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Abstract: Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists
of taking two pebbles off one vertex and placing one on an adjacent vertex. The optimal pebbling number of G,
denoted by mop¢(G), is the smallest number m such that for some distribution of m pebbles on G, one pebble
can be moved to any vertex of G by a sequence of pebbling moves. Let P, be the path on k vertices. Snevily
defined the n—k spindle graph as follows: take n copies of P and two extra vertices x and y, and then join the
left endpoint (respectively, the right endpoint) of each Pj, to x (respectively, y), the resulting graph is denoted
by S(n, k), and called the n—k spindle graph. In this paper, we determine the optimal pebbling number for
spindle graphs.
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1. Introduction

Graph pebbling was first introduced into the literature by Chung (see [1]). Pebbling has developed its
own subfield (see [2]). Let G be a simple graph with vertex set V(G) and edge set E(G). Let D be a distribution
of pebbles on the vertices of G, or a distribution on G. For any vertex v of G, D(v) denotes the number of
pebbles on v in D. For S C V(G), welet D(S) = > ¢ D(v) and |D| = > vevio) D(v). A pebbling move consists
of removing two pebbles from one vertex and then placing one pebble at an adjacent vertex. For v € V(G), v
is reachable under distribution D if v has at least one pebble after some sequence of pebbling moves starting
from D. A distribution D is solvable if all vertices of G are reachable under D. The pebbling number of G,
denoted by 71(G), is the smallest number m such that every distribution of m pebbles on G is solvable. The
optimal pebbling number of G, denoted by 11,,¢(G), is the smallest number m such that some distribution of
m pebbles on G is solvable. We say a distribution D is optimal if D has 11,,¢(G) pebbles and is solvable; that is,
it is a solvable distribution of minimum size. We say a distribution D is smooth if it has at most two pebbles
on each vertex of degree 2. A vertex v is unoccupied under a distribution D if D(v) = 0.

The optimal pebbling number of G was first introduced by Pachter, Snevily, and Voxman [3]. The optimal
pebbling number has been determined for paths [3, 4], cycles [4], m-ary trees [5], caterpillars [6], and ladders
[4]. Moews [7] used a probabilistic argument to show that the n-cube Q" has 71,,:(Q") = (4/ 3)n+0llogn) 1p [g],
Xue and Yerger investigated the optimal pebbling number of grids and found the optimal pebbling number
for the 3 by n grid. For graphs of diameter two (respectively, three), Muntz et al. [9] characterized the classes
of graphs having m,p+(G) equal to a value between 2 and 4 (respectively, between 3 and 8). The lower and
upper bounds on the optimal pebbling number were further studied in [4]. Milans and Clark [10] showed that
computing optimal pebbling number is NP-hard on arbitrary graphs. Interestingly, exact values for optimal
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pebbling number are known only for paths, cycles, caterpillars, m-ary trees, ladders, and the 3 by n grid. A
survey of results of optimal pebbling number can be found in [2].

Let P, be the path on k vertices. Snevily defined the n—k spindle graph as follows: take n copies of Py,
and two extra vertices x and y, and then join the left endpoint (respectively, the right endpoint) of each Py
to x (respectively, y), the resulting graph is denoted by S(n, k), and called the n-k spindle graph. In fact, the
spindle graph S(n, k) is the graph that the vertices x and y are connected by n internally-disjoint paths of
length k + 1 (Figure 1is the graph S(3, k)). Snevily and Foster [11] proposed the following Problem 1.1, which
appears to be quite difficult.

Problem 1.1 [11] Find 71(S(3, k)).

By S(1, k) = Py,, and S(2, k) = Cy+», we have 71(S(1, k)) = 21 and (S(2, k)) = 25X (see [4]). Recently,
Gao and Yin [12] determined 7(S(3, k)), which solves Problem 1.1.
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Figure 1: S(3, k).

The focus of this paper is to investigate the optimal pebbling number of S(n, k). By m1op¢(Cn) = mopt(Pn) =
[21] (see [4]), we have mop(S(1, k)) = [2K] and mope(S(2, k) = [%K™]. For n > 3, we further determine
Topt(S(n, k)) in this paper. That is the following Theorem 1.1.

Theorem 1.1 Let n > 3 and p > 0, and denote ¢ = max{t|2' < n}.
(1) If k < 24, then mopi(S(n, k)) = 21K/2) 4 2k/21,
() Ifk = 20+ 3p, then mopi(S(n, k)) = 2¢°1 + 2np;
() Ifk = 2¢+3p + 1, then mope(S(n, k) = 21 + 2° + 2np;
(4)Ifk=20+3p+2and 2n 2 21 + 2571 then mop(S(n, k) = 242 + 2np;
(5)Ifk =20+ 3p +2and 2n < 21 + 271 then mop(S(n, k) = 271 + 2° + 2n(p + 1).

2. Lemmas

In order to prove Theorem 1.1, we need the following lemmas.

Let D be a distribution on G, and let H C G. The restriction of D to H is a pebble distribution Dy which
is defined as follows: Dy(u) = D(u) if u € V(H) and Dy(u) = 0 if u ¢ V(H). For convenience, we write
A1, A, ..., Ay for the n copies of Py in S(n, k). For1<i<nand1<s <t <k, wewrite A; = uj1Uj ... U
and Ai[S, t] = UjsUjsi1 - Uit

Lemma 2.1. [4] If G is a connected n-vertex graph, with n > 3, then G has a smooth optimal distribution with all
leaves unoccupied.

Lemma 2.2. [3, 4] Let Py be the path on k vertices. Then mop:(Py) = [2k/3].
The following Lemma gives an upper bound on m,p(S(n, k)).

Lemma 2.3. Let n > 3 and p > 0, and denote { = max{t|2! < n}.
(1) If k < 2¢, then mope(S(n, k) < 2L%/21 4 2TkI21,
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() Ifk = 24 + 3p, then mope(S(n, k)) < 241 + 2np;

(3)Ifk =2¢+3p + 1, then mope(S(n, k) < 21 +2¢ + 2np;

(@) Ifk=20+3p+2and2n =2 + 2571 then mope(S(n, k) < 22 + 2np;

(5)Ifk =20+ 3p+2and 2n < 251 + 2571 then mop(S(n, k) < 271 +2° + 2n(p + 1).

Proof. Clearly, 2 <n<2%'and ¢ > 1.

(1) Assume that k < 2¢. Let D be a distribution such that D(x) = 2¥/2! D(y) = 2[%/21 and D(v) = 0 for
each v € V(S(n, k) \ {x, y}. Then D is solvable and 1top¢(S(n, k)) < 21%/2) 4 2Tk/21,

(2) Assume that k = 2¢ + 3p. Let D be a distribution such that D(x) = D(y) = 2°, D(u;j) = 2
for al i € {1,2,...,n}, j € {¢+ 2,...,4 + 3(p - 1) + 2}, and D(v) = O for each
ve VS, N\{x,y, Ui ey U (p+3p-1)s -+ + s Un,(¢+2)s - - - » Un,(e43p-1) } - I IS Clear to see that D is solvable.
Then 710p¢(S(n, k)) < 21 + 2np.

(3) Assume that k = 2¢ + 3p + 1. Let D be a distribution such that D(x) = 2, D(y) = 2, D(u;) = 2
foralli € {1,2,...,n},j € {£+2,...,0+3(p-1)+2},and D(v) = O for each v € V(S(n, k) \
{6 Y2 Ug (125 -+ > U (043p-1)s  + - » Un,(¢42)s + + - » U, (13p-1) }- Then D is solvable and 71,p¢(S(n, k)) < 2014t
2np.

(4) Assume that k = 2¢ + 3p + 2 and 2n = 21 + 271, Let D be a distribution such that D(x) = D(y) =
21, D(u;;) = 2 foralli € {1,2,...,n},j € {£+3,...,0+3p}, and D(v) = 0 for each v € V(S(n, k)) \
{0 Y5 Uq (043)s + + s Ut (143p)s =+ + 5 Un,(043)5 - - + 5 Un,(143p) }- Then D is solvable and 1o (S(n, k) < 22 4 2np.

(5) Assume that k = 2¢ + 3p + 2 and 2n < 291 + 2¢°1, Let D be a distribution such that D(x) = 2,
D(y) = 271, D(u;j) = 2foralli € {1,2,...,n},j € {¢+2,...,0+3p+2},and D(v) = O foreach v €

V(S(n, )\{X, ¥, Uy (442)5 - - - » U (143p+2)s -+ + s Un,(¢+2)s - - + » Un,(¢+3p+2) }- Then D is solvable and Topt(S(n, k)) <
2042t 2n(p+1). O
Let
o Lk/2] 4 o [k/2] ifk<2¢,
/+1 i =
20754+ 2°+ 2np ifk=20+3p+1,

min{2%2 + 2np, 21 + 2' + 2n(p + 1)} ifk=20+3p + 2.
Then 714,¢(S(n, k)) < g(n, k).

Lemma 2.4. Assume thatn 2 3,k > 2,and a; 2 0,a, =2 0, a; + ay < k. Let D be a smooth solvable
distribution on S(n, k). If there are at most 2% + 31 pebbles can be put on x by a sequence of pebbling moves
starting from D, and there are at most 2* + B, pebbles can be put on y by a sequence of pebbling moves, then
|D] 2 2% +2% + n[2(k - a1 — az)/3], where 0 < B; < 2% -1 fori € {1, 2}.

Proof. Clearly, fori € {1,2,...,n}, we can move at most one pebble to x from A; as D is a smooth
distribution. Similarly, we can move at most one pebble to y from A;. Consider a smooth solvable distribution
D() with Do(X) = 2“1, Do(y) =2%,

If |Do| < 2% + 22 + n[2(k — ay — @2)/3] - 1, then there are at most

|Do| = Do(x) = Do(y) < n[2(k — a1 — a2)/3] -1

pebbles on A1[1 + a1,k - az],...,An[l + a1,k — a;3). Fori € {2,...,n}, by Lemma 2.2, we need at least
[2(k — a1 — a3)/3] pebbles that ensure each vertex in A;[1 + a3, k — a5] to be reachable. Thus, there is some
vertex in A;[1 + a1, k — a;] which is not reachable. Hence, |Dg| = 2% + 2% + n[2(k — a1 — a2)/3]. Note that
each pebbling move reduces the size of D. Therefore, |D| 2 |Dg| 2 2% + 2% + n[2(k — a1 - a3)/3]. O

Lemma 2.5. Let a be a nonnegative integer,a = 3p + s, s € {0, 1, 2}. Then 2lal2] 4 plal2] 5 4p +s + 2.
Proof. Firstly, assume that a = 2b. Then p = (2b - 5)/3, and 2[%/21 4 21a/2] = 2b+1 Lot f(f) = 201 —2 -5 -

(8t-4s)/3.Ifa=0,thenb=p=s=0,and f(0)20.Ifa=2,thenb=1,p =0,s =2, and f(1) > 0. We have
that f/(t) = 2/*1In2 - 8/3 > 0 for t > 1. Hence, f(t) > f(1) = 0.
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Now, we assume that a = 2b + 1. Thenp = 2b + 1 - 5)/3, and 2[%/21 + 21@/2] = 3« 2P If g = 1, then
b=p=0,s=1,and 2[921 + 219/2) > 4p + s+ 2. Let f(t) = 3x 21 =2 — s — (8t + 4 — 4s)/3.If a = 3, then
b=p=1,5s=0,and f(1) = 0. We get f'(t) = 3x2{In2 - 8/3 > 0 for t = 1. Thus, f(t) > f(1) = 0. Therefore,
2lal21 1 alal2l s 4p 4542, O

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Clearly, S(n, 1) is isomorphic to K5 », and mop¢(K2,,) = 3. We assume k = 2. By Lemma
2.3, we have that 71,,¢(S(n, k)) < g(n, k). We now show that 71,,:(S(n, k)) = g(n, k). By Lemma 2.1, we can
assume that D is a smooth optimal distribution. Now, we assume that there are at most 2t + 8; pebbles can
be put on x by a sequence of pebbling moves starting from D, and there are at most 2%2 + 8, pebbles can be
put on y by a sequence of pebbling moves, where a; = 0,a; 20,0 < ; < 2% - 1fori € {1, 2}. Thus, we
assume D(x) = 2% + B; - m; and D(y) = 2% + 8, - m,, where O < m; < min{n, 2% + B;} fori € {1, 2}. Note
that 2¢ < n<2'and ¢ > 1. Clearly, a > min{a, b} for a and b are real numbers. We consider the following
two cases.

Casel. a; +ar > k.

Then |D| = D(x) + D(y) + "1, D(A;) 2 2% + By —my + 2% + B - my + my + my 2 2% + 2%, Hence,
ID| = 2% 4 2% > pl@+@)/2] 5 l(aira)/2] 5 5 Tk/2] 4 5 [k/2] gince 29 + 2P > 291 4 2b*1 for all integers satisfying
a>b.

Assume that k = 2¢+3p +s,s € {0, 1, 2}. By Lemma 2.5, we have that

D] > 21K/2] 4 5Li/2]
_ 2|'(Zé+3p+s)/2'| + 2\_(2£+3p+s)/2j
- 213(2 [Bp+s)/2] 2[(3P+S)/2J)
> 24p + 5+ 2).

Ifs = 0, then |D| > (4p +2)2° > 2“1 + 2np. If s = 1, then |D| > 4px2° +3x2¢ > 241 4+ 2 4 2np. If s = 2, then

ID| > 4px2°+4x2% > 22 4 2np > min{2%*2 + 2np, 271 + 2° + 2n(p + 1)}. Thus, |D| = 7epe(S(n, k)) > g(n, k).
This is impossible as it would be greater than the known upper bound.

Case2. a; + ap < k.
Denote w = a; + a,. By Lemma 2.4, we get

ID| 2 2% + 2% + n[2(k - w)/3] 2 2021 Hlwl2] | n[2(k - w)/3] (3.1)

as 2% + 2P > 291 4 2b*1 Now we consider the following three subcases.

Subcase 2.1. k < 2/.
If w = k, by (3.1), then |D| = 2[K/21 4+ 2LK/2] 1f ¢y = k - 1, by (3.1), then
ID| = 21@/21 4 219/2) L nra(k - w)/3]
s (D721 4 5lk-1)/2] 4 ot
s 9 [-1)/2] 5l K-D)/2) | 5Tk/2]
L 2TkI2] 4 LK)

Ifw< k-2, then
ID| > 219121 4 202} 4 pia(k - w)/3] = 219721 4 2l@I2) 1 g 2 5 K121 5 lkI2),

Subcase2.2. k=2/+3p+sand 0 < w < 2¢ + s, wheres € {0, 1, 2}.
Letw=2¢+s-j,0<j<20+s.By(3.1), we get

|D| = 2lwl2] | plwi2] n[(6p +2j)/3] = 2[@ersPI2] | 5 L@Ers=DI2L 4 s n[2j/3]. (3.2)
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Ifs=0andO0 <j < 1, by (3.2), then |D| = 21 4 2np.If s=0andj = 2, then
D| > 2[GENI21 4 L @ED2] | oy + 2972j/3] > 291 + 2np.
Ifs=1andj < 3, then
D| > 2[@H1D21 | Hl@EADI2] oy 4 2012j/3] = 2941 + 2 + 2np.
Ifs=1andj = 4, then
|D| > 2[GH1D2T 4 Hl@EDI2] oy opp 4 2012j/37 > 271 + 2¢ + 2mp.

Assume that s = 2.Ifj = 0, then [D| > 22 + 2np > min{2%2 + 2np, 21 + 2 + 2n(p + 1)}. Ifj = 1,
then |D| = 21 + 20 + 2np + n = 22 + 2np > min{2? + 2np, 21 + 2' + 2n(p + 1)}. If 2 < j < 3, then
ID| =2 +2° 4 2np + 2n > min{2“2 + 2np, 2" 1 + 2 + 2n(p + 1)}. Ifj = 4, then [D| = 21 + 251 4 2np +3n >
242 4 2np > min{2°"2 + 2np, 21 + 2° + 2n(p + 1)}. Ifj = 5, then |D| = 2np + 4n > 22 + 2np > min{2°*2 +
2np, 251+ 24+ 2n(p + 1)}.

Subcase2.3. k=2/+3p+sand 2{+s < w < 2{+3p+s,wheres € {0,1,2}.
Notethatp > 1.Letw =2/+3p+s—j,0<j<3p-1.By(3.1), we have

D| > 20(216p+s=DI2] | 5Bp+s—DI2]y | n[2j/3]. (3.3)

Assume that 3p + s —j = 1. Then |D| = 3 x 2° + n[2j/3] = 291 + 2° + 2np + n[(2s - 2)/3].If s = 0, then
ID| > 21 + 2np.If s = 1, then |D| > 2“1 + 2 + 2np. If s = 2, then |D| = 21 + 2° + 2np + n > 22 + 2np.
Assume that 3p + s - j = 2. Then |D| = 2 x 21 + n[2j/3] = 2% + 2np + n[(2s - 4)/3]. If s = 0, then
ID| > 2“1 + 2np.If s = 1, then |D| > 2“1 + 2° + 2np. If s = 2, then |D| = 2°*2 + 2np.
Assume that 3p +s —j = 3. Then [D| = 6 x 2¢ + n[2j/3] = 22 + 21 + 2np + n[(2s - 6)/3]. If s = 0, then
ID| > 21 + 2np. If s = 1, then |D| = 241 + 2% + 2np. If s = 2, then |D| > 2¢*2 + 2np.
Assume that 3p + s —j = 4. Then |D| = 2> + 2np + n[(2s - 8)/3].If s = 0, then |D| > 2“** + 2np. If s = 1,
then |D| > 21 + 2° + 2np. If s = 2, then |D| > 2*2 + 2np.
Assume that 3p + s —j = 2c and ¢ > 3. By (3.3), and
p+s+[2j/3]1-jz(+1-5)/3+s+[2j/31-j=1[2j/31-2j/3+(1+2s)/3>0,
we have that
ID| 2 2¢(2GP+sDI21 4 oLBP+s=DI2]y 4 n12j/3)
=212 4+ n[2j/3]
> 2412 + 2¢) + n[2j/3]
=272 4 Bp+s -2t + n[2j/3]
>22 4+ Bp +s-jn+n[2j/3]
222 4 2np + n(p + s+ [2j/3] -j)
> 202 4 2np.
Now, we assume that3p +s-j=2c+ 1and c = 2. By (3.3), and

19+3$;:1—3)+D]./ﬂ2

1+2s
3

j+1-s 3s+1-3j
2 " a4 7

[2j/31 = [2j/31-2j/3 + >0,

we have that
D| > 20(2[6p+s=DI2] § 5 Bp+s-D/2]y 4 n[2j/3]
=3x2%x2¢+n[2j/3]
>3 x2%2 +¢) + n[2j/3]
=202 4 261 £ 3¢ x 2% + n[2j/3]
> 292 4 n(1+3c¢/2 +[2j/3])
> 202 4 n(1 + 2235313 4 125/3])
> 262 4 onp.
Therefore, 11,,¢(S(n, k)) = g(n, k). The proof of Theorem 1.1 is completed. O
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