Open Mathematics

Research Article

Chunhua Li* and Baogen Xu

A characterization of translational hulls of a strongly right type B semigroup

https://doi.org/10.1515/math-2019-0105 Received April 13, 2019; accepted September 18, 2019

Abstract: The aim of this paper is to study the translational hull of a strongly right type B semigroup. Our main result is to prove that the translational hull of a strongly right type B semigroup is itself a strongly right type B semigroup. As an application, we give a proof of a problem posted by Petrich on translational hulls of inverse semigroups in Petrich (Inverse Semigroups, Wiley, New York, 1984) to the cases of some strongly right type B semigroups.

Keywords: strongly rpp, right type B semigroups, translational hulls

MSC: 20M10, 06F05

1 Introduction

Recall from [1] that if S is a semigroup and $a, b \in S$, then $a\mathcal{L}^*b$ [$a\mathcal{R}^*b$] if there is a semigroup T, containing S as a subsemigroup, such that $a\mathcal{L}b$ [$a\mathcal{R}b$] in T. A semigroup S is called rpp [lpp] if each \mathcal{L}^* [\mathcal{R}^*] class contains at least one idempotent. An rpp [lpp] semigroup in which the idempotents commute is right [left] adequate. A semigroup is said to be adequate if it is both right and left adequate. Recently, Guo, Shum and Guo have considered the so called strongly rpp semigroups (see, [2]). In fact, a strongly strongly

- **(B1)** for all $e, f \in E(S^1), a \in S, (efa)^* = (ea)^*(fa)^*;$
- **(B2)** if for all $a \in S$, $e \in E(S)$, $e \le a^*$, then there is an element $f \in E(S^1)$ such that $e = (fa)^*$, where " \le " is a natural partial order on E(S) (i.e., $(\forall g, h \in E(S))$ $g \le h \Leftrightarrow g = gh = hg$).

A *left type B semigroup* is defined dually. A *type B semigroup* is the one which is both right type B and left type B (see, [1, 3]). In particular, we call a right type B which is strongly rpp a *strongly right type B semigroup*. Since it is known that for a right adequate semigroup S, each \mathcal{L}^* -class of S contains exactly one idempotent (i.e., S is \mathcal{L}^* -unipotent), we have $a^{00} = a^*$ for all $a \in S$ if S is strongly right type B.

Following [4], a mapping λ from a semigroup S to itself is a *left translation* of S if $\lambda(ab) = (\lambda a)b$ for all $a, b \in S$. Similarly, a mapping ρ which maps a semigroup S to itself is called a *right translation* of S if $(ab)\rho = (\lambda a)b$

Baogen Xu: School of Science, East China Jiaotong University, Nanchang, Jiangxi 330013, P.R. China; E-mail: Baogenxu@163.com

^{*}Corresponding Author: Chunhua Li: School of Science, East China Jiaotong University, Nanchang, Jiangxi 330013, P.R. China; E-mail: chunhuali66@163.com

 $a(b\rho)$ for all $a, b \in S$. a left translation λ and a right translation ρ of a semigroup S are called *linked* if $a(\lambda b) = a(\lambda b)$ $(a\rho)b$ for all $a, b \in S$, in which case the pair (λ, ρ) is called a *bitranslation* of S. We denote by $\Lambda(S)$ [resp., I(S)] the set of all left [resp., right] translations of S, and denote by $\Omega(S)$ the set of all bitranslations of S. It is easy to check that $\Omega(S)$ forms a subsemigroup of $\Lambda(S) \times I(S)$. We call $\Omega(S)$ the translational hull of S. The role played by the translational hull of a semigroup in the general theory of semigroups (and, especially, in the theory of semigroup extensions) is well known (see, [4–7]). There are a number of detailed researches on translational hulls of various classes of semigroups (see, [8-13]). It is well known that the translational hull of an inverse semigroup is itself an inverse semigroup [4]. In 1985, Fountain and Lawson [8] generalized the above result to the case of adequate semigroups. Recently, Guo and Shum [9] investigated the translational hull of an ample semigroup on the basis of [8]. Generally, the translational hull of a right (left) type B semigroup [resp., a right (left) ample semigroup] is not a semigroup of the same type.

In this paper, we shall prove that the translational hull of a strongly right type B semigroup is still a semigroup of the same type. As an application, we give a positive answer to a problem posted by Petrich (i.e., if a semigroup S is embeddable into an inverse semigroup, is $\Omega(S)$ also embeddable into an inverse semigroup (see, [4, V.3.11 Problems, p. 226])) to the case of a strongly right type B semigroup satisfying some condition.

2 Preliminaries

Throughout this paper, we shall use the notions and notations of [1, 4, 8, 14].

Lemma 2.1. [1] Let S be a semigroup and a, $b \in S$. Then the following statements are equivalent:

- (1) $a\mathcal{L}^*b$;
- (2) for all $x, y \in S^1$, ax = ay if and only if bx = by.

Corollary 2.2. [1] Let S be a semigroup and $e^2 = e$, $a \in S$. Then the following statements are true:

- (1) $a\mathcal{L}^*e$ if and only if ae = a and for all $x, y \in S^1$, ax = ay implies ex = ey;
- (2) \mathcal{L}^* is a right congruence on S.

Evidently, in an arbitrary semigroup, we have $\mathcal{L} \subseteq \mathcal{L}^*$. For $a, b \in Reg(S)$, we get $a\mathcal{L}^*b$ if and only if $a\mathcal{L}b$, where Reg(S) denotes the set of regular elements of S.

Lemma 2.3. [1] Let S be a right adequate semigroup and $a, b \in S$. Define $\mu_L = \{(a, b) \in S \times S \mid (ea)^* = (ea)^* =$ $(eb)^*$ for all $e \in E(S^1)$. Then μ_L is the largest idempotent-separating congruence on S contained in \mathcal{L}^* .

As in [1], a right adequate semigroup *S* is called *right fundamental* if $\mu_L = 1_S$, where 1_S is the identity relation on S.

Lemma 2.4. [1] Let S be a right adequate semigroup. Then the following statements are true:

- (1) if S is a right ample semigroup, then S can be embedded into an inverse semigroup;
- (2) if S is a right type B semigroup which is right fundamental, then S is right ample.

Lemma 2.5. [15] Let S be a right type B semigroup. Define a relation on S as follows: $(a, b) \in \sigma \iff ea = eb$, for some $e \in E(S)$. Then σ is the least left cancellative monoid congruence on S.

In this paper, we call a right type B semigroup S proper if $\sigma \cap \mathcal{L}^* = 1_S$. Naturally, one would ask whether right type B semigroups are special strongly rpp semigroups? Note that, not all right type B semigroups are strongly right type B. We now give an example of a right type B semigroup which is not strongly right type B.

Example 2.1. (Due to Fountain [1]) Let \mathbb{N} be the set of all non-negative integers and put $I = \mathbb{N} \times \mathbb{N}$, $S = \mathbb{N} \cup I$. Define a multiplication " \circ " on S as follows:

$$m \circ n = m + n$$

 $m \circ (h, k) = (m + h, k)$
 $(h, k) \circ m = (h, k + m)$
 $(h, k) \circ (m, n) = (h, k + m + n)$

It is readily verified that " \circ " is associative, that the set of idempotents of S is $\{0, (0, 0)\}$. It is not difficult to check that the \mathcal{L}^* -classes of S are \mathbb{N} and I. In fact, Fountain [2] proved that S is a right type B semigroup. However, S itself is not strongly P, for if otherwise, then

$$(m, n)\mathcal{L}^*(0, 0)$$
 and $(0, 0) \circ (m, n) = (m, n)$.

But since $(0, 0) \circ (m, n) = (0, m+n)$, we have $(0, 0) \circ (m, n) \neq (m, n)$. This contradiction shows S is not a strongly right type B semigroup.

Next, we give an example of a proper strongly right type B semigroup.

Example 2.2. Let \mathbb{N} be the set of all non-negative integers and $S = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid m \geq n\}$. Define a multiplication " \bullet " on S by

$$(m, n) \bullet (p, q) = (m - n + t, q - p + t),$$

where $t = max\{n, p\}$. Then, it is readily verified that (S, \bullet) is a semigroup and $E(S) = \{(m, m) \in \mathbb{N} \times \mathbb{N}\}$. In addition, it is easy to check that S is right type B. On the other hand, since for all $(m, n) \in S$, there exists a unique idempotent $(n, n) \in S$ such that

$$(m, n)\mathcal{L}^{*}(n, n)$$
 and $(n, n) \bullet (m, n) = (m, n)$.

We have that S is a strongly rpp semigroup with $(m, n)^{00} = (n, n)$.

Now, we show that S is also proper. For this purpose, let (m, n), $(p, q) \in S$ be such that $(m, n)[\mathcal{L}^* \cap \sigma](p, q)$. Then $m \ge n$, $p \ge q$, $(m, n)\mathcal{L}^*(p, q)$ and $(m, n)\sigma(p, q)$. Hence, n = q, and there exists $(k, k) \in E(S)$ such that $(k, k) \bullet (m, n) = (k, k) \bullet (p, q)$. That is, $(k, k) \bullet (m, n) = (k, k) \bullet (p, n)$. Hence, (t, n - m + t) = (s, n - p + s), where $t = max\{k, m\}$ and $s = max\{k, p\}$. Thus t = s and n - m + t = n - p + s, this gives m = p. Therefore, (m, n) = (p, q). That is, S is a proper strongly right type B semigroup.

Corollary 2.6. *Let S be a proper right type B semigroup. Then S is right ample.*

Proof. Let $a \in S$, $e \in E(S)$. Then $a\mathcal{L}^*a^*$ and $ea\mathcal{L}^*(ea)^*$. Hence $a(ea)^*\mathcal{L}^*a^*(ea)^*$ and $ea = eaa^*\mathcal{L}^*(ea)^*a^*$ since \mathcal{L}^* is a right congruence on S. Note that E(S) is a semilattice. We have $a(ea)^*\mathcal{L}^*a^*(ea)^* = (ea)^*a^*\mathcal{L}^*ea$. On the other hand, it is easy to see that $(1, e) \in \sigma$ and $(1, (ea)^*) \in \sigma$ from Lemma 2.5. Hence $(a, ea) \in \sigma$ and $(a, a(ea)^*) \in \sigma$ since σ is a congruence on S from Lemma 2.5. Therefore, $ea[\mathcal{L}^* \cap \sigma]a(ea)^*$. But S is proper, we have $ea = a(ea)^*$. This gives that S is right ample.

3 The translational hull of a strongly right type B semigroup

In this section, we first characterize the relation \mathcal{L}^* on the translational hull of a strongly right type B semigroup and then we obtain the proof of our main result (i.e., if *S* is strongly right type B, then so is $\Omega(S)$). To start with our study, we first define two mappings λ^{00} and ρ^{00} on a strongly rpp semigroup *S* as follows:

$$\lambda^{00}a = (\lambda a^{00})^{00}a, \quad a\rho^{00} = a(\lambda a^{00})^{00},$$

where $a \in S$, $(\lambda, \rho) \in \Omega(S)$. Obviously, λ^{00} and ρ^{00} map S into itself.

Lemma 3.1. Let S be an rpp semigroup, (λ_1, ρ_1) , $(\lambda_2, \rho_2) \in \Omega(S)$. Then the following statements are true:

- (1) $\rho_1 = \rho_2 \iff (\forall e \in E(S)) e \rho_1 = e \rho_2$;
- **(2)** *if S is strongly rpp*, *then* $\lambda_1 = \lambda_2 \iff (\forall e \in E(S)) \lambda_1 e = \lambda_2 e$;
- (3) if E(S) is a semilattice, then $(\lambda_1, \rho_1) = (\lambda_2, \rho_2) \iff \lambda_1 = \lambda_2$;
- **(4)** *if S is strongly right type B, then*

$$(\lambda_1, \rho_1) = (\lambda_2, \rho_2) \iff \rho_1 = \rho_2 \iff \lambda_1 = \lambda_2;$$

Proof. (1) and (2) are trivial.

(3) Let $\lambda_1 = \lambda_2$. Then $\lambda_1 f = \lambda_2 f$ for all $f \in E(S)$. Hence, for all $e \in E(S)$, we have

$$\lambda_{1}f = \lambda_{2}f \Rightarrow e(\lambda_{1}f) = e(\lambda_{2}f)$$

$$\Rightarrow (e\rho_{1})f = (e\rho_{2})f$$

$$\Rightarrow [(e\rho_{1})f]^{*} = [(e\rho_{2})f]^{*}$$

$$\Rightarrow [(e\rho_{1})^{*}f]^{*} = [(e\rho_{2})^{*}f]^{*}$$

$$\Rightarrow (e\rho_{1})^{*}f = (e\rho_{2})^{*}f$$

since E(S) is a semilattice. Choose an idempotent $(e\rho_1)^*$ of S to replace the element f of the above formula. We have $(e\rho_1)^* = (e\rho_2)^*(e\rho_1)^*$. Similarly, we can get $(e\rho_2)^* = (e\rho_1)^*(e\rho_2)^*$. Hence, $(e\rho_1)^* = (e\rho_2)^*$ since E(S) is a semilattice. Thus, for all $e \in E(S)$, we have

$$e\rho_1 = (e\rho_1)(e\rho_1)^* = e(\lambda_1(e\rho_1)^*) = e(\lambda_2(e\rho_1)^*)$$

= $(e\rho_2)(e\rho_1)^* = (e\rho_2)(e\rho_2)^* = e\rho_2.$

Therefore, by (1), $\rho_1 = \rho_2$. That is, $(\lambda_1, \rho_1) = (\lambda_2, \rho_2)$.

The converse is clear.

(4) By (3), we only need to prove that $\rho_1 = \rho_2$ implies that $(\lambda_1, \rho_1) = (\lambda_2, \rho_2)$. To see it, let $\rho_1 = \rho_2$. Then, by (1), for all $e \in E(S)$, we have

$$\lambda_1 e = (\lambda_1 e)^{00} \lambda_1 e = ((\lambda_1 e)^{00} \rho_1) e = ((\lambda_1 e)^{00} \rho_2) e = (\lambda_1 e)^{00} \lambda_2 e.$$

Similarly, $\lambda_2 e = (\lambda_2 e)^{00} \lambda_1 e$. Hence, $\lambda_1 e \mathcal{L} \lambda_2 e$, and so $\lambda_1 e \mathcal{L}^* \lambda_2 e$. Note that *S* is strongly right type B. We have $(\lambda_1 e)^{00} = (\lambda_2 e)^{00}$. Hence, $\lambda_1 e = \lambda_2 e$. By (2), $\lambda_1 = \lambda_2$. Therefore, $(\lambda_1, \rho_1) = (\lambda_2, \rho_2)$, as required.

Proposition 3.2. *Let* S *be a strongly right type* B *semigroup, and* $(\lambda, \rho) \in \Omega(S)$. *Then the following statements are true:*

- (1) $e\rho^{00} = \lambda^{00}e = (\lambda e)^{00} \in E(S)$, for all $e \in E(S)$;
- (2) $(\lambda^{00}, \rho^{00}) \in E(\Omega(S));$
- (3) $(\lambda, \rho) \mathcal{L}^{*}(\lambda^{00}, \rho^{00});$
- **(4)** $e\rho^{00}\rho \mathcal{L}e\rho$, for all $e \in E(S)$;
- **(5)** $(\lambda^{00}, \rho^{00})(\lambda, \rho) = (\lambda, \rho);$
- **(6)** $E(\Omega(S)) = \{(\lambda, \rho) \in \Omega(S) \mid \lambda E(S) \mid \exists E(S) \rho \subseteq E(S) \}.$

Proof. (1) Let $e \in E(S)$. Then by the Definitions of λ^{00} and ρ^{00} , we have $e\rho^{00} = e(\lambda e)^{00} = (\lambda e)^{00}e = \lambda^{00}e$ since E(S) is a semilattice. And $(\lambda^{00}e)^2 = (\lambda^{00}e)(\lambda^{00}e) = (\lambda e)^{00}e(\lambda e)^{00}e = (\lambda e)^{00}ee = (\lambda e)^{00}e = \lambda^{00}e \in E(S)$. Note that \mathcal{L}^* is a right congruence. We have $\lambda^{00}e = (\lambda e)^{00}e\mathcal{L}^*(\lambda e)e = \lambda e\mathcal{L}^*(\lambda e)^{00}$. Again since S is \mathcal{L}^* -unipotent, we get that $\lambda^{00}e = (\lambda e)^{00}$. That is, $e\rho^{00} = \lambda^{00}e = (\lambda e)^{00} \in E(S)$.

(2) We first prove that $(\lambda^{00}, \rho^{00}) \in \Omega(S)$. To see it, let $a, b \in S$. Then by the Definitions of λ^{00} and ρ^{00} and (1), we have $(ab)\rho^{00} = (ab)(\lambda(ab)^{00})^{00} = (ab)(\lambda(ab)^{00}b^{00})^{00} = (ab)(\lambda b^{00}(ab)^{00})^{00} = ab(\lambda b^{00})^{00}(ab)^{00} = ab(\lambda b^{00})^{00}(ab)^{00} = ab(\lambda b^{00})^{00} = a(b\rho^{00})$. Hence, ρ^{00} is a right translation of S. Similarly, we can prove that λ^{00} is a left translation of S.

On the other hand, by (1), we have

$$a(\lambda^{00}b) = a(\lambda^{00}b^{00})b = aa^{00}(\lambda^{00}b^{00})b$$

$$= aa^{00}(b^{00}\rho^{00})b = a(a^{00}b^{00})\rho^{00}b$$

$$= a(b^{00}a^{00})\rho^{00}b = ab^{00}(a^{00}\rho^{00})b$$

$$= a(a^{00}\rho^{00})b^{00}b = (a\rho^{00})b,$$

this yields that $(\lambda^{00}, \rho^{00}) \in \Omega(S)$.

Now, we prove that $(\lambda^{00}, \rho^{00}) \in E(\Omega(S))$. To see it, let $e \in E(S)$. Then by (1), $e(\rho^{00})^2 = (e\rho^{00})\rho^{00} = (e(\rho^{00}))\rho^{00} = (e\rho^{00}e\rho^{00}) = (e\rho^{00}e\rho^{00}) = (e\rho^{00}e\rho^{00})^2 = (e\rho^{00}e\rho^{00})^$

(3) Let $e \in E(S)$. Then by (1), we have $\lambda \lambda^{00} e = \lambda(e\rho^{00}) = \lambda(ee\rho^{00}) = (\lambda e)(e\rho^{00}) = (\lambda e)(\lambda^{00} e) = (\lambda e)(\lambda e)^{00} = \lambda e$. Hence, by Lemma 3.1(2), $\lambda \lambda^{00} = \lambda$. Therefore, by Lemma 3.1(4), $(\lambda, \rho)(\lambda^{00}, \rho^{00}) = (\lambda \lambda^{00}, \rho \rho^{00}) = (\lambda, \rho)$. On the other hand, let $(\lambda_1, \rho_1), (\lambda_2, \rho_2) \in [\Omega(S)]^1$, and

$$(\lambda, \rho)(\lambda_1, \rho_1) = (\lambda, \rho)(\lambda_2, \rho_2).$$

Then, by Lemma 3.1(4), $\rho \rho_1 = \rho \rho_2$, and so $e \rho \rho_1 = e \rho \rho_2$ for all $e \in E(S)$. That is, $e \rho[(e \rho)^{00} \rho_1] = e \rho[(e \rho)^{00} \rho_2]$. Hence, by Corollary 2.2, $(e \rho)^{00} (e \rho)^{00} \rho_1 = (e \rho)^{00} (e \rho)^{00} \rho_2$. That is,

$$(e\rho)^{00}\rho_1 = (e\rho)^{00}\rho_2$$
 for all $e \in E(S)$.

Choose an idempotent $(\lambda e)^{00}$ of *S* to replace the element *e* of the above formula. We have

$$((\lambda e)^{00}\rho)^{00}\rho_1 = ((\lambda e)^{00}\rho)^{00}\rho_2.$$

Note that $((\lambda e)^{00}\rho)e = (\lambda e)^{00}(\lambda e) = \lambda e$. We have $((\lambda e)^{00}\rho)^{00}e = (\lambda e)^{00}$. Thus,

$$\begin{split} e\rho^{00}\rho_1 &= (e\rho^{00})\rho_1 = (\lambda^{00}e)\rho_1 = (\lambda e)^{00}\rho_1 \\ &= [((\lambda e)^{00}\rho)^{00}e]\rho_1 = [e((\lambda e)^{00}\rho)^{00}]\rho_1 \\ &= e((\lambda e)^{00}\rho)^{00}\rho_1 = e((\lambda e)^{00}\rho)^{00}\rho_2 \\ &= [((\lambda e)^{00}\rho)^{00}e]\rho_2 = (\lambda e)^{00}\rho_2 \\ &= e\rho^{00}\rho_2, \end{split}$$

which implies that $\rho^{00}\rho_1 = \rho^{00}\rho_2$. By Lemma 3.1(4),

$$(\lambda^{00}\lambda_1, \rho^{00}\rho_1) = (\lambda^{00}\lambda_2, \rho^{00}\rho_2).$$

That is,

$$(\lambda^{00}, \rho^{00})(\lambda_1, \rho_1) = (\lambda^{00}, \rho^{00})(\lambda_2, \rho_2).$$

This together with the fact $(\lambda, \rho) = (\lambda, \rho)(\lambda^{00}, \rho^{00})$, yields that $(\lambda, \rho)\mathcal{L}^*(\lambda^{00}, \rho^{00})$.

(4) Obviously, for any $a \in S$, $a\mathcal{L}^*a^{00}$ implies that $a\rho\mathcal{L}^*a^{00}\rho$, where ρ is a right translation of S. Hence, for all $e \in E(S)$, we have

$$(e\rho)^{00}\rho^{00}\mathcal{L}^*(e\rho)\rho^{00} = e\rho\rho^{00} = e\rho\mathcal{L}^*(e\rho)^{00}$$

since $\rho\rho^{00} = \rho$ (i.e $(\lambda, \rho) = (\lambda, \rho)(\lambda^{00}, \rho^{00})$). Thus, $(e\rho)^{00} = (e\rho)^{00}\rho^{00}$ since S is \mathcal{L}^* -unipotent. Note that $e\rho^{00}e\rho = e\rho^{00}\rho$. We have

$$e\rho = (e\rho)^{00}(e\rho) = ((e\rho)^{00}\rho^{00})(e\rho) = (e(e\rho)^{00}\rho^{00})\rho$$

$$= (e(e\rho)^{00})\rho^{00}\rho = ((e\rho)^{00}e)\rho^{00}\rho$$

$$= (e\rho)^{00}e\rho^{00}\rho$$

Therefore, $e\rho^{00}\rho\mathcal{L}e\rho$ for all $e\in E(S)$, as required.

(5) We first prove that $e\rho^{00}\rho = e\rho$ for all $e \in E(S)$.

$$\begin{split} (e\rho^{00}\rho)(e\rho)^{00} &= [(e\rho^{00})\rho](e\rho)^{00} = [(\lambda^{00}e)\rho](e\rho)^{00} \\ &= (\lambda^{00}e)(\lambda(e\rho)^{00}) = (\lambda^{00}e)[(\lambda(e\rho)^{00})^{00}](\lambda(e\rho)^{00}) \\ &= (\lambda^{00}e)[(\lambda(e\rho)^{00})^{00}(e\rho)^{00}](\lambda(e\rho)^{00}) \\ &= \lambda^{00}[e(\lambda(e\rho)^{00})^{00}(e\rho)^{00}](\lambda(e\rho)^{00}) \\ &= \lambda^{00}[(e\rho)^{00}e(\lambda(e\rho)^{00})^{00}](\lambda(e\rho)^{00}) \\ &= \lambda^{00}(e\rho)^{00}e(\lambda(e\rho)^{00})^{00}\lambda(e\rho)^{00} \\ &= \lambda^{00}(e\rho)^{00}e\lambda(e\rho)^{00} = e\lambda^{00}(e\rho)^{00}\lambda(e\rho)^{00} \\ &= \lambda^{00}(e\rho)^{00}\lambda(e\rho)^{00} = e(\lambda(e\rho)^{00}) \\ &= e(\lambda(e\rho)^{00})^{00}\lambda(e\rho)^{00} = e(\lambda(e\rho)^{00}) \\ &= (e\rho)(e\rho)^{00} = e\rho. \end{split}$$

On the other hand, by (4), we have $e\rho^{00}\rho\mathcal{L}^*e\rho$ and $e\rho=(e\rho)(e\rho)^{00}$. Thus, by Lemma 2.1, we have $e\rho^{00}\rho=e\rho^{00}\rho(e\rho)^{00}=e\rho$. By Lemma 3.1(1), $\rho=\rho^{00}\rho$. Therefore, by Lemma 3.1(4), $(\lambda^{00},\rho^{00})(\lambda,\rho)=(\lambda,\rho)$.

(6) Let $(\lambda, \rho) \in \Omega(S)$ be such that $\lambda E(S) \bigcup E(S)\rho \subseteq E(S)$. Then $e\rho \in E(S)$ for all $e \in E(S)$. Hence, $e\rho^2 = (ee\rho)\rho = (e\rho)e\rho = e\rho$, and so $\rho^2 = \rho$. By Lemma 3.1(4), $(\lambda, \rho)^2 = (\lambda, \rho) \in E(\Omega(S))$.

Conversely, if $(\lambda, \rho) \in E(\Omega(S))$, then $(\lambda^{00}, \rho^{00}) = (\lambda^{00}, \rho^{00})(\lambda, \rho)$ since $(\lambda^{00}, \rho^{00})\mathcal{L}^*(\Omega(S))(\lambda, \rho)$. On the other hand, by (5), $(\lambda, \rho) = (\lambda^{00}, \rho^{00})(\lambda, \rho)$. Thus $(\lambda, \rho) = (\lambda^{00}, \rho^{00})$, and so $\lambda = \lambda^{00}, \rho = \rho^{00}$, this gives $\lambda E(S) \bigcup E(S) \rho \subseteq E(S)$. This completes the proof.

Theorem 3.3. Let S be a strongly right type B semigroup. Then so is $\Omega(S)$.

Proof. By Proposition 3.2 (2) and (3), $\Omega(S)$ is an rpp semigroup.

Now, we prove that $\Omega(S)$ is right adequate. To see it, let (λ_1, ρ_1) , $(\lambda_2, \rho_2) \in E(\Omega(S))$. Then, by Proposition 3.2 (6), $e\rho_1, e\rho_2 \in E(S)$ for all $e \in E(S)$. Hence, $e\rho_1\rho_2 = e\rho_1e\rho_2 = e\rho_2e\rho_1 = e\rho_2\rho_1$, which implies that $\rho_1\rho_2 = \rho_2\rho_1$. By Lemma 3.1(4),

$$(\lambda_1\lambda_2, \rho_1\rho_2) = (\lambda_2\lambda_1, \rho_2\rho_1).$$

That is,

$$(\lambda_1, \rho_1)(\lambda_2, \rho_2) = (\lambda_2, \rho_2)(\lambda_1, \rho_1).$$

Therefore, $E(\Omega(S))$ is a semilattice. That is, $\Omega(S)$ is a right adequate semigroup. This together with Proposition 3.2(2), (3) and (5), yields that $\Omega(S)$ is a strongly rpp semigroup with semilattice of idempotents $E(\Omega(S))$.

Next, we only need to prove that $\Omega(S)$ satisfies Conditions (B1) and (B2). To see it, let (λ_1, ρ_1) , (λ_2, ρ_2) $\in E[(\Omega(S))^1]$, $(\lambda, \rho) \in \Omega(S)$, and $e \in E(S)$. Then

$$\begin{array}{ll} e(\rho_{1}\rho)^{00}(\rho_{2}\rho)^{00} = [ee(\rho_{1}\rho)^{00}](\rho_{2}\rho)^{00} = e(\rho_{1}\rho)^{00}e(\rho_{2}\rho)^{00} \\ = (\lambda_{1}\lambda)^{00}e(\lambda_{2}\lambda)^{00}e = (\lambda_{1}\lambda e)^{00}(\lambda_{2}\lambda e)^{00} & \text{(by Proposition 3.2(1))} \\ = (\lambda_{1}(\lambda e)^{00}(\lambda e))^{00}(\lambda_{2}(\lambda e)^{00}(\lambda e))^{00} & \text{(since S is strongly rpp)} \\ = (\lambda_{1}(\lambda e)^{00}\lambda_{2}(\lambda e)^{00}(\lambda e))^{00} & \text{(since S satisfies Condition (B1))} \\ = (\lambda_{1}((\lambda e)^{00}\lambda_{2}(\lambda e)^{00})(\lambda e))^{00} & \\ = (\lambda_{1}(\lambda_{2}(\lambda e)^{00}(\lambda e)^{00})(\lambda e))^{00} & \\ = (\lambda_{1}\lambda_{2}\lambda e)^{00} & \text{(by Proposition 3.2(1))} \\ = e(\rho_{1}\rho_{2}\rho)^{00} & \text{(by Proposition 3.2(1))} \end{array}$$

By Lemma 3.1(1), $(\rho_1 \rho)^{00} (\rho_2 \rho)^{00} = (\rho_1 \rho_2 \rho)^{00}$. On the other hand, we have

$$\begin{split} [(\lambda_{1}, \rho_{1})(\lambda_{2}, \rho_{2})(\lambda, \rho)]^{\star} &= [(\lambda_{1}, \rho_{1})(\lambda_{2}, \rho_{2})(\lambda, \rho)]^{00} \\ &= (\lambda_{1}\lambda_{2}\lambda, \ \rho_{1}\rho_{2}\rho)^{00} \\ &= ((\lambda_{1}\lambda_{2}\lambda)^{00}, \ (\rho_{1}\rho_{2}\rho)^{00}) \end{split}$$

and

$$\begin{split} \left[(\lambda_{1}, \rho_{1})(\lambda, \rho) \right]^{*} & \left[(\lambda_{2}, \rho_{2})(\lambda, \rho) \right]^{*} = \left[(\lambda_{1}, \rho_{1})(\lambda, \rho) \right]^{00} \left[(\lambda_{2}, \rho_{2})(\lambda, \rho) \right]^{00} \\ & = (\lambda_{1}\lambda, \ \rho_{1}\rho)^{00}(\lambda_{2}\lambda, \ \rho_{2}\rho)^{00} \\ & = ((\lambda_{1}\lambda)^{00}, \ (\rho_{1}\rho)^{00})((\lambda_{2}\lambda)^{00}, \ (\rho_{2}\rho)^{00}) \\ & = ((\lambda_{1}\lambda)^{00}(\lambda_{2}\lambda)^{00}, \ (\rho_{1}\rho)^{00}(\rho_{2}\rho)^{00}). \end{split}$$

By Lemma 3.1(4), $[(\lambda_1, \rho_1)(\lambda_2, \rho_2)(\lambda, \rho)]^* = [(\lambda_1, \rho_1)(\lambda, \rho)]^*[(\lambda_2, \rho_2)(\lambda, \rho)]^*$. Therefore, $\Omega(S)$ satisfies Condition (B1).

Let $(\lambda_1, \rho_1) \in E(\Omega(S))$, $(\lambda, \rho) \in \Omega(S)$ be such that $(\lambda_1, \rho_1) \le (\lambda, \rho)^*$. Then $(\lambda_1, \rho_1) \le (\lambda, \rho)^{00} = (\lambda^{00}, \rho^{00})$ since $\Omega(S)$ is \mathcal{L}^* -unipotent. Hence $(\lambda_1, \rho_1) = (\lambda_1, \rho_1)(\lambda^{00}, \rho^{00}) = (\lambda_1\lambda^{00}, \rho_1\rho^{00})$, and so $\rho_1 = \rho_1\rho^{00}$. By Lemma 3.1(1), $e\rho_1 = e\rho_1\rho^{00} = e\rho_1e\rho^{00} = e\rho^{00}e\rho_1$ for all $e \in E(S)$. Hence, $e\rho \le e\rho^{00} = (\lambda e)^{00} = (\lambda e)^*$. Again since S satisfies Condition (B2), we have

$$e\rho_1 = [f(\lambda e)]^* = [f(\lambda e)]^{00}$$
 for some $f \in E(S^1)$.

That is.

$$e\rho_1 = [f(\lambda e)]^{00} = [\lambda_f(\lambda e)]^{00} = (\lambda_f \lambda e)^{00} = (\lambda_f \lambda)^{00} e = e(\rho_f \rho)^{00},$$

where $\lambda_f(\rho_f)$ is the inner left (right) translation on S^1 determined by $f \in E(S^1)$. By Lemma 3.1(1), $\rho_1 = (\rho_f \rho)^{00}$. Hence, by Lemma 3.1(4),

$$\begin{aligned} [(\lambda_f, \rho_f)(\lambda, \rho)]^* &= [(\lambda_f, \rho_f)(\lambda, \rho)]^{00} \\ &= (\lambda_f \lambda, \ \rho_f \rho)^{00} \\ &= ((\lambda_f \lambda)^{00}, \ (\rho_f \rho)^{00}) \\ &= (\lambda_1, \rho_1), \end{aligned}$$

where $(\lambda_f, \rho_f) \in E[(\Omega(S))^1]$. That is, $\Omega(S)$ satisfies Condition (B2).

Summing up the above arguments, we conclude $\Omega(S)$ is a strongly right type B semigroup.

Corollary 3.4. Let S be a strongly right type B semigroup. Then the following statements are true:

- (1) for all $e \in E(S)$, (λ_1, ρ_1) , $(\lambda_2, \rho_2) \in \Omega(S)$, $(\lambda_1, \rho_1) \mathcal{L}^*(\Omega(S))(\lambda_2, \rho_2)$ if and only if $\lambda_1 e \mathcal{L}^*(S) \lambda_2 e$;
- (2) for all (λ_1, ρ_1) , $(\lambda_2, \rho_2) \in \Omega(S)$, $(\lambda_1, \rho_1)\mu_1^{\Omega(S)}(\lambda_2, \rho_2)$ if and only if for all $e \in E(S)$, $\lambda_1 e \mu_1^S \lambda_2 e$;

Proof. (1) By Theorem 3.3, $\Omega(S)$ is a strongly right type B semigroup. Let (λ_1, ρ_1) , $(\lambda_2, \rho_2) \in \Omega(S)$ be such that $(\lambda_1, \rho_1) \mathcal{L}^{\star}(\Omega(S))(\lambda_2, \rho_2)$. Then, by Proposition 3.2(3), $(\lambda_1^{00}, \rho_1^{00}) \mathcal{L}^{\star}(\Omega(S))(\lambda_2^{00}, \rho_2^{00})$. Hence, $(\lambda_1^{00}, \rho_1^{00}) = (\lambda_2^{00}, \rho_2^{00})$ since $\Omega(S)$ is \mathcal{L}^{\star} -unipotent. Thus $\lambda_1^{00} = \lambda_2^{00}$. By Lemma 3.1(2), $\lambda_1^{00} e = \lambda_2^{00} e$ for all $e \in E(S)$). Hence,

$$\lambda_1 e \mathcal{L}^*(S)(\lambda_1 e)^{00} = \lambda_1^{00} e = \lambda_2^{00} e = (\lambda_2 e)^{00} \mathcal{L}^*(S) \lambda_2 e.$$

Conversely, if for all $e \in E(S)$, $\lambda_1 e \mathcal{L}^*(S) \lambda_2 e$, then $\lambda_1^{00} e = \lambda_2^{00} e$ since S is both \mathcal{L}^* –unipotent and strongly rpp. Hence, by Lemma 3.1(2), $\lambda_1^{00} = \lambda_2^{00}$. By Lemma 3.1(4), $(\lambda_1^{00}, \rho_1^{00}) = (\lambda_2^{00}, \rho_2^{00})$. Thus, by Proposition 3.2(3), $(\lambda_1, \rho_1) \mathcal{L}^*(\Omega(S))(\lambda_2, \rho_2)$.

(2) Suppose that (λ_1, ρ_1) , $(\lambda_2, \rho_2) \in \Omega(S)$ and $(\lambda_1, \rho_1)\mu_L^{\Omega(S)}(\lambda_2, \rho_2)$. Then for all $f \in E(S)$,

$$(\lambda_f, \rho_f)(\lambda_1, \rho_1)\mu_L^{\Omega(S)}(\lambda_f, \rho_f)(\lambda_2, \rho_2),$$

where $(\lambda_f, \rho_f) \in E(\Omega(S))$. Hence,

$$(\lambda_f, \rho_f)(\lambda_1, \rho_1) \mathcal{L}^*(\Omega(S))(\lambda_f, \rho_f)(\lambda_2, \rho_2),$$

That is,

$$(\lambda_f \lambda_1, \ \lambda_f \rho_1) \mathcal{L}^*(\Omega(S)) (\lambda_f \lambda_2, \ \lambda_f \rho_2).$$

By (1), $\lambda_f \lambda_1 e \mathcal{L}^*(S) \lambda_f \lambda_2 e$ for all $e \in E(S)$. That is, $f \lambda_1 e \mathcal{L}^*(S) f \lambda_2 e$. Thus, $\lambda_1 e \mu_L^S \lambda_2 e$.

Conversely, if for all $e \in E(S)$, $\lambda_1 e \mu_L^S \lambda_2 e$, then $\lambda_1 e \mathcal{L}^*(S) \lambda_2 e$. Note S is a strongly right type B semigroup. We have $(\lambda_1 e)^{00} = (\lambda_2 e)^{00}$. Hence, for all $(\lambda, \rho) \in \Omega(S)$, we have

$$[\lambda(\lambda_1 e)^{00}]\lambda_1 e \mu_L^S [\lambda(\lambda_2 e)^{00}]\lambda_2 e.$$

That is, $\lambda \lambda_1 e \, \mu_1^S \lambda \lambda_2 e$. Hence, $\lambda \lambda_1 e \, \mathcal{L}^*(S) \lambda \lambda_2 e$. By (1), we have

$$(\lambda \lambda_1, \rho \rho_1) \mathcal{L}^*(\Omega(S))(\lambda \lambda_2, \rho \rho_2).$$

That is.

$$(\lambda, \rho)(\lambda_1, \rho_1)\mathcal{L}^*(\Omega(S))(\lambda, \rho)(\lambda_2, \rho_2).$$

Choose any idempotent (λ', ρ') of $\Omega(S)$ to replace the element (λ, ρ) of the above formula. We have $(\lambda_1, \rho_1)\mu_I^{\Omega(S)}(\lambda_2, \rho_2)$, as required.

4 Some special cases

In this section, we shall consider the translational hulls of some special strongly right type B semigroups.

Proposition 4.1. *Let* S *be a strongly right type* B *semigroup. Then for all* $e \in E(S)$, (λ_1, ρ_1) , $(\lambda_2, \rho_2) \in \Omega(S)$, $(\lambda_1, \rho_1)\sigma_{\Omega(S)}(\lambda_2, \rho_2) \iff e\rho_1\sigma_Se\rho_2 \iff \lambda_1e\sigma_S\lambda_2e$.

Proof. We first prove that $(\lambda_1, \rho_1)\sigma_{\Omega(S)}(\lambda_2, \rho_2)$ implies $e\rho_1\sigma_Se\rho_2$ and $\lambda_1e\sigma_S\lambda_2e$ for all $e \in E(S)$. To see it, let (λ_1, ρ_1) , $(\lambda_2, \rho_2) \in \Omega(S)$ such that $(\lambda_1, \rho_1)\sigma_{\Omega(S)}(\lambda_2, \rho_2)$. Then, by the definition of σ , there exists $(\lambda, \rho) \in E(\Omega(S))$ such that

$$(\lambda, \rho)(\lambda_1, \rho_1) = (\lambda, \rho)(\lambda_2, \rho_2),$$

that is, $(\lambda \lambda_1, \rho \rho_1) = (\lambda \lambda_2, \rho \rho_2)$. Hence, $\lambda \lambda_1 = \lambda \lambda_2$ and $\rho \rho_1 = \rho \rho_2$. By Lemma 3.1 (1) and (2), $\lambda \lambda_1 e = \lambda \lambda_2 e$ and $e \rho \rho_1 = e \rho \rho_2$ for all $e \in E(S)$. Thus,

$$\lambda(\lambda_1 e)^{00}\lambda_1 e = \lambda(\lambda_2 e)^{00}\lambda_2 e$$
 and $e\rho e\rho_1 = e\rho e\rho_2$.

Note that $\lambda(\lambda_1 e)^{00}$, $\lambda(\lambda_2 e)^{00}$, $e\rho \in E(S)$. We have $e\rho e\rho_1 = e\rho e\rho_2$ implies that $e\rho_1\sigma_S e\rho_2$. On the other hand,

$$\begin{split} &\lambda(\lambda_1 e)^{00}\lambda_1 e = \lambda(\lambda_2 e)^{00}\lambda_2 e \\ &\Rightarrow e \cdot \lambda(\lambda_1 e)^{00} \cdot \lambda_1 e = e \cdot \lambda(\lambda_2 e)^{00} \cdot \lambda_2 e \\ &\Rightarrow \lambda(\lambda_1 e)^{00} \cdot e \cdot \lambda_1 e = \lambda(\lambda_2 e)^{00} \cdot e \cdot \lambda_2 e \\ &\Rightarrow \lambda((\lambda_1 e)^{00} \cdot e) \cdot \lambda_1 e = \lambda((\lambda_2 e)^{00} \cdot e) \cdot \lambda_2 e \\ &\Rightarrow \lambda e(\lambda_1 e)^{00}\lambda_1 e = \lambda e(\lambda_2 e)^{00}\lambda_2 e \\ &\Rightarrow (\lambda e)(\lambda_1 e) = (\lambda e)(\lambda_2 e), \end{split}$$

where $\lambda e \in E(S)$. Thus, $\lambda_1 e \sigma_S \lambda_2 e$.

Now, we prove that for all $e \in E(S)$,

$$e\rho_1\sigma_S e\rho_2 \Rightarrow (\lambda_1,\rho_1)\sigma_{O(S)}(\lambda_2,\rho_2).$$

To see it, let $e\rho_1\sigma_S e\rho_2$. Then there exists $f \in E(S)$ such that $f(e\rho_1) = f(e\rho_2)$. That is, $(fe)\rho_1 = (fe)\rho_2$. Hence, $(ef)\rho_1 = (ef)\rho_2$ since E(S) is a semilattice. That is, $e\rho_f\rho_1 = e\rho_f\rho_2$. By Lemma 3.1(1), $\rho_f\rho_1 = \rho_f\rho_2$. Thus, by Lemma 3.1(4), we have $(\lambda_f\lambda_1, \rho_f\rho_1) = (\lambda_f\lambda_2, \rho_f\rho_2)$. That is,

$$(\lambda_f, \rho_f)(\lambda_1, \rho_1) = (\lambda_f, \rho_f)(\lambda_2, \rho_2).$$

Note that $(\lambda_f, \rho_f) \in E(\Omega(S))$. We have $(\lambda_1, \rho_1)\sigma_{\Omega(S)}(\lambda_2, \rho_2)$.

Similarly, we can prove that for all $e \in E(S)$,

$$\lambda_1 e \sigma_S \lambda_2 e \Rightarrow (\lambda_1, \rho_1) \sigma_{O(S)}(\lambda_2, \rho_2).$$

This completes the proof.

Theorem 4.2. Let S be a proper strongly right type B semigroup. Then so is $\Omega(S)$.

Proof. By Theorem 3.3, $\Omega(S)$ is a strongly right type B semigroup. It only remains to show that $\Omega(S)$ is proper. To see it, let (λ_1, ρ_1) , $(\lambda_2, \rho_2) \in \Omega(S)$ be such that $(\lambda_1, \rho_1)[\mathcal{L}^*_{\Omega(S)} \cap \sigma_{\Omega(S)}](\lambda_2, \rho_2)$. Then, by Corollary 3.4(1) and Proposition 4.1, we have $\lambda_1 e \mathcal{L}^*(S) \lambda_2 e$ and $\lambda_1 e \sigma_S \lambda_2 e$ for all $e \in E(S)$. Hence, $\lambda_1 e[\mathcal{L}^*_S \cap \sigma_S] \lambda_2 e$. Again, since S is proper, we have $\lambda_1 e = \lambda_2 e$ for all $e \in E(S)$. By Lemma 3.1(2), $\lambda_1 = \lambda_2$. Therefore, by Lemma 3.1(4), $(\lambda_1, \rho_1) = (\lambda_2, \rho_2)$. This completes the proof.

Corollary 4.3. Let S be a strongly right type B semigroup which is right fundamental. Then so is $\Omega(S)$.

Proof. By Theorem 3.3, $\Omega(S)$ is strongly right type B. Let $(\lambda_1, \rho_1), (\lambda_2, \rho_2) \in \Omega(S)$ be such that $(\lambda_1, \rho_1)\mu_L^{\Omega(S)}(\lambda_2, \rho_2)$. Then, by Corollary 3.4(2), $\lambda_1 e \mu_L^S \lambda_2 e$ for all $e \in E(S)$. Again, since S is right fundamental, we have $\lambda_1 e = \lambda_2 e$. By Lemma 3.1(2), $\lambda_1 = \lambda_2$. Hence, by Lemma 3.1(4), $(\lambda_1, \rho_1) = (\lambda_2, \rho_2)$. That is, $\mu_L^{\Omega(S)} = 1_{\Omega(S)}$. This completes the proof.

As applications of Theorem 4.2 and Corollary 4.3, we shall give a positive answer to a problem posted by Petrich (i.e., if a semigroup S is embeddable into an inverse semigroup, is $\Omega(S)$ also embeddable into an inverse semigroup (see, [4, V. 3.11 Problems, p. 226])) to the cases of some strongly right type B semigroups. The answer is given in the following Corollaries.

Corollary 4.4. Let S be a proper strongly right type B semigroup. Then $\Omega(S)$ is embeddable into an inverse semigroup.

Proof. It follows from Corollary 2.6, Lemma 2.4 and Theorem 4.2.

Corollary 4.5. Let S be a strongly right type B semigroup which is right fundamental. Then $\Omega(S)$ is embeddable into an inverse semigroup.

Proof. It follows from Lemma 2.4 and Corollary 4.3.

Acknowledgement: This work is supported by the National Science Foundation of China (No. 11261018, 11961026), the Natural Science Foundation of Jiangxi Province (No. 20181BAB201002, 20171BAB201009).

References

- [1] Fountain J. B., Adequate semigroups, Proc. Edinburgh Math. Soc., 1979, 22, 113-125.
- [2] Guo X.J., Shum K.P., Guo Y.Q., Perfect rpp semigroups, Comm. Algebra, 2001, 29, 2447-2459.
- [3] Li C.H., Wang L.M., Xu B.G., Huang H.W., On \sim bisimple right type B ω semigroups as model of some fractal structure, Chaos Solitons Fractals, 2016, 89, 169–174.
- [4] Petrich M., Inverse semigroups, Wiley, New York, 1984.
- [5] Hardy D., Petrich M., Binary relations as lattice isomorphisms, Annali di Matematica Pura ed Applicata, 1999, 177, 195-224.
- [6] Petrich M., Some constructions related to Rees matrix semigroups, Semigroup Forum, 1999, 59, 244–263.
- [7] Petrich M., Silva P.V., A functor from semigroups to rings, J. Pure Algebra, 2000, 148, 285-307.
- [8] Fountain J.B., Lawson M., The translational hull of an adequate semigroup, Semigroup Forum, 1985, 32, 79–86.
- [9] Guo X.J., Shum K.P., On translational hull of type A semigroups, J. Algebra, 2003, 269, 240-249.
- [10] Li H.W., The translational hulls of Rees matrix semigroups over monoids, Southeast Asian Bull. Math., 2010, 34, 309–320.
- [11] Pastijn F.J., Oliveira L.A., Ress matrix covers and the translational hull of a locally inverse semigroup, Comm. Algebra, 2008, 36, 3230–3249.
- [12] Wang Y., Ren X.M., Ma S.Y., The translational hull of superabundant semigroups with semilattice of idempotents, Scientia Magna, 2006, 2, 75–80.

П

- [13] Yuan Y., Gong C., Ma S., The structure of U-superabundant semigroups and the translational hull of completely j-simple semigroups, Adv. Math. (China), 2014, 43, 35-47.
- [14] Tang J., Feng X., Davvaz B., Xie X.Y., A further study on ordered regular equivalence relations in ordered semihypergroups, Open Math., 2018, 16, 168-184.
- [15] Li C.H., Wang L.M., A proper cover on a right type B semigroup, J. South China Norm. Univer., 2012, 44, 54-57.