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Abstract: Remerova et al. [Random �uid limit of an overloaded polling model, Adv. Appl. Probab., 2014,
46, 76–101] studied the �uid asymptotics of the joint queue length process for an overloaded cyclic polling
systemwith multigated service discipline by exploiting the connection with multi-type branching processes.
In contrast to the heavy tra�c behaviors, the cycle time of the overloaded polling system increases by
a deterministic times over times under passage to the �uid dynamics and the �uid limit preserves some
randomness. The present paper aims to extend the overloaded asymptotics in Remerova et al. [Random
�uid limit of an overloaded polling model, Adv. Appl. Probab., 2014, 46, 76–101] to the corresponding polling
systemwith general branching-type service disciplines and customer re-routingpolicy. Aunifying overloaded
asymptotic property is derived. Due to the exhaustiveness, the property is a natural extension of the classical
polling model with multigated service discipline in Remerova et al. [Random �uid limit of an overloaded
polling model, Adv. Appl. Probab., 2014, 46, 76–101] and provides new exact results that have not been
observed before for rerouting policy. Additionally, a stochastic simulation is undertaken for the validation
of the �uid limit and the optimization of the gating indexes to minimize the total population is considered as
an example to demonstrate the usefulness of the random �uid limit.

Keywords: polling networks, overloaded, general branching-type service policies, multi-type branching
process, exhaustiveness

MSC 2010: 60J80, 90Bxx

1 Introduction
In this paper, we consider a cyclic N-queue (Q1, · · · , QN , N ≥ 2) polling system with general branching-
type service discipline within each queue and customer re-routing policies: after completing service at Qi, a
customer is either routed to Qj with probability pi,j or leaves the system with probability pi,0. The possibility
for re-routing of customers further enhances the already-extensive modeling capabilities of polling models,
since in many applications, customers require service at more than one facility of the system. Actually, the
models of customer re-routing arise naturally in various models of computer, communication and robotic
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systems (see [1-4] and references therein). One obvious example is a local area network in which terminals
are interconnected in either a physical or logical structure (see [5]).

In the vast majority of papers that have appeared on polling models, it is almost invariably assumed that
the system is stable and the stable performance measures are then concerned. With the advent of the era of
Internet+, the study of critically or strictly super-critically loaded polling systems is vigorously pioneered due
to the overloaded Internet channel or online shopping orders.

The heavy tra�c (ρ → 1, ρ is the load of the system) behaviors have gained an ascending attention in
the last two decades pioneered by Co�man et al. [6, 7]. By utilizing the connection withmulti-type branching
process, van der Mei [8] considered a unifying theory on branching-type polling models under heavy-tra�c
assumptions. In the similar way, Boon et al. [1] discussed the heavy-tra�c asymptotic behaviors of a gated
polling system with customer re-route policy. Furthermore, Liu et al. [9] extended the results in [1] to the
analogous system with a general branching-type service policy in the same form. As an example for non-
branching type polling systems, Liu et al. [10] investigated the heavy-tra�c behavior of a priority polling
system consisting of three M/M/1 queues with threshold policy and proved that the scaled queue-length of
the critically loaded queue is exponentially distributed, independent of that of the stable queues.

The study of overloaded (ρ > 1) service system is important to control or predict how fast it blows up
over time. However, hardly any attention has been given to the overloaded polling system. The few literature
refers to [11-14]. By usingmeasure-valued state descriptor, Puha et al. [11] proved that the overloaded GI/GI/1
processor sharing queues converge in distribution to supercritical �uid models and a �uid limit result is
proved as �rst order approximations to overloaded processor sharing queues. Using both �uid and di�usion
limits, Jennings et al. [13] showed that the virtual waiting time process of an overloadedMulti-class FIFO(�rst-
in-�rst-out) queue with abandonments converges to a limiting deterministic �uid process. Instead Remerova
et al. [14] showed the �uid asymptotic process for the joint queue length process on an overloaded branching-
type cyclic polling system by using the asymptotic properties of multi-type branching processes.

The motivation of the present paper is twofold. First, we dedicate to the investigation of a uni�ed
overloaded asymptotic �uid process for a very general class of branching-type polling models. Resing [15]
observed that for a large class of pollingmodels, including for example cyclic pollingmodels with exhaustive
and gated service, the evolution of the system at successive polling instants at a �xed queue can be described
as a multi-type branching process with immigration. Models that satisfy this MTBP-structure allow for an
exact analysis, whereas models that violate the MTBP-structure are often more intricate. Moreover, van der
Mei [8] has given a unifying and insightful theory on branching-type polling models under heavy-tra�c
assumptions, which shows particularly attractive features. Second, by considering the polling system with
re-routing policy, we aim to study how the strikingly simple overloaded �uid limit depends on the system
parameters and in particular, on the routing probabilities pi,j. Actually, the work carried out here is a natural
progression from [9] and a natural extension of [14] due to the exhaustiveness. Our resulting expressions are
very insightful, simple to implement and suitable for optimization purposes. Numerical results are presented
to assess the accuracy of the results.

The rest of the paper is organized as follows. In Section 2, we describe precisely the polling model. In
Sections 3, we introduce the multi-type branching process-structure of polling system. Section 4 provides
the main results. Section 5 provides the proofs of Theorems 4.1 and 4.2. Section 6 discusses some numerical
issues including the stochastic simulation to test the validity of the overloaded asymptotic behaviors and the
optimization of gating indexes to minimize the average growth rate of the total population as an example.
Section 7 concludes and provides an outlook on potential further research of our paper.

2 Model description
Consider an asymmetric polling network that consists of N ≥ 2 queues, Q1, · · · , QN , and attended by a single
server that visits the queues in a cyclic order. Customers arrive at Qi according to a Poisson process Ei(·) with
rate λi. The service time of each customer at Qi is a random variable Bi with �nite mean value EBi = 1/µi.
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Indices throughout the paper are modulo N, so QN+1 actually refers to Q1. The interarrival times and the
service times (for di�erent queues and for di�erent visits) are assumed to be mutually independent.

In addition, we will consider the impact of customer rerouting policy. Upon completion of service at
Qi , i = 1, · · · , N, a customer is either routed to Qj , j = 1, · · · , N with probability pi,j or leaves the system
with probability pi,0, where

N∑
i=1

pi,0 > 0 and
N∑
j=0

pi,j = 1.

We assume that all the switches of customers or servers between queues are instantaneous and when the
system becomes empty, the server travels a full cycle and subsequently stops right before Q1 until a new
arrival occurs and then cycles along the queues to serve that customer.

Denote the total arrival rate at Qi by γi, which is the unique solution of the following set of linear
equation [2]:

γi = λi +
N∑
j=1

γjpj,i i = 1, · · · , N .

For all i, we assume γi/µi < 1 and for overload we assume
∑N

i=1 ρi > 1.
In this paper, we will focus on branching-type service disciplines in a general parameter setting which

satisfy the following property (see [15]).

Property 1. (Branching property ([15], Property 1)) If the server arrives at Qi to �nd ki customers there, then
during the course of the server’s visit, each of these ki customers will e�ectively be replaced in an i.i.d. manner
by a random population having probability generating function (p.g.f) hi(z1, z2, . . . , zN), which can be any N-
dimensional p.g.f..

According to this property, many classical service disciplines belong to the branching-type service discipline
including exhaustive service discipline(per visit the server continues to serve all customers at a queue until
it empties), gated service discipline (per visit the server serves only those customers at a queue which are
found there upon his visit), binomial-gated [16] and binomial-exhaustive policies [15].

Furthermore, the multigated (Xi-gated) service discipline discussed in [14] is just a special case of Prop-
erty 1. In Section 4, we can see that Theorem 4.2 in Section 4 is also an extention of [14] (for the special case of
multigated (Xi-gated) service discipline and without customer rerouting policy (i.e. pi,j = 0, i, j = 1, · · · , N)).
Moreover, we can know how the re-routing policy e�ect the queue length process from Figures 1 and 2 in
Section 4.

De�ne t(n) as the time point that the server reaches right before Q1 for the nth time and t(n)
i as the time

point that the server reaches Qi for the nth time (n ∈ N = {0, 1, 2, · · · }, i = 1, 2, . . . , N). If the system is
empty at t(n), then the interval [t(n), t(n)

1 ) is the period of waiting until the �rst arrival, otherwise t(n) = t(n)
1 .

Let X(t(n)) = (X1(t(n)), · · · , XN(t(n))), n ∈ N be the queue length process at time t(n), where Xi(t(n)) is
the number of customers at Qi at time t(n). By Resing [15], branching property implies that the queue length
sequence {X(t(n))}n∈N forms a multi-type branching process with immigration in state 0.

In this paper, we assume that all vectors are N−dimensional row vectors, all vectors are typeset in bold
italic. The vector with all coordinates equal to 0 is denoted by 0 and the vector with coordinate i equals to 1
and the other coordinates equal to 0 by ei.

3 The MTBP-structure of polling system
In the above section, we have known the queue length process {X(t(n))}n∈N forms a multi-type branching
process with immigration in state 0. Let M = {mi,j}Ni,j=1 be the mean o�spring matrix. Also let the vectors
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u = (u1, · · · , uN) and v = (v1, · · · , vN) be the right and left eigenvectors corresponding to the maximal real-
valued, positive eigenvalue θ of M, commonly referred to as themaximum eigenvalue ([17]), normalized such
that vu> = 1. In this section, we will give the mean o�spring matrix associated with the branching process.
Moreover, Theorem 5.6.1(supercritical limit theorem) in [17] leads to our main results.

To start with, we give some notations associated with the branching-type polling system.

– De�ne Ľi = (Ľi,1, · · · , Ľi,N) as the visit o�spring of a customer at Qi, which equals in distribution to
X(t(n)

i+1) given that X(t(n)
i ) = ei (its distribution does not depend on n) with m̌i = (m̌i,1, · · · , m̌i,N) = EĽi.

– De�ne Li := (Li,1, · · · , Li,N) as the session o�spring of a customer at Qi, which equals in distribution
to X(t(n+1)) given that X(t(n)) = ei (its distribution does not depend on n) with mi = (mi,1, · · · ,mi,N) =
ELi. In order to ensure the non-degenerate, we assume that ELi,j log Li,j < ∞ for all 1 ≤ i, j ≤ N.

To proceed, we need further to de�ne the exhaustiveness fi of the service descipline at Qi by (see [18],
(55), (56))

fi = 1 − ∂
∂zi

hi(z1, z2, · · · , zN)|z=1 = 1 − EĽi,i .

It has an appealing interpretation: during the course of the server’s visit at Qi, each customer present at the
start of the visit to Qi will be replaced by a number of customers with mean 1 − fi at the end of the visit to Qi.

Remark 3.1. In particular, the exhaustiveness of the multigated (Xi-gated) service discipline at Qi in [14]
(where Xi = 1and ∞ of gating index corresponding to conventional gated and exhaustive, respectively) equals
fi = 1 − E( λiµi + pi,i)Xi .

Let BEi be the total service time of a customer in Qi before he is either routed to Qj , j ≠ i or leaves the system.
Then bEi := EBEi = 1/(µi(1 − pi,i)).

De�ne Ti as the busy period in Qi. This busy period consists of the service of its �rst customer at Qi, the
services of the customers arriving at Qi during the service of the �rst customer (i.e., the children), the services
of the customers arriving at Qi during the service of the children (i.e., the grandchildren), and so forth. Then,
we have

ti := ETi = fi
bEi

1 − λibEi
. (3.1)

By Lemma 1 in [9], the mean o�spring matrix M is given in the following proposition.

Proposition 3.1. For the cyclic branching-type polling system, the mean matrix M is given by

M = M1 . . .MN ,

where Mk =
(
m(k)
i,j

)
and

m(k)
i,j =


δ{i=j}, i ≠ k,
1 − fi , i = k = j,
ti(µipi,j + λj), i = k ≠ j,

(3.2)

where δF denotes the indicator function on F.
Actually, Mk is the mean session o�spring during the visit time on Qk. Hence, for all i,

m(i)
i,j = m̌i,j =

{
1 − fi , i = j,
ti(µipi,j + λj), i ≠ j.

Proof. In theMulti-type branching process, by the de�nition ofM = {mi,j}Ni,j=1, we have thatmi,j = ∂f (i)(z)
∂zj

∣∣∣
z=1

,

i, j = 1, · · · , N, where f (i)(z) is the ith generating function of the distribution of the number of o�spring of
various types to be produced by a type i particle, and

f (i)(z) =
∑

j1 ,··· ,jN≥0
p(i)(j1, · · · , jN)zj11 · · · z

jN
n , |zk| ≤ 1, i, k = 1, · · · , N,
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where z = (z1, · · · , zN) and p(i)(j1, · · · , jN) = the probability that a type i parent produces j1 particles of type
1, j2 of type 2, · · · , jN of type N.

Let X(t(n)) = (X1(t(n)), · · · , XN(t(n))), n ∈ N be the queue length process at time t(n), where Xi(t(n)) is
the number of customers at Qi at time t(n). By Resing [15], branching property implies that the queue length
sequence {X(t(n))}n∈N forms a multi-type branching process with immigration in state 0. Therefore, we have

f (i)(z) = hi(z1, z2, · · · , zi , f (i+1)(z), · · · , f (N)(z)), |zk| ≤ 1, i = 1, · · · , N,

where

hi(z) = ψi
(∑

j≠i
λj(1 − zj), zi ,

pi,0
1 − pi,i

+
∑
j≠i

pi,j
1 − pi,i

zj
)
, i = 1, · · · , N,

where ψi(u, z1, z2) = E(e−uTi , zLi1 , ZMi
2 ), Li is the so-called busy period residue, i.e., the number of type-i

children of the original customer that generates this busy period andMi is the number of customers leave Qi
in the busy period Ti. Then, by the de�nition of M, we obtain,

mi,j = hi,j I{j≤i} +
N∑

k=i+1
hi,kmk,j , i, j = 1, · · · , N, (3.3)

hi,j = ∂hi(z)
∂zj

∣∣∣∣
z=1

=
{

1 − fi , i = j,
tk(λj + pi,jµi), i ≠ j,

(3.4)

Therefore, by (3.3) and (3.4), we obtain (3.2).

It follows that the auxiliary process {X(t(n))}n∈N has the following asymptotics (see [17], Theorem5.6.1),which
will be important for proving the main results in the next section.

Proposition 3.2. If the �rst arriving customer arrives at Qi after t = 0, then

X(t(n))
θn → ζiv almost surely (a.s.) as n →∞,

where the distribution of the random variable ζi has a jump of magnitude qi = P(X(t(n)) = 0 for some n|X(t(0)) =
ei) < 1 at 0 and a continuous density function on (0,∞) and Eζi = ui.

4 Main results
To give the main results, three more notations are needed.

– Let B̄i be the total service time of a customer arriving at Qi from outside, c̄i = EB̄i, we have c̄i =
1/µi +

∑N
j=1 pi,j c̄j. It is also easy to deduce that ρ =

∑N
i=1 λi c̄i.

– For n ∈ N, let ηn :=
{

min{k : t(k) ≥ θn}, if n ≥ 0;
0, if n < 0.

– For n ∈ N, de�ne the scaled queue length process X̄(n)(t) := X(θn t)
θn , t ∈ [0,∞).

Theorem 4.1. There exist constants b̄i ∈ (0,∞) and āi = (āi,1, · · · , āi,N) ∈ [0,∞)N , i = 1, · · · , N + 1, and a
random variable ξ with values in [1, θ) such that, for all k ∈ N and i = 1, 2, · · · , N,

t(ηn+k)
i
θn → θk b̄iξ and

X(t(ηn+k)
i )
θn → ξθkāi a.s. as n →∞.
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The b̄i and āi are given by

b̄1 = 1, b̄i+1 = b̄i +
[ vi
α + λi(b̄i − b̄1) +

i−1∑
j=1

pj,iµj(b̄j+1 − b̄j)
]
ti

and for j = 1, · · · , N,

ā1 = v
α , āi+1,j =

{
āi,j + [λj + µipi,j](b̄i+1 − b̄i) j ≠ i,
āi,i + [λi − µi(1 − pi,i)](b̄i+1 − b̄i), j = i.

where

α =
∑N

i=1 vi c̄i
ρ − 1 .

The distribution of ξ see [14].

Proof. See Section 5.

Remark 4.1. Specially, for a polling model with multigated (Xi-gated) service discipline and without customer
rerouting policy (i.e. pi,j = 0, i, j = 1, · · · , N), the asymptotics in Theorem 4.1 remains true while the b̄i and āi
turn to be

b̄1 = 1, b̄i+1 = b̄i +
[ vi
α + λi(b̄i − b̄1)

]
ti

and for j = 1, · · · , N,

ā1 = v
α , āi+1,j =

{
āi,j + λj(b̄i+1 − b̄i) j ≠ i,
āi,i + [λi − µi](b̄i+1 − b̄i) j = i.

where ti = ETi =
1−E( λiµi )Xi
µi−λi and α =

∑N
i=1 vi/µi
ρ−1 , which is in accord with Theorem 1 in [14].

Theorem 4.2. There exists a deterministic function X̄(·) = (X̄1, · · · , X̄N)(·) ∈ [0,∞)N such that,

X̄(n)(·) → ξ X̄( ·ξ ) a.s. as n →∞, (4.1)

uniformly on compact sets. For all i = 1, · · · , N, the function X̄(·) is continuous and piecewise linear as depicted
in Figure 1 and speci�ed by

X̄(t) =
{

0, if t = 0;
θkāi + (t − θk b̄i)λ + (t − θk b̄i)µipi , if t ∈ [θk b̄i , θk b̄i+1),

(4.2)

where λ = [λ1, · · · , λN ] and pi = [pi,1, · · · , pi,i−1, pi,i − 1, pi,i+1, · · · , pi,N ].

Proof. See Section 5.

Remark 4.2. Theorem 4.2 is also an extention of [14] (for the special case of multigated (Xi-gated) service
discipline and without customer rerouting policy (i.e. pi,j = 0, i, j = 1, · · · , N)).

Corollary 4.1. Under passage to the �uid dynamics, the �uid total population (X̄1 + X̄2 + · · · + X̄N)(·) grows at
the rate

(λ1 + · · · + λN) − pi,0µi

when t ∈ [θk b̄i , θk b̄i+1) for all k ∈ N and i = 1, · · · , N. (see Figure 2)

Remark 4.3. In [9], the �uid asymptotics of the queue length process in the heavy tra�c for the same polling
model have been discussed. In the heavy tra�c, the total scaled workload is e�ectively constant while the
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𝜃𝑘𝑏 𝑖+1𝜉 𝜃𝑘𝑏 𝑖+2𝜉 𝜃𝑘𝑏 𝑖+3𝜉 𝜃𝑘𝑏 𝑖+4𝜉

… 

𝜃𝑘+1𝑏 𝑖−1𝜉 𝜃
𝑘+1𝑏 𝑖𝜉 

t 

𝜃𝑘𝑎 𝑖,𝑖𝜉 

𝜃𝑘+1𝑎 𝑖,𝑖𝜉 

… 

… 

𝜃𝑘𝑏 𝑖𝜉 

𝜉𝑋 𝑖(𝑡/𝜉) 

Figure 1: Fluid limit of Qi.

 
𝜃𝑏 𝑖+1 𝜃𝑏 𝑖+2 𝜃𝑏 𝑖+3 

t 

(𝑋1   + 𝑋2   +⋯+ 𝑋𝑁    )(𝑡) 

+𝑄𝑖 𝑄𝑖 (𝑡/𝜉) 

𝜃𝑏 𝑖 0 

Figure 2: Fluid limit of total population X̄1 + · · · + X̄N .

individual queue workload is emptied and re�lled at a rate during the course of a cycle. In contrast to the
heavy tra�c asymptotics, the total overloaded asymptotic workload is always increasing as shown in Corrollary
4.1 during the course of a cycle. In addition, the overloaded �uid limit always contains a random variable ξ .
However, the individual queue workload is emptied and re�lled at the same rate as in the heavy tra�c like a
�uid model. Hence, our result is a further progress of [9].

Remark 4.4. For di�erent branching-type service discipline, our main results have shown that the overloaded
�uid asymptotics just depend on the exhaustiveness of each service discipline, which also applies to the heavy
tra�c asymptotics in [9] and the asymptotics with the large-switchover times in [18]. This can be easily
interpreted by the �uid approximation. It also proves that the branching-type polling system deserves much
more attention.

Remark 4.5. The rerouting policy only a�ects the �ow rate both in the heavy tra�c asymptotics (see [9]) and in
the overloaded asymptotics. In Theorem 4.2, we can see that the �uid limit depends on the re-routing probability
pi,j. Upon completion of service at Qi , i = 1, · · · , N, a customer is either routed to Qi with probability pi,i, which
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leads the decreasing rate of the length of Qi to be λi −µi(1−pii), or routed to Qj , j ≠ i with probability pi,j, which
leads the increasing rate of the length of Qj to be λj + µipi,j at time [θk b̄i , θk b̄i+1).

According to Theorem 4.2 and Corrollary 4.1, the �uid limit processes both demonstrate an oscillation
waveform with increasing amplitude and cycle time over time. To be more speci�c, the amplitude and cycle
time both increase by θ − 1 times each cycle. Hence, the average growth rate of the scaled total population,
denoted by β, equals to the average growth rate in each cycle, as shown in Figure 2. Therefore, we have

N∑
i=1

∑N
j=1 āi,j +

∑N
j=1 āi+1,j

2 (b̄i+1 − b̄i) =
θb̄1∫
b̄1

βtdt,

which yields

β = 1
θ2 − 1

 N∑
i=1

 N∑
j=1

āi,j +
N∑
j=1

āi+1,j

 (b̄i+1 − b̄i)

 . (4.3)

By the de�nition of the scaled queue length process, the �uid limit could approximate the original
queue length process in steady state. Furthermore, the average growth rate in (4.3) allows us to study
the optimization problem of how to choose the gating indexes of each queue to minimize the total queue
length. Since each of the queues adheres to a branching-type service discipline, we study how to choose the
exhaustiveness fi with the same objective in mind. We would provide an optimization example by utilizing
the genetic algorithm in Section 6.

5 Proof of Theorems 4.1 and 4.2

5.1 Proof of Theorem 4.1

Proof. By the tool of Lemma 8 in [14], if we can prove

t(n)
i
θn → biξ and

X(t(n)
i )
θn → ξai a.s. as n →∞, (5.1)

where bi = αb̄i, ai = αāi, then Theorem 4.1 is concluded. Hence, we focus on the proof of (5.1).
(1) Limit of t(n)

1 /θn. De�ne index ν by

ν = max
{
n ∈ N+, such that X(t(n)) = 0 and X(t(m)) ≠ 0 for all m > n

}
.

By the total workload process, we have, for n > ν,

t(n)
1 = t(n) = W + t(n)A(n)

1 − θnA(n)
2 , (5.2)

where B̄(k)
i are i.i.d. copies of B̄i. By de�nition of ν, we know that it is a.s. �nite, so that we obtain W =∑ν

l=0(t(l)1 − t
(l)) < ∞ a.s..

A(n)
1 =

N∑
i=1

∑Ei(t(n))
k=1 B̄(k)

i
Ei(t(n))

Ei(t(n))
t(n) , A(n)

2 =
N∑
i=1

∑Xi(t(n))
k=1 B̄(k)

i
Xi(t(n))

Xi(t(n))
θn ,

Since, we know that B̄(k)
i are i.i.d. copies of B̄i, andEB̄i = c̄i, then, by the SLLN and Proposition 3.2, we obtain,

as n →∞,

A(n)
1 →

N∑
i=1

λiEB̄(k)
i =

N∑
i=1

λi c̄i = ρ, A(n)
2 →

N∑
i=1

viξEB̄(k)
i =

N∑
i=1

vi c̄iξ a.s..
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Therefore, by (5.2), we have, as n →∞,

t(n)

θn → b1ξ and
t(n)

1
θn → b1ξ ,

where b1 =
∑N

i=1 vi c̄i
ρ−1 .

(2) Limit of t(n)
i /θn. In (1), by utilizing the index ν and equation t(n)

1 = t(n), weproved limn→∞ t(n)
1 /θn = b1ξ .

By the symmetry, there also exist positive numbers bi such that

lim
n→∞

t(n)
i
θn = biξ , i = 1, · · · , N .

It remains to prove the iteration of bi, which refers to (4) below.
(3)Limit of Xj(t(n)

i )/θn. De�ne the renewal processes

Yi(t) = max
{
n ∈ N+, such that

n∑
i=1

B(k)
i ≤ t

}
,

where B(k)
i are i.i.d. copies of Bi. Also let Ii(t) be the whole time that the server has spent at Qi before time t,

i.e.,

Ii(t) =
t∫

0

I( queue i is in service in time s)ds t ∈ (0,∞).

Let Ai be the position of a customer after completion of service at Qi, for i = 1, · · · , N, i.e.,

Ai =
{
j, after receiving service at Qi, a customer is routed to Qj;
0, after receiving service at Qi, a customer leaves the system.

Then P(Ai = j) = pi,j, j = 0, 1, · · · , N. Hence, we have

Xj(t(n)
i+1) =


Xj(t(n)

i ) + Ej(t(n)
i+1) − Ej(t(n)

i ) +
Yi (Ii (tn+1))−Yi (Ii (tn ))∑

k=1
δ{A(k)

i =j} , j ≠ i;

Xi(t(n)
i ) + Ei(tni+1) − Ei(t(n)

i ) −
Yi (Ii (tn+1))−Yi (Ii (tn ))∑

k=1
δ{A(k)

i ≠i} , j = i,
(5.3)

where A(k)
i are i.i.d. copies of Ai. Since Eδ{A(k)

i =j} = P(A(k)
i = j) = pi,j is �nite, so that, by SLLN, we have

Xj(t(n)
i+1)
θn → ai+1,jξ ,

where

ai+1,j =
{
ai,j + λj(bi+1 − bi) + pi,jµj(bi+1 − bi), j ≠ i;
ai,i + λi(bi+1 − bi) − µi(1 − pi,i)(bi+1 − bi), j = i.

(4) The iteration of bi. Recall that

t(n)
i+1 = t(n)

i +
Xi(t(n)

i )∑
k=1

T(k)
i , (5.4)

Xi(t(n)
i ) = Xi(t(n)

1 )+Ei(t(n)
i ) − Ei(t(n)

1 ) +
i−1∑
j=1

Yj(Ij(t(n)))−Yj(Ij(t(n−1)))∑
k=1

δ{A(k)
j =i}, (5.5)

where T(k)
i are i.i.d. copies of Ti. As n → ∞, if Xi(t(n)

1 ) = c, where c is a positive constant, then∑Xi(t(n)
i )

k=1 T(k)
i /θn → 0, so that bi+1 = bi, this case is obviously to us, so we study the case that Xi(t(n)

1 ) →∞. θn

corresponds to Tn in the Proposition 2 of [14], T(k)
i corresponds to Y (k)

n in Proposition 2 of [14], ai,i corresponds
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to τ in the Proposition 2 of [14], ti corresponds to EY in Proposition 2 of [14]. Therefore, by Proposition 2 in
[14] and (5.4), we get

bi+1 − bi = ai,i ti . (5.6)

By (5.5) and the SLLN, we obtain

ai,i = vi + λi(bi − b1) +
i−1∑
j=1

µj(bj+1 − bj)pj,i . (5.7)

Then the iteration of bi can be proved by substituting (5.7) into (5.6).
(5)The equivalence of bN+1 and θb1. By t(n)

N+1 = t(n+1)
1 , we obtain bN+1ξ = lim

n→∞
t(n)
N+1/θ

n =

lim
n→∞

θt(n+1)
1 /θn+1 = θb1ξ , i.e. bN+1 = θb1. This can be proved as follows. By the de�nition of Mi in Lemma 3.1,

it is easy to give
(Mi − I)c̄T = (ρ − 1)tiei ,

where I is the identity matrix, ·> denotes the operation of transposition and c̄ = (c̄1, . . . , c̄N). Substituting
the above equation into (5.6) yields

bi+1 − bi = ai,i ti = aiei ti = 1
ρ − 1 ai(Mi − I)c̄T = 1

ρ − 1 (ai+1 − ai) c̄T .

where ai = (ai,1, · · · , ai,N), which gives immediately

bN+1 =
N∑
i=1

(bi+1 − bi) + b1 = 1
ρ − 1 (aN+1 − a1) c̄T + b1

= 1
ρ − 1 (vM − v) c̄T + b1 = (θ − 1) vc̄T

ρ − 1 + b1 = (θ − 1)b1 + b1 = θb1.

5.2 Proof of Theorem 4.2

Proof. For each i, by (4.2), we know that the function X̄i(·) might have discontinuities only at t = 0 and
t = θk b̄i for each k ∈ N. Since the function X̄i(·) is càdlàg, the continuity of X̄(·) is evident in combination
with the de�nition of ai. Additionally, the uniform convergence on compact sets can be proved in the same
way as in the proof of Theorem 2 in [14]. Hence, it su�ces to prove the point-wise convergence (4.2) for each
i = 1, 2, . . . , N.

For t = 0, the convergence of (4.2) holds since the system starts empty. For each i = 1, . . . , N, if t ∈
[θk b̄i , θk b̄i+1), it remains to prove

X̄j(t) =
{
θk āi,i + [λi − µi(1 − pi,i)](t − θk b̄i), j = i;
θk āi,j + [λj + µipi,j](t − θk b̄i), j ≠ i.

For all n big enough, t
(ηn+k)
i
θn < t < t(ηn+k)

i+1
θn implying that Qi is in service during [t(ηn+k)

i , θn t). Hence,

Xj(θn t) =


Xi(t

(ηn+k)
i ) + Ei(θn t) − Ei(t

(ηn+k)
i ) −

Yi (Ii (θn t))−Yi (Ii (t(ηn+k)))∑
k=1

δ{A(k)
i ≠i} , j = i;

Xj(t
(ηn+k)
i ) + Ej(θn t) − Ej(t

(ηn+k)
i ) +

Yi (Ii (θn t))−Yi (Ii (t(ηn+k)))∑
l=1

δ{A(l)
i =j} , j ≠ i.

Combining the above equation with Theorem 4.1, we have

X̄(n)
j (t) =

Xj(θn t)
θn →

{
ξθk āi,i + [λi − µi(1 − pi,i)](t − θk b̄iξ ), j = i;
ξθk āi,j + (λj + µipi,j)(t − θk b̄iξ ), j ≠ i,

where the right hand-side actually equals ξ X̄j( tξ ). Therefore, we proved (4.2).
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6 Numerical validation and optimization of gating indexes

6.1 Numerical validation

This subsection is devoted to test the validity of the �uid limits of the scaled queue length process. For
simplicity, we consider a 3-queue polling system described in Table 1 with exponentially distributed service
time. For this model, it is readily to obtain ρ1 = 0.4749, ρ2 = 0.5194, ρ3 = 0.8625 and ρ = 1.8568, which
belongs to the overloaded tra�c case studied in this paper.

We utilize the SimEvents toolbox of Matlab to undertake the simulations of the polling networks. The
exhaustive and gated service policies are taken for example and some vital variables are given in Table 2.
In order to illustrate the convergence of the scaled queue length process, we take n = 1, 5, 8, 10 in polling
network with exhaustive service policies and n = 1, 10, 18, 20 in the gated counterpart. The corresponding
scaled queue length process of Q2 and the scaled total queue length process are depicted in Figure 3 and
Figure 4, respectively. Apparently, the scaled queue length sample paths get closer and closer as n increases.

Table 1: Parameter values in 3-queue polling network.

Parameter Considered parameter values

Arriving rate λ1 = λ2 = λ3 = 1
Service rate µ1 = 8, µ2 = 5, µ3 = 2

P = (pi,j)3×3 =

0.1 0.25 0.2
0.2 0.1 0.2
0.2 0.1 0.25

Transition probability

Table 2: Essential variable values in 3-queue polling network.

Variable Values
Exhaustive Gate

Gating index ∞ 1
Exhaustiveness 1 1 − ( λiµi + pi,i)
Maximum eigenvalue θ = 3.7497 θ = 1.6394
Left eigenvector v = [0.9731, 0.683, 0] v = [0.7454, 0.5301, 0.4774]

Moreover, as shown in Figure 3 and Figure 4, the �uid limit processes both demonstrate an oscillation
waveform with increasing amplitude and cycle time forward and oscillate at an in�nite rate when approach-
ing zero. According to Theorem 4.2, the amplitude and cycle time increase by θ − 1 times within each cycle,
which has been easily illustrated by the sample paths.

6.2 Optimization of gating indexes

Subsequently, we consider the optimization of the gating indexes by numerical method. We assume that
the gating indexes are integers. Virtually, the �uid limits only depend on the exhaustiveness of the service
discipline at each queue (moment of gating index), which allows us to minimize the total queue length
through the accommodation of the integer gating indexes.

By (4.3), the average growth rate of the total queue length process β with exhaustive and gated service
policies equals 1.5025 and 1.2416 respectively (see Figure 5). This canbe intuitively interpreted from the growth
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Figure 3: The scaled queue length process of Q2 for di�erent n (left:t ∈ [0, 100], right:t ∈ [0, 8]) with exhaustive service policy.
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Figure 4: Left: the scaled total queue length process for di�erent n with exhaustive service policy.
Right: the scaled queue length process of Q2 for di�erent n with gated service policy.

rate during each visiting period on di�erent queues. The visiting period at Q3 with the maximal growth rate
(minimal service rate) takes 4 times as much time as others in exhaustive service policy. Instead, it takes less
than 2 times as much time as others in gated service policy. Therefore, to minimize the average growth rate,
we need to increase the visiting time at Q1 and Q2 and decrease the visiting time at Q3.

To optimize the gating indexes turns to be an integer programmingwith three variables. TheGA toolbox of
Matlab is undertaken here to search for the optimal gating indexes. For ourmodel, it just takes 51 iterations to
�nd the optimal solution: Q1 and Q2 both take exhaustive service policy while Q3 takes gated service policy.
The minimal average growth rate equals to 1.19262 and the corresponding exhaustiveness is f1 = f2 = 1,
f3 = 0.25. Figure 5 depicts the process of the optimal average growth rate in each generation. Apparently,
the convergence process turns to be very e�ective. Hence, the average growth rate of the �uid limit provides
a simple and transparent method to optimize the gating index.

7 Conclusions and further Research
Inspired by [14], we present the �uid limit of an overloaded polling system with general branching-type
service discipline and customer re-routing policies. These results provide new fundamental insight in the
impact of exhaustiveness. As aby-product,wepropose anoptimizationproblemof gating indexes tominimize
the total queue length.

This work gives rise to a variety of directions for further research. A logical follow-up step would be to
study the casewith non-zero switch-over time. In addition, the asysmptotic behaviors of discrete-time polling
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Figure 5: Left: the fluid limit of the scaled total queue length process (exhaustive and gated).
Right: the convergence process of the optimal average growth rate by GA solver.

systems are also direct extensions to this study. Furthermore, the �uid limit allows us to propose control
strategies of the growth depression, which requires substantially more e�ort.
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