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Abstract: After the significant work of Zagier on the traces of singular moduli, Jeon, Kang and Kim showed
that the Galois traces of real-valued class invariants given in terms of the singular values of the classical Weber
functions can be identified with the Fourier coefficients of weakly holomorphic modular forms of weight
3/2 on the congruence subgroups of higher genus by using the Bruinier-Funke modular traces. Extending
their work, we construct real-valued class invariants by using the singular values of the generalized Weber
functions of level 5 and prove that their Galois traces are Fourier coefficients of a harmonic weak Maass form
of weight 3/2 by using Shimura’s reciprocity law.
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1 Introduction

Let D be a negative integer with D = 0, 1 (mod 4) so that D is an imaginary quadratic discriminant. More
explicitly, if we let

VD D=
TD:{ : if D = 0 (mod 4), )

=YD if h = 1 (mod 4),

then the Z-lattice O = [1p, 1] becomes a quadratic order of discriminant D = dg - t? in the imaginary
quadratic field K = Q(tp) where dg is a fundamental discriminant of K and a positive integer t is the conductor
of O D-

Let Qp be the set of all positive definite integral binary quadratic forms of discriminant D, namely,

Qp = {ax2 + bxy + cy? e Zlx,y]|a >0, b? - 4ac = D}.
The modular group I'(1) = SL,(Z)/{+I,} acts on the set Qp from the right by the rule

_Imm
’y_|:

. WJ : QG Y) = @ + bxy + ¢y’ = QV(%,y) = QX + 72¥, 13X + 74Y), ©)

where I, denotes the 2 x 2 identity matrix. Then the action induces an equivalence relation ~ on Qp as

Q: ~Q, ifandonlyif Q;=Qj forsome~ e I'(1).
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If we let Q% C Qp be the set of all primitive forms (i.e. gcd(a, b, ¢) = 1), then the set of equivalence classes
Q%/r(1) becomes a finite abelian group under Dirichlet composition which is called the form class group of
discriminant D and is denoted by C(D).

For each quadratic form Q = [a, b, c] = ax* + bxy + cy? € Qp, let Tq be the zero of Q(x, 1) = 0 in the
complex upper half plane H = {z € C | Im(z) > 0}, namely,

_-b+vD

Tq >a 3)

The classical j-invariant on H is a I'(1)-modular function defined by

3
(1 +2403°7 1 Y m3q">
q [, (1 -gm2

j(r) = =q ' +744 +196884q +21493760g° + -+,

where 7 € Hand g = e?™7. Letting H, be the ring class field of order O over K, we have
Hp = K(j(tp))
by the theory of complex multiplication. Furthermore, we have the classical isomorphism
Gal(Hp/K) = C(D) = 9/I'(1)

and the special values j(t) for all Q € QY /I'(1) become the Galois conjugates of j(rp) in Hp over K which are
called the singular moduli.

Let J(1) = j(T) - 744 be the normalized Hauptmodul on the modular group I'(1). In [1], Zagier defined the
modified Galois trace t;(D) of index D as

J(1q)
t](D) = Z Trray |2
QeQp/I(1) [T(1)q

where the sum allows the classes of imprimitive forms and I'(1) is the stabilizer of Q. Furthermore, Kaneko
[2] found another description for t;(D) as

Y= 3 o Y I,

04D0p aECl(Od)

where the first sum runs over all imaginary quadratic orders O; > Op, Cl(O4) denotes the O -ideal class
group which is isomorphic to Gal(H;/K) (see [3, §9]) and

6ifd=-3,
wg=1 4ifd=-4,
2 otherwise,

is the number of units in O,4. Therefore, we can see that the modified trace of ] is essentially a sum of usual
Galois traces.
Zagier proved that the generating series

- +2+) t(D)g° =g +2-248¢° +492¢" - 4119¢” +7256¢° + - -
D=1

is a weakly holomorphic modular form of weight 3/2 for the Hecke subgroup I'o(4). After Zagier’s work,
Bruinier and Funke [4] defined the modular traces of the CM values of modular functions for congruence
subgroups of arbitrary genus and showed that modular traces of the values of an arbitrary modular function
at Heegner points are Fourier coefficients of the holomorphic part of a harmonic weak Maass form of weight
3/2.
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On the other hand, it is well known that the value of every modular function at an imaginary quadratic
number lies in a ray class field of an imaginary quadratic field. In particular, we call the value f(7p) of a
modular function f(7) at T = Tp a class invariant if

K(f(tp)) = K(j(tp)),

following Weber [5]. We can easily see that the modular trace of the CM value of J(7) at a Heegner point is
naturally its Galois trace. However, it is not obvious to see whether the Galois trace of a given algebraic integer
is a modular trace and hence a Fourier coefficient of a certain automorphic form. In [6], the authors paid
attention to real-valued class invariants given in terms of the singular values of the classical Weber functions

~ =137 _n(%) (4 ~ n(H2)
foo - \/§ )1(1_) ’ fo - m’ fl - rl(T) ’ fz - U(T) s

where n(7) is the classical Dedekind’s eta-function. They proved that the modified Galois traces of those
invariants can be identified with the Fourier coefficients of weakly holomorphic modular forms of weight
3/2.

In this paper, we shall construct real-valued class invariants by using the generalized Weber functions of

level 5 given by
0=(1) =57 (n(sr))6, go(T) = ("(g))G, g1(1) = ('7(”5%))6’

TZ(T(),) n(7) 6 n(7) .
1472 T+48 T+24
20-(L5)), eo- (%) w0 - ()

(Theorems 4.3 and 4.5) by extending the argument of [6, §6]. Furthermore, we shall prove that their Galois
traces are the Fourier coefficients of holomorphic parts of weight 3/2 harmonic weak Maass forms (Theorem
6.4). To do this, we shall use the results on the Bruinier-Funke modular trace (Propositions 5.4 and 5.6) and
Shimura’s reciprocity law (Proposition 3.3).

2 Generalized Weber function of level 5

In this section, we shall briefly introduce some arithmetic properties of generalized Weber functions (See [5]
or [7, §4] for details). Throughout this paper, we let N be a positive integer.

Let {y = e?™/N pe the primitive N-th root of unity and let Fy be the field of modular functions on the
principal congruence group I'(N) = {v € I'(1) | y = I, (mod N)} whose Fourier coefficients lie in the N-th
cyclotomic field Q({y). Then, it is well known that Fy is a Galois extension over F; = Q(j(1)) with

The group GL,(Z/NZ)/{+I,} can be decomposed into

GL2(Z/NZ)[{I>} = Gy - I(N) = I'(N) - G, (4)

G{H

Each element 0, € Gy acts on the function f(7) € Fy by

ou€Gy : f@) = cng"™ s [ (D) =Y g,

n=ng nzng

where

ue (Z/NZ)X} .

where cj* denotes the image of ¢, € Q({y) via the automorphism of Q({y) defined by oy : {y — (k. Besides,
the action of I'(N) is given by
yeI(N) : f(r) = (1) = f(37),
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where ¥ € I'(1) is a preimage of ~ via the natural surjection I'(1) — I'(N) and T — 57 is the fractional linear
transformation with respect to 5.
Let n(1) = ¢/** ]2, (1 - q") be the classical Dedekind eta-function and

S= [0 _1} and T = [1 1}
10 01
be generators of I'(1). We have the following transformation formula of n(r) under the composition of I'(1).
Proposition 2.1. Let~ = [ 5] € I'(1). We may assume that
c20 and d>O0ifc=0.
We write ¢ = 229 . ¢ with ¢y odd and put co = A(c) = 1 if ¢ = O for convenience. Then,
n(y1) =e(y) - Ver+d-n(r) withRe (m) >0,

where
a ba+c(d(1-a*)-a)+3(a-1)co+3 A(c)(a®-1)
5(’7) = o * 624 .

Here, (%) is the Legendre symbol.
In particular, we have

noS(t)=V-ir-n(r) and noT(1) = {y - (7).

Proof. See [5, §38] and [8, §4]. O
The generalized Weber functions are defined by

n(%5)

Voon(1) = VN - 1ND g V(1) = TR

n(r)

Then, these functions have the following modular properties.

(teH, keZz).

Proposition 2.2. For a positive integer N and an integer k, we have

(i) Veo,n and vy y belong to Fyuy.
(ii) Let{rn}, IN be a set of integers indexed by the positive divisors of N.If gcd(N, 6) = 1 and k = 0 (mod 24),
then we have

Z(n - 1)rp = 0 (mod 24) if and only if H(vk,N)'” € Fy.
n|N n|N

Proof. See [9, Theorem 3.2]. O

From now on, let us consider the case N = 5. For each n € Z, let k, be an integer such that
kn=0(mod 24) and kn = n(mod 5).

We then define

6 o3 (nGD)° 6 '1(”%) 6
0 = ves @ =57 (10D ) gm0 = | 07

Lemma 2.3. Let n, n, and n; be integers. Then we have

(i) geo(T) and gn(t) belong to Fs.
(i) If ny = n, (mod 5), then gn, (1) = gn, (7).
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Proof. (i) It is straightforward from Proposition 2.2 (ii) for gn(t), if we choose r; = 1, r5 = 6. See [10,
Theorem 1.64] for geo(T).
(ii) Foreachi € {1, 2}, we may write kn, = 5 - K; + v for some integers K; and v € {0, 1, 2, 3, 4}. Then we

have
D (725) on (122 o) - (72

by Proposition 2.1. Since kn, — kn, = p - (K1 — K») = 0 (mod 24) and gcd(5, 24) = 1, we get K; =
K (mod 24) which implies that {5, Ko KZ

O

By the above lemma, the indices of the generalized Weber functions of level 5 can be chosen from Z/5ZU{oo},
namely,
{8e(1), g0(1), 91(7), g2(1), 93(7), g4(1)} C Fs.

Remark 2.4. From the g-product of n(7), one can easily see that

5n

gee(1) =57 q - H( >6 o) =" q P H(l 6" n/5>
1-gn )’ 1-gn

forve{0,1,2,3,4}.

By Proposition 2.1 and Remark 2.4, we obtain that

S : (g°°’ 90’ 91’ 927 937 94) = (90, gOO’ 947 927 93, gl)y
T : (goos 80> 91, 025 93, 94) — (goo, 1, 02, 83, G4s 00)s (5)
Ou ¢ (goor 90> 01> 82, 935 04) > (Foos §0» Gu> G2us 3us Fau)

where oy € Gs.
Further by using (4), (5) and the following lemma, we can compute explicitly the Galois actions on the
generalized Weber functions of level 5.

Lemma 2.5. Let N = p" be a power of a rational prime number. Let [‘C’ 3] € SL,(Z/NZ) so that either a or c is
relatively prime to N. If gcd(c, N) = 1, let y = (1 + a)c™! (mod N). Otherwise, let z = (1 + ¢)a™* (mod N). Then
we have

y gc gdy-b i =
{a b} _ { TYSTST ifged(c,N) =1, (mod N).

cd ST2ST™2ST?*? ifged(a, N) = 1,
Proof. See [7, §5]. O
Remark 2.6. We see that the Galois conjugates of g, (1) for v € {0, 1, 2, 3, 4} U {oo} in F5 are given by
gv(1) = g,/ (1) forsomev' € {0,1,2,3,4} U{oo}
for any o € GL,(Z/5Z)/{+I,}.

On the other hand, the generalized Weber functions of level 5 have the following algebraic relations with the
j-invariant.

Lemma 2.7. go(7),..., g4(7), and g (T) are the six distinct roots of
(X2 +10X+5)° -j(1)-X e Z[j(D][X].

Proof. See [5, §72]. O
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3 The singular values of Weber functions

Let D = 0, 1 (mod 4) be an imaginary quadratic discriminant. Then, the singular values of the generalized
Weber functions of level 5 evaluated at 7p lie in a finite abelian extension of an imaginary quadratic field
by the theory of complex multiplication (See [11] and [3, §15]). In particular, there is a useful criterion for
determining whether the values belonging to the ring class field Hp so that we can illustrate the Galois action
of C(D) ~ Gal(Hp/K) by Shimura’s reciprocity law.
Let F(X) denote the minimal polynomial of 7, over Q, namely,
2 ey —
FX) - {X -D/4 if D = 0 (mod 4),
X2 +X+(1-D)/4 ifD=1(mod 4).

Proposition 3.1. Let n be a positive integer prime to 6 and k be an integer satisfying k = 0 (mod 24) and
F(-k) = 0 (mod n). If r is an even integer such that r - (n - 1) = 0 (mod 24), then we have

n < TD+k) r
n
—_— € Hp.
n(tp)
Proof. See [12, Theorem 20]. O

From the above proposition, we obtain the following class invariants.

Lemma 3.2. For an imaginary quadratic discriminant D = O (mod 100) with gcd(D, 5) = 1, the values

92(Tp), g3(tp) ifD =0 (mod4), D=1 (mod 5)
91(1p), g4(tp) ifD =0 (mod 4), D = 4 (mod 5)
g0(Tp), g1(tp) ifD =1 (mod4), D =1 (mod 5)
92(tp), g4(tp) if D=1 (mod4), D = 4 (mod 5)

are class invariants over K = Q(1p).

Proof. Since j(t) € Q(gv(1)) by Lemma 2.7, we have

Hp = K(j(tp)) € K(gv(tp))
foreach v € {0,...,4} U {oo}. Conversely, if we putn = 5,r = 6, and k = ky, foreachv € {0,...,4}in
Proposition 3.1, then we can determine the values of v such that gv(7p) € Hp. O

It is well known that the form class group C(D) = QY9 /I'(1) is isomorphic to Gal(Hp/K) (See [3, Theorem
39).LetQ = [a, b, c] € Q% be a primitive quadratic form. For each prime integer p, we define the matrix
Mg, € GLy(Z/pZ) as

(i) for D = 0 (mod 4),

glﬂ ifpta,
-b/2 -c .

Mg, p = 1/ 0} ifplaandptc, (6)
—a—lb/2 _C:lb/z} ifplaandp|c,
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(ii) for D = 1 (mod 4),

a b=l z] itp fa,

Mg, p = ~(b +11)/2 _OC} ifplaandp{c, )
:—a—(b+1)/2 -c+(1-b)/2 )
_ 1 4 } ifplaandp]c.

Note that for a given N > 2, we can obtain a unique matrix M in GL,(Z/NZ) satisfying My = Mg, , (mod p")
for all primes p with p”||N by Chinese remainder theorem.
Then, Shimura’s reciprocity law tells us that

Proposition 3.3. Forf ¢ Fy and Q € C(D) =~ Gal(Hp/K), we have

fp)? = Ma(ry),

where Q! denotes the inverse of Q in C(D).
Proof. See [13, §6]. O

Remark 3.4. (i) The principal form
[1, 0, -D/4] if D = 0 (mod 4),
[1, 1, (1-D)/4] if D = 1 (mod 4)

represents the identity class in C(D) ([3, Theorem 3.9]).
(ii) The form class group C(D) is usually represented by reduced quadratic forms Q = [a, b, c] € Q%
characterized by the condition

(ca<bs<a<corO<bs<a=c) and b>-t4ac=D
([3, Theorem 2.8]). One can easily derive that if the class of Q is not the identity, then

Zsasm.

(iii) Let hp be the class number of an imaginary quadratic discriminant D. Then, it is well known that
hp = 1if and only if

D=-3,-4,-7,-8,-11,-12,-16,-19,-27,-28,-43,-67,-163
(I3, Theorem 7.30]).

We observe that the pair of class invariants appearing in Lemma 3.2 are not necessarily real numbers.
However, it is guaranteed that their sums or products are real numbers for arbitrary discriminants D by the
following lemma.

Lemma 3.5. We have -
{ ov(Tp) = g—v(tp)  if D = 0 (mod 4),

gv(tp) = g1-v(tp) ifD =1 (mod 4),

foreachv € {0, 1, 2, 3, 4}. Here, the indices —v and 1-v are integers in a complete set of residues {0, 1, 2, 3, 4}
modulo 5 such that v + (-v) = 0 (mod 5) and v + (1 - v) = 1 (mod 5).
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Proof. Let B=0if D = 0 (mod 4) and B = -1 if D = 1 (mod 4) so that
B++vD
2

2miTp Brmi

=By, where rp=|qp|=e"V7P.

Tp = and gp=e

By Remark 2.4, forv € {0, 1, 2, 3, 4}, we have

vn ,n/5 (vn_ nBmi/5 | n/5 6
G- -1/5 H 5 qD _(- o~ Bril5 —1/5 H 'p
" 5 1 - enBmi. rg

6
2v+B)mi/5 | 5
(2v B)ni/5 | ,1/5 H 1- en( v+B)mi/ g/
— enBmi . rD

n=1

One can see that the complex numbers appearing in the above product are of the form

e(—Zv—B)ni/S n(2v+B)mi/5

and e foralln=1.

Then, we find that only v € {0, 1, 2, 3, 4} with B + v + V' = 0 (mod 5) satisfy

e(—Zv—B)m'/S . e(—Zv’—B)rri/S -1, en(2v+B)ni/5 . en(Zv’+B)ni/5 -1 forallns1.

This completes the proof. O

4 Real valued class invariants from the generalized Weber
functions of level 5

In this section, we construct a real valued class invariants from the generalized Weber functions of level 5 by
using Shimura’s reciprocity law and the lemmas on the absolute values of Galois conjugates. We shall assume
that D = O (mod 100) and ged(D, 5) = 1, i.e. 5 splits completely in K = Q(7p).

We start with the basic inequalities.

Lemma 4.1. We have

(G 1+X<eX forallX>o.
(ii) If 0 < X < 1/11, then
<1+1.1X.

1
1-X
Proof. The proofs of (i) and (ii) are straightforward by basic calculus. O

Lemma 4.2. Letx+yic Handr = e 2.

() If 0 <r<1/11, then |geo(x +yi)| < 53.r elsr5+616".
6.6

1/5
(i) If 0 <r<1/11, then |gy(x +yi)| < r’*/° vt forallv € {0,1,2,3, 4).
(iii) If 0 < r'/® < 1/11, then lgv(x +yi)| > Fs . o s forallv € {0,1, 2,3, 4}.

Proof. (i) We deduce that

|ge(x + yi)| <57 -1 H <11+_rrn ) by Remark 2.4

s5n\© 6 ..
1+r ”) (1+1.1-7")" by Lemma 4.1 (ii)

N
($a]
w
>
s
VN

<53.r. ﬁ (e’5n)6 (e“'”)6 by Lemma 4.1 (i)
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53 ... 85 m 146,63 o0, 1"

6r>
=52.r.ein

6.61
+ 1-r

(ii) The proof is similar to the proof of (i).
(iii) We establish that

6
o0 _.n/5
lgv(x + yi)| 2 p1s H <1l+rr”> by Remark 2.4
n=1
hd 6
-1/5 /5 6 . 1
>r ~H(1—r" ) S(1-1") smce1+X>1—Xfora11X>0
n=1
-1/5 . S22\ % 1 _1.1m\© N (s
>r . H e e by Lemma 4.1 (i), (ii)
n=1
U5, o663, m_6.6-3%, 1"

_6.6rt/5 6.6

s, P T 1;[.

Extending the arguments in [6, §6], we achieve the following theorems.

Theorem 4.3. For an imaginary quadratic discriminant D < -31, we assume that D = [ (mod 100) and
gcd(D, 5) = 1. Then the singular values

92(tp) - g3(rp) if D=0 (mod4), D =1 (mod5),

() = 91(tp) - 94(rp) if D=0 (mod 4), D = 4 (mod 5),
Fprod D go(tp) - g1(rp) ifD=1(mod4), D=1 (mod5),
92(tp) - 94(rp) ifD=1(mod4), D = 4 (mod5)

are real-valued class invariants over K = Q(tp).

Proof. We may assume that hp > 2 so that D < -24 by Remark 3.4 (iii). Let Q = [a, b, c] € Q% be a non-
principal reduced form. By Proposition 3.3 and Remark 2.6, we have

@proa(Tp)? " = 0, (1) - g, ()
forsome vy, v, € {0,..., 4} U {co}. Further by the above definition of gp,,q and Lemma 3.5, we see that
|8pr0d (Tp)| = |gv(Tp)|> for somev € {0, 1, 2}.
Therefore, it suffices to show that

lgv(tp)| > |gv (T Q)]

forallv' € {0,...,4} U {oo}.
As in the proof of Lemma 3.5, let

ey

_ 2mitp 27TiTQ

qp=e*", go=e -nV-Dla,

and rp=|qp|=e"V"", rg=1qql =€

One can immediately see that for D < -24,
r})/5 —e™ D5 1/11 and r})/Z <rg= rll)/“ <e™3 <1/11

since 2 < a < y/-D/3 from Remark 3.4 (ii). Then, we get

5
6r 6.6r,
Q ,>°q

|geo(T )| < 53. rg: elo e by Lemma 4.2 (i)




DE GRUYTER

1640 —— Ick Sun Eum and Ho Yun Jung

V3 ®)

6513 | 6.6eV3
<5%.e™3 i ens  because rose’”

~0.55747

and
6r(12/5 6.6r

5 115 * Trq .t
-e'e by Lemma 4.2 (ii)

-1
lov (TQ)| < g
6e V35 | 6.6e1V3
< rBl/ 10, @' env3ls T1env3  because r;)/ Z<rg< e V3 9)

~ 21.66520 - /10

forv' € {0, 1, 2, 3, 4}. Further we have

1/5
6A67D 6.6rp

lgv(Tp)| > rz)l/ 5.ty T by Lemma 4.2 (iii).

Then we deduce that

1/5
6.67D 6.6rp

wo(T il
'9 (o) <0.55747 - 15 e T
gv(tp)
6.6e 1V DI5 g 6e-TV-D
=0.55747 -V DI5 g envI e D since rp = e VD
6.66TV24/5 6.6 V2A
<0.55747 - e V245 L o e Vet = 0.03530 <1 forD < -24
and
6.6rt5 ¢ er
gv(70) 110 /5 AT e
———=|£21.66520 -1y " -1y e’

QV(TD)

1/5
6‘6'D 6.6rp

=21.66520 - 1/'0 e’
Na

6.6e TV DI5  g6e-TV-D
- — —_—t . —
=21.66520- e ™V DO o D5 eV D sincerp = e "

6.6e V5 | 6.6e-TV9

Lo V0 o eV~ 0.96330 <1 for D < —99

<21.66520

forallVv' € {0, 1, 2, 3, 4}. Hence we obtain the assertion for D < -99.
For the remaining finite cases where -96 < D < -31, we observe that

orgl® L6567 ori/>a +646r11)/a
-1/5 | S Te _ -1/5a , ia T LA = l/a
lgv (Tg)] < rg' - e =TIp -e’ m becauserq =ryp

forv' € {0, 1, 2,3, 4} and a > 2. We then deduce that

6r1/5a 6.6r11)/“ 646r11)/5 6.6rp
—0 4
1,,11)/5a 17,%)/51 17,}13/5 T-rp

1/5-1/5a | e

Gy (TQ) < rD

gv(Tp)

69—11\/5/5:1 6.69’”‘/777/" 6.69’”\/3/5 6.69’””
= e WVDO/5-1/50) | o\ v Disa t e nv/Bla | yen/DI5 | 1oV D | (10)

By using the algorithm for counting reduced forms (see [14, Algorithm 5.3.5]), we can make the list of the
actual values of a for each D (see Table 1 below). Evaluating (10) at those values, we attain the assertion for

-96 <D <-31.
Therefore, we conclude that the only reduced form in QY that fixes Oprod(Tp) is the principal form, which

represents the identity in the group C(D) ¥ Gal(Hp/K).
O

This completes the proof of our theorem by Galois theory.
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la, b, c] € C(D)for D = O (mod 100) relatively prime to 5 for

D > -200.
D a D a D a D a
-24 2 -71 2,3,4 -116 2,3,5 -159 | 2,3,4,5,6
-31 2 -76 4 -119 | 2,3,4,5,6|| -164 2,3,5,6
-36 2 -79 2,4 -124 5 -171 5,7
-39 2,3 -84 2,3,5 -131 3,5 -176 3,4,5
-44 3 -91 5 -136 2,5 -179 3,5
-51 3 -96 3,4,5 -139 5 -184 2,5
-56 2,3 -99 5 -144 4,5 -191 | 2,3,4,5,6
-59 3 -104 2,3,5 -151 2,4,5 -196 2,5
-64 4 -111 2,3,4,5 -156 3,5 -199 2,4,5,7

Remark 4.4. In fact, we can see that Theorem 4.3 is still valid for D = —24. We have
C(_24) = {QO = [1’ O; 6]’ Ql = [2’ O’ 3]}
so that the corresponding CM points are given by

\/—2

TQo =Tp =

=vV-6 and Tg =

i

Since

Bprocl(TD)Q;1 = (g2(1p) - EB(TD))QIl =g1(7q,) - 94(1q,)

by Proposition 3.3, it is enough to show that
o2 (V=€) | > on (v-612)].

From Lemma 4.2 (iii), a lower bound of g, (v~6)| is given by

_ 6.6e” -271/6/5 _ 6u6e” -21V6
21V6/5 | o7 Lo anVils e 26 > 15.,79269.

o (9)

On the other hand, for an upper bound of |g; (v-6/2)|,

ﬁ ( ("qul/ls) 1"_"[ ﬁ( (5t+s (5t+s)/5) ﬁ ﬁ (1 sqgs/s)G

n=1 (1 —q’él) t=0 s=1 =0 s=1

~

since

(n n/5

C55n0q5n0/5 =1-q"™ forn=>5n.

For each 1 < s < 4, we then obtain

2 2
’1 {5q “5/5’ (1 - rtQ+15/5 cos 25?”) + (rg'ls/5 sin 2§—n) since gg, =rg, = ™ € R

t+s/5 2sm 2(t+5/5)
=1- 2r COoS — 5 +71g,

Then, it is routine to check that

4

H (1 Zrt”/5 cos 2“;

s=1

4 3
2(t+s/5)) H (1 2o TVEE4/5) Los 257T e—zn\/a(ns/s))

s=1
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is a monotone increasing function for ¢ > 1 and has the limit 1 when t — oo. Moreover, its value at t = 0 is
less than 1. Hence we get

’gl (\/3/2)‘ <rgl5 = ™55 < 4.66021 < 15.79269 < ‘gz (\/3)‘ .
Note that the minimal polynomial of gp04(7p) is given by
(X - 02(v=8) 13(v=8)) (X - 01(v=6/2) - g4(V=6/2)) = X* - 750X + 15625.
Theorem 4.5. For an imaginary quadratic discriminant D, we assume that D = (J (mod 100) and gcd(D, 5) =
1. Then the singular values defined by

g2(tp) +g3(tp) if D=0 (mod 4), D=1 (mod 5), D < 44,
g1(tp) + g4(tp) if D=0 (mod 4), D = 4 (mod 5), D < -56,
go(tp) +g1(rp) ifD=1(mod4), D=1 (mod5), D < -59,
g2(tp) + g4(tp) ifD=1(mod4), D=4 (mod5), D<-71,

gsum(TD) =

are real-valued class invariants over K = Q(tp).

Proof. We prove the case D = 0 (mod 4), D = 1 (mod 5). The proofs for the other cases can be done similarly.
If hp = 1, there is nothing to prove. Therefore, we may assume that hp > 2. Let Q = [a, b, c] € Q% be a
non-principal reduced form so that
2<as<+/-D/3

by Remark 3.4 (ii). From the definition of gsum(7p) and Lemma 3.5, we have
gsum(Tp) = 92(7p) + 93(7p) = 2 - Re(g2(7p))-
Further by Remark 2.6 and Proposition 3.3, we see that
gsum(TD)(I1 =g, (Tg) + gv,(Tq) forsomevy, v, €{0,1,2,3,4}U{co}. (11)

Hence, it is enough to prove that
|Re(g2(7p))| > |gv(Tq)
forallv € {0,1, 2, 3,4} U {eo}.
We estimate a lower bound of |Re(gz(r ) ‘ Let us set

2mitp

qp=e and rp=|qp|=e™P.

In fact, gp = rp for D = 0 (mod 4). By Remark 2.4, we then have
5 1/5 2n n/5
92(tp) = {5 - H < — )

We put
oo on . n/5\ ©
_ -2 -1/5 _ 4n 4n -1/5 _ 1-¢"-rp
zp=1{5"-1p (cos5 —1sm?> "y and wp= | |1 <1_r$
n=

so that g,(7p) = zp - wp. Furthermore, let

_6.6eVDI5 g emVD 6e ™V DI5  6.6e1VD
(D) =e 1-enVD5 1env D and UD) = er- eVl g nVD

One can check that £(D) and (D) are decreasing and increasing functions for D < -44, respectively. By
substituting e™™ V=D for r in Lemma 4.2 (ii) and (iii), we see that

£(D) < |wp| < U(D) for D < -44.
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Now we compute |Re(wp)| and [Im(wp)| by estimating the argument of wp. For -7 < 0, 0, < 71, we let wp =
|wp| - e% and 6, be the argument of
1- (52n . r;l)/5 B 1- elmni/S . r;l)/S

—yn —yn
1rD 1rD

for each n. Since

1- 715 . el - (1 ~ /5 cos —4’;71) ~ir5sin 4;1—”

we get
rlV3 sin 4nn /s
|tan @,| = | —2 > <D <5 (1+1.1-7Y5) byLemma 4.1 (ii).
1—rf)/5cos‘”;—” 1—)’;’/5 b b
Define

6e'”@/5 6.69_2]1@/5
1 - e-V-D/5 ¥ 1 - e-2nv-D/5

o(D) =

which is an increasing function for D < —44. Then, by using the fact that x < tan x for 0 < x < 71/2, we obtain
that

6] =

6-> 6n|<6-> [tanfnl<6->" (rg/5 + 1.1r§,"/5)
n=1 n=1 n=1

1/5 2/5
6rD 6.6rD

< +
1/5 2/5
1- rD 1- L5

= O(D) becauserp = e ™D,

Thus, by using that sin x < x for x > 0, we get
[Im(wp)| = |wp| - [sin 6] < [wp| - |6] < UD) - O(D). 12)

We then arrive at

[Re(wp)| = v/|wp|2 - [Im(wp)|2 = \/£(D)2 - U(D)2 - O(D)? . (13)

Note that
&(D)? - U(D)? - O(D)*> >0 for D < —44.

Therefore, we achieve by (12), (13) that

|Re(g2(7p))| = |Re(zp) - Re(wp) - Im(zp) - Im(wp)|
> ||Re(zp)| - [Re(wp)| - [Im(zp)| - [Im(wp)||

= ‘|R9(WD)| .

cos 4571‘ - [Im(wp)| -

sin 45—71 H ot (14)

> (\/2(13)2 — (D)2 - B(D)? - cos g ~ (D) - (D) - sin g) . e™VDI5,
On the other hand, from (8), we have
|geo(T@)| < 0.55747
for any reduced form Q ¢ Q%. By evaluating £(D), {(D) and ©(D) at D = -44, we obtain from (14) that
|Re(g:(7p))| > 0.66224 - ™*/5 = 42.76270 > |gee(T()| fOr D < ~44.
Furthermore, by (9), we have
lgv(T)| < 21.66520 - 110 = 21.66520 - ¢V D/10
forv € {0, 1, 2, 3, 4}. Then, by specializing £(D), ${(D) and O(D) at D = —124, we get from (14) that

Re(ga(p))| > 0.80087 - €™ P> for D < -124.
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Hence, we achieve that for D < -124,

gv(tq) 21.66520  _n./174/10
< -e ~(0.81827 < 1.
' Re(ga(tp))| 0.80087

The finite remaining cases are given by

D = -104, -84, -64, —44.
We see that forv € {0, 1, 2, 3, 4},

6rlfs 7.2rg
-1/5 1,,71/5-"% .e
lov(tg) <1y > et e by Lemma 4.2 (ii)
6r11)/5a 7.2111)/a
=1/ e 1" becauserg = 1/

6e-TV-D/5a ;5,-1V/-D/a
= en vV-D/5a . @1-eV-D/5a + 1-e1V-D/a |

By evaluating (14) at D = —44 and the last formula at the actual values of a (see Table 1) of non-principal
reduced forms Q = [a, b, c] € Q%, we again achieve that

‘ 0t |,

Re(g(1p))

for the remaining cases.
Hence, we conclude from (11) that

|gsum(Tp)| = 2 - Re(g2(7p)) > |gv, (1p)| + |gv, (1) 2 |(gsum(TD))Q_l\

for any reduced forms Q representing non-identity classes in C(D) = Gal(Hp/K). This completes the proof by
Galois theory. O

Remark 4.6. (i) The finite exceptional cases of D with hp > 2 in the above theorem are given by D =
-24,-31,-36,-39, -51. Using Proposition 3.3, we can directly compute the minimal polynomials of

02(tp) + g3(tp) if D =-24,
01(7p) + g4(rp) if D =-36,

T =
goun(Tp) go(tp) + g1(rp) ifD=-39,
92(tp) + 94(rp) ifD=-31,-51
over Q, namely,
X? +56X +392 ifD=-24, hoyy =2,
X3 +57X? +991X + 6383 ifD=-31, h_3; = 3,
X% -16X+16 if D=-36, h_35 = 2,
X*-29X3 -2321X% -37041X - 187867 if D= -39, h_39 = 4,
X% +68X+68 ifD=-51, h_sy =2,

which are irreducible over Q. Thus, we can establish Theorem 4.3 again.
(ii) In fact, for D = -24,-36,-39,-51, we can apply the same argument as in Remark 4.4. However, we
shall not repeat the same computations.

Example 4.7. Let D = -96 and K = Q(+/-6). Then we have
C(_96) = {QO = [1a Os 24], Ql = [37 O: 8]: QZ = [4’ 4) 7]) QB = [5: 2) 5]}

with
_—2+2v/-6

’ TQ3 5

T_gg = TQO = 2\/_6, TQl = 27_6 = _1-'.27_16

3 ’ TQZ
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By Proposition 3.3, the class polynomials of
Oprod(T-96) = 91(T_96) - 94(T_9¢) and  gsum(7_96) = 91(T_96) + 94(7_96)
are given by

min(gprod(T-96), K) =(X - g1(1q,) - 94(1q,)) - (X - g2(7q,) - 93(7¢q,))
(X - g2(1q,) - 94(10,)) - (X = 90(Tq,) - go(T(,))
=X*-221000X> + 60281250X% - 3453125000X + 244140625

and
min(gsum(7-9¢), K) =(X - (91(1q,) + 94(7q,))) - X - (g2(7q,) + 93(79,)))
(X - (92(19,) + 94(1(,))) - (X = (g0(Tq,) + 9(Tq,)))
=X*-236X> - 11712X% - 125528X + 20164,
respectively.

5 Modular trace of a weakly holomorphic modular function

Throughout this section, we shall assume that an imaginary quadratic discriminant D = d - t* is congruent
to a square modulo 4N? and relatively prime to N.
For each positive integer N, let

r=r9n-= { [‘CI Z} e I(1)

b=c=0 (mOdN)}

which is a congruence subgroup of level N. We denote
.o ={la, b, cl€Qp|a=c=0(modN)}.

Then, the elements of Qp, () can be written as Q = [Na, b, Nc]. From (2), one can check that I acts on Qp, (v
and the action preserves the value of b (mod 2N?). Thus we obtain the following decomposition

QD,(N)/F= U QD,(N),ﬂ/F’
BEZ[2N?Z

where Qp, () 5 = {[Na, b, Nc] € Qp | b = (mod 2N?)} for each B € Z/2N?Z.

Remark 5.1. (i) The values B with Q) vy g # 0 can be determined by the congruence equation B =
D (mod 4N?). If N has ¢ distinct prime divisors, then the number of such f is equal to 2¢ by Chinese
remainder theorem.

(ii) Let O, be a quadratic order containing O in K = Q(rp). Then we can write d = dg - (t/t')? for some
positive divisor t’ of t. By assigning

Q = [Na, b, Nc] (with gcd(Na, b, Nc) = t') —» Q-= %[Na, b, Nc]
for each t'|t, we then obtain the decomposition

0
QD,(N),ﬁ = U t/ . Qd,(N),ﬁf"l'
dD

Moreover, we can easily see that 7 = 5 andI'g=T 3
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From now on, we assume that Qp, () g # 0 for some suitable 8 € Z[2N?*7. Let Q%,(N),ﬁ C Qp,(w),p be the subset
of primitive forms. Then, we have the following lemma.

Lemma 5.2. We have a canonical bijection between Qp/I'(1) (resp. Q%/I‘(l)) and QDy(N)’ﬁ/F (resp. Q%,(N)’ﬁ/l").

Proof. See [15, Proposition in §1.1] and [6, Lemma 5.1]. O

Let f be a modular function on I'. We define the Zagier-type trace t}ﬁ) (D) of index D as

o= Y Af)

I
QEQD,(N),[,»/F Q|

where the weights of the summands are determined by the following lemma.

Lemma 5.3. Foreach Q € Q) (y) g, we have

2ifD = -4 - t? and Q is I'(1)-equivalent to [t, 0, t],
ITq| =< 3ifD=-3-t?and Qis I'(1)-equivalent to [t, t, t],
1 otherwise.

In particular, if Q is primitive, then t should be 1.

Proof. 1t is a straighforward consequence from the fact that for each Q € Qp,

2 if Qis I'(1)-equivalent to [t, O, t],
II'(1)q| = < 3 if Qis I'(1)-equivalent to [t, t, t],
1 otherwise.

O

Now we briefly introduce the Bruinier-Funke modular trace of modular functions on I' (see [4] for general

statements). Let

b a
-b

be the vector space of dimension 3 over QQ consisting of trace zero 2 x 2 matrices. It becomes a quadratic space

of signature (1, 2) with the quadratic form q(X) = det(X) and the associated bilinear form (X, Y) = -tr(XY)

for X, Y € V(Q). One can see that the group SL,(Q) acts on V by conjugation v.X = vX~7! for X € V(Q) and

v € SL2(Q).
Let D be the space of positive lines in V(R) = V(Q) ® R, namely,

V(@) = {X=

a, b,ce@}

D={zc V(R)|dim(z) = 1, q|z > 0} .
We can identify D with H by assigning 7 = x + yi € H to the line spanned by

1|-i@+1) 17
XT = — 1 —
y -1 s(T+7)

By direct computation, one can easily check that q(X;) = 1 and v.Xr = X(y1) for v € SL,(R). Then, the CM
points in H can be viewed as positive lines RX with the vectors X € V(Q) of positive norms.
Let L be an even Z-lattice of V(Q) defined by

A

Then, the level of L is 4N? and the dual lattice is given by

(s

a, b,ceZ}.

2N2

a, ceZandbelz}. (15)
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We then see that I' acts on L by conjugation and acts trivially on the discriminant group L*/L. Furthermore,
the group L¥/L is isomorphic to a cyclic group Z/2N?Z. Therefore, each coset can be written in the form

L+h={X=

forh € {0,1,...,2N? - 1}.

Meanwhile, by using the fact that the stabilizer of each X € V(R) in SL,(R) =~ SO(2) is compact, we get
that I'y = (SL,(R))x N I is finite. Besides, if we let m be a positive rational number and h be a representative
in L*/L ~ Z/2N?Z, the group I' acts on the set

Nb + h/2N c
-a -Nb - h/2N

a, b,ceZ} (16)

Lym={XeL+h|qX)=m}

with the finite number of orbits. Then, the modular trace of a weakly holomorphic modular function f on I'
with respect to the lattice L for positive index m is defined by

1
MT}(h, m) = Z mf(fx),
Xely\Lnm | X

where 1 is a CM point corresponding to the vector

1/vm)-X ifa >0,
(1/vm)-(-X) ifa<o.

The modular traces for zero or negative index are described by using a regularized integral or an infinite
geodesic in H (See [4, Definition 4.3]). Their explicit computations are given in [4, Proposition 4.7 and Remark
4.9]. We then have the following analytic property of modular traces.

Proposition 5.4. Let f be a weakly holomorphic modular function on I'. Then the series

Z MT%(h, ngq"

n>-oo

is the holomorphic part of a harmonic weak Maass form of weight 3/2 on I'(4N?).
Proof. See [4, Theorem 4.5]. O

Remark 5.5. If h = 0, then the above series is the holomorphic part of a harmonic weak Maass form of weight
3/2 on a bigger group Io(4N?) (See [4, §§3-4]).

Furthermore, the modular traces with respect to the lattice L can be related to the Zagier-type traces of
modular functions.

Proposition 5.6. We have
MTf(8, -D/4N?) = tP (D) + £ (D).

Proof. See [6, Lemma 2.3]. O

6 Modular property of Galois traces of class invariants

Let us assume that N = 5 and D is an imaginary quadratic discriminant such that D = O (mod 100) and
ged(D, 5) = 1. In this section, we shall identify the Galois traces of real-valued class invariants defined in
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Theorems 4.3 and 4.5 with the Fourier coefficients of harmonic weak Maass forms of weight 3/2 by using the
Bruinier-Funke modular traces and Shimura’s reciprocity law. For N = 5, we recall that I = F8(5) and

Al

Before we go further, we need some lemmas.

a, b,ceZ}.

Lemma 6.1. gg and g- are I'-modular functions.

Proof. By the definition of I' = I'(5), the only nontrivial transformation is given by the matrices v =
[(2) g] (mod 5) in I'. By Lemma 2.5, we have the decomposition

{2 0} =ST3ST2ST> (mod 5).
03

Using (5), we deduce that

S T3 S T2 S T3
{20} 80 ~* geo — G0 = G0 — 03 — §3 — 0o,
03

S T3 S T2 S T3
Joo — G0 — 92 — 82 — 90 — Goo — Joo.

This completes the proof. O

For a given discriminant D, we choose 8 € Z/50Z satisfying 82 = D (mod 50) so that Q D,(5), is nonempty.

Lemma 6.2. Let Q = [5a, b, 5c] € Q%,(s)’ﬁ. Then we have
{ (@prod ™) = go(Tq) - geo(T),
(Gsum(Tp))? = go(Tq) + gee(T).
Proof. Since D = b? — 100ac and gecd(D, 5) = 1, we have D = b? (mod 5) and ged(b, 5) = 1. From (6) and (7),

the corresponding matrix Mg € GL,(Z/5Z)/{+I,} is given by

[—Sa ~b/2 -5¢- b/z} _ ifD=0 (mod 4),

1 -1

-b/2 -b/2
1 -1

if D=1 (mod 4).

~5a-(b+1)/2 -5¢+(1-b)/2| |-(b+1)/2 (1-b)/2
1 -1 B 1 -1

By Lemma 2.5, we obtain

~b/2-b/2| 110} Tb(+2b) g b gh-1 ifD=0 (mod 4),
1 -1 0b

~b+1)/20-b)/2] [10
1 -1 “lobp

] .TPG+2D) T sTh-1if D =1 (mod 4).

Since the computations for other cases are similar, we suppose that D = 0 (mod 4) and D = 1 (mod 5). Then,
we get

[(1)(1)] T S Tt S T°
92— 02 —> 00 — Jeo — Jeo — G0 — g0>

[(1)(1)] T S T! S T°
93— 93 — 91 — 94 — G0 — Goo — Joo,

b=1:



DE GRUYTER On some automorphic properties of Galois traces of class invariants = 1649

{(1)2} T S T S T’
92— 03 — 04 — 91 —7 90 = Joo — Joo,

b=4
10
{0 4} T! S T S T’
93— 92— 83 = 93 — 82 — 82 — fo-
This completes the proof by the definitions of gp,q and gsum. O

Following Kaneko’s description, the modified Galois traces of g,roq and gsum of index D are given by

GTgp00(D) = 320,50, w% “Try, /k(Bproa(Ta))
GTgun(D) = Y0,50, o5 * Tk (Oproa(Ta)),

where Tr is the usual Galois trace.

Lemma 6.3. We have

(D) =52 (D),

GTgpmd (D) = t(ﬁ) 90°Joo

90" 8

Ty, (D) = t&, (D) =P, (D).

Proof. Since go * goo is I'-modular function by Lemma 6.1, we deduce that

1 "
tg?-gww) = Z —— - g0(Tq) * go(Tg) Dby definition

T
Q€9Qp,5),5/T ol

-3 S aoty)ge(ry) | byRemarksa (i)

d|D \ Deqo ‘T~‘
D \Qe9} 5 /T 7 0

= Z 1. Z gpml(rd)a1 by Lemmas 5.3 and 6.2
r~’ .
D ‘ Q Q€9 o) b IT
1

= Z T Ter/K(gprod(Td)) by Lemma 5.2
a5 Tl

2
= Z — Ter/K(gprod(Td)) by Lemma 5.3
Wgq
d|D
= GTgprod (D)7

t/2

where d = dg - t'* runs over all discriminants of orders O4 > Op in K = Q(1p). Similarly, we have

{®

do+ge. (D) = GT gy, (D).

Since GT is independent of the choice of §, we obtain the equalities on the right side. O

By combining the above lemmas, we deduce the following theorem.

Theorem 6.4. Let D be an imaginary quadratic discriminant congruent to a square modulo 100 and relatively
prime to 5. Let B € 7/507Z such that B?> = D (mod 50). Then we have

1 1
GTgpa(D) = 5 - MT%,.,..(B,-D/100) and GTg,,, (D)= 5 MT§, .. (8, ~D/100).
Moreover, there are finite principal parts A(t) = >_,, ., a(m)q™ and B(t) = ", ., b(m)q™ such that each of
AM+ > Gl (D)g P
D=0 (100)

gcd(D,5)=1
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and

.B(T) + Z GTﬂsum (D)qiD/loo

D=0 (100)
gcd(D,5)=1

is the holomorphic part of a harmonic weak Maass form of weight 3/2 on I'(100).

Proof. The first assertion directly comes from Lemmas 5.6 and 6.3. Precisely, if D = B2 (mod 50) for some
B € Z/50Z, we deduce that

MTE, o (B, -D/100) =t&. (D) + P (D) =2-GT,,..(D),
MTE .o (B, -D/100) = &), (D) + {7, (D) = 2 - GT,,,. (D).
For the second assertion, let h € {0, 1, ..., 49} with gcd(h, 5) = 1. Then, a vector X € L + h is of the form

5b+h/10 c

X =
-a -5b-h/10

c¢L+h

from (16). If it has a positive norm -D/100 € @Q, then the corresponding point 7y is a root of a positive definite
form

[5a, 50b+h, 5¢c] ifa>0,
[-5a,-50b - h,-5c] ifa <0,

whose discriminant is given by (50b + h)> — 100ac = h? (mod 100). This implies that if gcd(h, 5) = 1, the
generating series of MTL ., _(h,-D/100) and MT% , ,_(h, ~D/100) only allow the terms g /1% with D =
O (mod 100) and gcd(D, 5) = 1. This completes the proof by Proposition 5.4. O

Example 6.5. Let D = -96 and K = Q(v/-6). If we choose 8 = 2, then we have

Q /F_ QO = [257 1027 105]7 Ql = [207 _487 30]) QZ = [20: 52’ 35]7
96,5).2 Qs =10, 52, 70], Q4 =[15, -48, 40], Qs =[5, 52, 140]

with
_ -102+v/-96 _ 48+v/-96 _ -52+v/-96
T ="50 T~ 20 T~ 20 -
_ -52+/-96 _ 48+V/=96 _ -52+/-96
To; = 20 > =730 »Tas = 0 -
We obtain that

@) (-96) =32, (90(tg,) - 9o(Tg,)) = 221750,

t2),5_(=96) = 2 o (80(Tq,) + geo(Tg,)) = 180.

On the other hand, we have

GTg,00(D) = Try 1k (Oprod(T-24) + Try o 1k (Gprod (T-96)
=221000 + 750 = 221750 by Remark 4.4 and Example 4.7

and

GTgon(D) = Try ,, x(@sum(T-24) + Trg , /x(@sum(T_96)
=-56+236 =180 by Remark 4.6 (i) and Example 4.7.
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