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Abstract: The main result of this paper is the embedding

Bs,r
β (Ω) ↪→ Bs1 ,r1

β+(n−1)
(

1
s −

1
s1

)(Ω),
0 < r ≤ r1 ≤ ∞, 0 < s ≤ s1 ≤ ∞, β > −1, of harmonic functions mixed norm spaces on a smoothly
bounded domain Ω ⊂ Rn. We also extend a result on boundedness, in mixed norm, of a maximal function-
type operator from the case of the unit disc and the unit ball to general domains in Rn.
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1 Introduction and preliminaries
The embedding theorems for harmonic or analytic function spaces with mixed norm have been studied
extensively, especially in the case of the unit disc, where �rst results are due to Hardy and Littlewood [1, 2].
In the case of analytic functions such theorems were proved for general bounded strictly pseudoconvex
domains in Cn, see [3]. Mixed norm spaces of harmonic and analytic functions on the upper half plane were
investigated in [4, 5], some of the methods we use here can be traced to these papers. For harmonic functions
many authors considered embeddings of mixed norm spaces on Bn or upper half-space Hn, see for example
[6] forBn, [7–9] forRn, or [10] forHn. However, it seems that the case ofmore general domainswas not treated.

In this paper we prove an embedding theorem for mixed norm spaces of harmonic functions, Theorem 1
below, in the setting of bounded C1 domains. This result generalizes Theorem 1.1 (iv) from [6]. In addition, we
consider a maximal function-type operator u 7→ u× and prove its boundedness with respect to mixed norm
in the class of quasi-nearly subharmonic functions u, see Theorem 2 below.

We note that the operator u× was discussed, in the case of the unit disc, in [11], and the corresponding
result in Ω ⊂ Rn is Theorem 2; see also a related result in [12] for weighted harmonic Bergman spaces on Bn.

We denote the Lebesgue measure onRn by dV and the Lebesgue measure of a measurable set E ⊂ Rn by
|E|. The surface measure on ∂Ω is denoted by dσ. B(a, r) denotes the usual Euclidean ball in Rn, with center
at a ∈ Rn and radius r > 0. We also use a standard convention: C denotes a constant which can actually
change its value from one occurrence to the next one. Also, for positive quantities A and B, A � Bmeans that
cA ≤ B ≤ CA for some constants 0 < c ≤ C < ∞.
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In this paper we work with a bounded domain Ω ⊂ Rn with C1 boundary. We �x a de�ning function ρ for
Ω, whichmeans ρ ∈ C1(Rn), Ω = {x ∈ Rn : ρ(x) > 0}, ∂Ω = {x ∈ Rn : ρ(x) = 0} and∇ρ(ξ ) ≠ 0 for all ξ ∈ ∂Ω.
We note that

ρ(x) � dist(x, ∂Ω) for x ∈ Ω.

By well known Tubular Neighborhood Theorem, there is a neighborhood U of ∂Ω and there is a C1-
di�eomorphism χ : U −→ ∂Ω × (−r0, r0) such that χ(∂Ω) = ∂Ω × {0}, χ(U ∩ Ω) = ∂Ω × (0, r0). We set
φ = χ−1 and, for −r0 < t < r0, Γt = φ(∂Ω × {t}). For a given measurable complex valued function f de�ned on
U ∩ Ω (or Ω), we de�ne f̃ : ∂Ω × (0, r0) −→ C by f̃ (ξ , t) = f (φ(ξ , t)).

Let h(Ω) = {u : Ω → C | u is harmonic in Ω}. If u1, u2 ∈ h(Ω) and u1 = u2 on U ∩ Ω, then u1 = u2
on Ω. We set, by a slight abuse of notation, ũ = (u|U∩Ω)˜. By the above remark, if ũ1 = ũ2, then u1 = u2 for
u1, u2 ∈ h(Ω).

Next we de�ne certain spaces of functions on Ω and ∂Ω × (0, r0) which are a natural generalization of
classical mixed norm spaces on the unit ball. For a Borel measurable function f on Ω or Ω ∩ U we set

Ms(f , t) =


∫
∂Ω

|̃f (ξ , t)|sdσ(ξ )


1
s

, 0 < s < ∞, 0 < t < r0,

with the usual modi�cation for s = ∞. Also for a Borel measurable function g on ∂Ω × (0, r0) we set

M̃s(g, t) =


∫
∂Ω

|g(ξ , t)|sdσ(ξ )


1
s

, 0 < s < ∞, 0 < t < r0,

again with the usual modi�cation for s = ∞. Now we have a mixed norm space

Ls,rβ = Ls,rβ (∂Ω × (0, r0)), 0 < s, r ≤ ∞, β ∈ R,

as the space of Borel measurable function g on ∂Ω × (0, r0) such that the following (quasi) norm of g is �nite

||g||Ls,r
β
= ||tβM̃s(g, t)||Lr((0,r0), dtt ).

The main object of study in this paper is the following space of harmonic functions

Bs,r
β (Ω) = {u ∈ h(Ω) : ũ ∈ Ls,rβ (∂Ω × (0, r0))},

with the following (quasi) norm
||u||Bs,r

β (Ω) = ||ũ||Ls,r
β
.

Here 0 < s, r ≤ ∞ and β > −1. Note that these spaces are trivial for β ≤ −1. Di�erent choice of a de�ning
function ρ and a di�erent choice of tubular neighborhood map χ lead to di�erent, but equivalent norms and
the same mixed norm spaces.

For every point ξ on the boundary of Ω and t > 0 we de�ne a "ball" B∂Ωt (ξ ) with center at point ξ ∈ ∂Ω
and radius t > 0 by

B∂Ωt (ξ ) = {η ∈ ∂Ω : |ξ − η| ≤ t}.

Note that the following area estimate is valid:

σ(B∂Ωt (ξ )) � tn−1, 0 < t ≤ diam(∂Ω). (1.1)

We also consider a "cylinder" in Ω centered at φ(ξ , t):

Q(ξ , t) =
{
z ∈ Ω ∩ U| χ(z) ∈ B∂Ωt (ξ ) ×

[
t
2 ,

3t
2

]}
, ξ ∈ ∂Ω, 0 < t < 2r0

3 .

We have the following two-sided volume estimate:

|Q(ξ , t)| � tn , 0 < t ≤ diam(∂Ω). (1.2)
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We de�ne a metric on ∂Ω ×R by

d∂Ω×R((ξ1, t1), (ξ2, t2)) =
√
|ξ1 − ξ2|2 + |t1 − t2|2,

for (ξ1, t1), (ξ2, t2) in ∂Ω × R. It is easy to see that χ : U1 → ∂Ω × [−r1, r1] and φ : ∂Ω × [−r1, r1] → U1 are
Lipschitz continuous for any r1 ∈ (0, r0), where U1 = φ

(
∂Ω × [−r1, r1]

)
. In fact, these C1 di�eomorphisms

have continuous and bounded partial derivatives. Hence, without loss of generality, we can assume that χ
and φ are Lipshitz continuous, i.e. there are constants 0 < l ≤ L < ∞ such that

l|z − w| ≤ d∂Ω×R(χ(z), χ(w)) ≤ L|z − w|,

for all z, w ∈ U. Also, there are constants 0 < c ≤ C < ∞ such that for any measurable E ⊂ U we have

c(dσ × dt)(χ(E)) ≤ |E| ≤ C(dσ × dt)(χ(E)).

Therefore, for any non-negative and measurable f on Ω ∩ U we have:

∫
U∩Ω

fdV �
∫
∂Ω

r0∫
0

f̃ dσdt. (1.3)

This is, in view of (1.1), a generalization of (1.2).
Let r2 = min( 2r03 , r02L ). Let us prove the following inclusions:

B
(
φ(ξ , t), t

2L

)
⊂ Q(ξ , t) ⊂ B

(
φ(ξ , t), 2tl

)
, ξ ∈ ∂Ω, 0 < t ≤ r2. (1.4)

The �rst inclusion is equivalent to the following one:

χ
(
B
(
φ(ξ , t), t

2L

))
⊂ χ(Q(ξ , t)) = B∂Ωt (ξ ) ×

[
t
2 ,

3t
2

]
.

Now, for z ∈ B(φ(ξ , t), t
2L ) we have

d∂Ω×R(χ(z), (ξ , t)) = d∂Ω×R(χ(z), χ(φ(ξ , t))) ≤ L|z − φ(ξ , t)| ≤ L
t
2L = t

2 ,

which proves a stronger inclusion:

χ
(
B
(
φ(ξ , t), t

2L

))
⊂ B∂Ωt/2(ξ ) ×

[
t
2 ,

3t
2

]
.

Similarly one proves Q(ξ , t) ⊂ B
(
φ(ξ , t), 2t/l

)
.

Let us set
V = φ(∂Ω × (0, r2)) ⊂ Ω ∩ U . (1.5)

Working within V has certain advanteges: one can always consider Q(ξ , t) when φ(ξ , t) ∈ V and, within V,
one can use inclusions (1.4).

The following lemma, due to Fe�erman and Stein (see [13]), states that |u|p has subharmonic behavior
for any p > 0.

Lemma 1. Let u ∈ h(Ω) and let B = B(z, r) ⊂ Ω. Then

|u(z)|p ≤ C
|B|

∫
B

|u|pdV ,

where C is a constant which depends only on p and n.

The above lemma combined with (1.2) and (1.4) gives the next result:
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Lemma 2. Suppose Q(ξ , t) is a cylinder in Ω, where ξ ∈ ∂Ω, 0 < t ≤ r2, and assume h is harmonic in Ω. Then
for every p > 0 there is a constant C > 0 that depends only on p and n such that

|u(φ(ξ , t))|p ≤ C
|Q(ξ , t)|

∫
Q(ξ ,t)

|u|pdV .

Remark 1. In the above constructions one can use segment [(1−δ), (1+δ)], where 0 < δ < 1 instead of [ t2 , 3
t
2 ]

(the case δ = 1
2 ). In particulatr, Lemma 2 is valid in this case, of course, the constant C depends on δ as well.

2 Main results
The main result of the paper is:

Theorem 1. For 0 < s ≤ s1 ≤ ∞ and 0 < r ≤ r1 ≤ ∞ we have a continuous embedding

Bs,r
β (Ω) ↪→ Bs1 ,r1

β1 (Ω),

where β1 = β + (n − 1)
(1
s −

1
s1
)
.

The following lemma is a special case of Theorem 1, where s = s1, r1 = ∞:

Lemma 3. Suppose 0 < r ≤ ∞ and β > −1, then we haveBs,r
β (Ω) ↪→ Bs,∞

β (Ω).

Proof. Let us �x u ∈ Bs,r
β (Ω). We treat separately the cases 0 < s ≤ r < ∞ and 0 < r < s < ∞.

Assume 0 < s ≤ r < ∞. For 0 < t < r2 we obtain, by Lemma 2 and (1.3), the following estimate:

|ũ(ξ , t)|s ≤ C
|Q(ξ , t)|

3t
2∫

t
2

∫
B∂Ωt (ξ )

|ũ(η, τ)|sdσ(η)dτ. (2.1)

Integrating over ξ ∈ ∂Ω and applying Fubini’s theorem we obtain

∫
∂Ω

|ũ(ξ , t)|sdσ(ξ ) ≤ C
|Q(ξ , t)|

3t
2∫

t
2

∫
∂Ω

∫
B∂Ωt (ξ )

|ũ(η, τ)|sdσ(η)dσ(ξ )dτ. (2.2)

For a �xed τ we have, again applying Fubini’s theorem and (1.1):∫
∂Ω

∫
B∂Ωt (ξ )

|ũ(η, τ)|sdσ(η)dσ(ξ ) =
∫
∂Ω

|ũ(η, τ)|s
∫
∂Ω

χB∂Ωt (ξ )dσ(ξ )dσ(η) ≤ Cτ
n−1
∫
∂Ω

|ũ(η, τ)|sdσ(η).

We use the above inequality and (1.2) to estimate inner integrals in (2.2):

Ms
s(u, t) ≤

C
tn

3t
2∫

t
2

τn−1
∫
∂Ω

|ũ(η, τ)|sdσ(η)dτ ≤ C

3t
2∫

t
2

Ms
s(u, τ)

dτ
τ ,

note that we also used τ � t for t
2 ≤ τ ≤

3t
2 . Next we use Hölder’s inequality with exponent rs ≥ 1 and get

Ms
s(u, τ) ≤ C


3t
2∫

t
2

Mr
s(u, τ)

dτ
τ


s
r


3t
2∫

t
2

dτ
τ


1− sr

= C


3t
2∫

t
2

Mr
s(u, τ)

dτ
τ


s
r

.
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Therefore we obtained

Ms(u, t) ≤ C


3t
2∫

t
2

Mr
s(u, τ)

dτ
τ


1
r

, 0 < t < r2. (2.3)

Our next goal is to obtain the crucial estimate (2.3) also in the second case, i.e. for 0 < r ≤ s < ∞. Let us set
p = s/r ≥ 1.We �x 0 < t < r2 and, as in the �rst case, see (2.1), we obtain fromLemma 2 the following estimate:

|ũ(ξ , t)|r ≤ C
|Q(ξ , t)|

3t
2∫

t
2

∫
B∂Ωt (ξ )

|ũ(η, τ)|rdσ(η)dτ. (2.4)

This gives, using (1.2):

|ũ(ξ , t)|s ≤
(
C
tn

)p( 3t
2∫

t
2

∫
B∂Ωt (ξ )

|ũ(η, τ)|rdσ(η)dτ
)p

.

Now we integrate with respect to dσ(ξ ) and obtain:

Ms
s(u, t) ≤

(
C
tn

)p ∫
∂Ω

( 3t
2∫

t
2

∫
B∂Ωt (ξ )

|ũ(η, τ)|rdσ(η)dτ
)p
dσ(ξ ),

which gives

Mr
s(u, t) ≤

C
tn

(∫
∂Ω

( 3t
2∫

t
2

∫
B∂Ωt (ξ )

|ũ(η, τ)|rdσ(η)dτ
)p
dσ(ξ )

) 1
p

.

Now we use Minkowski’s integral inequality with exponent p = s/r and obtain

Mr
s(u, t) ≤

C
tn

3t
2∫

t
2

(∫
∂Ω

( ∫
B∂Ωt (ξ )

|ũ(η, τ)|rdσ(η)
)p
dσ(ξ )

) 1
p

dτ.

We set
φτ(ξ ) =

∫
B∂Ωt (ξ )

|ũ(η, τ)|rdσ(η), (2.5)

and write the above estimate as

Mr
s(u, t) ≤

C
tn

3t
2∫

t
2

∫
∂Ω

φpτ (ξ ) dσ(ξ )

 1
p

dτ = C
tn

3t
2∫

t
2

||φτ||Lp(∂Ω,dσ(ξ )) dτ. (2.6)

Next we want to estimate the LP(∂Ω, dσ) norm of φτ, where t/2 ≤ τ ≤ 3t/2, to that end we de�ne a
function θ : ∂Ω × ∂Ω → R by

θ(ξ , η) =
{
1, |ξ − η| ≤ t
0, |ξ − η| > t

,

clearly θ(ξ , η) = θ(η, ξ ) and
φτ(ξ ) =

∫
∂Ω

θ(ξ , η)|ũ(η, τ)|rdσ(η).

We will use a duality argument: let us �x ψ ∈ Lq(∂Ω, dσ(ξ )), ||ψ||q ≤ 1, where 1/p + 1/q = 1. Then we
have
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∣∣∣∣∣∣
∫
∂Ω

φτ(ξ )ψ(ξ )dσ(ξ )

∣∣∣∣∣∣ =
∣∣∣∣∣
∫
∂Ω

∫
∂Ω

|ũ(η, τ)|rθ(ξ , η)|ψ(ξ )|dσ(η)dσ(ξ )

∣∣∣∣∣
≤
∫
∂Ω

∫
∂Ω

|ũ(η, τ)|rθ
1
p (ξ , η)θ

1
q (ξ , η)|ψ(ξ )|dσ(ξ )dσ(η)

≤ AB,

where

A =

∫
∂Ω

∫
∂Ω

(ũ(η, τ))prθ(ξ , η)dσ(ξ )dσ(η)

 1
p

≤ t
n−1
p

∫
∂Ω

|ũ(η, τ)|sdσ(η)

r/s

,

B =

∫
∂Ω

∫
∂Ω

|ψ(ξ )|qθ(ξ , η)dσ(ξ )dσ(η)

 1
q

≤ t
n−1
q ‖ψ‖q ≤ t

n−1
q .

Combining the above estimates we obtain∣∣∣∣∣∣
∫
∂Ω

φτ(ξ )ψ(ξ )dσ(ξ )

∣∣∣∣∣∣ ≤ tn−1Mr
s(u, τ), ‖ψ‖q ≤ 1,

and, by duality, this gives ||φτ||Lp(∂Ω,dσ(ξ )) ≤ tn−1Mr
s(u, τ). Using (2.6) and remembering that t � τ for t/2 ≤

τ ≤ 3t/2 we �nally obtain

Mr
s(u, t) ≤ C

3t
2∫

t
2

Mr
s(u, τ)

dτ
τ ,

which means we proved (2.3) also in the case 0 < r ≤ s. Thus, again using τ � t, in both cases we have:

tβMr
s(u, t) ≤ C

3t
2∫

t
2

τβMr
s(u, τ)

dτ
τ ≤ C||u||rBs,r

β (Ω), 0 < t < r2,

and consequently ||u||Bs,∞
β (Ω) ≤ C||u||Bs,r

β (Ω).

In order to proceed from this special case of Theorem 1 to the full scope of Theorem 1 we need to investigate
a class of quasi-nearly subharmonic functions. A key result in this direction is Theorem 2 below.

Let, for K ≥ 1, QNSK(W) denote the class of nonnegative, locally bounded Borel measurable functions u
on a domainW ⊂ Rn satisfying

u(x) ≤ K
|B(x, r)|

∫
B(x,r)

u dV , B(x, r) ⊂ W .

Functions in the class QNS(W) =
⋃
K≥1 QNSK(W) are called quasi-nearly subharmonic functions. We need the

next result, which generalizes Lemma 1.
Theorem A [14, 15] Let 0 < p < ∞. If u ∈ QNS(W), then up ∈ QNS(W). More precisely, if u ∈ QNSK(W),

then up ∈ QNSK1 (W), where K1 depends only on K, n and p.
Let

u×(φ(ξ , t)) = sup
3t
4 ≤τ≤t

u(φ(ξ , τ)), (ξ , t) ∈ ∂Ω × (0, r0),

u× is a function de�ned on Ω ∩ U.
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Using Remark 1 and estimates (1.1) and (1.2) one easily proves that we have:

sup
3
4 t≤τ≤t

|ũ(ξ , τ)| ≤ K1
|Q(ξ , t)|

∫
Q(ξ ,t)

udV , u ∈ QNSK(Ω), ξ ∈ ∂Ω, 0 < t ≤ r2,

where K1 depends only on K, n and Lipschitz constants L, l of χ, φ. This means that for u ∈ QNSK(Ω) we
have:

u×(φ(ξ , t)) ≤ K1
|Q(ξ , t)|

∫
Q(ξ ,t)

udV , ξ ∈ ∂Ω, 0 < t ≤ r2. (2.7)

As already noted, this version of maximal operator was studied in [11, 12].
The space Lp,qβ (Ω ∩ U) consists of all measurable functions f : Ω ∩ U −→ C such that

||f ||Lp,qβ =
( r0∫

0

(∫
∂Ω

|̃f (ξ , t)pdσ(ξ )
) q

p

tβq−1 dtt

) 1
q

< ∞.

In other words, ||f ||Lp,qβ = ||̃f ||Lp,qβ .
The following theorem is a result on boundedness of u 7→ u× in the class of quasi-nearly subharmonic

functions. It will be used in the proof of our main result, Theorem 1

Theorem 2. Let 0 < s, r ≤ ∞ and β > −1. A function u ∈ QNSK(Ω ∩ U) belongs to Ls,rβ (Ω ∩ U) if and only if u×

belongs to Ls,rβ (V). Moreover we have

||u×||Ls,rβ (V) ≤ C||u||Ls,rβ (Ω∩U),

where C depends on K and Ω but is independent of u.

Proof. Since u is locally bounded, we only have to prove the implication u ∈ Ls,rβ ⇒ u× ∈ Ls,rβ . Assume that
0 < s < r < ∞. Since us is, by Theorem A, a QNS function we have, using (2.7)

(u×(φ(ξ , t)))s ≤ C
|Q(ξ , t)|

3t
2∫

t
2

∫
B∂Ωt (ξ )

us(φ(η, τ))dσ(η)dτ. (2.8)

Integration over ξ ∈ ∂Ω gives:

∫
∂Ω

(u×(φ(ξ , t)))sdσ(ξ ) ≤ C
|Q(ξ , t)|

∫
∂Ω

3t
2∫

t
2

∫
B∂Ωt (ξ )

us(φ(η, τ))dσ(η)dτdσ(ξ ).

Arguing as in the proof of Lemma 3 we obtain

Ms
s(u×, t) ≤

C
tn

3t
2∫

t
2

τn−1
∫
∂Ω

|u(φ(η, τ))|sdσ(η)dτ ≤ C

3t
2∫

t
2

Ms
s(u, τ)

dτ
τ .

Then we use Hölder’s inequality with exponent rs and obtain

Ms(u×, t) ≤ C


3t
2∫

t
2

Mr
s(u, τ)

dτ
τ


1
r

.

If r < s < ∞, we have as in (2.8)

|u×(φ(ξ , t))|r ≤ C
|Q(ξ , t)|

3t
2∫

t
2

∫
B∂Ωt (ξ )

|u(φ(η, τ))|rdσ(η)dτ,
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which gives

Mr
s(u×, t) ≤

C
tn

(∫
∂Ω

( 3t
2∫

t
2

∫
B∂Ωt (ξ )

ur(φ(η, τ))dσ(η)dτ
) s

r

dσ(ξ )
) r

s

.

Arguing as in Lemma 3 we get

Mr
s(u×, t) ≤ C

3t
2∫

t
2

Mr
s(u, τ)

dτ
τ , 0 < t < r2.

Multiplying by tβ and integrating over 0 < t < r2 gives

||u×||rLs,rβ =
r2∫
0

tβrMr
s(u×, t)

dt
t ≤ C

r2∫
0

tβr
3t
2∫

t
2

Mr
s(u, τ)

dτ
τ

 dt
t

≤ C
r2∫
0

tβr
r0∫
0

χ[ t2 , 3t2 ](τ)M
r
s(u, t)

dτ
τ
dt
t ≤ C

r0∫
0

τβrMr
s(u, τ)

dτ
τ

= C||u||rLs,rβ .

Theorem 3. Let 0 < s < s1 ≤ ∞, 0 < r ≤ ∞ and β > −1. If a function u belongs to QNSK(Ω ∩ U) ∩ Ls,rβ , then it
belongs to Ls1 ,rβ1 (Ω ∩ U), where β1 = β + (n − 1)

(1
s −

1
s1
)
, and we have ||u||Ls1,rβ1

≤ C||u||Ls,rβ , where C is a constant
independent of u.

Proof. Let u ∈ QNSK ∩ Ls,rβ . Then, by Theorem A, us ∈ QNSK1 , and it easily follows that:

M∞(u, t) ≤
C
t n−1s

sup
t
2 ≤τ≤

3t
2

Ms(u, τ),
3t
2 < r0.

Therefore, we obtain an estimate:

Ms1
s1 (u, t) =

∫
∂Ω

us1−s(φ(ξ , t))us(φ(ξ , t))dσ(ξ ) ≤ Ms1−s
∞ (u, t)Ms

s(u, t).

Then
Ms1 (u, t) ≤

C
t
n−1
s

s1−s
s1

sup
t
2 ≤τ≤

3t
2

Ms(u, τ) =
C

t(n−1)(
1
s −

1
s1
)
sup
t
2 ≤τ≤

3t
2

Ms(u, τ). (2.9)

Since [ t2 ,
3t
2 ] ⊂

⋃4
j=1 ∆j, where ∆j =

[
(34 )

j t
2 , (

3
4 )
j−1 3t

2

]
we have

sup
t
2 ≤τ≤

3t
2

Ms(u, τ) ≤
4∑
j=1

sup
τ∈∆j

Ms(u, τ) ≤
4∑
j=1

Ms

(
u×, 3

j−1

4j−1
3t
2

)
. (2.10)

Therefore, using (2.9) and (2.10), we obtain

Ms1 (u, t)t
β+(n−1)( 1s −

1
s1
) ≤ C

4∑
j=1

tβMs

(
u×, 3

j−1

4j−1
3t
2

)
. (2.11)

Now the result follows from the previous theorem.
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We �nish this paper with a proof of Theorem 1.

Proof of Theorem 1: Let u ∈ Bs,r
β (Ω). Then |u| is subharmonic and therefore in QNS1(Ω). Now |u| ∈ Ls,rβ ,

because of u ∈ Bs,r
β (Ω). Hence, by Theorem 3, |u| ∈ Ls1 ,rβ1 . Since u is harmonic, this means u ∈ Bs1 ,r

β1 (Ω).
Lemma 3 gives us u ∈ Bs1 ,∞

β1 (Ω) and hence u ∈ Bs1 ,r1
β1 (Ω). Therefore Bs,r

β (Ω) ⊂ Bs1 ,r1
β1 (Ω). The continuity of

the embeddingBs,r
β (Ω) ↪→ Bs1 ,r1

β1 (Ω) follows from the estimates given in Theorem 3 and Lemma 3, or from the
Closed Graph Theorem. �
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