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Abstract: The main result of this paper is the embedding

B2(Q BsvN Q),
PO B )@
1
O0<rsry <o00,0¢<s5 <5; <09, f > -1, of harmonic functions mixed norm spaces on a smoothly
bounded domain Q ¢ R"™. We also extend a result on boundedness, in mixed norm, of a maximal function-
type operator from the case of the unit disc and the unit ball to general domains in R".

Keywords: mixed norm spaces, harmonic functions spaces, maximal functions

MSC: 31B05, 42B25, 42B35

1 Introduction and preliminaries

The embedding theorems for harmonic or analytic function spaces with mixed norm have been studied
extensively, especially in the case of the unit disc, where first results are due to Hardy and Littlewood [1, 2].
In the case of analytic functions such theorems were proved for general bounded strictly pseudoconvex
domains in C", see [3]. Mixed norm spaces of harmonic and analytic functions on the upper half plane were
investigated in [4, 5], some of the methods we use here can be traced to these papers. For harmonic functions
many authors considered embeddings of mixed norm spaces on B" or upper half-space H", see for example
[6] for B", [7-9] for R™, or [10] for H". However, it seems that the case of more general domains was not treated.

In this paper we prove an embedding theorem for mixed norm spaces of harmonic functions, Theorem 1
below, in the setting of bounded C' domains. This result generalizes Theorem 1.1 (iv) from [6]. In addition, we
consider a maximal function-type operator u — u* and prove its boundedness with respect to mixed norm
in the class of quasi-nearly subharmonic functions u, see Theorem 2 below.

We note that the operator u* was discussed, in the case of the unit disc, in [11], and the corresponding
result in Q C R" is Theorem 2; see also a related result in [12] for weighted harmonic Bergman spaces on B".

We denote the Lebesgue measure on R" by dV and the Lebesgue measure of a measurable set E C R" by
|E|. The surface measure on 042 is denoted by do. B(a, r) denotes the usual Euclidean ball in R", with center
at a € R" and radius r > 0. We also use a standard convention: C denotes a constant which can actually
change its value from one occurrence to the next one. Also, for positive quantities A and B, A < B means that
cA < B < CA for some constants 0 < ¢ < C < oo,
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In this paper we work with a bounded domain Q ¢ R with C! boundary. We fix a defining function p for
Q, whichmeansp € C}(R"), 2 = {x e R" : p(x) >0}, 0Q = {x € R" : p(x) = 0} and Vp(¢) # Oforall ¢ € 0Q.
We note that

p(x) < dist(x, 0Q) for xec Q.
By well known Tubular Neighborhood Theorem, there is a neighborhood U of 0Q and there is a ct-
diffeomorphism y : U — 0Q x (-rg, ro) such that y(0Q) = 0Q x {0}, x(UnN Q) = 9Q x (0, ry). We set
@ =x 1 and, for -rq < t < rg, I't = (0Q x {t}). For a given measurable complex valued function f defined on
UnQ(or Q), we deﬁnef: 00 x(0,r9) — C byf(.f, t) = f(p(¢, 1).

Let h(Q) = {u : Q — C| u isharmonicin Q}. If u;,u; € h(Q) and u; = u; on UN Q, then u; = u,
on Q. We set, by a slight abuse of notation, u = (u|yng)~. By the above remark, if u; = uy, then u; = u, for
uy, Uy € h(Q).

Next we define certain spaces of functions on Q and 9Q x (0, rg) which are a natural generalization of
classical mixed norm spaces on the unit ball. For a Borel measurable function f on Q or Q N U we set

s

MSU,t)=£/|f(f,t)|sd0({)} , 0<s<oo, 0<t<ry,
0

with the usual modification for s = oo. Also for a Borel measurable function g on 0Q2 x (0, ro) we set

s

Ms(g, t) = /Ig(£,t)|sd0(€)}, 0<s<oo, 0<t<rg,
Q

again with the usual modification for s = co. Now we have a mixed norm space

L;’r = L;”(ag x(0,719)), 0<s,r<oo, BER,

as the space of Borel measurable function g on 0Q x (0, ro) such that the following (quasi) norm of g is finite
I8llc5 = 1 Ms(8, Ollr(o,re), )
The main object of study in this paper is the following space of harmonic functions
B;”(Q) ={uchl@Q:ue LZ"(OQ x (0, 1r0))},
with the following (quasi) norm
lullzr ) = Il s

Here 0 < s,r < oo and 8 > —1. Note that these spaces are trivial for 8 < -1. Different choice of a defining
function p and a different choice of tubular neighborhood map y lead to different, but equivalent norms and
the same mixed norm spaces.
For every point ¢ on the boundary of Q and t > 0 we define a "ball" BY?(¢) with center at point & € 00
and radius t > 0 by
B?(&) = {neoQ:|&-nl<t}.

Note that the following area estimate is valid:
o(BY?(&) = t",  0<t<diam(00). 1.1)

We also consider a "cylinder" in Q centered at ¢(¢, t):

a0 {zeanu@en@-[L 2]} gean ocrc
We have the following two-sided volume estimate:

|Q(&, 1| < t", 0 < t < diam(0Q). (1.2)
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We define a metric on 0Q x R by

danR((é‘l’ tl)’ (52’ tZ)) = \/‘51 - {2'2 + |t1 - tZ‘Z’

for (&1, t1), (&5, t2) in 0Q x R. Itis easy to see that y : Uy — 0Q x [-ry,ri] and ¢ : 0Q x [-r1, 1] — U; are
Lipschitz continuous for any r; € (0, rg), where U; = (p(a[) x [-rq, rl]). In fact, these C! diffeomorphisms
have continuous and bounded partial derivatives. Hence, without loss of generality, we can assume that y
and ¢ are Lipshitz continuous, i.e. there are constants 0 < [ < L < oo such that

llz-w| < dyo.r(X(2), x(W)) < L|z - w|,
forall z, w € U. Also, there are constants O < ¢ < C < oo such that for any measurable E ¢ U we have
c(do x dt)(x(E)) < |E| < C(do x dt)(x(E)).
Therefore, for any non-negative and measurable f on Q N U we have:

/ fav = / ] fdodt. (1.3)

unQ 0Q 0

This is, in view of (1.1), a generalization of (1.2).

Letr, = min(% , 3%). Let us prove the following inclusions:

B (<p(§, f), %) cQi,t)cB (qo({, t), %) , £€0Q, 0<tsr,. (1.4)

The first inclusion is equivalent to the following one:

X <§ (‘P(‘f’ 0, ﬁ)) C x(Q&, ) = BY2(§) x B 321‘} ,

Now, for z € B(p(¢, t), 5) we have

Ao ((2), (€, ) = dog.e (X(2) X(9(&, O) £ LIz - 9(&, 0] < L5 = 3,
which proves a stronger inclusion:
x(B (0.0, 57)) e BB~ 5.5
Similarly one proves Q(¢, t) C B (¢(¢, t), 2t/1).
Let us set
V=002x(0,r)cQnU. (1.5)

Working within V has certain advanteges: one can always consider Q(¢, t) when ¢@(¢, t) € V and, within V,
one can use inclusions (1.4).

The following lemma, due to Fefferman and Stein (see [13]), states that |u|” has subharmonic behavior
forany p > 0.

Lemmal. Letu € h(Q) and let B = B(z,r) C Q. Then

C
U@ < @/W’dv,
B

where C is a constant which depends only on p and n.

The above lemma combined with (1.2) and (1.4) gives the next result:
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Lemma 2. Suppose Q(&, t) is a cylinder in Q, where £ € 0Q, 0 < t < r,, and assume h is harmonic in Q. Then

forevery p > 0 there is a constant C > 0 that depends only on p and n such that

C
(& OF = g / uPdv.
Q0

Remark 1. In the above constructions one can use segment [(1-6), (1 +6)], where O < § < 1 instead of [% R

34]

(the case 6§ = %). In particulatr, Lemma 2 is valid in this case, of course, the constant C depends on 6 as well.

2 Main results

The main result of the paper is:

Theorem 1. For0 <s <s; <coandO < r < ry < oo we have a continuous embedding
B5(Q) <~ B(Q),

where By =B+ (n-1)(% - i)'

The following lemma is a special case of Theorem 1, where s = 51, r; = oo

Lemma 3. Suppose0 < r < oo and B > -1, then we have BZ"(Q) — B;""’(Q).

Proof. Letusfixu e B;’r(Q). We treat separately the cases 0 < s <r<oocand 0 <r < s < oo,
Assume 0 < s < r < oo, For O < t < r, we obtain, by Lemma 2 and (1.3), the following estimate:

N1

6. OF = m/ {) i, ) dodr.
% BB.O {

Integrating over ¢ € 0Q and applying Fubini’s theorem we obtain

N

/ (€, O do(€) < ‘Q@ 5 / / / iy, 7 do()do(&)dx.

§ 00 B9
For a fixed T we have, again applying Fubini’s theorem and (1.1):
[ | naeordotdoe - / i, 7 / Xapsipdot)dotm) < 2 [ tn, 0 dat)
00 BY2(¢) 00

We use the above inequality and (1.2) to estimate inner integrals in (2.2):

3t

Mi(u, t) < t—/ ™ 1/|u(11,T)| do(n)dr < C/Ms(u 4

t
2

|

note that we also used 7 =< t for % <T< % Next we use Holder’s inequality with exponent { > 1 and get

3t 1-

3t 3t

2 2
dr =C /M’(u,r)g
T T

s s
r r

w0

Mi(u, 7)< C | [ Mg(u, T)g

S~ \.N‘
m—

2

(2.1)

(2.2)
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Therefore we obtained

~I=

3t
/ r dt
Ms(u,t)<C M;(u, T)T , 0<t<r,. (2.3)

Our next goal is to obtain the crucial estimate (2.3) also in the second case, i.e. for 0 < r < s < oo, Let us set
p=s/r>1.Wefix0 < t < r, and, asin the first case, see (2.1), we obtain from Lemma 2 the following estimate:

t

N

3 r.  C . r
160 = ey [ ] 1o o dotdr. 24
$ BM()
This gives, using (1.2):
Y P
[, o)f° < (ﬁ) (/ / lia(n, T do(n)dr> .
£ BX(&)

Now we integrate with respect to da(¢) and obtain:

3t
2

p p
s 9 . r
Ms(u,t)s<tn> /(/ / iy, 7| do(n)dr) do(?),

%0 N B

M;(u,t)stiﬁ/ ( / JRLR) da(n)d1> do(&))

t BBQ({)

which gives

Now we use Minkowski’s integral inequality with exponent p = s/r and obtain

b\
/ |a(n,r)’da(n)> da(g)> dr

=

M;(u,t)sgl/Z(}/Q
0

$ 22(8)
We set
oe®)= [l mIdot), 25)
BIO()
and write the above estimate as
Mg (u, t) < /(a o7 (f)da(f)) ar = %/H‘Pr”u(ag,da(g)) dr. (2.6)
2

Next we want to estimate the LY (00Q, do) norm of @7, where t/2 < T < 3t/2, to that end we define a
function 6 : 0Q x 0Q — R by
1, -nlst
0, n) = {0 E-nl=t

» 1§-ml>t
clearly 6(¢, n) = 6(n, &) and
AGE / 0(&, mliitr, 7 do(y).

We will use a duality argument: let us fix Y € L9(0Q, do(£)), ||P]||lq < 1, where 1/p + 1/q = 1. Then we
have
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L/ ¢T(£)w(£)da(£)| _ / / i, D6, n)l/)(f)lda(n)da(f)’
Q 0000
< / / iy, T)'6F (£, )6 (&, IP(®)| do(©)dotn)
0000
< AB,
where N ;
4- (&(n,T))"’G(f,n)do(f)dom)) st"»f(a Iﬁ(n,r)lst(n)) ,
/) /

1

= q < L;l < %1
B (a/ / (o) e(s,n)do(s)do(n)) TPl < 7

0200

Combining the above estimates we obtain

/ P OVOdo®)| < M, 1), llg < 1,
Q

and, by duality, this gives ||@z||1»30,d0(2) < t""IM}(u, 7). Using (2.6) and remembering that ¢t = 7 for t/2 <
T < 3t/2 we finally obtain

t

M, 0= [ Miw, Y,
t
2

N1

which means we proved (2.3) also in the case O < r < s. Thus, again using T < t, in both cases we have:

w

t

M, t) < C | TPMi(u, T)g < CHuHTB;,,(Q), 0<t<ry,

M —

and consequently ||“|\B;-°°(Q) < C||u||Bz,r(Q). O

In order to proceed from this special case of Theorem 1 to the full scope of Theorem 1 we need to investigate
a class of quasi-nearly subharmonic functions. A key result in this direction is Theorem 2 below.

Let, for K > 1, QNS (W) denote the class of nonnegative, locally bounded Borel measurable functions u
on a domain W c R" satisfying

u(x) < ﬁ / udv, B(x,r)Cc W.
' B(x,r)

Functions in the class QNS(W) = | Jg,; QNSk(W) are called quasi-nearly subharmonic functions. We need the
next result, which generalizes Lemma 1.
Theorem A [14, 15] Let O < p < oo. If u € QNS(W), then u? € QNS(W). More precisely, if u € QNSg(W),
then u? € QNSg, (W), where K, depends only on K, n and p.
Let
w(p(&, 1) = sup u(p(é, 1), (&, 0 eca2x(0,r),

st

u* is a function defined on Q N U.
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Using Remark 1 and estimates (1.1) and (1.2) one easily proves that we have:

sup |u(é&, 1) < \Q(I.ffiltﬂ / udv, u e QNSg(Q), ¢ée€0Q, O0<tsry,

3terst
aier Q0

where K; depends only on K, n and Lipschitz constants L, I of x, ¢. This means that for u € QNSk(Q) we
have:

W (£, ) < / udv, £co0, 0<t<r. 2.7)

Q.0

As already noted, this version of maximal operator was studied in [11, 12].
The space Lz’q(() N U) consists of all measurable functions f : Q N U — C such that

gz = < / Q/ Fe. t)pdo($)> tﬂ‘fl‘itf) < oo
0 Q

In other words, \|f||L§,q = H]NCHLS,q.

\Q(é’ Bl

The following theorem is a result on boundedness of u — u* in the class of quasi-nearly subharmonic
functions. It will be used in the proof of our main result, Theorem 1

Theorem 2. Let0 < s,r < coand B > -1. A function u € QNSg(Q N U) belongs to LZ”(Q N U) if and only if u*
belongs to LZ”(V). Moreover we have

1457w = Cllullsr@nuys

where C depends on K and Q but is independent of u.

5T Assume that

Proof. Since u is locally bounded, we only have to prove the implication u € L3" = u* € L 5

0 < s < r < oo, Since u°® is, by Theorem A, a QNS function we have, using (2.7)

N

W (o, ) < m 5 / / (9, )do(n)dr. 2.8)

l BO.Q({)

Integration over & € 0Q gives:

~|w

[ 0rdo® = e / / | ot mdstdrdss).

20 L B22(2)

Arguing as in the proof of Lemma 3 we obtain

w

t

M0 g [ / u(p(n, )P dotn)dr < C / M, )47

L
2

~|
ol

Then we use Holder’s inequality with exponent £ and obtain

3
2
Ms(w*, t)<C /Mg(u, ‘r)g

If r < s < oo, we have as in (2.8)

3¢
2

W& = e | /( ot ot
l Bd() {
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which gives

s r

M, < g ( / / W (p(n, T ))da(n)dr> do(f)) .
Q

t Baﬂ(f)

Arguing as in Lemma 3 we get

3
2
r X r dT
Ms(u ,t)SC/MS(u,T)T, O<t<r2.

Multiplying by t? and integrating over 0 < t < r, gives

) "
[ |psr = /tﬁ'MZ(ux,t)g sc/ tﬁf/Mg(u,T)ﬂ dt
B t T ;

0

0 L
2

To
/tﬂr/XA %](T)Mr t)ﬂg /Tﬁng(u,T)g

2
- CHuHL;r.
O

Theorem 3. Let0 < s < sy <o00,0 <1 <o0andf > -1. If a function u belongs to QNSg(Q N U) N LS 7, then it
belongs toLsl "(QNU), where By = B+ (n-1)(% - —) and we have HuHle r < C\|u||Lsr where Clsaconstant

mdependent of u.

Proof. Letu € QNSg N L;” . Then, by Theorem A, u® € QNSk,, and it easily follows that:

M°°(u, t) <

n-1
s

sup Ms(u, 1), <19.
Lepedt

N
(NI

Therefore, we obtain an estimate:

Mgt (u, t) = /usl"s(<p({, (e, ))do(&) < M5 (u, OME(u, t).

20
Then c
Ms, (u, t) < e Sup M;s(u, 1) = oDy Sup M;s(u, 7). (2.9
ts st fer<dt t sos17 Lepedt
Since [£, 3}] ¢ U] 1 Aj, where A; = [(%)] (2 )] 13‘} we have
« 313t
%sup% Ms(u, 1) ngng(u ,T) < ZMS( F?)' (2.10)
Therefore, using (2.9) and (2.10), we obtain
B+(n-1)(-4) - « 33t
Ms, (u, )t 75 sCZtﬁMS< = 2> 11)

j=1

Now the result follows from the previous theorem. O
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We finish this paper with a proof of Theorem 1.

Proof of Theorem 1: Let u € BE”(Q). Then |u| is subharmonic and therefore in QNS;(Q2). Now |u| € L;",
because of u € B%7(Q). Hence, by Theorem 3, |u| € lel”. Since u is harmonic, this means u € lel’r([)).
Lemma 3 gives us u € lel""'(.()) and hence u € B/s;l’” (Q). Therefore 373”(()) C B;ll” 1(Q). The continuity of
the embedding BZ"(Q) — B 211”1 (Q) follows from the estimates given in Theorem 3 and Lemma 3, or from the
Closed Graph Theorem. O

Acknowledgements: The authors are grateful to the referee who pointed out many inaccuracies and whose
comments improved the presentation of results.
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