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Abstract: After the signi�cant work of Zagier on the traces of singular moduli, Jeon, Kang and Kim showed
that theGalois traces of real-valued class invariants given in terms of the singular values of the classicalWeber
functions can be identi�ed with the Fourier coe�cients of weakly holomorphic modular forms of weight
3/2 on the congruence subgroups of higher genus by using the Bruinier-Funke modular traces. Extending
their work, we construct real-valued class invariants by using the singular values of the generalized Weber
functions of level 5 and prove that their Galois traces are Fourier coe�cients of a harmonic weak Maass form
of weight 3/2 by using Shimura’s reciprocity law.
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1 Introduction
Let D be a negative integer with D ≡ 0, 1 (mod 4) so that D is an imaginary quadratic discriminant. More
explicitly, if we let

τD =
{ √

D
2 if D ≡ 0 (mod 4),
−1+
√
D

2 if D ≡ 1 (mod 4),
(1)

then the Z-lattice OD = [τD , 1] becomes a quadratic order of discriminant D = dK · t2 in the imaginary
quadratic �eldK = Q(τD)where dK is a fundamental discriminant ofK andapositive integer t is the conductor
of OD.

Let QD be the set of all positive de�nite integral binary quadratic forms of discriminant D, namely,

QD = {ax2 + bxy + cy2 ∈ Z[x, y] | a > 0, b2 − 4ac = D}.

The modular group Γ(1) = SL2(Z)/{±I2} acts on the set QD from the right by the rule

γ =
[
γ1 γ2
γ3 γ4

]
: Q(x, y) = ax2 + bxy + cy2 7→ Qγ(x, y) = Q(γ1x + γ2y, γ3x + γ4y), (2)

where I2 denotes the 2 × 2 identity matrix. Then the action induces an equivalence relation∼ on QD as

Q1 ∼ Q2 if and only if Q1 = Qγ2 for some γ ∈ Γ(1).
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If we let Q0
D ⊂ QD be the set of all primitive forms (i.e. gcd(a, b, c) = 1), then the set of equivalence classes

Q0
D/Γ(1) becomes a �nite abelian group under Dirichlet composition which is called the form class group of

discriminant D and is denoted by C(D).
For each quadratic form Q = [a, b, c] = ax2 + bxy + cy2 ∈ QD, let τQ be the zero of Q(x, 1) = 0 in the

complex upper half planeH = {z ∈ C | Im(z) > 0}, namely,

τQ = −b +
√
D

2a . (3)

The classical j-invariant onH is a Γ(1)-modular function de�ned by

j(τ) =

(
1 + 240

∑∞
n=1
∑

m|n m
3qn
)3

q
∏∞
n=1(1 − qn)24 = q−1 + 744 + 196884q + 21493760q2 + · · · ,

where τ ∈ H and q = e2πiτ. Letting HD be the ring class �eld of order OD over K, we have

HD = K(j(τD))

by the theory of complex multiplication. Furthermore, we have the classical isomorphism

Gal(HD/K) ∼= C(D) = Q0
D/Γ(1)

and the special values j(τQ) for all Q ∈ Q0
D/Γ(1) become the Galois conjugates of j(τD) in HD over K which are

called the singular moduli.
Let J(τ) = j(τ) − 744 be the normalized Hauptmodul on the modular group Γ(1). In [1], Zagier de�ned the

modi�ed Galois trace tJ(D) of index D as

tJ(D) =
∑

Q∈QD/Γ(1)

J(τQ)∣∣Γ(1)Q
∣∣ ,

where the sum allows the classes of imprimitive forms and Γ(1)Q is the stabilizer of Q. Furthermore, Kaneko
[2] found another description for tJ(D) as

tJ(D) =
∑

Od⊃OD

2
ωd
·
∑

a∈Cl(Od)

J(a),

where the �rst sum runs over all imaginary quadratic orders Od ⊃ OD, Cl(Od) denotes the Od-ideal class
group which is isomorphic to Gal(Hd/K) (see [3, §9]) and

ωd =


6 if d = −3,
4 if d = −4,
2 otherwise,

is the number of units in Od. Therefore, we can see that the modi�ed trace of J is essentially a sum of usual
Galois traces.

Zagier proved that the generating series

−q−1 + 2 +
∞∑
D=1

tJ(D)qD = −q−1 + 2 − 248q3 + 492q4 − 4119q7 + 7256q8 + · · ·

is a weakly holomorphic modular form of weight 3/2 for the Hecke subgroup Γ0(4). After Zagier’s work,
Bruinier and Funke [4] de�ned the modular traces of the CM values of modular functions for congruence
subgroups of arbitrary genus and showed that modular traces of the values of an arbitrary modular function
at Heegner points are Fourier coe�cients of the holomorphic part of a harmonic weak Maass form of weight
3/2.
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On the other hand, it is well known that the value of every modular function at an imaginary quadratic
number lies in a ray class �eld of an imaginary quadratic �eld. In particular, we call the value f (τD) of a
modular function f (τ) at τ = τD a class invariant if

K(f (τD)) = K(j(τD)),

following Weber [5]. We can easily see that the modular trace of the CM value of J(τ) at a Heegner point is
naturally its Galois trace. However, it is not obvious to seewhether the Galois trace of a given algebraic integer
is a modular trace and hence a Fourier coe�cient of a certain automorphic form. In [6], the authors paid
attention to real-valued class invariants given in terms of the singular values of the classical Weber functions

f∞ =
√

3η(3τ)
η(τ) , f0 =

η( τ3 )
η(τ) , f1 =

η( τ+1
3 )

η(τ) , f2 =
η( τ+2

3 )
η(τ) ,

where η(τ) is the classical Dedekind’s eta-function. They proved that the modi�ed Galois traces of those
invariants can be identi�ed with the Fourier coe�cients of weakly holomorphic modular forms of weight
3/2.

In this paper, we shall construct real-valued class invariants by using the generalizedWeber functions of
level 5 given by

g∞(τ) = 53 ·
(
η(5τ)
η(τ)

)6
, g0(τ) =

(
η( τ5 )
η(τ)

)6
, g1(τ) =

(
η( τ+96

5 )
η(τ)

)6
,

g2(τ) =
(
η( τ+72

5 )
η(τ)

)6
, g3(τ) =

(
η( τ+48

5 )
η(τ)

)6
, g4(τ) =

(
η( τ+24

5 )
η(τ)

)6

(Theorems 4.3 and 4.5) by extending the argument of [6, §6]. Furthermore, we shall prove that their Galois
traces are the Fourier coe�cients of holomorphic parts of weight 3/2 harmonic weak Maass forms (Theorem
6.4). To do this, we shall use the results on the Bruinier-Funke modular trace (Propositions 5.4 and 5.6) and
Shimura’s reciprocity law (Proposition 3.3).

2 Generalized Weber function of level 5
In this section, we shall brie�y introduce some arithmetic properties of generalized Weber functions (See [5]
or [7, §4] for details). Throughout this paper, we let N be a positive integer.

Let ζN = e2πi/N be the primitive N-th root of unity and let FN be the �eld of modular functions on the
principal congruence group Γ(N) =

{
γ ∈ Γ(1) | γ ≡ I2 (mod N)

}
whose Fourier coe�cients lie in the N-th

cyclotomic �eldQ(ζN). Then, it is well known that FN is a Galois extension over F1 = Q(j(τ)) with

Gal(FN /F1) ' GL2(Z/NZ)/{±I2}.

The group GL2(Z/NZ)/{±I2} can be decomposed into

GL2(Z/NZ)/{±I2} = GN · Γ(N) = Γ(N) · GN , (4)

where

GN =
{
σu =

[
1 0
0 u

] ∣∣∣∣∣ u ∈ (Z/NZ)×
}
.

Each element σu ∈ GN acts on the function f (τ) ∈ FN by

σu ∈ GN : f (τ) =
∑
n≥n0

cnqn/N 7→ f σu (τ) =
∑
n≥n0

cσun qn/N ,

where cσun denotes the image of cn ∈ Q(ζN) via the automorphism ofQ(ζN) de�ned by σu : ζN 7→ ζ uN . Besides,
the action of Γ(N) is given by

γ ∈ Γ(N) : f (τ) 7→ fγ(τ) = f (γ̃τ),
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where γ̃ ∈ Γ(1) is a preimage of γ via the natural surjection Γ(1) → Γ(N) and τ 7→ γ̃τ is the fractional linear
transformation with respect to γ̃.

Let η(τ) = q1/24∏∞
n=1
(

1 − qn
)
be the classical Dedekind eta-function and

S =
[

0 −1
1 0

]
and T =

[
1 1
0 1

]

be generators of Γ(1). We have the following transformation formula of η(τ) under the composition of Γ(1).

Proposition 2.1. Let γ =
[ a b
c d
]
∈ Γ(1). We may assume that

c ≥ 0 and d > 0 if c = 0.

We write c = 2λ(c) · c0 with c0 odd and put c0 = λ(c) = 1 if c = 0 for convenience. Then,

η(γτ) = ε(γ) ·
√
cτ + d · η(τ) with Re

(√
cτ + d

)
> 0,

where
ε(γ) =

(
a
c0

)
· ζ ba+c(d(1−a2)−a)+3(a−1)c0+ 3

2 λ(c)(a2−1)
24 .

Here, ( ac0
) is the Legendre symbol.

In particular, we have

η ◦ S(τ) =
√
−iτ · η(τ) and η ◦ T(τ) = ζ24 · η(τ).

Proof. See [5, §38] and [8, §4].

The generalized Weber functions are de�ned by

v∞,N(τ) =
√
N · η(Nτ)

η(τ) and vk,N(τ) =
η( τ+k

N )
η(τ) , (τ ∈ H, k ∈ Z).

Then, these functions have the following modular properties.

Proposition 2.2. For a positive integer N and an integer k, we have

(i) v∞,N and vk,N belong to F24N .
(ii) Let {rn}n|N be a set of integers indexed by the positive divisors of N. If gcd(N, 6) = 1 and k ≡ 0 (mod24),

then we have ∑
n|N

(n − 1)rn ≡ 0 (mod 24) if and only if
∏
n|N

(vk,N)rn ∈ FN .

Proof. See [9, Theorem 3.2].

From now on, let us consider the case N = 5. For each n ∈ Z, let kn be an integer such that

kn ≡ 0 (mod 24) and kn ≡ n (mod 5).

We then de�ne

g∞(τ) = v∞,5(τ)6 = 53 ·
(
η (5τ)
η(τ)

)6
, gn(τ) = vkn ,5(τ)6 =

η
(
τ+kn

5

)
η(τ)

6

.

Lemma 2.3. Let n, n1 and n2 be integers. Then we have

(i) g∞(τ) and gn(τ) belong to F5.
(ii) If n1 ≡ n2 (mod 5), then gn1 (τ) = gn2 (τ).
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Proof. (i) It is straightforward from Proposition 2.2 (ii) for gn(τ), if we choose r1 = 1, r5 = 6. See [10,
Theorem 1.64] for g∞(τ).

(ii) For each i ∈ {1, 2}, we may write kni = 5 · Ki + ν for some integers Ki and ν ∈ {0, 1, 2, 3, 4}. Then we
have

η
(
τ + kni

5

)
= η

( τ + ν
5 + Ki

)
= ζ Ki24 · η

( τ + ν
5

)
by Proposition 2.1. Since kn1 − kn2 = p · (K1 − K2) ≡ 0 (mod 24) and gcd(5, 24) = 1, we get K1 ≡
K2 (mod 24) which implies that ζ K1

24 = ζ K2
24 .

By the above lemma, the indices of the generalizedWeber functions of level 5 can be chosen fromZ/5Z∪{∞},
namely, {

g∞(τ), g0(τ), g1(τ), g2(τ), g3(τ), g4(τ)
}
⊂ F5.

Remark 2.4. From the q-product of η(τ), one can easily see that

g∞(τ) = 53 · q ·
∞∏
n=1

(
1 − q5n

1 − qn

)6
, gν(τ) = ζ −ν5 · q−1/5 ·

∞∏
n=1

(
1 − ζ νn5 qn/5

1 − qn

)6

for ν ∈ {0, 1, 2, 3, 4}.

By Proposition 2.1 and Remark 2.4, we obtain that

S : (g∞, g0, g1, g2, g3, g4) 7→ (g0, g∞, g4, g2, g3, g1),
T : (g∞, g0, g1, g2, g3, g4) 7→ (g∞, g1, g2, g3, g4, g0),
σu : (g∞, g0, g1, g2, g3, g4) 7→ (g∞, g0, gu , g2u , g3u , g4u),

(5)

where σu ∈ G5.
Further by using (4), (5) and the following lemma, we can compute explicitly the Galois actions on the

generalized Weber functions of level 5.

Lemma 2.5. Let N = pr be a power of a rational prime number. Let
[ a b
c d
]
∈ SL2(Z/NZ) so that either a or c is

relatively prime to N. If gcd(c, N) = 1, let y ≡ (1 + a)c−1 (mod N). Otherwise, let z ≡ (1 + c)a−1 (mod N). Then
we have [

a b
c d

]
≡

{
TySTcSTdy−b if gcd(c, N) = 1,
ST−zST−aSTbz−d if gcd(a, N) = 1,

(mod N).

Proof. See [7, §5].

Remark 2.6. We see that the Galois conjugates of gν(τ) for ν ∈ {0, 1, 2, 3, 4} ∪ {∞} in F5 are given by

gσν (τ) = gν′ (τ) for some ν′ ∈ {0, 1, 2, 3, 4} ∪ {∞}

for any σ ∈ GL2(Z/5Z)/{±I2}.

On the other hand, the generalizedWeber functions of level 5 have the following algebraic relations with the
j-invariant.

Lemma 2.7. g0(τ), . . . , g4(τ), and g∞(τ) are the six distinct roots of

(X2 + 10X + 5)3 − j(τ) · X ∈ Z[j(τ)][X].

Proof. See [5, §72].
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3 The singular values of Weber functions
Let D ≡ 0, 1 (mod 4) be an imaginary quadratic discriminant. Then, the singular values of the generalized
Weber functions of level 5 evaluated at τD lie in a �nite abelian extension of an imaginary quadratic �eld
by the theory of complex multiplication (See [11] and [3, §15]). In particular, there is a useful criterion for
determining whether the values belonging to the ring class �eld HD so that we can illustrate the Galois action
of C(D) ∼= Gal(HD/K) by Shimura’s reciprocity law.

Let F(X) denote the minimal polynomial of τD overQ, namely,

F(X) =
{
X2 − D/4 if D ≡ 0 (mod 4),
X2 + X + (1 − D)/4 if D ≡ 1 (mod 4).

Proposition 3.1. Let n be a positive integer prime to 6 and k be an integer satisfying k ≡ 0 (mod 24) and
F(−k) ≡ 0 (mod n). If r is an even integer such that r · (n − 1) ≡ 0 (mod 24), then we haveη

(
τD+k
n

)
η(τD)

r

∈ HD .

Proof. See [12, Theorem 20].

From the above proposition, we obtain the following class invariants.

Lemma 3.2. For an imaginary quadratic discriminant D ≡ � (mod 100) with gcd(D, 5) = 1, the values
g2(τD), g3(τD) if D ≡ 0 (mod 4), D ≡ 1 (mod 5)
g1(τD), g4(τD) if D ≡ 0 (mod 4), D ≡ 4 (mod 5)
g0(τD), g1(τD) if D ≡ 1 (mod 4), D ≡ 1 (mod 5)
g2(τD), g4(τD) if D ≡ 1 (mod 4), D ≡ 4 (mod 5)

are class invariants over K = Q(τD).

Proof. Since j(τ) ∈ Q(gν(τ)) by Lemma 2.7, we have

HD = K(j(τD)) ⊆ K(gν(τD))

for each ν ∈ {0, . . . , 4} ∪ {∞}. Conversely, if we put n = 5, r = 6, and k = kν for each ν ∈ {0, . . . , 4} in
Proposition 3.1, then we can determine the values of ν such that gν(τD) ∈ HD.

It is well known that the form class group C(D) = Q0
D/Γ(1) is isomorphic to Gal(HD/K) (See [3, Theorem

3.9]). Let Q = [a, b, c] ∈ Q0
D be a primitive quadratic form. For each prime integer p, we de�ne the matrix

MQ,p ∈ GL2(Z/pZ) as

(i) for D ≡ 0 (mod 4),

MQ, p =



[
a b/2
0 1

]
if p - a,[

−b/2 −c
1 0

]
if p | a and p - c,[

−a − b/2 −c − b/2
1 −1

]
if p | a and p | c,

(6)
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(ii) for D ≡ 1 (mod 4),

MQ, p =



[
a (b − 1)/2
0 1

]
if p - a,[

−(b + 1)/2 −c
1 0

]
if p | a and p - c,[

−a − (b + 1)/2 −c + (1 − b)/2
1 −1

]
if p | a and p | c.

(7)

Note that for a given N ≥ 2, we can obtain a unique matrixMQ in GL2(Z/NZ) satisfyingMQ ≡ MQ, p (mod pr)
for all primes p with pr||N by Chinese remainder theorem.

Then, Shimura’s reciprocity law tells us that

Proposition 3.3. For f ∈ FN and Q ∈ C(D) ∼= Gal(HD/K), we have

f (τD)Q
−1

= fMQ (τQ),

where Q−1 denotes the inverse of Q in C(D).

Proof. See [13, §6].

Remark 3.4. (i) The principal form{[
1, 0, −D/4

]
if D ≡ 0 (mod 4),[

1, 1, (1 − D)/4
]
if D ≡ 1 (mod 4)

represents the identity class in C(D) ([3, Theorem 3.9]).
(ii) The form class group C(D) is usually represented by reduced quadratic forms Q = [a, b, c] ∈ Q0

D
characterized by the condition

(−a < b ≤ a < c or 0 ≤ b ≤ a = c) and b2 − 4ac = D

([3, Theorem 2.8]). One can easily derive that if the class of Q is not the identity, then

2 ≤ a ≤
√
−D/3.

(iii) Let hD be the class number of an imaginary quadratic discriminant D. Then, it is well known that
hD = 1 if and only if

D = −3, −4, −7, −8, −11, −12, −16, −19, −27, −28, −43, −67, −163

([3, Theorem 7.30]).

We observe that the pair of class invariants appearing in Lemma 3.2 are not necessarily real numbers.
However, it is guaranteed that their sums or products are real numbers for arbitrary discriminants D by the
following lemma.

Lemma 3.5. We have {
gν(τD) = g−ν(τD) if D ≡ 0 (mod 4),
gν(τD) = g1−ν(τD) if D ≡ 1 (mod 4),

for each ν ∈ {0, 1, 2, 3, 4}. Here, the indices−ν and1−ν are integers in a complete set of residues {0, 1, 2, 3, 4}
modulo 5 such that ν + (−ν) ≡ 0 (mod 5) and ν + (1 − ν) ≡ 1 (mod 5).
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Proof. Let B = 0 if D ≡ 0 (mod 4) and B = −1 if D ≡ 1 (mod 4) so that

τD = B +
√
D

2 and qD = e2πiτD = eBπi · rD , where rD = |qD| = e−π
√
−D .

By Remark 2.4, for ν ∈ {0, 1, 2, 3, 4}, we have

ζ −ν5 · q−1/5
D ·

∞∏
n=1

(
1 − ζ νn5 qn/5

D
1 − qnD

)6

= ζ −ν5 · e−Bπi/5 · r−1/5
D ·

∞∏
n=1

(
1 − ζ νn5 · enBπi/5 · rn/5

D
1 − enBπi · rnD

)6

= e(−2ν−B)πi/5 · r−1/5
D ·

∞∏
n=1

(
1 − en(2ν+B)πi/5 · rn/5

D
1 − enBπi · rnD

)6

.

One can see that the complex numbers appearing in the above product are of the form

e(−2ν−B)πi/5 and en(2ν+B)πi/5 for all n ≥ 1.

Then, we �nd that only ν′ ∈ {0, 1, 2, 3, 4} with B + ν + ν′ ≡ 0 (mod 5) satisfy

e(−2ν−B)πi/5 · e(−2ν′−B)πi/5 = 1, en(2ν+B)πi/5 · en(2ν′+B)πi/5 = 1 for all n ≥ 1.

This completes the proof.

4 Real valued class invariants from the generalized Weber
functions of level 5

In this section, we construct a real valued class invariants from the generalizedWeber functions of level 5 by
using Shimura’s reciprocity law and the lemmas on the absolute values of Galois conjugates.We shall assume
that D ≡ � (mod 100) and gcd(D, 5) = 1, i.e. 5 splits completely in K = Q(τD).

We start with the basic inequalities.

Lemma 4.1. We have

(i) 1 + X < eX , for all X > 0.
(ii) If 0 < X ≤ 1/11, then

1
1 − X ≤ 1 + 1.1X.

Proof. The proofs of (i) and (ii) are straightforward by basic calculus.

Lemma 4.2. Let x + yi ∈ H and r = e−2πy.

(i) If 0 < r < 1/11, then
∣∣g∞(x + yi)

∣∣ < 53 · r · e
6r5

1−r5
+ 6.6r

1−r .

(ii) If 0 < r < 1/11, then
∣∣gν(x + yi)

∣∣ < r−1/5 · e
6r1/5

1−r1/5 + 6.6r
1−r for all ν ∈ {0, 1, 2, 3, 4}.

(iii) If 0 < r1/5 < 1/11, then
∣∣gν(x + yi)

∣∣ > r−1/5 · e−
6.6r1/5

1−r1/5 −
6.6r
1−r for all ν ∈ {0, 1, 2, 3, 4}.

Proof. (i) We deduce that

∣∣g∞(x + yi)
∣∣ ≤ 53 · r ·

∞∏
n=1

(
1 + r5n

1 − rn

)6
by Remark 2.4

< 53 · r ·
∞∏
n=1

(
1 + r5n

)6 (
1 + 1.1 · rn

)6 by Lemma 4.1 (ii)

< 53 · r ·
∞∏
n=1

(
er

5n)6 (
e1.1rn

)6
by Lemma 4.1 (i)
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= 53 · r · e6·
∑∞

n=1 r
5n+6.6·

∑∞
n=1 r

n

= 53 · r · e
6r5

1−r5
+ 6.6r

1−r .

(ii) The proof is similar to the proof of (i).
(iii) We establish that

|gν(x + yi)| ≥ r−1/5 ·
∞∏
n=1

(
1 − rn/5

1 + rn

)6

by Remark 2.4

> r−1/5 ·
∞∏
n=1

(
1 − rn/5

)6
·
(

1 − rn
)6 since 1

1 + X > 1 − X for all X > 0

> r−1/5 ·
∞∏
n=1

(
e−1.1·rn/5)6 (

e−1.1·rn
)6

by Lemma 4.1 (i),(ii)

= r−1/5 · e−6.6·
∑∞

n=1 r
n/5−6.6·

∑∞
n=1 r

n

= r−1/5 · e−
6.6r1/5

1−r1/5 −
6.6r
1−r .

Extending the arguments in [6, §6], we achieve the following theorems.

Theorem 4.3. For an imaginary quadratic discriminant D ≤ −31, we assume that D ≡ � (mod 100) and
gcd(D, 5) = 1. Then the singular values

gprod(τD) =


g2(τD) · g3(τD) if D ≡ 0 (mod 4), D ≡ 1 (mod 5),
g1(τD) · g4(τD) if D ≡ 0 (mod 4), D ≡ 4 (mod 5),
g0(τD) · g1(τD) if D ≡ 1 (mod 4), D ≡ 1 (mod 5),
g2(τD) · g4(τD) if D ≡ 1 (mod 4), D ≡ 4 (mod 5)

are real-valued class invariants over K = Q(τD).

Proof. We may assume that hD ≥ 2 so that D ≤ −24 by Remark 3.4 (iii). Let Q = [a, b, c] ∈ Q0
D be a non-

principal reduced form. By Proposition 3.3 and Remark 2.6, we have

(gprod(τD))Q
−1

= gν1 (τQ) · gν2 (τQ)

for some ν1, ν2 ∈ {0, . . . , 4} ∪ {∞}. Further by the above de�nition of gprod and Lemma 3.5, we see that

|gprod(τD)| = |gν(τD)|2 for some ν ∈ {0, 1, 2}.

Therefore, it su�ces to show that
|gν(τD)| > |gν′ (τQ)|

for all ν′ ∈ {0, . . . , 4} ∪ {∞}.
As in the proof of Lemma 3.5, let

qD = e2πiτD , qQ = e2πiτQ and rD = |qD| = e−π
√
−D , rQ = |qQ| = e−π

√
−D/a .

One can immediately see that for D ≤ −24,

r1/5
D = e−π

√
−D/5 < 1/11 and r1/2

D ≤ rQ = r1/a
D ≤ e−π

√
3 < 1/11

since 2 ≤ a ≤
√
−D/3 from Remark 3.4 (ii). Then, we get

|g∞(τQ)| < 53 · rQ · e
6r5Q

1−r5Q
+ 6.6rQ

1−rQ by Lemma 4.2 (i)
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≤ 53 · e−π
√

3 · e
6e−5π

√
3

1−e−5π
√

3 + 6.6e−π
√

3

1−e−π
√

3 because rQ ≤ e−π
√

3 (8)
≈ 0.55747

and

|gν′ (τQ)| < r−1/5
Q · e

6r1/5
Q

1−r1/5
Q

+ 6.6rQ
1−rQ by Lemma 4.2 (ii)

≤ r−1/10
D · e

6e−π
√

3/5

1−e−π
√

3/5 + 6.6e−π
√

3

1−e−π
√

3 because r1/2
D ≤ rQ ≤ e−π

√
3 (9)

≈ 21.66520 · r−1/10
D

for ν′ ∈ {0, 1, 2, 3, 4}. Further we have

|gν(τD)| > r−1/5
D · e

−
6.6r1/5

D
1−r1/5

D
− 6.6rD

1−rD by Lemma 4.2 (iii).

Then we deduce that∣∣∣∣g∞(τQ)
gν(τD)

∣∣∣∣ ≤ 0.55747 · r1/5
D · e

6.6r1/5
D

1−r1/5
D

+ 6.6rD
1−rD

= 0.55747 · e−π
√
−D/5 · e

6.6e−π
√
−D/5

1−e−π
√
−D/5

+ 6.6e−π
√
−D

1−e−π
√
−D since rD = e−π

√
−D

≤ 0.55747 · e−π
√

24/5 · e
6.6e−π

√
24/5

1−e−π
√

24/5 + 6.6e−π
√

24

1−e−π
√

24 ≈ 0.03530 < 1 for D ≤ −24

and ∣∣∣∣gν′ (τQ)
gν(τD)

∣∣∣∣ ≤ 21.66520 · r−1/10
D · r1/5

D · e
6.6r1/5

D
1−r1/5

D
+ 6.6rD

1−rD

= 21.66520 · r1/10
D · e

6.6r1/5
D

1−r1/5
D

+ 6.6rD
1−rD

= 21.66520 · e−π
√
−D/10 · e

6.6e−π
√
−D/5

1−e−π
√
−D/5

+ 6.6e−π
√
−D

1−e−π
√
−D since rD = e−π

√
−D

≤ 21.66520 · e−π
√

99/10 · e
6.6e−π

√
99/5

1−e−π
√

99/5 + 6.6e−π
√

99

1−e−π
√

99 ≈ 0.96330 < 1 for D ≤ −99

for all ν′ ∈ {0, 1, 2, 3, 4}. Hence we obtain the assertion for D ≤ −99.
For the remaining �nite cases where −96 ≤ D ≤ −31, we observe that

|gν′ (τQ)| ≤ r−1/5
Q · e

6r1/5
Q

1−r1/5
Q

+ 6.6rQ
1−rQ = r−1/5a

D · e
6r1/5a
D

1−r1/5a
D

+
6.6r1/aD
1−r1/aD because rQ = r1/a

D

for ν′ ∈ {0, 1, 2, 3, 4} and a ≥ 2. We then deduce that

∣∣∣∣gν′ (τQ)
gν(τD)

∣∣∣∣ < r1/5−1/5a
D · e

6r1/5a
D

1−r1/5a
D

+
6.6r1/aD
1−r1/aD

+
6.6r1/5

D
1−r1/5

D
+ 6.6rD

1−rD

= e−π
√
−D·(1/5−1/5a) · e

6e−π
√
−D/5a

1−e−π
√
−D/5a

+ 6.6e−π
√
−D/a

1−e−π
√
−D/a

+ 6.6e−π
√
−D/5

1−e−π
√
−D/5

+ 6.6e−π
√
−D

1−e−π
√
−D . (10)

By using the algorithm for counting reduced forms (see [14, Algorithm 5.3.5]), we can make the list of the
actual values of a for each D (see Table 1 below). Evaluating (10) at those values, we attain the assertion for
−96 ≤ D ≤ −31.

Therefore, we conclude that the only reduced form in Q0
D that �xes gprod(τD) is the principal form, which

represents the identity in the group C(D) ∼= Gal(HD/K).
This completes the proof of our theorem by Galois theory.
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Table 1: The coe�cients of x2 of non-principal reduced form Q = [a, b, c] ∈ C(D) for D ≡ � (mod 100) relatively prime to 5 for
D > −200.

D a D a D a D a
−24 2 −71 2, 3, 4 −116 2, 3, 5 −159 2, 3, 4, 5, 6
−31 2 −76 4 −119 2, 3, 4, 5, 6 −164 2, 3, 5, 6
−36 2 −79 2, 4 −124 5 −171 5, 7
−39 2, 3 −84 2, 3, 5 −131 3, 5 −176 3, 4, 5
−44 3 −91 5 −136 2, 5 −179 3, 5
−51 3 −96 3, 4, 5 −139 5 −184 2, 5
−56 2, 3 −99 5 −144 4, 5 −191 2, 3, 4, 5, 6
−59 3 −104 2, 3, 5 −151 2, 4, 5 −196 2, 5
−64 4 −111 2, 3, 4, 5 −156 3, 5 −199 2, 4, 5, 7

Remark 4.4. In fact, we can see that Theorem 4.3 is still valid for D = −24. We have

C(−24) = {Q0 = [1, 0, 6], Q1 = [2, 0, 3]}

so that the corresponding CM points are given by

τQ0 = τD =
√
−24
2 =

√
−6 and τQ1 =

√
−24
4 =

√
−6
2 .

Since
gprod(τD)Q

−1
1 =

(
g2(τD) · g3(τD)

)Q−1
1 = g1(τQ1 ) · g4(τQ1 )

by Proposition 3.3, it is enough to show that∣∣∣g2
(√
−6
)∣∣∣ > ∣∣∣g1

(√
−6/2

)∣∣∣ .
From Lemma 4.2 (iii), a lower bound of

∣∣g2
(√
−6
)∣∣ is given by

∣∣∣g2
(√
−6
)∣∣∣ ≥ e2π

√
6/5 · e−

6.6e−2π
√

6/5

1−e−2π
√

6/5
− 6.6e−2π

√
6

1−e−2π
√

6 > 15.79269.

On the other hand, for an upper bound of
∣∣g1
(√
−6/2

)∣∣, we observe that

∞∏
n=1

(
1 − ζ n5 qn/5

Q1

)6

(
1 − qnQ1

)6 =
∞∏
t=0

4∏
s=1

(
1 − ζ 5t+s

5 q(5t+s)/5
Q1

)6
=
∞∏
t=0

4∏
s=1

(
1 − ζ s5qt+s/5

Q1

)6

since
1 − ζ n5 qn/5 = 1 − ζ 5n0

5 q5n0/5 = 1 − qn0 for n = 5n0.

For each 1 ≤ s ≤ 4, we then obtain∣∣∣1 − ζ s5qt+s/5
Q1

∣∣∣2 =
(

1 − rt+s/5
Q1

cos 2sπ
5

)2
+
(
rt+s/5
Q1

sin 2sπ
5

)2
since qQ1 = rQ1 = e−π

√
6 ∈ R

= 1 − 2rt+s/5
Q1

cos 2sπ
5 + r2(t+s/5)

Q1
.

Then, it is routine to check that

4∏
s=1

(
1 − 2rt+s/5

Q1
cos 2sπ

5 + r2(t+s/5)
Q1

)3
=

4∏
s=1

(
1 − 2e−π

√
6·(t+s/5) cos 2sπ

5 + e−2π
√

6·(t+s/5)
)3
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is a monotone increasing function for t ≥ 1 and has the limit 1 when t → ∞. Moreover, its value at t = 0 is
less than 1. Hence we get∣∣∣g1

(√
−6/2

)∣∣∣ < r−1/5
Q1

= eπ
√

6/5 ≤ 4.66021 < 15.79269 <
∣∣∣g2
(√
−6
)∣∣∣ .

Note that the minimal polynomial of gprod(τD) is given by(
X − g2(

√
−6) · g3(

√
−6)
)(
X − g1(

√
−6/2) · g4(

√
−6/2)

)
= X2 − 750X + 15625.

Theorem 4.5. For an imaginary quadratic discriminant D, we assume that D ≡ � (mod 100) and gcd(D, 5) =
1. Then the singular values de�ned by

gsum(τD) =


g2(τD) + g3(τD) if D ≡ 0 (mod 4), D ≡ 1 (mod 5), D ≤ −44,
g1(τD) + g4(τD) if D ≡ 0 (mod 4), D ≡ 4 (mod 5), D ≤ −56,
g0(τD) + g1(τD) if D ≡ 1 (mod 4), D ≡ 1 (mod 5), D ≤ −59,
g2(τD) + g4(τD) if D ≡ 1 (mod 4), D ≡ 4 (mod 5), D ≤ −71,

are real-valued class invariants over K = Q(τD).

Proof. We prove the case D ≡ 0 (mod 4), D ≡ 1 (mod 5). The proofs for the other cases can be done similarly.
If hD = 1, there is nothing to prove. Therefore, we may assume that hD ≥ 2. Let Q = [a, b, c] ∈ Q0

D be a
non-principal reduced form so that

2 ≤ a ≤
√
−D/3

by Remark 3.4 (ii). From the de�nition of gsum(τD) and Lemma 3.5, we have

gsum(τD) = g2(τD) + g3(τD) = 2 · Re(g2(τD)).

Further by Remark 2.6 and Proposition 3.3, we see that

gsum(τD)Q
−1

= gν1 (τQ) + gν2 (τQ) for some ν1, ν2 ∈ {0, 1, 2, 3, 4} ∪ {∞}. (11)

Hence, it is enough to prove that ∣∣Re(g2(τD))
∣∣ > ∣∣gν(τQ)

∣∣
for all ν ∈ {0, 1, 2, 3, 4} ∪ {∞}.

We estimate a lower bound of
∣∣Re(g2(τD))

∣∣. Let us set
qD = e2πiτD and rD = |qD| = e−π

√
−D .

In fact, qD = rD for D ≡ 0 (mod 4). By Remark 2.4, we then have

g2(τD) = ζ −2
5 · r−1/5

D ·
∞∏
n=1

(
1 − ζ 2n

5 rn/5
D

1 − rnD

)6

.

We put

zD = ζ −2
5 · r−1/5

D =
(

cos 4π
5 − i sin 4π

5

)
· r−1/5
D and wD =

∞∏
n=1

(
1 − ζ 2n

5 · rn/5
D

1 − rnD

)6

so that g2(τD) = zD · wD. Furthermore, let

L(D) = e−
6.6e−π

√
−D/5

1−e−π
√
−D/5

− 6.6e−π
√
−D

1−e−π
√
−D and U(D) = e

6e−π
√
−D/5

1−e−π
√
−D/5

+ 6.6e−π
√
−D

1−e−π
√
−D .

One can check that L(D) and U(D) are decreasing and increasing functions for D ≤ −44, respectively. By
substituting e−π

√
−D for r in Lemma 4.2 (ii) and (iii), we see that

L(D) < |wD| < U(D) for D ≤ −44.
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Now we compute |Re(wD)| and |Im(wD)| by estimating the argument of wD. For −π ≤ θ, θn ≤ π, we let wD =
|wD| · eθi and θn be the argument of

1 − ζ 2n
5 · rn/5

D
1 − rnD

=
1 − e4nπi/5 · rn/5

D
1 − rnD

for each n. Since
1 − rn/5

D · e4nπi/5 =
(

1 − rn/5
D cos 4nπ

5

)
− i rn/5

D sin 4nπ
5 ,

we get

| tan θn| =

∣∣∣∣∣ rn/5
D sin 4nπ

5

1 − rn/5
D cos 4nπ

5

∣∣∣∣∣ ≤ rn/5
D

1 − rn/5
D

≤ rn/5
D · (1 + 1.1 · rn/5

D ) by Lemma 4.1 (ii).

De�ne

Θ(D) = 6e−π
√
−D/5

1 − e−π
√
−D/5

+ 6.6e−2π
√
−D/5

1 − e−2π
√
−D/5

which is an increasing function for D ≤ −44. Then, by using the fact that x ≤ tan x for 0 < x < π/2, we obtain
that

|θ| =

∣∣∣∣∣6 ·
∞∑
n=1

θn

∣∣∣∣∣ ≤ 6 ·
∞∑
n=1
| tan θn| ≤ 6 ·

∞∑
n=1

(
rn/5
D + 1.1r2n/5

D

)
≤

6r1/5
D

1 − r1/5
D

+
6.6r2/5

D

1 − r2/5
D

= Θ(D) because rD = e−π
√
−D .

Thus, by using that sin x ≤ x for x > 0, we get

|Im(wD)| = |wD| · | sin θ| ≤ |wD| · |θ| < U(D) · Θ(D). (12)

We then arrive at
|Re(wD)| =

√
|wD|2 − |Im(wD)|2 ≥

√
L(D)2 − U(D)2 · Θ(D)2 . (13)

Note that
L(D)2 − U(D)2 · Θ(D)2 > 0 for D ≤ −44.

Therefore, we achieve by (12), (13) that∣∣Re(g2(τD))
∣∣ =
∣∣Re(zD) · Re(wD) − Im(zD) · Im(wD)

∣∣
≥
∣∣|Re(zD)| · |Re(wD)| − |Im(zD)| · |Im(wD)|

∣∣
=
∣∣∣∣|Re(wD)| ·

∣∣∣∣cos 4π
5

∣∣∣∣ − |Im(wD)| ·
∣∣∣∣sin 4π

5

∣∣∣∣∣∣∣∣ · r−1/5
D (14)

>
(√

L(D)2 − U(D)2 · Θ(D)2 · cos π5 − U(D) · Θ(D) · sin π5

)
· eπ
√
−D/5.

On the other hand, from (8), we have

|g∞(τQ)| < 0.55747

for any reduced form Q ∈ Q0
D. By evaluating L(D), U(D) and Θ(D) at D = −44, we obtain from (14) that∣∣Re(g2(τD))
∣∣ > 0.66224 · eπ

√
44/5 ≈ 42.76270 > |g∞(τQ)| for D ≤ −44.

Furthermore, by (9), we have

|gν(τQ)| ≤ 21.66520 · r−1/10
D = 21.66520 · eπ

√
−D/10

for ν ∈ {0, 1, 2, 3, 4}. Then, by specializing L(D), U(D) and Θ(D) at D = −124, we get from (14) that∣∣Re(g2(τD))
∣∣ > 0.80087 · eπ

√
−D/5 for D ≤ −124.
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Hence, we achieve that for D ≤ −124,∣∣∣∣ gν(τQ)
Re(g2(τD))

∣∣∣∣ < 21.66520
0.80087 · e−π

√
124/10 ≈ 0.81827 < 1.

The �nite remaining cases are given by

D = −104, −84, −64, −44.

We see that for ν ∈ {0, 1, 2, 3, 4},

|gν(τQ)| ≤ r−1/5
Q · e

6r1/5
Q

1−r1/5
Q

+ 7.2rQ
1−rQ by Lemma 4.2 (ii)

= r−1/5a
D · e

6r1/5a
D

1−r1/5a
D

+
7.2r1/aD
1−r1/aD because rQ = r1/a

D

= eπ
√
−D/5a · e

6e−π
√
−D/5a

1−e−π
√
−D/5a

+ 7.2e−π
√
−D/a

1−e−π
√
−D/a .

By evaluating (14) at D = −44 and the last formula at the actual values of a (see Table 1) of non-principal
reduced forms Q = [a, b, c] ∈ Q0

D, we again achieve that∣∣∣∣ gν(τQ)
Re(g2(τD))

∣∣∣∣ < 1

for the remaining cases.
Hence, we conclude from (11) that∣∣gsum(τD)

∣∣ = 2 · Re(g2(τD)) >
∣∣gν1 (τD)

∣∣ +
∣∣gν2 (τD)

∣∣ ≥ |(gsum(τD))Q
−1
|

for any reduced forms Q representing non-identity classes in C(D) ∼= Gal(HD/K). This completes the proof by
Galois theory.

Remark 4.6. (i) The �nite exceptional cases of D with hD ≥ 2 in the above theorem are given by D =
−24, −31, −36, −39, −51. Using Proposition 3.3, we can directly compute the minimal polynomials of

gsum(τD) =


g2(τD) + g3(τD) if D = −24,
g1(τD) + g4(τD) if D = −36,
g0(τD) + g1(τD) if D = −39,
g2(τD) + g4(τD) if D = −31, −51

overQ, namely,

X2 + 56X + 392 if D = −24, h−24 = 2,
X3 + 57X2 + 991X + 6383 if D = −31, h−31 = 3,
X2 − 16X + 16 if D = −36, h−36 = 2,
X4 − 29X3 − 2321X2 − 37041X − 187867 if D = −39, h−39 = 4,
X2 + 68X + 68 if D = −51, h−51 = 2,

which are irreducible overQ. Thus, we can establish Theorem 4.3 again.
(ii) In fact, for D = −24, −36, −39, −51, we can apply the same argument as in Remark 4.4. However, we

shall not repeat the same computations.

Example 4.7. Let D = −96 and K = Q(
√
−6). Then we have

C(−96) = {Q0 = [1, 0, 24], Q1 = [3, 0, 8], Q2 = [4, 4, 7], Q3 = [5, 2, 5]}

with
τ−96 = τQ0 = 2

√
−6, τQ1 = 2

√
−6

3 , τQ2 = −1 +
√
−16

2 , τQ3 = −2 + 2
√
−6

5 .
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By Proposition 3.3, the class polynomials of

gprod(τ−96) = g1(τ−96) · g4(τ−96) and gsum(τ−96) = g1(τ−96) + g4(τ−96)

are given by

min(gprod(τ−96), K) =(X − g1(τQ0 ) · g4(τQ0 )) · (X − g2(τQ1 ) · g3(τQ1 ))
· (X − g2(τQ2 ) · g4(τQ2 )) · (X − g0(τQ3 ) · g∞(τQ3 ))

=X4 − 221000X3 + 60281250X2 − 3453125000X + 244140625

and

min(gsum(τ−96), K) =(X − (g1(τQ0 ) + g4(τQ0 ))) · (X − (g2(τQ1 ) + g3(τQ1 )))
· (X − (g2(τQ2 ) + g4(τQ2 ))) · (X − (g0(τQ3 ) + g∞(τQ3 )))

=X4 − 236X3 − 11712X2 − 125528X + 20164,

respectively.

5 Modular trace of a weakly holomorphic modular function
Throughout this section, we shall assume that an imaginary quadratic discriminant D = dK · t2 is congruent
to a square modulo 4N2 and relatively prime to N.

For each positive integer N, let

Γ = Γ0
0(N) =

{[
a b
c d

]
∈ Γ(1)

∣∣∣∣∣ b ≡ c ≡ 0 (mod N)
}

which is a congruence subgroup of level N. We denote

QD,(N) =
{

[a, b, c] ∈ QD | a ≡ c ≡ 0 (mod N)
}
.

Then, the elements of QD,(N) can be written as Q = [Na, b, Nc]. From (2), one can check that Γ acts on QD,(N)
and the action preserves the value of b (mod 2N2). Thus we obtain the following decomposition

QD,(N)/Γ =
⋃

β∈Z/2N2Z

QD,(N),β/Γ ,

where QD,(N),β =
{

[Na, b, Nc] ∈ QD | b ≡ β (mod 2N2)
}
for each β ∈ Z/2N2Z.

Remark 5.1. (i) The values β with QD,(N),β ≠ ∅ can be determined by the congruence equation β2 ≡
D (mod 4N2). If N has ` distinct prime divisors, then the number of such β is equal to 2` by Chinese
remainder theorem.

(ii) Let Od be a quadratic order containing OD in K = Q(τD). Then we can write d = dK · (t/t′)2 for some
positive divisor t′ of t. By assigning

Q = [Na, b, Nc] (with gcd(Na, b, Nc) = t′) 7−→ Q̃ = 1
t′ [Na, b, Nc]

for each t′|t, we then obtain the decomposition

QD,(N),β =
⋃
d|D

t′ · Q0
d,(N),βt′−1 .

Moreover, we can easily see that τQ = τQ̃ and ΓQ = ΓQ̃.
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From now on, we assume thatQD,(N),β ≠ ∅ for some suitable β ∈ Z/2N2Z. LetQ0
D,(N),β ⊂ QD,(N),β be the subset

of primitive forms. Then, we have the following lemma.

Lemma 5.2. Wehavea canonical bijectionbetweenQD/Γ(1) (resp.Q0
D/Γ(1))andQD,(N),β/Γ (resp.Q0

D,(N),β/Γ).

Proof. See [15, Proposition in §I.1] and [6, Lemma 5.1].

Let f be a modular function on Γ. We de�ne the Zagier-type trace t(β)
f (D) of index D as

t(β)
f (D) =

∑
Q∈QD,(N),β/Γ

1
|ΓQ|

f (τQ),

where the weights of the summands are determined by the following lemma.

Lemma 5.3. For each Q ∈ QD,(N),β, we have

|ΓQ| =


2 if D = −4 · t2 and Q is Γ(1)-equivalent to [t, 0, t],
3 if D = −3 · t2 and Q is Γ(1)-equivalent to [t, t, t],
1 otherwise.

In particular, if Q is primitive, then t should be 1.

Proof. It is a straighforward consequence from the fact that for each Q ∈ QD,

|Γ(1)Q| =


2 if Q is Γ(1)-equivalent to [t, 0, t],
3 if Q is Γ(1)-equivalent to [t, t, t],
1 otherwise.

Now we brie�y introduce the Bruinier-Funke modular trace of modular functions on Γ (see [4] for general
statements). Let

V(Q) =
{
X =

[
b a
c −b

] ∣∣∣∣∣ a, b, c ∈ Q

}
be the vector space of dimension 3 overQ consisting of trace zero 2×2 matrices. It becomes a quadratic space
of signature (1, 2) with the quadratic form q(X) = det(X) and the associated bilinear form (X, Y) = −tr(XY)
for X, Y ∈ V(Q). One can see that the group SL2(Q) acts on V by conjugation γ.X = γXγ−1 for X ∈ V(Q) and
γ ∈ SL2(Q).

LetD be the space of positive lines in V(R) = V(Q)⊗R, namely,

D =
{
z ⊂ V(R) | dim(z) = 1, q|z > 0

}
.

We can identifyD withH by assigning τ = x + yi ∈ H to the line spanned by

Xτ = 1
y

[
−1

2 (τ + τ̄) ττ̄
−1 1

2 (τ + τ̄)

]
.

By direct computation, one can easily check that q(Xτ) = 1 and γ.Xτ = X(γτ) for γ ∈ SL2(R). Then, the CM
points inH can be viewed as positive lines RX with the vectors X ∈ V(Q) of positive norms.

Let L be an even Z-lattice of V(Q) de�ned by

L =
{[

Nb c
a −Nb

] ∣∣∣∣∣ a, b, c ∈ Z

}
.

Then, the level of L is 4N2 and the dual lattice is given by

L] =
{[

Nb c
a −Nb

] ∣∣∣∣∣ a, c ∈ Z and b ∈ 1
2N2 Z

}
. (15)
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We then see that Γ acts on L by conjugation and acts trivially on the discriminant group L]/L. Furthermore,
the group L]/L is isomorphic to a cyclic group Z/2N2Z. Therefore, each coset can be written in the form

L + h =
{
X =

[
Nb + h/2N c

−a −Nb − h/2N

] ∣∣∣∣∣ a, b, c ∈ Z

}
(16)

for h ∈ {0, 1, . . . , 2N2 − 1}.
Meanwhile, by using the fact that the stabilizer of each X ∈ V(R) in SL2(R) ∼= SO(2) is compact, we get

that ΓX = (SL2(R))X ∩ Γ is �nite. Besides, if we let m be a positive rational number and h be a representative
in L]/L ∼= Z/2N2Z, the group Γ acts on the set

Lh,m = {X ∈ L + h | q(X) = m}

with the �nite number of orbits. Then, the modular trace of a weakly holomorphic modular function f on Γ
with respect to the lattice L for positive index m is de�ned by

MTLf (h,m) =
∑

X∈ΓN\Lh,m

1
|ΓX|

f (τX),

where τX is a CM point corresponding to the vector{
(1/
√
m) · X if a > 0,

(1/
√
m) · (−X) if a < 0.

The modular traces for zero or negative index are described by using a regularized integral or an in�nite
geodesic inH (See [4, De�nition 4.3]). Their explicit computations are given in [4, Proposition 4.7 and Remark
4.9]. We then have the following analytic property of modular traces.

Proposition 5.4. Let f be a weakly holomorphic modular function on Γ. Then the series∑
n�−∞

MTLf (h, n)qn

is the holomorphic part of a harmonic weak Maass form of weight 3/2 on Γ(4N2).

Proof. See [4, Theorem 4.5].

Remark 5.5. If h = 0, then the above series is the holomorphic part of a harmonicweakMaass form ofweight
3/2 on a bigger group Γ0(4N2) (See [4, §§3-4]).

Furthermore, the modular traces with respect to the lattice L can be related to the Zagier-type traces of
modular functions.

Proposition 5.6. We have
MTLf (β, −D/4N2) = t(β)

f (D) + t(−β)
f (D).

Proof. See [6, Lemma 2.3].

6 Modular property of Galois traces of class invariants
Let us assume that N = 5 and D is an imaginary quadratic discriminant such that D ≡ � (mod 100) and
gcd(D, 5) = 1. In this section, we shall identify the Galois traces of real-valued class invariants de�ned in
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Theorems 4.3 and 4.5 with the Fourier coe�cients of harmonic weak Maass forms of weight 3/2 by using the
Bruinier-Funke modular traces and Shimura’s reciprocity law. For N = 5, we recall that Γ = Γ0

0(5) and

L =
{[

5b c
a −5b

] ∣∣∣∣∣ a, b, c ∈ Z

}
.

Before we go further, we need some lemmas.

Lemma 6.1. g0 and g∞ are Γ-modular functions.

Proof. By the de�nition of Γ = Γ0
0(5), the only nontrivial transformation is given by the matrices γ ≡[ 2 0

0 3
]

(mod 5) in Γ. By Lemma 2.5, we have the decomposition[
2 0
0 3

]
≡ ST−3ST−2ST−3 (mod 5).

Using (5), we deduce that[
2 0
0 3

]
:

g0
S−→ g∞

T−3
−−→ g∞

S−→ g0
T−2
−−→ g3

S−→ g3
T−3
−−→ g0,

g∞
S−→ g0

T−3
−−→ g2

S−→ g2
T−2
−−→ g0

S−→ g∞
T−3
−−→ g∞.

This completes the proof.

For a given discriminant D, we choose β ∈ Z/50Z satisfying β2 ≡ D (mod 50) so that QD,(5),β is nonempty.

Lemma 6.2. Let Q = [5a, b, 5c] ∈ Q0
D,(5),β. Then we have{
(gprod(τD))Q

−1
= g0(τQ) · g∞(τQ),

(gsum(τD))Q
−1

= g0(τQ) + g∞(τQ).

Proof. Since D = b2 − 100ac and gcd(D, 5) = 1, we have D ≡ b2 (mod 5) and gcd(b, 5) = 1. From (6) and (7),
the corresponding matrix MQ ∈ GL2(Z/5Z)/{±I2} is given by

[
−5a − b/2 −5c − b/2

1 −1

]
=
[
−b/2 −b/2

1 −1

]
if D ≡ 0 (mod 4),[

−5a − (b + 1)/2 −5c + (1 − b)/2
1 −1

]
=
[
−(b + 1)/2 (1 − b)/2

1 −1

]
if D ≡ 1 (mod 4).

By Lemma 2.5, we obtain

[
−b/2 −b/2

1 −1

]
=
[

1 0
0 b

]
· Tb(1+2b)STb

−1
STb−1 if D ≡ 0 (mod 4),

[
−(b + 1)/2 (1 − b)/2

1 −1

]
=
[

1 0
0 b

]
· Tb(3+2b)STb

−1
STb−1 if D ≡ 1 (mod 4).

Since the computations for other cases are similar, we suppose that D ≡ 0 (mod 4) and D ≡ 1 (mod 5). Then,
we get

b = 1 :


g2

[
1 0
0 1

]
−−−−→ g2

T3
−→ g0

S−→ g∞
T1
−→ g∞

S−→ g0
T0
−→ g0,

g3

[
1 0
0 1

]
−−−−→ g3

T3
−→ g1

S−→ g4
T1
−→ g0

S−→ g∞
T0
−→ g∞,
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b = 4 :


g2

[
1 0
0 4

]
−−−−→ g3

T1
−→ g4

S−→ g1
T4
−→ g0

S−→ g∞
T3
−→ g∞,

g3

[
1 0
0 4

]
−−−−→ g2

T1
−→ g3

S−→ g3
T4
−→ g2

S−→ g2
T3
−→ g0.

This completes the proof by the de�nitions of gprod and gsum.

Following Kaneko’s description, themodi�ed Galois traces of gprod and gsum of index D are given byGTgprod (D) =
∑

Od⊃OD
2
ωd · TrHd/K(gprod(τd)),

GTgsum (D) =
∑

Od⊃OD
2
ωd · TrHd/K(gprod(τd)),

where Tr is the usual Galois trace.

Lemma 6.3. We have GTgprod (D) = t(β)
g0·g∞ (D) = t(−β)

g0·g∞ (D),

GTgsum (D) = t(β)
g0+g∞ (D) = t(−β)

g0+g∞ (D).

Proof. Since g0 · g∞ is Γ-modular function by Lemma 6.1, we deduce that

t(β)
g0·g∞ (D) =

∑
Q∈QD,(5),β/Γ

1
|ΓQ|

· g0(τQ) · g∞(τQ) by de�nition

=
∑
d|D

 ∑
Q̃∈Q0

d,(5),βt′−1 /Γ

1∣∣∣ΓQ̃∣∣∣ · g0(τQ̃) · g∞(τQ̃)

 by Remark 5.1 (ii)

=
∑
d|D

1∣∣∣ΓQ̃∣∣∣ ·
 ∑
Q̃∈Q0

d,(5),βt′−1 /Γ

gprod(τd)Q̃
−1

 by Lemmas 5.3 and 6.2

=
∑
d|D

1∣∣∣ΓQ̃∣∣∣ · TrHd/K(gprod(τd)) by Lemma 5.2

=
∑
d|D

2
ωd
· TrHd/K(gprod(τd)) by Lemma 5.3

= GTgprod (D),

where d = dK · t′2 runs over all discriminants of orders Od ⊃ OD in K = Q(τD). Similarly, we have

t(β)
g0+g∞ (D) = GTgsum (D).

Since GT is independent of the choice of β, we obtain the equalities on the right side.

By combining the above lemmas, we deduce the following theorem.

Theorem 6.4. Let D be an imaginary quadratic discriminant congruent to a square modulo 100 and relatively
prime to 5. Let β ∈ Z/50Z such that β2 ≡ D (mod 50). Then we have

GTgprod (D) = 1
2 · MTLg0·g∞ (β, −D/100) and GTgsum (D) = 1

2 · MTLg0+g∞ (β, −D/100).

Moreover, there are �nite principal partsA(τ) =
∑

m≤0 a(m)qm andB(τ) =
∑

m≤0 b(m)qm such that each of

A(τ) +
∑

D≡� (100)
gcd(D,5)=1

GTgprod (D)q−D/100
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and
B(τ) +

∑
D≡� (100)
gcd(D,5)=1

GTgsum (D)q−D/100

is the holomorphic part of a harmonic weak Maass form of weight 3/2 on Γ(100).

Proof. The �rst assertion directly comes from Lemmas 5.6 and 6.3. Precisely, if D ≡ β2 (mod 50) for some
β ∈ Z/50Z, we deduce thatMTLg0·g∞ (β, −D/100) = t(β)

g0·g∞ (D) + t(−β)
g0·g∞ (D) = 2 · GTgprod (D),

MTLg0+g∞ (β, −D/100) = t(β)
g0+g∞ (D) + t(−β)

g0+g∞ (D) = 2 · GTgsum (D).

For the second assertion, let h ∈ {0, 1, . . . , 49} with gcd(h, 5) = 1. Then, a vector X ∈ L + h is of the form

X =
[

5b + h/10 c
−a −5b − h/10

]
∈ L + h

from (16). If it has a positive norm −D/100 ∈ Q, then the corresponding point τX is a root of a positive de�nite
form

Q =
{

[5a, 50b + h, 5c] if a > 0,

[−5a, −50b − h, −5c] if a < 0,

whose discriminant is given by (50b + h)2 − 100ac ≡ h2 (mod 100). This implies that if gcd(h, 5) = 1, the
generating series of MTLg0·g∞ (h, −D/100) and MTLg0+g∞ (h, −D/100) only allow the terms q−D/100 with D ≡
� (mod 100) and gcd(D, 5) = 1. This completes the proof by Proposition 5.4.

Example 6.5. Let D = −96 and K = Q(
√
−6). If we choose β = 2, then we have

Q−96,(5),2/Γ =
{
Q0 = [25, 102, 105], Q1 = [20, −48, 30], Q2 = [20, 52, 35],
Q3 = [10, 52, 70], Q4 = [15, −48, 40], Q5 = [5, 52, 140]

}

with
τQ0 = −102+

√
−96

50 , τQ1 = 48+
√
−96

40 , τQ2 = −52+
√
−96

40 ,

τQ3 = −52+
√
−96

20 , τQ4 = 48+
√
−96

30 , τQ5 = −52+
√
−96

10 .

We obtain that  t(2)
g0·g∞ (−96) =

∑5
k=0
(
g0(τQk ) · g∞(τQk )

)
= 221750,

t(2)
g0+g∞ (−96) =

∑5
k=0
(
g0(τQk ) + g∞(τQk )

)
= 180.

On the other hand, we have

GTgprod (D) = TrH−24/K(gprod(τ−24) + TrH−96/K(gprod(τ−96)
= 221000 + 750 = 221750 by Remark 4.4 and Example 4.7

and

GTgsum (D) = TrH−24/K(gsum(τ−24) + TrH−96/K(gsum(τ−96)
= −56 + 236 = 180 by Remark 4.6 (i) and Example 4.7.
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