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Abstract:Given adistribution of pebbles on the vertices of a connected graphG, apebblingmove onG consists
of taking two pebbles o� one vertex and placing one on an adjacent vertex. The optimal pebbling number of G,
denoted by πopt(G), is the smallest number m such that for some distribution of m pebbles on G, one pebble
can be moved to any vertex of G by a sequence of pebbling moves. Let Pk be the path on k vertices. Snevily
de�ned the n–k spindle graph as follows: take n copies of Pk and two extra vertices x and y, and then join the
left endpoint (respectively, the right endpoint) of each Pk to x (respectively, y), the resulting graph is denoted
by S(n, k), and called the n–k spindle graph. In this paper, we determine the optimal pebbling number for
spindle graphs.

Keywords: pebbling, optimal pebbling, spindle graph

MSC: 05C35

1. Introduction
Graph pebbling was �rst introduced into the literature by Chung (see [1]). Pebbling has developed its

own sub�eld (see [2]). Let G be a simple graph with vertex set V(G) and edge set E(G). Let D be a distribution
of pebbles on the vertices of G, or a distribution on G. For any vertex v of G, D(v) denotes the number of
pebbles on v in D. For S ⊆ V(G), we let D(S) =

∑
v∈S D(v) and |D| =

∑
v∈V(G) D(v). A pebbling move consists

of removing two pebbles from one vertex and then placing one pebble at an adjacent vertex. For v ∈ V(G), v
is reachable under distribution D if v has at least one pebble after some sequence of pebbling moves starting
from D. A distribution D is solvable if all vertices of G are reachable under D. The pebbling number of G,
denoted by π(G), is the smallest number m such that every distribution of m pebbles on G is solvable. The
optimal pebbling number of G, denoted by πopt(G), is the smallest number m such that some distribution of
m pebbles on G is solvable. We say a distribution D is optimal if D has πopt(G) pebbles and is solvable; that is,
it is a solvable distribution of minimum size. We say a distribution D is smooth if it has at most two pebbles
on each vertex of degree 2. A vertex v is unoccupied under a distribution D if D(v) = 0.

The optimal pebbling number of Gwas �rst introduced by Pachter, Snevily, and Voxman [3]. The optimal
pebbling number has been determined for paths [3, 4], cycles [4],m-ary trees [5], caterpillars [6], and ladders
[4]. Moews [7] used a probabilistic argument to show that the n-cube Qn has πopt(Qn) = (4/3)n+O(log n). In [8],
Xue and Yerger investigated the optimal pebbling number of grids and found the optimal pebbling number
for the 3 by n grid. For graphs of diameter two (respectively, three), Muntz et al. [9] characterized the classes
of graphs having πopt(G) equal to a value between 2 and 4 (respectively, between 3 and 8). The lower and
upper bounds on the optimal pebbling number were further studied in [4]. Milans and Clark [10] showed that
computing optimal pebbling number is NP-hard on arbitrary graphs. Interestingly, exact values for optimal
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pebbling number are known only for paths, cycles, caterpillars, m-ary trees, ladders, and the 3 by n grid. A
survey of results of optimal pebbling number can be found in [2].

Let Pk be the path on k vertices. Snevily de�ned the n–k spindle graph as follows: take n copies of Pk
and two extra vertices x and y, and then join the left endpoint (respectively, the right endpoint) of each Pk
to x (respectively, y), the resulting graph is denoted by S(n, k), and called the n–k spindle graph. In fact, the
spindle graph S(n, k) is the graph that the vertices x and y are connected by n internally-disjoint paths of
length k + 1 (Figure 1 is the graph S(3, k)). Snevily and Foster [11] proposed the following Problem 1.1, which
appears to be quite di�cult.

Problem 1.1 [11] Find π(S(3, k)).
By S(1, k) = Pk+2 and S(2, k) = C2k+2, we have π(S(1, k)) = 2k+1 and π(S(2, k)) = 2k+1(see [4]). Recently,

Gao and Yin [12] determined π(S(3, k)), which solves Problem 1.1.
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Figure 1: S(3, k).

The focus of this paper is to investigate the optimal pebbling number of S(n, k). By πopt(Cn) = πopt(Pn) =
d2n3 e (see [4]), we have πopt(S(1, k)) = d2k+43 e and πopt(S(2, k)) = d

4k+4
3 e. For n ≥ 3, we further determine

πopt(S(n, k)) in this paper. That is the following Theorem 1.1.

Theorem 1.1 Let n ≥ 3 and p ≥ 0, and denote ` = max{t|2t ≤ n}.
(1) If k < 2`, then πopt(S(n, k)) = 2bk/2c + 2dk/2e;
(2) If k = 2` + 3p, then πopt(S(n, k)) = 2`+1 + 2np;
(3) If k = 2` + 3p + 1, then πopt(S(n, k)) = 2`+1 + 2` + 2np;
(4) If k = 2` + 3p + 2 and 2n ≥ 2`+1 + 2`−1, then πopt(S(n, k)) = 2`+2 + 2np;
(5) If k = 2` + 3p + 2 and 2n < 2`+1 + 2`−1, then πopt(S(n, k)) = 2`−1 + 2` + 2n(p + 1).

2. Lemmas
In order to prove Theorem 1.1, we need the following lemmas.
Let D be a distribution on G, and let H ⊆ G. The restriction of D to H is a pebble distribution DH which

is de�ned as follows: DH(u) = D(u) if u ∈ V(H) and DH(u) = 0 if u ∉ V(H). For convenience, we write
A1, A2, . . . , An for the n copies of Pk in S(n, k). For 1 ≤ i ≤ n and 1 ≤ s < t ≤ k, we write Ai = ui,1ui,2 . . . ui,k
and Ai[s, t] = ui,sui,s+1 . . . ui,t.

Lemma 2.1. [4] If G is a connected n-vertex graph, with n ≥ 3, then G has a smooth optimal distribution with all
leaves unoccupied.

Lemma 2.2. [3, 4] Let Pk be the path on k vertices. Then πopt(Pk) = d2k/3e.
The following Lemma gives an upper bound on πopt(S(n, k)).

Lemma 2.3. Let n ≥ 3 and p ≥ 0, and denote ` = max{t|2t ≤ n}.
(1) If k < 2`, then πopt(S(n, k)) ≤ 2bk/2c + 2dk/2e;
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(2) If k = 2` + 3p, then πopt(S(n, k)) ≤ 2`+1 + 2np;
(3) If k = 2` + 3p + 1, then πopt(S(n, k)) ≤ 2`+1 + 2` + 2np;
(4) If k = 2` + 3p + 2 and 2n ≥ 2`+1 + 2`−1, then πopt(S(n, k)) ≤ 2`+2 + 2np;
(5) If k = 2` + 3p + 2 and 2n < 2`+1 + 2`−1, then πopt(S(n, k)) ≤ 2`−1 + 2` + 2n(p + 1).

Proof. Clearly, 2` ≤ n < 2`+1 and ` ≥ 1.
(1) Assume that k < 2`. Let D be a distribution such that D(x) = 2bk/2c, D(y) = 2dk/2e, and D(v) = 0 for

each v ∈ V(S(n, k)) \ {x, y}. Then D is solvable and πopt(S(n, k)) ≤ 2bk/2c + 2dk/2e.
(2) Assume that k = 2` + 3p. Let D be a distribution such that D(x) = D(y) = 2`, D(ui,j) = 2

for all i ∈ {1, 2, . . . , n}, j ∈ {` + 2, . . . , ` + 3(p − 1) + 2}, and D(v) = 0 for each
v ∈ V(S(n, k)) \ {x, y, u1,`+2, . . . , u1,(`+3p−1), . . . , un,(`+2), . . . , un,(`+3p−1)}. It is clear to see that D is solvable.
Then πopt(S(n, k)) ≤ 2`+1 + 2np.

(3) Assume that k = 2` + 3p + 1. Let D be a distribution such that D(x) = 2`, D(y) = 2`+1, D(ui,j) = 2
for all i ∈ {1, 2, . . . , n}, j ∈ {` + 2, . . . , ` + 3(p − 1) + 2}, and D(v) = 0 for each v ∈ V(S(n, k)) \
{x, y, u1,(`+2), . . . , u1,(`+3p−1), . . . , un,(`+2), . . . , un,(`+3p−1)}. Then D is solvable and πopt(S(n, k)) ≤ 2`+1 + 2` +
2np.

(4) Assume that k = 2` + 3p + 2 and 2n ≥ 2`+1 + 2`−1. Let D be a distribution such that D(x) = D(y) =
2`+1, D(ui,j) = 2 for all i ∈ {1, 2, . . . , n}, j ∈ {` + 3, . . . , ` + 3p}, and D(v) = 0 for each v ∈ V(S(n, k)) \
{x, y, u1,(`+3), . . . , u1,(`+3p), . . . , un,(`+3), . . . , un,(`+3p)}. Then D is solvable and πopt(S(n, k)) ≤ 2`+2 + 2np.

(5) Assume that k = 2` + 3p + 2 and 2n < 2`+1 + 2`−1. Let D be a distribution such that D(x) = 2`,
D(y) = 2`−1, D(ui,j) = 2 for all i ∈ {1, 2, . . . , n}, j ∈ {` + 2, . . . , ` + 3p + 2}, and D(v) = 0 for each v ∈
V(S(n, k))\{x, y, u1,(`+2), . . . , u1,(`+3p+2), . . . , un,(`+2), . . . , un,(`+3p+2)}. Then D is solvable and πopt(S(n, k)) ≤
2`−1 + 2` + 2n(p + 1). �

Let

g(n, k) =


2bk/2c + 2dk/2e if k < 2` ,
2`+1 + 2np if k = 2` + 3p ,
2`+1 + 2` + 2np if k = 2` + 3p + 1,
min{2`+2 + 2np, 2`−1 + 2` + 2n(p + 1)} if k = 2` + 3p + 2.

Then πopt(S(n, k)) ≤ g(n, k).

Lemma 2.4. Assume that n ≥ 3, k ≥ 2, and α1 ≥ 0, α2 ≥ 0, α1 + α2 ≤ k. Let D be a smooth solvable
distribution on S(n, k). If there are at most 2α1 + β1 pebbles can be put on x by a sequence of pebbling moves
starting from D, and there are at most 2α2 + β2 pebbles can be put on y by a sequence of pebbling moves, then
|D| ≥ 2α1 + 2α2 + nd2(k − α1 − α2)/3e, where 0 ≤ βi ≤ 2αi − 1 for i ∈ {1, 2}.

Proof. Clearly, for i ∈ {1, 2, . . . , n}, we can move at most one pebble to x from Ai as D is a smooth
distribution. Similarly, we canmove at most one pebble to y from Ai. Consider a smooth solvable distribution
D0 with D0(x) = 2α1 , D0(y) = 2α2 .

If |D0| ≤ 2α1 + 2α2 + nd2(k − α1 − α2)/3e − 1, then there are at most

|D0| − D0(x) − D0(y) ≤ nd2(k − α1 − α2)/3e − 1

pebbles on A1[1 + α1, k − α2], . . . , An[1 + α1, k − α2]. For i ∈ {2, . . . , n}, by Lemma 2.2, we need at least
d2(k − α1 − α2)/3e pebbles that ensure each vertex in Ai[1 + α1, k − α2] to be reachable. Thus, there is some
vertex in Ai[1 + α1, k − α2] which is not reachable. Hence, |D0| ≥ 2α1 + 2α2 + nd2(k − α1 − α2)/3e. Note that
each pebbling move reduces the size of D. Therefore, |D| ≥ |D0| ≥ 2α1 + 2α2 + nd2(k − α1 − α2)/3e. �

Lemma 2.5. Let a be a nonnegative integer, a = 3p + s, s ∈ {0, 1, 2}. Then 2da/2e + 2ba/2c ≥ 4p + s + 2.

Proof. Firstly, assume that a = 2b. Then p = (2b − s)/3, and 2da/2e + 2ba/2c = 2b+1. Let f (t) = 2t+1 − 2 − s −
(8t − 4s)/3. If a = 0, then b = p = s = 0, and f (0) ≥ 0. If a = 2, then b = 1, p = 0, s = 2, and f (1) ≥ 0. We have
that f ′(t) = 2t+1 ln 2 − 8/3 > 0 for t ≥ 1. Hence, f (t) > f (1) ≥ 0.
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Now, we assume that a = 2b + 1. Then p = (2b + 1 − s)/3, and 2da/2e + 2ba/2c = 3 × 2b . If a = 1, then
b = p = 0, s = 1, and 2da/2e + 2ba/2c ≥ 4p + s + 2. Let f (t) = 3 × 2t − 2 − s − (8t + 4 − 4s)/3. If a = 3, then
b = p = 1, s = 0, and f (1) ≥ 0. We get f ′(t) = 3 × 2t ln 2 − 8/3 > 0 for t ≥ 1. Thus, f (t) > f (1) ≥ 0. Therefore,
2da/2e + 2ba/2c ≥ 4p + s + 2. �

3. Proof of Theorem 1.1
Proof of Theorem 1.1. Clearly, S(n, 1) is isomorphic to K2,n, and πopt(K2,n) = 3. We assume k ≥ 2. By Lemma
2.3, we have that πopt(S(n, k)) ≤ g(n, k). We now show that πopt(S(n, k)) ≥ g(n, k). By Lemma 2.1, we can
assume that D is a smooth optimal distribution. Now, we assume that there are at most 2α1 + β1 pebbles can
be put on x by a sequence of pebbling moves starting from D, and there are at most 2α2 + β2 pebbles can be
put on y by a sequence of pebbling moves, where α1 ≥ 0, α2 ≥ 0, 0 ≤ βi ≤ 2αi − 1 for i ∈ {1, 2}. Thus, we
assume D(x) = 2α1 + β1 − m1 and D(y) = 2α2 + β2 − m2, where 0 ≤ mi ≤ min{n, 2αi + βi} for i ∈ {1, 2}. Note
that 2` ≤ n < 2`+1 and ` ≥ 1. Clearly, a ≥ min{a, b} for a and b are real numbers. We consider the following
two cases.

Case 1. α1 + α2 > k.
Then |D| = D(x) + D(y) +

∑n
i=1 D(Ai) ≥ 2α1 + β1 − m1 + 2α2 + β2 − m2 + m1 + m2 ≥ 2α1 + 2α2 . Hence,

|D| ≥ 2α1 +2α2 ≥ 2d(α1+α2)/2e +2b(α1+α2)/2c > 2dk/2e +2bk/2c since 2a +2b ≥ 2a−1 +2b+1 for all integers satisfying
a > b.

Assume that k = 2` + 3p + s, s ∈ {0, 1, 2}. By Lemma 2.5, we have that

|D| > 2dk/2e + 2bk/2c

= 2d(2`+3p+s)/2e + 2b(2`+3p+s)/2c

= 2`(2d(3p+s)/2e + 2b(3p+s)/2c)
≥ 2`(4p + s + 2).

If s = 0, then |D| > (4p +2)2` > 2`+1 +2np. If s = 1, then |D| > 4p × 2` +3 × 2` > 2`+1 +2` +2np. If s = 2, then
|D| > 4p ×2` +4×2` > 2`+2 +2np ≥ min{2`+2 +2np, 2`−1 +2` +2n(p +1)}. Thus, |D| = πopt(S(n, k)) > g(n, k).
This is impossible as it would be greater than the known upper bound.

Case 2. α1 + α2 ≤ k.
Denote ω = α1 + α2. By Lemma 2.4, we get

|D| ≥ 2α1 + 2α2 + nd2(k − ω)/3e ≥ 2dω/2e + 2bω/2c + nd2(k − ω)/3e (3.1)

as 2a + 2b ≥ 2a−1 + 2b+1. Now we consider the following three subcases.

Subcase 2.1. k < 2`.
If ω = k, by (3.1), then |D| ≥ 2dk/2e + 2bk/2c. If ω = k − 1, by (3.1), then

|D| ≥ 2dω/2e + 2bω/2c + nd2(k − ω)/3e
≥ 2d(k−1)/2e + 2b(k−1)/2c + 2`

≥ 2d(k−1)/2e + 2b(k−1)/2c + 2dk/2e

≥ 2dk/2e + 2bk/2c.

If ω ≤ k − 2, then

|D| ≥ 2dω/2e + 2bω/2c + nd2(k − ω)/3e ≥ 2dω/2e + 2bω/2c + 2 × 2` ≥ 2dk/2e + 2bk/2c.

Subcase 2.2. k = 2` + 3p + s and 0 ≤ ω ≤ 2` + s, where s ∈ {0, 1, 2}.
Let ω = 2` + s − j, 0 ≤ j ≤ 2` + s. By (3.1), we get

|D| ≥ 2dω/2e + 2bω/2c + nd(6p + 2j)/3e ≥ 2d(2`+s−j)/2e + 2b(2`+s−j)/2c + 2np + nd2j/3e. (3.2)
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If s = 0 and 0 ≤ j ≤ 1, by (3.2), then |D| ≥ 2`+1 + 2np. If s = 0 and j ≥ 2, then

|D| ≥ 2d(2`−j)/2e + 2b(2`−j)/2c + 2np + 2`d2j/3e > 2`+1 + 2np.

If s = 1 and j ≤ 3, then

|D| ≥ 2d(2`+1−j)/2e + 2b(2`+1−j)/2c + 2np + 2`d2j/3e ≥ 2`+1 + 2` + 2np.

If s = 1 and j ≥ 4, then

|D| ≥ 2d(2`+1−j)/2e + 2b(2`+1−j)/2c + 2np + 2`d2j/3e > 2`+1 + 2` + 2np.

Assume that s = 2. If j = 0, then |D| ≥ 2`+2 + 2np ≥ min{2`+2 + 2np, 2`−1 + 2` + 2n(p + 1)}. If j = 1,
then |D| ≥ 2`+1 + 2` + 2np + n ≥ 2`+2 + 2np ≥ min{2`+2 + 2np, 2`−1 + 2` + 2n(p + 1)}. If 2 ≤ j ≤ 3, then
|D| ≥ 2` +2`−1 +2np +2n ≥ min{2`+2 +2np, 2`−1 +2` +2n(p +1)}. If j = 4, then |D| ≥ 2`−1 +2`−1 +2np +3n ≥
2`+2 + 2np ≥ min{2`+2 + 2np, 2`−1 + 2` + 2n(p + 1)}. If j ≥ 5, then |D| ≥ 2np + 4n ≥ 2`+2 + 2np ≥ min{2`+2 +
2np, 2`−1 + 2` + 2n(p + 1)}.

Subcase 2.3. k = 2` + 3p + s and 2` + s < ω ≤ 2` + 3p + s, where s ∈ {0, 1, 2}.
Note that p ≥ 1. Let ω = 2` + 3p + s − j, 0 ≤ j ≤ 3p − 1. By (3.1), we have

|D| ≥ 2`(2d(3p+s−j)/2e + 2b(3p+s−j)/2c) + nd2j/3e. (3.3)

Assume that 3p + s − j = 1. Then |D| ≥ 3 × 2` + nd2j/3e = 2`+1 + 2` + 2np + nd(2s − 2)/3e. If s = 0, then
|D| > 2`+1 + 2np. If s = 1, then |D| ≥ 2`+1 + 2` + 2np. If s = 2, then |D| ≥ 2`+1 + 2` + 2np + n > 2`+2 + 2np.

Assume that 3p + s − j = 2. Then |D| ≥ 2 × 2`+1 + nd2j/3e = 2`+2 + 2np + nd(2s − 4)/3e. If s = 0, then
|D| > 2`+1 + 2np. If s = 1, then |D| > 2`+1 + 2` + 2np. If s = 2, then |D| ≥ 2`+2 + 2np.

Assume that 3p + s − j = 3. Then |D| ≥ 6 × 2` + nd2j/3e = 2`+2 + 2`+1 + 2np + nd(2s − 6)/3e. If s = 0, then
|D| > 2`+1 + 2np. If s = 1, then |D| ≥ 2`+1 + 2` + 2np. If s = 2, then |D| > 2`+2 + 2np.

Assume that 3p + s − j = 4. Then |D| ≥ 2`+3 + 2np + nd(2s − 8)/3e. If s = 0, then |D| > 2`+1 + 2np. If s = 1,
then |D| > 2`+1 + 2` + 2np. If s = 2, then |D| > 2`+2 + 2np.

Assume that 3p + s − j = 2c and c ≥ 3. By (3.3), and

p + s + d2j/3e − j ≥ (j + 1 − s)/3 + s + d2j/3e − j = d2j/3e − 2j/3 + (1 + 2s)/3 > 0,

we have that
|D| ≥ 2`(2d(3p+s−j)/2e + 2b(3p+s−j)/2c) + nd2j/3e

= 2`+12c + nd2j/3e
≥ 2`+1(2 + 2c) + nd2j/3e
= 2`+2 + (3p + s − j)2`+1 + nd2j/3e
> 2`+2 + (3p + s − j)n + nd2j/3e
≥ 2`+2 + 2np + n(p + s + d2j/3e − j)
> 2`+2 + 2np.

Now, we assume that 3p + s − j = 2c + 1 and c ≥ 2. By (3.3), and
p + 3s + 1 − 3j

4 + d2j/3e ≥ j + 1 − s12 + 3s + 1 − 3j
4 + d2j/3e = d2j/3e − 2j/3 + 1 + 2s

3 > 0,

we have that
|D| ≥ 2`(2d(3p+s−j)/2e + 2b(3p+s−j)/2c) + nd2j/3e

= 3 × 2` × 2c + nd2j/3e
≥ 3 × 2`(2 + c) + nd2j/3e
= 2`+2 + 2`+1 + 3c × 2` + nd2j/3e
> 2`+2 + n(1 + 3c/2 + d2j/3e)
> 2`+2 + n(1 + 9p+3s−3j−3

4 + d2j/3e)
> 2`+2 + 2np.

Therefore, πopt(S(n, k)) ≥ g(n, k). The proof of Theorem 1.1 is completed. �
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