duality and a simple change of variables, we have

$$\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2}(f)(\overline{x},\overline{y}) = \left(\iint_{\mathbf{P}^1\times\mathbf{P}^1} \left| \mathcal{G}_{P_1,P_2,\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t) \right|^2 \frac{drdt}{rt} \right)^{1/2},$$

where

$$\mathfrak{G}_{P_1,P_2,\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t) = \int_{\mathbf{S}^{n-1}\times\mathbf{S}^{m-1}} e^{iP_1(ru)+iP_2(tv)} f(x-ru,x_{n+1}-\phi(r),y-tv,y_{m+1}-\psi(t))\Omega(u,v) d\sigma(u) d\sigma(v).$$

Choose two collections of \mathbb{C}^{∞} functions $\{Y_i\}_{i\in \mathbb{Z}}$ and $\{\Gamma_j\}_{j\in \mathbb{Z}}$ on $(0,\infty)$, that satisfying the following conditions:

$$\begin{split} \operatorname{supp} Y_i &\subseteq \mathfrak{I}_{i,\mu} = \left[2^{-(i+1)\mu}, 2^{-(i-1)\mu}\right]; \ \operatorname{supp} \Gamma_j \subseteq \mathfrak{I}_{j,\mu} \ ; \\ 0 &\leq Y_i, \Gamma_j \leq 1; \ \ and \ \sum_{i \in \mathbf{Z}} Y_i(u) = \sum_{i \in \mathbf{Z}} \Gamma_j(v) = 1. \end{split}$$

Define the multiplier operators $S_{i,j}$ in $\mathbf{R}^{n+1} \times \mathbf{R}^{m+1}$ by

$$\widehat{(S_{j,i}f)}(\overline{\xi},\overline{\eta}) = Y_i(|\xi|)\Gamma_j(|\eta|)\widehat{f}(\xi,\eta) \quad \text{for } (\overline{\xi},\overline{\eta}) = (\xi,\xi_{n+1},\eta,\eta_{m+1}) \in \mathbf{R}^{n+1} \times \mathbf{R}^{m+1}.$$

Set

$$A_{\infty}(u) = \sum_{i=-\infty}^{0} Y_i(u), \quad A_0(u) = \sum_{i=1}^{\infty} Y_i(u), \quad B_{\infty}(v) = \sum_{i=-\infty}^{0} \Gamma_j(v), \quad and \quad B_0(v) = \sum_{i=1}^{\infty} \Gamma_j(v).$$

Thanks to Minkowski's inequality, we have

$$\mathcal{M}^{P_1,P_2}_{\Omega,\phi,\psi}(f)(\overline{x},\overline{y}) \leq \mathcal{M}^{P_1,P_2}_{\Omega,\phi,\psi,\infty,\infty}(f)(\overline{x},\overline{y}) + \mathcal{M}^{P_1,P_2}_{\Omega,\phi,\psi,\infty,0}(f)(\overline{x},\overline{y}) + \mathcal{M}^{P_1,P_2}_{\Omega,\phi,\psi,0,\infty}(f)(\overline{x},\overline{y}) + \mathcal{M}^{P_1,P_2}_{\Omega,\phi,\psi,0,0}(f)(\overline{x},\overline{y}), \quad (3.2)$$

where

$$\mathcal{M}_{\Omega,\phi,\psi,\infty,\infty}^{P_{1},P_{2}}(f)(\overline{x},\overline{y}) = \left(\int_{2^{-\mu}2^{-\mu}}^{\infty} \int_{1}^{\infty} \left| A_{\infty}(r)B_{\infty}(t)\mathfrak{G}_{P_{1},P_{2},\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t) \right|^{2} \frac{drdt}{rt} \right)^{1/2},$$

$$\mathcal{M}_{\Omega,\phi,\psi,\infty,0}^{P_{1},P_{2}}(f)(\overline{x},\overline{y}) = \left(\int_{2^{-\mu}}^{\infty} \int_{0}^{1} \left| A_{\infty}(r)B_{0}(t)\mathfrak{G}_{P_{1},P_{2},\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t) \right|^{2} \frac{drdt}{rt} \right)^{1/2},$$

$$\mathcal{M}_{\Omega,\phi,\psi,0,\infty}^{P_{1},P_{2}}(f)(\overline{x},\overline{y}) = \left(\int_{0}^{1} \int_{2^{-\mu}}^{\infty} \left| A_{0}(r)B_{\infty}(t)\mathfrak{G}_{P_{1},P_{2},\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t) \right|^{2} \frac{drdt}{rt} \right)^{1/2},$$

and

$$\mathcal{M}_{\Omega,\phi,\psi,0,0}^{P_1,P_2}(f)(\overline{x},\overline{y}) = \left(\int\limits_0^1\int\limits_0^1 \left|A_0(r)B_0(t)\mathcal{G}_{P_1,P_2,\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t)\right|^2 \frac{drdt}{rt}\right)^{1/2}.$$

Let us first estimate the L^p -norm of $\mathcal{M}^{P_1,P_2}_{\Omega,\phi,\psi,\infty,\infty}(f)$. Define

$$\mathcal{M}_{\Omega,\phi,\psi,\infty,\infty,i,j}^{P_{1},P_{2}}(f)(\overline{x},\overline{y}) = \left(\int_{2^{-(i+1)\mu}}^{2^{-(i+1)\mu}} \int_{2^{-(j-1)\mu}}^{2^{-(i+1)\mu}} \left| \mathcal{G}_{P_{1},P_{2},\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t) \right|^{2} \frac{drdt}{rt} \right)^{1/2}.$$

Hence, by generalized Minkowski's inequality, it is easy to reach

$$\mathcal{M}_{\Omega,\phi,\psi,\infty,\infty}^{P_1,P_2}(f)(\overline{x},\overline{y}) \leq \sum_{i,i=-\infty}^{0} \mathcal{M}_{\Omega,\phi,\psi,\infty,\infty,i,j}^{P_1,P_2}(f)(\overline{x},\overline{y}). \tag{3.3}$$

If p = 2, then by a simple change of variables, Plancherel's theorem, Fubini's theorem, and Lemma 2.3, we get that

$$\left\| \mathcal{M}_{\Omega,\phi,\psi,\infty,\infty,i,j}^{P_{1},P_{2}}(f) \right\|_{2} = \left(\int_{\mathbf{R}^{n+1} \times \mathbf{R}^{m+1}} \left| \widehat{f}(\overline{\xi}, \overline{\eta}) \right|^{2} \mathcal{J}_{i,j,\Omega,\phi,\psi}(\overline{\xi}, \overline{\eta}) d\overline{\xi} d\overline{\eta} \right)^{1/2}$$

$$\leq C 2^{\frac{(i+j+2)}{8q'}} (1 + \mu) \|f\|_{2}. \tag{3.4}$$

However, if p > 2, then by the duality, there exists $b \in L^{(p/2)'}(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1})$ with $\|b\|_{L^{(p/2)'}(\mathbf{R}^{n+1} \times \mathbf{R}^{m+1})} = 1$ such that

$$\begin{split} \left\| \mathcal{M}_{\Omega,\phi,\psi,\infty,\infty,i,j}^{P_{1},P_{2}}(f) \right\|_{p}^{2} &= \iint_{\mathbf{R}^{n+1} \times \mathbf{R}^{m+1}} \int_{1}^{2^{2\mu}} \int_{1}^{2^{2\mu}} \int_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}} \Omega(u,v) \mathcal{A}_{i,\Omega,\phi}(r,u,0,0) \mathcal{B}_{j,\Omega,\psi}(t,v,0,0) \\ &\times f(x - 2^{-(i+1)\mu} r u, x_{n+1} - \phi(2^{-(i+1)\mu} r), y - 2^{-(j+1)\mu} t u, y_{m+1} - \psi(2^{-(j+1)\mu} t)) d\sigma(u) d\sigma(v) \Big|^{2} \\ &\times \frac{dr dt}{rt} \left| b(\overline{x}, \overline{y}) \right| d\overline{x} d\overline{y}. \end{split}$$

So, by Hölder's inequality and Lemma 2.2, we conclude that

where $\widetilde{b}(\overline{z}, \overline{w}) = b(-\overline{z}, -\overline{w})$. Thus,

$$\left\| \mathcal{M}_{\Omega,\phi,\psi,\infty,\infty,i,j}^{P_1,P_2}(f) \right\|_{p} \leq C_{p} (1+\mu) \left\| f \right\|_{p},$$

which when Combined with (3.4) gives that there is $\epsilon \in (0, 1)$ so that

$$\left\| \mathcal{M}_{\Omega,\phi,\psi,\infty,\infty,i,j}^{P_1,P_2}(f) \right\|_{p} \le C_p 2^{\frac{\epsilon(i+j+2)}{8q'}} (1+\mu) \|f\|_{p}$$
(3.5)

for all $p \ge 2$. Therefore, by (3.3) and (3.5), we obtain

$$\left\| \mathcal{M}_{\Omega,\phi,\psi,\infty,\infty}^{P_1,P_2}(f) \right\|_{p} \le C_{p,q} (1+\mu) \left\| f \right\|_{p}$$
(3.6)

for all $p \ge 2$. Now, let us estimate the L^p -norm of $\mathcal{M}^{P_1,P_2}_{\Omega,\phi,\psi,0,0}(f)$. Take $Q_1(x) = \sum_{|\alpha| \le d_1} a_{\alpha} x^{\alpha}$, and define $\mathcal{M}^{Q_1,P_2}_{\Omega,\phi,\psi,0,0}(f)$ and $\mathcal{M}^{P_1,P_2,Q}_{\Omega,\phi,\psi,0,0}(f)$ by

$$\mathcal{M}_{\Omega,\phi,\psi,0,0}^{Q_1,P_2}(f)(\overline{x},\overline{y}) = \left(\int\limits_0^1\int\limits_0^1 \left| \mathcal{G}_{Q_1,P_2,\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t) \right|^2 \frac{drdt}{rt} \right)^{1/2},$$

and

$$\mathcal{M}^{P_1,P_2,Q}_{\Omega,\phi,\psi,0,0}(f)(\overline{x},\overline{y}) = \left(\int\limits_0^1\int\limits_0^1 \left|\mathcal{H}^Q_{P_1,P_2,\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t)\right|^2 \frac{drdt}{rt}\right)^{1/2},$$

where

$$\mathcal{H}^{Q}_{P_1,P_2,\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t) = \int_{\mathbf{S}^{n-1}\times\mathbf{S}^{m-1}} \left(e^{iP_1(ru)+iP_2(tv)} - e^{iQ_1(ru)+iP_2(tv)}\right) \times f(x-ru,x_{n+1}-\phi(r),y-tv,y_{m+1}-\psi(t))\Omega(u,v)d\sigma(u)d\sigma(v).$$

Thus, by Minkowski's inequality, we deduce

$$\mathcal{M}_{Q,\phi,\psi,0,0}^{P_1,P_2}(f)(\overline{x},\overline{y}) \le \mathcal{M}_{Q,\phi,\psi,0,0}^{Q_1,P_2}(f)(\overline{x},\overline{y}) + \mathcal{M}_{Q,\phi,\psi,0,0}^{P_1,P_2,Q}(f)(\overline{x},\overline{y}). \tag{3.7}$$

On one hand, since $deg(Q_1) \le d_1$, then by induction step we have

$$\left\| \mathcal{M}_{\Omega,\phi,\psi,0,0}^{Q_1,P_2}(f) \right\|_p \le C_{p,q} (1+\mu) \|f\|_p \tag{3.8}$$

for all $p \ge 2$. On the other hand, it is easy to check that

$$\left|e^{iP_1(ru)}-e^{iQ_1(ru)}\right| \leq r^{(d_1+1)} \left|\sum_{|\alpha|=d_1+1} a_\alpha u^\alpha\right| \leq r^{d_1+1}.$$

So, by following a similar argument as in [18] and by Cauchy-Schwartz inequality, we have that

$$\mathcal{M}_{\Omega,\phi,\psi,0,0}^{P_{1},P_{2},Q}(f)(\overline{x},\overline{y}) \leq C \left(\int_{0}^{1} \int_{0}^{1} \int_{\mathbb{S}^{m-1} \times \mathbb{S}^{m-1}}^{d} e^{iP_{2}(tv)} f(x-ru,x_{n+1}-\phi(r),y-tv,y_{m+1}-\psi(t)) \right) \\ \times \Omega(u,v) d\sigma(u) d\sigma(v) \Big|^{2} \Big| e^{iP_{1}(ru)} - e^{iQ_{1}(ru)} \Big|^{2} \frac{drdt}{rt} \Big)^{1/2} \\ \leq C \left(\int_{0}^{1} r^{d_{1}} \int_{\mathbb{S}^{m-1}}^{1} \int_{0}^{1} \left| \int_{\mathbb{S}^{m-1}}^{d} e^{iP_{2}(tv)} f(x-ru,x_{n+1}-\phi(r),y-tv,y_{m+1}-\psi(t)) \right| \right) \\ \times \Omega(u,v) d\sigma(v) \Big|^{2} \frac{dt}{t} d\sigma(u) dr \Big)^{1/2} \\ \leq C \left(\int_{\mathbb{S}^{m-1}}^{\infty} \sum_{j=1}^{\infty} \left(2^{-jd_{1}} \right) \int_{\mathbb{S}^{m-1}}^{2^{-j+1}} \int_{\mathbb{S}^{m-1}}^{d} \left| \int_{\mathbb{S}^{m-1}}^{d} e^{iP_{2}(tv)} f(x-ru,x_{n+1}-\phi(r),y-tv,y_{m+1}-\psi(t)) \right| \\ \times \Omega(u,v) d\sigma(v) \Big|^{2} \frac{dt}{t} dr d\sigma(u) \Big)^{1/2} \\ \leq C \left(\sum_{j=1}^{\infty} \left(2^{-jd_{1}} \right) \int_{\mathbb{S}^{m-1}}^{2^{-j+1}} \int_{\mathbb{S}^{m-1}}^{\infty} \left(\mathcal{M}_{P_{1},\Omega_{n},\phi}^{(2)}(f_{r}(\overline{x},\overline{y})) \right)^{2} d\sigma(u) dr \right)^{1/2}$$

$$\leq C \left(\mathcal{N}_{\Omega,\psi} \circ \left(\mathcal{M}_{P_1,\Omega_n,\phi}^{(2)}(f_r(\overline{x},\overline{y}))) \right)^2 \right)^{1/2},$$

where \circ denotes the composition of operators, $\mathcal{N}_{\Omega,\psi}f(\overline{\mathbf{x}},\overline{\mathbf{y}})=\mathcal{N}_{\Omega,\psi}f(\cdot,\overline{\mathbf{y}})(\overline{\mathbf{x}})$ is the maximal function defined as in Lemma 2.1; and $\mathcal{M}_{P_1,\Omega_n,\phi}^{(2)}(f_r(\overline{\mathbf{x}},\overline{\mathbf{y}}))=\mathcal{M}_{P_1,\Omega_n,\phi}^{(2)}(f_r(\overline{\mathbf{x}},\cdot)(\overline{\mathbf{y}}))$ is the maximal operator in the one parameter setting defined as in [17, Eq. (1.2)]. Hence, by following a similar argument as in [18, p. 607] together with [17] and Lemma 2.1, we get

$$\left\| \mathcal{M}_{\Omega,\phi,\psi,0,0}^{P_1,P_2,Q}(f) \right\|_{p} \le C_{p,q} (1+\mu) \|f\|_{p}$$
(3.9)

for all $p \ge 2$. Therefore, by (3.7)-(3.9), we obtain that for all $p \ge 2$,

$$\left\| \mathcal{M}_{\Omega,\phi,\psi,0,0}^{P_1,P_2}(f) \right\|_{p} \le C_{p,q} (1+\mu) \|f\|_{p}. \tag{3.10}$$

In the same manner, we can derive that

$$\left\| \mathcal{M}_{\Omega,\phi,\psi,\infty,0}^{P_1,P_2}(f) \right\|_{p} \le C_{p,q} (1+\mu) \|f\|_{p}$$
(3.11)

and

$$\left\| \mathcal{M}_{\Omega,\phi,\psi,0,\infty}^{P_1,P_2}(f) \right\|_p \le C_{p,q} (1+\mu) \|f\|_p \tag{3.12}$$

for all $p \ge 2$. Consequently, by (3.2), (3.6) and (3.10)-(3.12), we satisfy the inequality (1.3) for any polynomial P_1 of degree $d_1 + 1$ and for any polynomial P_2 of degree d_2 . Similarly, we can show that the inequality (1.3) holds for any polynomial P_2 of degree $d_2 + 1$ and for any polynomial P_1 of degree d_2 . This completes the proof of Theorem 1.1.

4 Further results

For $\gamma > 1$, define $\Delta_{\gamma} (\mathbf{R}^+ \times \mathbf{R}^+)$ to be the set of all measurable functions h on $\mathbf{R}^+ \times \mathbf{R}^+$ satisfying the condition

$$\sup_{R_1,R_2>0} \left(\frac{1}{R_1 R_2} \int_0^{R_1} \int_0^{R_2} \left| h(t,r) \right|^{\gamma} dt dr \right)^{1/\gamma} < \infty$$

and define $\Delta_{\infty}\left(\mathbf{R}^{+}\times\mathbf{R}^{+}\right)=L^{\infty}\left(\mathbf{R}^{+}\times\mathbf{R}^{+}\right)$. Also, for $1\leq\gamma<\infty$, define $\mathfrak{L}^{\gamma}(\mathbf{R}^{+}\times\mathbf{R}^{+})$ to be the set of all measurable functions $h:\mathbf{R}^{+}\times\mathbf{R}^{+}\to\mathbf{R}$ that satisfy the condition $\|h\|_{L^{\gamma}(\mathbf{R}^{+}\times\mathbf{R}^{+},\frac{drdt}{rt})}=\left(\int_{0}^{\infty}\int_{0}^{\infty}\left|h(r,t)\right|^{\gamma}\frac{drdt}{rt}\right)^{1/\gamma}\leq1$ and define $\mathfrak{L}^{\infty}(\mathbf{R}^{+}\times\mathbf{R}^{+})=L^{\infty}(\mathbf{R}^{+}\times\mathbf{R}^{+},\frac{drdt}{rt})$.

It is obvious that $\mathfrak{L}^{\gamma}(\mathbf{R}^{+} \times \mathbf{R}^{+}) \subset \Delta_{\gamma}(\mathbf{R}^{+} \times \mathbf{R}^{+})$ for $1 < \gamma < \infty$, $\Delta_{\gamma_{1}}(\mathbf{R}^{+} \times \mathbf{R}^{+}) \subset \Delta_{\gamma_{2}}(\mathbf{R}^{+} \times \mathbf{R}^{+})$ for $\gamma_{1} > \gamma_{2}$ and $\Delta_{\infty}(\mathbf{R}^{+} \times \mathbf{R}^{+}) = \mathfrak{L}^{\infty}(\mathbf{R}^{+} \times \mathbf{R}^{+})$.

The purpose of this section is to study the L^p boundedness of the singular inegral operator $T^{p_1,p_2}_{\Omega,h,\phi,\psi}(f)(\overline{x},\overline{y})$ and the maximal operator $\mathcal{M}^{p_1,p_2,(\gamma)}_{\Omega,\phi,\psi}$ under weaker conditions, where $\mathcal{M}^{p_1,p_2,(\gamma)}_{\Omega,\phi,\psi}$ is defined, initially for $f \in \mathcal{C}^\infty_0(\mathbf{R}^{n+1} \times \mathbf{R}^{m+1})$, by

$$\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(\gamma)}(f)(\overline{x},\overline{y}) = \sup_{h \in \Omega^{\gamma}(\mathbf{R}^+ \times \mathbf{R}^+)} \left| T_{\Omega,h,\phi,\psi}^{P_1,P_2}(f)(\overline{x},\overline{y}) \right|.$$

The first result of this section is the following:

Theorem 4.1. Suppose that $\Omega \in L^q(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$, q > 1 and satisfy the conditions (1.1)-(1.2) with $\|\Omega\|_1 \le 1$. Assume that ϕ , ψ , μ , P_1 , and P_2 are given as in Theorem 1.1. Then there exists a constant $C_{p,q} > 0$ such that

$$\left\| \mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(\gamma)}(f) \right\|_p \le C_{p,q} (1+\mu)^{2/\gamma'} \left\| f \right\|_p$$
 (4.1)

for all $\gamma' \leq p < \infty$ with $1 < \gamma \leq 2$; and

$$\left\| \mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(1)}(f) \right\|_{\infty} \le C \left\| f \right\|_{\infty}. \tag{4.2}$$

Proof. It is clear that if $\gamma=2$, then we have $\mathcal{M}^{P_1,P_2,(\gamma)}_{\Omega,\phi,\psi}=\mathcal{M}^{P_1,P_2}_{\Omega,\phi,\psi}$. So, by Theorem 1.1, the inequality (4.1) holds for all $p\geq 2$. However, if $\gamma=1$; we assume that $h\in L^1(\mathbf{R}^+\times\mathbf{R}^+,\frac{drdt}{rt})$ and $f\in L^\infty(\mathbf{R}^{n+1}\times\mathbf{R}^{m+1})$. Then for all $(\overline{x},\overline{y})\in\mathbf{R}^{n+1}\times\mathbf{R}^{m+1}$, we have

$$\left| \iint_{\mathbb{R}^{+}\times\mathbb{R}^{+}} h(r,t) \, \mathfrak{G}_{P_{1},P_{2},\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t) \frac{drdt}{rt} \right| \leq C \, \|f\|_{\infty} \, \|h\|_{1} \, .$$

Hence, by taking the supremum on both sides over all h with $||h||_1 \le 1$, we reach

$$\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(1)}(f)(\overline{x},\overline{y}) \leq C \|f\|_{\infty}$$

for almost every where $(\overline{x}, \overline{y}) \in \mathbf{R}^{n+1} \times \mathbf{R}^{m+1}$, which leads to

$$\left\| \mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(1)}(f) \right\|_{\infty} \le C \|f\|_{\infty}. \tag{4.3}$$

Finally, if 1 < γ \leq 2. We follow a similar approach as in [15]. By duality, we get

$$\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(\gamma)}(f)(\overline{x},\overline{y}) = \left(\iint\limits_{\mathbf{R}^+\times\mathbf{R}^+} \left| \mathcal{G}_{P_1,P_2,\phi,\psi,\Omega}(f)(\overline{x},\overline{y},r,t) \right|^{\gamma'} \frac{drdt}{rt} \right)^{1/\gamma'},$$

which gives

$$\left\| \mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(\gamma)}(f) \right\|_{p} = \left\| \mathcal{G}_{P_1,P_2,\phi,\psi,\Omega}(f) \right\|_{L^{p}(L^{\gamma'}(\mathbf{R}^+ \times \mathbf{R}^+, \frac{drdt}{r!}), \mathbf{R}^{n+1} \times \mathbf{R}^{m+1})}. \tag{4.4}$$

Therefore, by applying the interpolation theorem for the Lebesgue mixed normed spaces to the inequalities (1.3) and (4.3), we directly obtain

$$\left\| \mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(\gamma)}(f) \right\|_{p} \le C_{p,q} (1+\mu)^{2/\gamma'} \left\| f \right\|_{p} \tag{4.5}$$

for
$$\gamma' \leq p < \infty$$
 with $1 < \gamma \leq 2$; and $\left\| \mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(1)}(f) \right\|_{\infty} \leq C \|f\|_{\infty}$. This completes the proof.

It is worth mentioning that when $\phi(t) = \psi(t) = t$ and $P_1(u) = P_2(v) = 0$, Al-Qassem and Pan in [8] extended the results of Theorem 4.1. In fact, they established the L^p boundedness of $\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(\gamma)}$ provided that $\Omega \in L(\log L)^{2/\gamma'}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ for $\gamma' \leq p < \infty$ with $1 < \gamma \leq 2$.

By the conclusion in Theorem 4.1 and applying an extrapolation argument (see [16, 19, 20]), we shall improve and extend the corresponding results in [4, 6, 8, 11, 13]. Precisely, we obtain the following:

Theorem 4.2. Suppose that P_1 , P_2 , ϕ , and ψ are given as in Theorem 1.1. Assume that $\Omega \in L(\log L)^{2/\gamma'}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}) \cup B_q^{(0,2/\gamma'-1)}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ with q > 1. Then $\mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(\gamma)}(f)$ is bounded on $L^p(\mathbf{R}^{n+1} \times \mathbf{R}^{m+1})$ for $\gamma' \leq p < \infty$ with $1 < \gamma \leq 2$; and it is bounded on $L^{\infty}(\mathbf{R}^{n+1} \times \mathbf{R}^{m+1})$ for $\gamma = 1$.

Proof. The idea of proving Theorem 4.2 is taken form [17], which has its roots in [16] as well as in [19]. When $\Omega \in L(\log L)^{2/\gamma'}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ with $1 < \gamma \le 2$ and Ω satisfies the conditions (1.1)-(1.2), then Ω can be decomposed as a sum of functions in $L^2(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ (see [21]). In fact, we have

$$\Omega = \sum_{k=0}^{\infty} \Omega_k,\tag{4.6}$$

DE GRUYTER

where

$$\begin{split} &\int\limits_{\mathbf{S}^{n-1}} \Omega_k(x',.) d\sigma(x') = \int\limits_{\mathbf{S}^{m-1}} \Omega_k(.,y') d\sigma(y') = 0, \\ \Omega_0 &\in L^2(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}), \quad \|\Omega_k\|_{\infty} \leq C2^{4k}, \quad \|\Omega_k\|_1 \leq C, \end{split}$$

and

$$\sum_{i=1}^{\infty} k^{2/\gamma'} \|\Omega_k\|_1 \le C \|\Omega\|_{L(\log L)^{2/\gamma'}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})} \text{ for } k = 0, 1, 2, \cdots.$$

Hence, it is easy to see that

$$\mathcal{M}_{\Omega,\phi,\psi}^{P_{1},P_{2},(\gamma)}(f)(\overline{x},\overline{y}) \leq \mathcal{M}_{\Omega_{0},\phi,\psi}^{P_{1},P_{2},(\gamma)}(f)(\overline{x},\overline{y}) + \sum_{k=1}^{\infty} \|\Omega_{k}\|_{1} \mathcal{M}_{\Omega_{k},\phi,\psi}^{P_{1},P_{2},(\gamma)}(f)(\overline{x},\overline{y})$$
(4.7)

and

$$\left(1 + \log^{2/\gamma'}(e + \|\Omega_k\|_{\infty})\right) \le \left(1 + \log^{2/\gamma'}(e + C2^{4k})\right) \le Ck^{2/\gamma'}.$$
(4.8)

As $\Omega_0 \in L^2(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$, then by Thorem 4.1 we get

$$\left\| \mathcal{M}_{\Omega_{0},\phi,\psi}^{P_{1},P_{2},(\gamma)} \right\|_{p} \le C_{p} \left(1 + \log^{2/\gamma'} (e + \|\Omega_{0}\|_{2}) \right) \|f\|_{p}$$
(4.9)

for $\gamma' \le p < \infty$. Therefore, by Minkoswski's inequality and (4.7)-(4.9), we obtain that

$$\begin{split} \left\| \mathcal{M}_{\Omega,\phi,\psi}^{P_{1},P_{2},(\gamma)}(f) \right\|_{p} &\leq \left\| \mathcal{M}_{\Omega_{0},\phi,\psi}^{P_{1},P_{2},(\gamma)}(f) \right\|_{p} + \sum_{k=1}^{\infty} \left\| \Omega_{k} \right\|_{1} \left\| \mathcal{M}_{\Omega_{k},\phi,\psi}^{P_{1},P_{2},(\gamma)}(f) \right\|_{p} \\ &\leq C_{p} \left(1 + \sum_{k=1}^{\infty} \left\| \Omega_{k} \right\|_{1} k^{2/\gamma'} \right) \left\| f \right\|_{p} \\ &\leq C_{p} \left\| \Omega \right\|_{L(\log L)^{2/\gamma'}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})} \left\| f \right\|_{p} \leq C_{p} \left\| f \right\|_{p}. \end{split}$$

However, when $\Omega \in B_q^{(0,2/\gamma'-1)}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ with q > 1, $1 < \gamma \le 2$ and Ω satisfies the conditions (1.1)-(1.2), then Ω can be written as

$$\Omega = \sum_{\mu=1}^{\infty} c_{\mu} b_{\mu}, \tag{4.10}$$

where each c_{μ} is a complex number, each b_{μ} is a q-block supported in an interval I_{μ} on $(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$ and

$$M_q^{(0,2/\gamma'-1)}(\{c_{\mu}\}) = \sum_{\mu=1}^{\infty} |c_{\mu}| \left(1 + \log^{2/\gamma'}(|I_{\mu}|^{-1})\right) < \infty.$$

For each μ , define the blocklike function $\tilde{b_{\mu}}$ by

$$\tilde{b_{\mu}}(x,y) = b_{\mu}(x,y) - \int_{\mathbf{S}^{n-1}} b_{\mu}(u,y) d\sigma(u) - \int_{\mathbf{S}^{m-1}} b_{\mu}(x,v) d\sigma(v) + \int_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}} b_{\mu}(u,v) d\sigma(u) d\sigma(v). \tag{4.11}$$

It is clear that each $\tilde{b_{\mu}}(x,y)$ satisfies the following:

$$\int_{\mathbf{S}^{n-1}} \tilde{b_{\mu}}(u,\cdot) d\sigma(u) = \int_{\mathbf{S}^{m-1}} \tilde{b_{\mu}}(\cdot,v) d\sigma(v) = 0, \tag{4.12}$$

$$\left\|\tilde{b_{\mu}}\right\|_{q} \le C \left|I\right|^{-1/q'}, \quad and \quad \left\|\tilde{b_{\mu}}\right\|_{1} \le C.$$
 (4.13)

Without loss of generality, we may assume that $|I_{\mu}|$ < 1. Therefore, by Minkoswski's inequality, Theorem 4.1 and (4.10)-(4.13), we obtain that

$$\begin{split} \left\| \mathcal{M}_{\Omega,\phi,\psi}^{P_{1},P_{2},(\gamma)}(f) \right\|_{p} &\leq \sum_{\mu=1}^{\infty} |c_{\mu}| \left\| \mathcal{M}_{\tilde{b_{\mu}},\phi,\psi}^{P_{1},P_{2},(\gamma)}(f) \right\|_{p} \\ &\leq C_{p,q} \sum_{\mu=1}^{\infty} |c_{\mu}| \left(1 + \log^{2/\gamma'} (e + |I_{\mu}|^{-1}) \right) \|f\|_{p} \\ &\leq C_{p,q} \|f\|_{p} \end{split}$$

for all $p \ge \gamma'$.

We point out that under the assumptions Ω belongs to the block space $B_q^{(0,1)}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$, $h \in \Delta_{\gamma}(\mathbf{R}^+ \times \mathbf{R}^+)$ for some $q, \gamma > 1$, and when ϕ, ψ are $C^2([0, \infty))$, convex increasing functions with $\phi(0) = \psi(0) = 0$, the author of [22] proved that for every p satisfying $|1/p - 1/2| < \min\{1/2, 1/\gamma'\}$, there exists a constant C_p such that

$$||T_{\Omega,h,\phi,\psi}(f)||_{p} \leq C_{p} ||f||_{p}$$

for every $f \in L^p(\mathbf{R}^{n+1} \times \mathbf{R}^{m+1})$. By this result, it is clear that the range of p is the full range $(1, \infty)$ whenever $h \in \mathfrak{L}^{\gamma}(\mathbf{R}^+ \times \mathbf{R}^+)$ with $\gamma \geq 2$. But what is about the L^p boundedness of $T_{\Omega,h,\phi,\psi}$ when $h \in \mathfrak{L}^{\gamma}(\mathbf{R}^+ \times \mathbf{R}^+)$ for $1 < \gamma < 2$. We shall obtain an answer to this question in the affirmative as described in the following theorem.

Theorem 4.3. Assume that $\Omega \in L(\log L)^{2/\gamma'}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}) \cup B_q^{(0,2/\gamma'-1)}(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1})$, q > 1, and satisfying the conditions (1.1)-(1.2). Let $h \in \mathfrak{L}^{\gamma}(\mathbf{R}^+ \times \mathbf{R}^+)$ for some $1 < \gamma \le 2$, and let ϕ , ψ be given as in Theorem 1.1. Then the singular integral operator $T_{\Omega,h,\phi,\psi}^{P_1,P_2}(f)(\overline{x},\overline{y})$ is bounded on $L^p(\mathbf{R}^{n+1} \times \mathbf{R}^{m+1})$ for all 1 .

Proof. As a direct consequence of Theorem 4.2 and the statement that

$$\left|T_{\Omega,h,\phi,\psi}^{P_1,P_2}(f)(\overline{x},\overline{y})\right| \leq \|h\|_{L^{\gamma}(\mathbf{R}^+\times\mathbf{R}^+,\frac{drdt}{rt})} \mathcal{M}_{\Omega,\phi,\psi}^{P_1,P_2,(\gamma)}(f)(\overline{x},\overline{y}), \tag{4.14}$$

we acheive that $T^{P_1,P_2}_{\Omega,h,\phi,\psi}$ is bounded on $L^p(\mathbf{R}^{n+1}\times\mathbf{R}^{m+1})$ for $\gamma'\leq p<\infty$ with $1<\gamma\leq 2$. Moreover, by a standard duality argument, we can show that $T^{P_1,P_2}_{\Omega,h,\phi,\psi}$ is bounded on L^p for $1< p\leq \gamma$ with $1<\gamma\leq 2$. So, if $\gamma=2$, then we are done. However, if $1<\gamma<2$, then we apply the real interpolation theorem to acquire the L^p boundedness of $T^{P_1,P_2}_{\Omega,h,\phi,\psi}$ for $(\gamma< p<\gamma')$. This completes the proof.

Acknowledgement: The authors would like to thank the referees for their valuable comments and suggestions.

References

- [1] Fefferman R., Singular integrals on product domains, Bull. Amer. Math. Soc., 1981, 4, 195-201.
- [2] Fefferman R., Stein M., Singular integrals on product spaces, Adv. Math., 1982, 45, 117–143.
- [3] Al-Salman A., Al-Qassem H., Pan Y., Singular integrals on product domains, Indiana Univ. Math. J., 2006, 55(1), 369-387.
- [4] Al-Salman A., Flat singular integrals on product domains, Filomat (Nis), 2004, 18, 1–13.
- [5] Duoandikoetxea J., Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Grenoble), 1986, 36, 185–206.
- [6] Al-Salman A., Maximal functions associated to surfaces of revolution on product domains, J. Math. Anal. Appl., 2009, 351, 43–56.
- [7] Ding Y., A note on a class of rough maximal operators on product domains, J. Math. Anal. Appl., 1999, 232, 222–228.
- [8] Al-Qassem H., Pan Y., A class of maximal operators related to rough singular integrals on product spaces, J. Int. Eq. Appl., 2005, 17(4), 331–356.
- [9] Al-Salman A., Maximal operators with rough kernels on product domains, J. Math. Anal. Appl., 2005, 311, 338-351.
- [10] Al-Qassem H., L^p estimates for a rough maximal operator on product spaces, J. Korean Math. Soc., 2005, 42(3), 405–434.

- [11] Al-Dolat M., Ali M., Jaradat I., Al-Zoubi K., On the boundedness of a certain class of maximal functions on product spaces and extrapolation, Anal. Math. Phys., 2018, DOI10.1007/s13324-018-0208-x.
- [12] Al-Qassem H., Cheng L., Pan Y., On the boundedness of a class of rough maximal operators on product spaces, Hokkaido Math. J., 2011, 40(1), 1-32.
- [13] Al-Salman A., Maximal functions along surfaces on product domains, Anal. Math., 2008, 34, 163-175.
- [14] Al-Qassem H., Pan Y., Singular integrals along surfaces of revolution with rough kernels, CSUT. J. Math., 2003, 39(1), 55–70.
- [15] Al-Qassem H., On the boundedness of maximal operators and singular operators with kernels in $L(log L)^{\alpha}(\mathbf{S}^{n-1})$, J. Ineq. Appl., 2006, Article ID 96732.
- [16] Al-Salman A., A unifying approach for certain class of maximal functions, J. Ineq. Appl., 2006, Article ID 56272, https://doi.org/10.1186/s13660-018-1900-y.
- [17] Ali M., Al-Mohammed O., Boundedness of a class of rough maximal functions, J. Ineq. Appl., 2018, Article number: 305.
- [18] Al-Qassem H., Pan Y., L^p boundedness for singular integrals with rough kernels on product domains, Hokkaido Math. J., 2002, 31(1), 555-613.
- [19] Al-Qassem H., Pan Y., On certain estimates for Marcinkiewicz integrals and extrapolation, Collec. Math., 2009, 60(2), 123-
- [20] Sato S., Estimates for singular integrals and extrapolation, arXiv:0704.1537v1.
- [21] Al-Salman A., Pan Y., Singular integrals with rough kernels in $Llog^+L(S^{n-1})$, J. London Math. Soc., 2002, 66(2), 153–174.
- [22] Al-Qassem H., Singular integrals along surfaces on product domains, Anal. Theory and Appl., 2004, 20(2), 99-112.