DE GRUYTER Open Math. 2019; 17:1147–1155

Open Mathematics

Research Article

Marian Nowak*

Continuous linear operators on Orlicz-Bochner spaces

https://doi.org/10.1515/math-2019-0089 Received January 29, 2019; accepted August 15, 2019

Abstract: Let (Ω, Σ, μ) be a complete σ -finite measure space, φ a Young function and X and Y be Banach spaces. Let $L^{\varphi}(X)$ denote the corresponding Orlicz-Bochner space and $\mathfrak{T}^{\wedge}_{\varphi}$ denote the finest Lebesgue topology on $L^{\varphi}(X)$. We examine different classes of $(\mathfrak{T}^{\wedge}_{\varphi}, \|\cdot\|_{Y})$ -continuous linear operators $T: L^{\varphi}(X) \to Y$: weakly compact operators, order-weakly compact operators, weakly completely continuous operators, completely continuous operators and compact operators. The relationships among these classes of operators are established.

Keywords: Orlicz-Bochner spaces, Lebesgue topologies, weakly compact operators, compact operators, weakly completely continuous operators

MSC: 47B38, 46E40, 28A25

1 Introduction and preliminaries

Throughout the paper, $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ denote real Banach spaces and X^* and Y^* denote their Banach duals, respectively. By B_X we denote the closed unit ball in X. Let $\mathcal{L}(X, Y)$ stand for the Banach space of all bounded linear operators from X to Y, equipped with the uniform operator norm $\|\cdot\|$.

Continuous linear operators on Banach spaces of vector-valued function spaces (in particular, Orlicz-Bochner spaces $L^{\varphi}(X)$ and Lebesgue-Bochner spaces $L^{p}(X)$ ($1 \le p \le \infty$)) has been the object of much study (see [1–13]). Andrews ([5, Theorems 2 and 5], [6, Theorem 3]) proved the Dunford-Pettis-Phillips type theorems for compact and weakly compact operators from $L^{1}(X)$ to a Banach space Y.

Now we recall the basic concepts and properties of Orlicz-Bochner spaces (see [11, 12, 14-16] for more details).

By a *Young function* we mean here a continuous convex mapping $\varphi:[0,\infty)\to[0,\infty)$ that vanishes only at 0 and $\varphi(t)/t\to 0$ as $t\to 0$ and $\varphi(t)/t\to \infty$ as $t\to \infty$. Let φ^* stand for the complementary Young function of φ in the sense of Young.

We assume that (Ω, Σ, μ) is a complete σ -finite measure space. Denote by $\Sigma_f(\mu)$ the δ -ring of sets $A \in \Sigma$ with $\mu(A) < \infty$. By $L^0(X)$ we denote the linear space of μ -equivalence classes of all strongly Σ -measurable functions $f : \Omega \to X$.

Let $L^{\varphi}(X)$ (resp., L^{φ}) denote the *Orlicz-Bochner space* (resp., *Orlicz space*) defined by a Young function φ , i.e.,

$$L^{\varphi}(X) = \left\{ f \in L^{0}(X) : \int_{\Omega} \varphi(\lambda \| f(\omega) \|_{X}) d\mu < \infty \text{ for some } \lambda > 0 \right\}$$
$$= \left\{ f \in L^{0}(X) : \| f(\cdot) \|_{X} \in L^{\varphi} \right\}.$$

^{*}Corresponding Author: Marian Nowak: Faculty of Mathematics, Computer Science and Econometrics University of Zielona Gora, ul. Szafrana 4A, 65516 Zielona Gora, Poland; E-mail: M.Nowak@wmie.uz.zgora.pl

Then $L^{\varphi}(X)$, equipped with the topology \mathfrak{T}_{φ} of the norm

$$||f||_{\varphi} := \inf \left\{ \lambda > 0 : \int\limits_{\Omega} \varphi \left(\frac{||f(\omega)||_X}{\lambda} \right) d\mu \le 1 \right\}$$

is a Banach space.

For a bounded linear operator $T: L^{\varphi}(X) \to Y$ let

$$m(A)(x) := T(\mathbb{1}_A \otimes x)$$
 for $A \in \Sigma_f(u), x \in X$.

One can easily show that $m(A) \in \mathcal{L}(X,Y)$ for $A \in \Sigma_f(\mu)$. Then the mapping $m : \Sigma_f(\mu) \to \mathcal{L}(X,Y)$ will be called the *representing measure* of T.

Recall that a subset H of $L^{\varphi}(X)$ is said to be *solid* whenever $||f_1(\omega)||_X \le ||f_2(\omega)||_X \mu$ -a.e. and $f_1 \in L^{\varphi}(X)$, $f_2 \in H$ imply $f_1 \in H$. A linear topology ξ on $L^{\varphi}(X)$ is said to be *locally solid* if it has a local basis at 0 consisting of solid sets (see [16]).

Following [17, Definition 2.2], [13] we have

Definition 1.1. A locally solid topology ξ on $L^{\varphi}(X)$ is said to be a *Lebesgue topology* if for a net (f_{α}) in $L^{\varphi}(X)$, $\|f_{\alpha}(\cdot)\|_{X} \stackrel{(o)}{\longrightarrow} 0$ in L^{φ} implies $f_{\alpha} \to 0$ in ξ .

In view of the super Dedekind completeness of L^{φ} one can restrict in the above definition to usual sequences (f_n) in $L^{\varphi}(X)$ (see [17, Definition 2.2, p. 173]).

Note that for a sequence (f_n) in $L^{\varphi}(X)$, $||f_n(\cdot)||_X \xrightarrow{(o)} 0$ in L^{φ} if and only if $||f_n(\omega)||_X \to 0$ μ -a.e. and $||f_n(\omega)||_X \le u(\omega)$ μ -a.e. for some $0 \le u \in L^{\varphi}$.

For $\varepsilon > 0$ let $U_{\varphi}(\varepsilon) = \{ f \in L^{\varphi}(X) : \int_{\Omega} \varphi(\|f(\omega)\|_X) d\mu \le \varepsilon \}$. Then the family of all sets of the form:

$$\bigcup_{n=1}^{\infty} \left(\sum_{i=1}^{n} U_{\varphi}(\varepsilon_{i}) \right),$$

where (ε_n) is a sequence of positive numbers, is a local basis at 0 for a linear topology $\mathfrak{T}_{\varphi}^{\wedge}$ on $L^{\varphi}(X)$ (see [13, 16] for more details). Using [16, Lemma 1.1] one can show that the sets of the form (*) are convex and solid, so $\mathfrak{T}_{\varphi}^{\wedge}$ is a locally convex-solid topology.

We now recall terminology and basic facts concerning the spaces of weak*-measurable functions $g:\Omega\to X^*$ (see [18, 19]). Given a function $g:\Omega\to X^*$ and $x\in X$, let $g_X(\omega)=g(\omega)(x)$ for $\omega\in\Omega$. By $L^0(X^*,X)$ we denote the linear space of the weak*-equivalence classes of all weak*-measurable functions $g:\Omega\to X^*$. In view of the super Dedekind completeness of L^0 the set $\{|g_X|:x\in B_X\}$ is order bounded in L^0 for each $g\in L^0(X^*,X)$. Thus one can define the so called *abstract norm* $\theta:L^0(X^*,X)\to L^0$ by

$$\vartheta(g) := \sup \left\{ |g_X| : X \in B_X \right\} \text{ in } L^0.$$

It is known that for $f \in L^0(X)$, $g \in L^0(X^*, X)$, the function $\langle f, g \rangle : \Omega \to \mathbb{R}$ defined by $\langle f, g \rangle(\omega) = \langle f(\omega), g(\omega) \rangle$ is measurable and

$$|\langle f(\omega), g(\omega) \rangle| \le ||f(\omega)||_X \vartheta(g)(\omega)$$
 μ -a.e.

Moreover, $\vartheta(g) = ||g(\cdot)||_{X^*}$ for $g \in L^0(X^*)$. Let

$$L^{\varphi^{\star}}(X^{\star},X) := \{g \in L^{0}(X^{\star},X) : \vartheta(g) \in L^{\varphi^{\star}}\}.$$

Clearly $L^{\varphi^*}(X^*) \subset L^{\varphi^*}(X^*, X)$. If, in particular, X^* has the Radon-Nikodym property (i.e., X is an *Asplund space* see [20, p. 213]), then $L^{\varphi^*}(X^*, X) = L^{\varphi^*}(X^*)$. Note that every reflexive Banach space X is an Asplund space.

Let $(L^{\varphi}(X), \Upsilon_{\varphi}^{\wedge})^{\star}$ denote the topological dual of $(L^{\varphi}(X), \Upsilon_{\varphi}^{\wedge})$.

Now we present basic properties of the topology $\mathcal{T}_{\varphi}^{\wedge}$ on $L^{\varphi}(X)$.

Theorem 1.1. Let φ be a Young function. Then the following statements hold:

- (i) $\mathfrak{T}_{\varphi}^{\wedge} \subset \mathfrak{T}_{\varphi}$ and $\mathfrak{T}_{\varphi}^{\wedge} = \mathfrak{T}_{\varphi}$ if φ satisfies the Δ_2 -condition, i.e., $\varphi(2t) \leq d\varphi(t)$ for some d > 1 and all $t \geq 0$.
- (ii) $\mathfrak{T}_{\varphi}^{\wedge}$ is the finest Lebesgue topology on $L^{\varphi}(X)$.
- (iii) $(L^{\varphi}(X), \mathcal{T}^{\wedge}_{\varphi})^{*} = \{F_{g} : g \in L^{\varphi^{*}}(X^{*}, X)\},$ where $F_{g}(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu \text{ for } f \in L^{\varphi}(X).$
- (iv) If X is an Asplund space, then the space $(L^{\varphi}(X), \mathcal{T}_{\varphi}^{\wedge})$ is strongly Mackey; hence $\mathcal{T}_{\varphi}^{\wedge}$ coincides with the Mackey topology $\tau(L^{\varphi}(X), L^{\varphi^{*}}(X^{*}))$.
- (v) If a subset H of $L^{\varphi}(X)$ is $\mathfrak{T}_{\varphi}^{\wedge}$ -bounded, then $\sup_{f \in H} \|f\|_{\varphi} < \infty$.

Proof. (i)–(ii) This follows from [16, Theorem 6.1 and Theorem 6.3].

- (iii) In view of [13, Corollary 4.4 and Theorem 1.2], we get $(L^{\varphi}(X), \mathfrak{I}_{\varphi}^{\wedge})^{\star} = L^{\varphi}(X)_{n}^{\sim}$, where $L^{\varphi}(X)_{n}^{\sim}$ stands for the order continuous dual of $L^{\varphi}(X)$ (see [13, 18] for more details). According to [18, Theorem 4.1] $L^{\varphi}(X)_{n}^{\sim} = \{F_{g} : g \in L^{\varphi^{\star}}(X^{\star}, X)\}$. Thus the proof is complete.
 - (iv) See [13, Theorem 4.5].
- (v) Assume that a subset H of $L^{\varphi}(X)$ is $\mathfrak{T}_{\varphi}^{\wedge}$ -bounded. Then by (iv) H is $\sigma(L^{\varphi}(X), L^{\varphi^{\star}}(X^{\star}, X))$ -bounded. Hence in view of [21, Proposition 1.3], the set $\{\|f(\cdot)\|_X: f\in H\}$ in L^{φ} is $\sigma(L^{\varphi}, L^{\varphi^{\star}})$ -bounded. Since $L^{\varphi^{\star}}$ is a norming subset of $(L^{\varphi})^{\star}$ (see [22, p. 12]), by [22, Lemma 1, p. 20], we get $\sup_{f\in H}\|f\|_{\varphi}=\sup_{f\in H}\|\|f(\cdot)\|_X\|_{\varphi}<\infty$.

The following result establishes relationships between different classes of linear operators on $L^{\varphi}(X)$.

Proposition 1.2. For a linear operator $T: L^{\varphi}(X) \to Y$ consider the following statements:

- (i) T is $(\mathfrak{T}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous.
- (ii) T is $(\mathfrak{I}_{\omega}^{\wedge}, \|\cdot\|_{Y})$ -sequentially continuous.
- (iii) $||T(f_n)||_Y \to 0$ if $||f_n(\omega)||_X \to 0$ μ -a.e. and $||f_n(\omega)||_X \le u(\omega)$ μ -a.e. for some $0 \le u \in L^{\varphi}$ and all $n \in \mathbb{N}$.
- (iv) For every $y^* \in Y^*$, $y^* \circ T \in (L^{\varphi}(X), \mathcal{T}_{\omega}^{\wedge})^*$.
- (v) T is $(\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X)), \sigma(Y, Y^*))$ -continuous.
- (vi) T is $(\tau(L^{\varphi}(X), L^{\varphi^{\star}}(X^{\star}, X)), \|\cdot\|_{Y})$ -continuous.

Then the following implications hold:

$$(i)\Rightarrow(ii)\Rightarrow(iii)\Rightarrow(iv)\Rightarrow(v)\Rightarrow(vi)$$
.

If, in particular, X is an Asplund space, then $(vi) \Rightarrow (i)$, that is, all the statements (i)–(vi) are equaivalent.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) Obvious because $\mathcal{T}_{\varphi}^{\wedge}$ is a Lebesgue topology.

- (iii) \Rightarrow (iv) Assume that (iii) holds. Then for every $y^* \in Y^*$, $y^* \circ T \in L^{\varphi}(X)_c^{\sim}$, where $L^{\varphi}(X)_c^{\sim}$ stands for the σ -order continuous dual of $L^{\varphi}(X)$ (see [17] for more details). In view of the super Dedekind completeness of L^0 we have $L^{\varphi}(X)_c^{\sim} = L^{\varphi}(X)_n^{\sim}$ (see [17]). Since $L^{\varphi}(X)_n^{\sim} = (L^{\varphi}(X), \mathfrak{T}_{\varphi}^{\wedge})^*$, the proof is complete.
 - (iv) \Rightarrow (v) See [23, Theorem 9.26].
 - (v) \Rightarrow (vi) See [24, Theorem 8.6.1].

Assume that X is an Asplund space. Then (vi) \Rightarrow (i) holds because $\mathfrak{T}_{\varphi}^{\wedge} = \tau(L^{\varphi}(X), L^{\varphi^{\star}}(X^{\star}, X))$ (see Theorem 1.1).

In this paper, using the results of [21], concerning conditional $\sigma(L^{\varphi}(X), L^{\varphi^{\star}}(X^{\star}, X))$ -compactness and relative $\sigma(L^{\varphi}(X), L^{\varphi^{\star}}(X^{\star}, X))$ -compactness in $L^{\varphi}(X)$, we examine different classes of $(\mathcal{T}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous linear operators $T: L^{\varphi}(X) \to Y$: weakly compact operators, order-weakly compact operators, weakly completely continuous operators, completely continuous operators. We establish relationships among these classes of operators.

2 Order-weakly compact and order-almost weakly compact operators on $L^{\varphi}(X)$

Dodds [25] studied the class of order-weakly compact operators on Banach lattices (see also [23, Section 18]). Following [25] one can define order-weakly compact and order-almost weakly compact operators on Orlicz-Bochner spaces $L^{\varphi}(X)$ (see [12]).

For
$$0 \le u \in L^{\varphi}$$
, let $I_u = \{ f \in L^{\varphi}(X) : ||f(\omega)||_X \le u(\omega) \mu$ -a.e. $\}$.

Definition 2.1. A bounded linear operator $T:L^{\varphi}(X)\to Y$ is said to be *order-weakly compact* (resp. *order-almost weakly compact*) if for every $0\le u\in L^{\varphi}$, the set $T(I_u)$ is a relatively weakly compact (resp., conditionally weakly compact) set in Y.

Recall that a Banach space X is called *almost reflexive* if every bounded set in X is conditionally $\sigma(X, X^*)$ -compact. The fundamental ℓ^1 -Rosenthal theorem says that a Banach space X is almost reflexive if and only if it contains no isomorphic copy of ℓ^1 . Moreover, X contains no isomorphic copy of ℓ^1 if and only if X^* has the weak Radon-Nikodym property (see [26]).

Proposition 2.1. Assume that a Banach space X is almost reflexive (resp., X is reflexive). Then for every $0 \le u \in L^{\varphi}$, the set I_u is conditionally $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$ -compact (resp., relatively $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*))$ -compact). **Proof.** Let $0 \le u \in L^{\varphi}$. Then I_u is a norm bounded subset of $L^{\varphi}(X)$ and for every $v \in L^{\varphi^*}$, we have $uv \in L^1$ and

$$p_{I_u}(v) := \sup_{f \in I_u} \int\limits_{O} ||f(\omega)||_X |v(\omega)| d\mu \le \int\limits_{O} |u(\omega)v(\omega)| d\mu.$$

To show that p_{I_u} is an order continuous seminorm on L^{φ^*} , assume that (v_n) is a sequence in L^{φ^*} such that $v_n \stackrel{\text{(o)}}{\longrightarrow} 0$ in L^{φ^*} , i.e., $v_n(\omega) \to 0$ μ -a.e. and $|v_n(\omega)| \le v(\omega)$ μ -a.e. for some $0 \le v \in L^{\varphi^*}$ and all $n \in \mathbb{N}$. Since $u \ v \in L^1$, by the Lebesgue dominated convergence theorem $p_{I_u}(v_n) \to 0$. In view of [21, Proposition 1.1] (resp. [21, Proposition 1.1] and [22, Lemma 11(a), p. 31]) the set I_u is conditionally $\sigma(L^{\varphi}, L^{\varphi^*})$ -compact (resp., relatively $\sigma(L^{\varphi}, L^{\varphi^*})$ -compact).

Theorem 2.2. Assume that a Banach space X is reflexive. Then every $(\mathfrak{T}_{\varphi}^{\wedge} \| \cdot \|_{Y})$ -continuous linear operator $T: L^{\varphi}(X) \to Y$ is order-weakly compact.

Proof. Let $T: L^{\varphi}(X) \to Y$ be a $(\mathcal{T}^{\wedge}_{\varphi}, \|\cdot\|_{Y})$ -continuous linear operator and $0 \le u \in L^{\varphi}$. Then by Proposition 2.1 I_{u} is a relatively $\sigma(L^{\varphi}(X), L^{\varphi^{*}}(X^{*}))$ -compact set in $L^{\varphi}(X)$. Since T is $(\sigma(L^{\varphi}(X), L^{\varphi^{*}}(X^{*})), \sigma(Y, Y^{*}))$ -continuous, $T(I_{u})$ is relatively $\sigma(Y, Y^{*})$ -compact in Y.

Using Proposition 2.1 and arguing as in the proof of Theorem 2.2, we get:

Theorem 2.3. Assume that a Banach space X is almost reflexive. Then every $(\mathfrak{T}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous linear operator $T: L^{\varphi}(X) \to Y$ is order-almost weakly compact.

3 Weakly compact and almost weakly compact operators on $L^{arphi}(X)$

We say that a Young function ψ *increases more rapidly* than another φ (in symbols, $\varphi \prec \psi$) if for arbitrary c > 0 there exists d > 0 such that $c\varphi(t) \leq \frac{1}{d}\psi(dt)$ for all $t \geq 0$. Recall that a Young function φ satisfies the ∇_2 -condition, if $\varphi(t) \leq \frac{1}{2d}\varphi(dt)$ for some d > 1 and all $t \geq 0$. It is known that φ satisfies the ∇_2 -condition if and only if φ^* satisfies the Δ_2 -condition (see [27, Theorem 2.2.3, pp. 22-23]).

The following results will be useful (see [27, Theorem 5.3.3, p. 171]).

Proposition 3.1. Let φ and ψ be Young functions such that $\varphi \prec \psi$. Then $L^{\psi} \subset L^{\varphi}$ and every norm bounded set in L^{ψ} is relatively $\sigma(L^{\varphi}, L^{\varphi^*})$ -compact in L^{φ} .

Theorem 3.2. Let φ be a Young function. Then for a subset H of L^{φ} the following statements are equivalent:

(i) *H* is conditionally $\sigma(L^{\varphi}, L^{\varphi^*})$ -compact.

- (ii) *H* is relatively $\sigma(L^{\varphi}, L^{\varphi^*})$ -sequentially compact.
- (iii) *H* is relatively $\sigma(L^{\varphi}, L^{\varphi^*})$ -compact.
- (iv) There exists a Young function ψ with $\varphi \prec \psi$ such that $H \subset L^{\psi}$ and $\sup \{||u||_{\psi} : u \in H\} \leq 1$.

Proof. (i)⇔(ii) See [21, Proposition 1.1].

- (ii)⇔(iii) This follows from [22, Lemma 11(a), p. 31].
- (iii)⇔(iv) This follows from [28, Theorem 1.2].

Remark. For a finite measure space (Ω, Σ, μ) , the equivalence (iii) \Leftrightarrow (iv) in Theorem 3.2 was established by Ando (see [29, Theorem 2]).

If
$$\varphi \prec \psi$$
, then $L^{\psi}(X) \subset L^{\varphi}(X)$ and $\Im_{\varphi}|_{L^{\psi}(X)} \subset \Im_{\psi}$. Let

$$i_{\psi}:L^{\psi}(X)\to L^{\varphi}(X)$$

stand for the inclusion map and

$$B_{L^{\psi}(X)} = \{ f \in L^{\psi}(X) : ||f||_{\psi} \le 1 \}.$$

Recall that a bounded linear operator T from a Banach space Z to Y is said to be *weakly compact* (resp. *almost weakly compact*) if $T(B_Z)$ is a relatively weakly compact (resp. conditionally weakly compact) set in Y.

Theorem 3.3. Assume that a Banach space X is reflexive and $T:L^{\varphi}(X)\to Y$ is a $(\mathcal{T}_{\varphi}^{\wedge},\|\cdot\|_{Y})$ -continuous linear operator. Then for every Young function ψ with $\varphi\prec\psi$, the operator $T\circ i_{\psi}:L^{\psi}(X)\to Y$ is weakly compact. **Proof.** Let ψ be a Young function with $\varphi\prec\psi$. Then by Proposition 3.1 the set $\{\|f(\cdot)\|_{X}:f\in B_{L^{\psi}(X)}\}$ in L^{φ} is relatively $\sigma(L^{\varphi},L^{\varphi^{*}})$ -compact, and hence by Theorem 3.2 it is relatively $\sigma(L^{\varphi},L^{\varphi^{*}})$ -sequentially compact. By [21, Corollary 3.4 and Theorem 3.2] $B_{L^{\psi}(X)}$ is relatively $\sigma(L^{\varphi}(X),L^{\varphi^{*}}(X^{*}))$ -compact. Since T is $(\sigma(L^{\varphi}(X),L^{\varphi^{*}}(X^{*}))$ -continuous, $T(B_{L^{\psi}(X)})$ is relatively $\sigma(Y,Y^{*})$ -compact, and hence $T\circ i_{\psi}$ is weakly compact.

Corollary 3.4. Assume that a Banach space X is reflexive and Young function φ satisfies the ∇_2 -condition. Then every $(\mathcal{T}_{\varphi}^{\wedge}, \|\cdot\|_Y)$ -continuous linear operator $T: L^{\varphi}(X) \to Y$ is weakly compact.

Theorem 3.5. Assume that a Banach space X is almost reflexive and $T: L^{\varphi}(X) \to Y$ is a $(\mathfrak{T}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous linear operator. Then for every Young function ψ with $\varphi \prec \psi$, the operator $T \circ i_{\psi}: L^{\psi}(X) \to Y$ is almost weakly compact.

Proof. Let ψ be a Young function with $\varphi \prec \psi$. Then by Proposition 3.1 the set $\{\|f(\cdot)\|_X : f \in B_{L^{\psi}(X)}\}$ in L^{φ} is relatively $\sigma(L^{\varphi}, L^{\varphi^*})$ -compact, and hence by Theorem 3.2 it is conditionally $\sigma(L^{\varphi}, L^{\varphi^*})$ -compact. By [21, Corollary 2.5] $B_{L^{\psi}(X)}$ is conditionally $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$ -compact. Since T is $(\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X)), \sigma(Y, Y^*))$ -continuous, $T(B_{L^{\psi}(X)})$ is conditionally $\sigma(Y, Y^*)$ -compact, i.e., $T \circ i_{\psi}$ is almost weakly compact.

Corollary 3.6. Assume that a Banach space X is almost reflexive and a Young function φ satisfies the ∇_2 -condition. Then every $(\mathfrak{T}_{\varphi}^{\wedge}, \|\cdot\|_Y)$ -continuous linear operator $T: L^{\varphi}(X) \to Y$ is almost weakly compact.

4 Weakly completely continuous operators on $L^{\varphi}(X)$

Definition 4.1. Assume that (Z, ξ) is a locally convex Hausdorff space. A $(\xi, \|\cdot\|_Y)$ -continuous linear operator $T: Z \to Y$ is said to be *weakly completely continuous* if T maps weakly-Cauchy sequences in Z onto weakly-convergent sequences in Y.

Recall that a weakly completely continuous operator between Banach spaces is usually called a *Dieudonné operator*.

Theorem 4.1. Let $T: L^{\varphi}(X) \to Y$ be a $(\mathcal{T}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous linear operator and $m: \Sigma_{f}(\mu) \to \mathcal{L}(X, Y)$ be its representing measure. If T weakly completely continuous, then for every $A \in \Sigma_{f}(\mu)$, m(A) is a Dieudonné operator.

Proof. Assume that (x_n) is a $\sigma(X, X^*)$ -Cauchy sequence in X and $A \in \Sigma_f(\mu)$. We shall show that $(\mathbb{1}_A \otimes x_n)$ is a $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$ -Cauchy sequence in $L^{\varphi}(X)$. Indeed, let $g \in L^{\varphi^*}(X^*, X)$ be given. Then $g_{x_n}(\omega) \to v_g(\omega)$ μ -a.e., where $\vartheta(g) \in L^{\varphi^*}$. Since $|g_{x_n}(\omega)| \le \vartheta(g)(\omega) \|x_n\|_X \le a\vartheta(g)(\omega) \mu$ -a.e., where $a = \sup_n \|x_n\|_X < \infty$, we get $v_g(\omega) \le a\vartheta(g)(\omega) \mu$ -a.e. Hence $v_g \in L^{\varphi^*}$ and $\mathbb{1}_A v_g \in L^1$. Note that $\mathbb{1}_A(\omega)g_{x_n}(\omega) \to \mathbb{1}_A(\omega)v_g(\omega) \mu$ -a.e. and $|\mathbb{1}_A(\omega)g_{x_n}(\omega)| \le a\mathbb{1}_A(\omega)\vartheta(g)(\omega) \mu$ -a.e. for all $n \in \mathbb{N}$. Then by the Lebesgue dominated convergence theorem,

$$\int\limits_{\Omega}\left\langle (\mathbb{1}_A\otimes x_n)(\omega),g(\omega)\right\rangle d\mu=\int\limits_{\Omega}\mathbb{1}_A(\omega)g_{x_n}(\omega)\,d\mu\to\int\limits_{\Omega}\mathbb{1}_A(\omega)v_g(\omega)\,d\mu.$$

This means that $(\mathbb{1}_A \otimes x_n)$ is a $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$ -Cauchy sequence in $L^{\varphi}(X)$. Since $m(A)(x_n) = T(\mathbb{1}_A \otimes x_n)$ for $n \in \mathbb{N}$, we obtain that $(m(A)(x_n))$ is a $\sigma(Y, Y^*)$ -convergent sequence in Y, as desired.

Theorem 4.2. Let $T:L^{\varphi}(X)\to Y$ be a $(\mathfrak{T}_{\varphi}^{\wedge},\|\cdot\|_{Y})$ -continuous linear operator. Assume that for every Young function ψ with $\varphi\prec\psi$, the operator $T\circ i_{\psi}:L^{\psi}(X)\to Y$ is weakly compact. Then T is weakly completely continuous.

Proof. Assume that (f_n) is a $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$ -Cauchy sequence in $L^{\varphi}(X)$. Then the set $\{f_n : n \in \mathbb{N}\}$ is conditionally $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$ -compact in $L^{\varphi}(X)$, and it follows that $\{\|f_n(\cdot)\|_X : n \in \mathbb{N}\}$ is a conditionally $\sigma(L^{\varphi}, L^{\varphi^*})$ -compact set in L^{φ} (see [21, Theorem 2.2]). Then in view of Theorem 3.2 there exists a Young function ψ with $\varphi \prec \psi$ such that $\sup_n \|f_n\|_{\psi} \le 1$. It follows that the set $\{T(f_n) : n \in \mathbb{N}\}$ is relatively $\sigma(Y, Y^*)$ -compact in Y. Then there exists a subsequence (f_{k_n}) of (f_n) such that $T(f_{k_n}) \to y_0$ in $\sigma(Y, Y^*)$ for some $y_0 \in Y$. On the other hand, since T is $(\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X)), \sigma(Y, Y^*))$ -continuous, $(T(f_n))$ is a $\sigma(Y, Y^*)$ -Cauchy sequence in Y. It follows that $T(f_n) \to y_0$ in $\sigma(Y, Y^*)$.

As a consequence of Theorem 4.2 we have:

Corollary 4.3. Assume that $T: L^{\varphi}(X) \to Y$ is a $(\mathfrak{T}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous. If T is weakly compact operator, then T is weakly completely continuous.

Theorem 4.4. Assume that a Banach space X is almost reflexive and $T: L^{\varphi}(X) \to Y$ is a $(\mathfrak{I}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous linear operator. If T is weakly completely continuous, then for every Young function ψ with $\varphi \prec \psi$, the operator $T \circ i_{\psi}: L^{\psi}(X) \to Y$ is weakly compact.

Proof. Let ψ be a Young function such that $\varphi \prec \psi$. Then by Proposition 3.1 the set $\{\|f(\cdot)\|_X : f \in B_{L^{\psi}(X)}\}$ in L^{φ} is relatively $\sigma(L^{\varphi}, L^{\varphi^*})$ -compact, and hence it is conditionally $\sigma(L^{\varphi}, L^{\varphi^*})$ -compact (see Theorem 3.2). In view of [21, Corollary 2.3] $B_{L^{\psi}(X)}$ is conditionally $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$ -compact. To show that $T(B_{L^{\psi}(X)})$ is relatively $\sigma(Y, Y^*)$ -compact, assume that (y_n) is a sequence in $T(B_{L^{\psi}(X)})$, i.e., $y_n = T(f_n)$, where $f_n \in B_{L^{\psi}(X)}$. Then there exists a $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$ -Cauchy subsequence (f_{k_n}) of (f_n) . Hence $T(f_{k_n}) \to y_0$ in $\sigma(Y, Y^*)$ for some $y_0 \in Y$, and this means $T(B_{L^{\psi}(X)})$ is relatively $\sigma(Y, Y^*)$ -sequentially compact in Y. By the Eberlein-Šmulian theorem, $T(B_{L^{\psi}(X)})$ is relatively $\sigma(Y, Y^*)$ -compact, as desired.

Corollary 4.5. Assume that a Banach space X is almost reflexive and a Young function φ satisfies the ∇_2 -condition. Then for a $(\mathfrak{T}_{\varphi}^{\wedge}, \|\cdot\|_Y)$ -continuous linear operator $T: L^{\varphi}(X) \to Y$ the following statements are equivalent:

- (i) T is weakly completely continuous.
- (ii) T is weakly compact.

Proof. (i) \Rightarrow (ii) It follows from Theorem 4.3.

(ii) \Rightarrow (i) See Corollary 4.2.

Following [24, Section 9.4] we have:

Definition 4.2. A locally convex Hausdorff space (Z, ξ) is said to have the *Dieudonné property* if for every Banach space Y, every weakly completely continuous operator $T: Z \to Y$ maps ξ -bounded sets in Z onto relatively weakly compact sets in Y.

Corollary 4.6. Assume that a Banach space X is almost reflexive and a Young function φ satisfies the ∇_2 -condition. Then the space $(L^{\varphi}(X), \mathcal{T}^{\wedge}_{\varphi})$ has the Dieudonné property.

Proof. It follows from Corollary 4.5 because every $\mathfrak{T}_{\varphi}^{\wedge}$ -bounded set in $L^{\varphi}(X)$ is \mathfrak{T}_{φ} -bounded (see Theorem 1.1).

Definition 4.3. Assume that (Z, ξ) is a locally convex Hausdorff space. A $(\xi, \|\cdot\|_Y)$ -continuous linear operator $T: Z \to Y$ is said to be *unconditionally converging* if the series $\sum_{n=1}^{\infty} T(z_n)$ converges unconditionally in Y whenever $\sum_{n=1}^{\infty} |z^*(z_n)| < \infty$ for every $z^* \in (Z, \xi)^*$.

Proposition 4.7. Let $T: L^{\varphi}(X) \to Y$ be a $(\mathcal{T}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous linear operator. If T is weakly completely continuous, then T is unconditionally converging.

Proof. Assume that (f_n) is a sequence in $L^{\varphi}(X)$ such that $\sum_{n=1}^{\infty} |\int_{\Omega} \langle f_n(\omega), g(\omega) \rangle d\mu| < \infty$ for all $g \in L^{\varphi^*}(X^*, X)$. For a subsequence (f_{k_n}) of (f_n) , let $S_n = \sum_{i=1}^n f_{k_i}$. Then (S_n) is a $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$ -Cauchy sequence in $L^{\varphi}(X)$. It follows that the series $\sum_{n=1}^{\infty} T(f_{k_n})$ is $\sigma(Y, Y^*)$ -convergent in Y and in view of the Orlicz-Pettis theorem (see [20, p. 22]), the series $\sum_{n=1}^{\infty} T(f_n)$ is unconditionally convergent. This means that T is unconditionally converging.

5 Completely continuous operators on $L^{\varphi}(X)$

Definition 5.1. Assume that (Z, ξ) is a locally convex Hausdorff space. A $(\xi, \| \cdot \|_Y)$ -continuous linear operator $T: Z \to Y$ is said to be *completely continuous* if $\|T(z_n)\|_Y \to 0$ whenever (z_n) converges weakly to 0 in Z.

Recall that a completely continuous operator between Banach spaces is usually called a *Dunford-Pettis* operator.

Theorem 5.1. Let $T: L^{\varphi}(X) \to Y$ be a $(\mathbb{T}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous linear operator and $m: \Sigma_{f}(\mu) \to \mathcal{L}(X, Y)$ be its representing measure. If T completely continuous, then for every $A \in \Sigma_{f}(\mu)$, m(A) is a Dunford-Pettis operator. **Proof.** Assume that $x_n \to 0$ in $\sigma(X, X^*)$ and $A \in \Sigma_{f}(\mu)$. We shall show that $\mathbb{I}_{A} \otimes x_n \to 0$ in $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$. Indeed, let $g \in L^{\varphi^*}(X^*, X)$ be given. Note that $\mathbb{I}_{A}(\omega)g_{x_n}(\omega) \to 0$ μ -a.e. and $|\mathbb{I}_{A}(\omega)g_{x_n}(\omega)| \leq \mathbb{I}_{A}(\omega)\theta(g)(\omega)||x_n||_X \leq a\mathbb{I}_{A}(\omega)\theta(g)(\omega)$ μ -a.e. for all $n \in \mathbb{N}$, where $a = \sup_n \|x_n\|_X < \infty$. Since $\theta(g) \in L^{\varphi^*}$, we get $\mathbb{I}_{A}\theta(g) \in L^1$. Hence by the Lebesgue dominated convergence theorem

$$\int\limits_{\Omega} \langle (\mathbb{1}_A \otimes x_n)(\omega), g(\omega) \rangle \ d\mu = \int\limits_{\Omega} \mathbb{1}_A(\omega) g_{x_n}(\omega) \ d\mu \to 0.$$

It follows that $||m(A)(x_n)||_Y = ||T(\mathbb{1}_A \otimes x_n)||_Y \to 0$.

Bourgain [30, Proposition 1] showed that a bounded linear operator $T:L^1\to Y$ ($\mu(\Omega)<\infty$) is Dunford-Pettis if and only if T restricted to L^p for some $p\in(1,\infty]$ is compact. Now we extend this result to operator $T:L^{\varphi}(X)\to Y$. We study the relationships between completely continuous operators $T:L^{\varphi}(X)\to Y$ and the compactness properties of T restricted to $L^{\psi}(X)$, where $\varphi\prec\psi$.

Theorem 5.2. Let $T:L^{\varphi}(X)\to Y$ be a $(\mathfrak{T}_{\varphi}^{\wedge},\|\cdot\|_{Y})$ -continuous linear operator. Assume that for every Young function ψ with $\varphi\prec\psi$, the operator $T\circ i_{\psi}:L^{\psi}(X)\to Y$ is compact. Then T is completely continuous.

Proof. Assume that $f_n \to 0$ in $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$. Then the set $\{f_n : n \in \mathbb{N}\}$ is relatively $\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X))$ -sequentially compact in $L^{\varphi}(X)$, and it follows that $\{\|f_n(\cdot)\|_X : n \in \mathbb{N}\}$ is relatively $\sigma(L^{\varphi}, L^{\varphi^*})$ -sequentially compact set in L^{φ} (see [21, Theorem 3.3]). Then by Theorem 3.2 there exists a Young function ψ with $\varphi \prec \psi$ such that $\sup_n \|f_n\|_{\psi} \le 1$. It follows that $\{T(f_n) : n \in \mathbb{N}\}$ is a relatively norm compact set in Y. Hence there exists a subsequence (f_{k_n}) of (f_n) and $y_o \in Y$ such that $\|T(f_{k_n}) - y_o\|_Y \to 0$. On the other hand, since T is $(\sigma(L^{\varphi}(X), L^{\varphi^*}(X^*, X)), \sigma(Y, Y^*))$ -continuous, we get $T(f_n) \to 0$ in $\sigma(Y, Y^*)$. Hence $y_o = 0$ and $\|T(f_{k_n})\|_Y \to 0$. This means that $\|T(f_n)\|_Y \to 0$.

As a consequence of Theorem 5.2, we have:

Corollary 5.3. Assume that $T: L^{\varphi}(X) \to Y$ is a $(\mathfrak{T}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous linear operator. If T is compact, then T is completely continuous.

 \neg

П

Theorem 5.4. Assume that X is a reflexive Banach space and $T: L^{\varphi}(X) \to Y$ is a $(\mathcal{T}_{\varphi}^{\wedge}, \|\cdot\|_{Y})$ -continuous linear operator. If T is completely continuous, then for every Young function ψ with $\varphi \prec \psi$, the operator $T \circ i_{\psi}: L^{\psi}(X) \to Y$ is compact.

Proof. Let ψ be a Young function such that $\varphi \prec \psi$. Then by Proposition 3.1 the set $\{\|f(\cdot)\|_X : f \in B_{L^\psi(X)}\}$ in L^φ is relatively $\sigma(L^\varphi, L^{\varphi^*})$ -compact and hence it is relatively $\sigma(L^\varphi, L^{\varphi^*})$ -sequentially compact (see Theorem 3.2). In view of [21, Corollary 3.4] $B_{L^\psi(X)}$ is a relatively $\sigma(L^\varphi(X), L^{\varphi^*}(X^*))$ -sequentially compact set in $L^\varphi(X)$. To show that $T(B_{L^\psi(X)})$ is a relatively norm compact subset of Y, assume that (y_n) is a sequence in $T(B_{L^\psi(X)})$, i.e., $y_n = T(f_n)$, where $f_n \in B_{L^\psi(X)}$. Then there exists a subsequence (f_{k_n}) of (f_n) such that $f_{k_n} \to f_o$ in $\sigma(L^\varphi(X), L^{\varphi^*}(X^*))$ for some $f_o \in L^\varphi(X)$. Hence $\|T(f_{k_n}) - T(f_o)\|_Y \to 0$ and this means that $T(B_{L^\psi(X)})$ is relatively compact in Y.

Corollary 5.5. Assume that X is a reflexive Banach space and a Young function φ satisfies the ∇_2 -condition. Then for $a(\mathfrak{T}_{\varphi}^{\wedge}, \|\cdot\|_Y)$ -continuous linear operator $T: L^{\varphi}(X) \to Y$ the following statements are equivalent:

- (i) *T is completely continuous*.
- (ii) T is compact.

Proof. (i) \Rightarrow (ii) This follows from Theorem 5.4.

(ii) \Rightarrow (i) See Corollary 5.3.

References

- Dinculeanu N., Vector Measures, International Series of Monographs in Pure and Applied Mathematics 95, Pergamon Press, Oxford-New York-Toronto. 1967.
- [2] Dinculeanu N., Linear operators on L^p -spaces, Vector and Operator-Valued Measures and Applications, (Proc. Sympos. Alta, Utah, 1972), 109–124, Academic Press, New York, 1973.
- [3] Dinculeanu N., Vector Integration and Stochastic and Integration in Banach Spaces, Wiley-Interscience, New York, 2000.
- [4] Gretsky N.E., Uhl J.J., Bounded linear operators on Banach function spaces of vector-valued functions, Trans. Amer. Math. Soc., 1972, 167, 263–277.
- [5] Andrews K., Representation of compact and weakly compact operators on the space of Bochner integrable functions, Pacific J. Math., 1981, 92(2), 257–267.
- [6] Andrews K., The Radon-Nikodym property for spaces of operators, J. London Math. Soc., 1982, 28(2), 113-122.
- [7] Uhl J.J., Compact operators on Orlicz spaces, Rend. Sem. Mat. Univ. Padova, 1969, 42, 209-219.
- [8] Alo R.A., De Korwin A., Kunes L., Topological aspects of q-regular measures, Studia Math., 1973, 48, 49–60.
- [9] Diestel J., On the representation of bounded linear operators from Orlicz-Bochner space of Lebesgue-Bochner measurable functions to any Banach space, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 1970, 18, 375–378.
- [10] Vanderputten L., Representation of operators defined on the space of Bochner integrable functions, Extracta Math., 2001, 16(3), 383–391.
- [11] Feledziak K., Nowak M., Integral representation of linear operators on Orlicz-Bochner spaces, Collect. Math., 2010, 61(3),
- [12] Nowak M., Order-weakly compact operators from vector-valued function spaces to Banach spaces, Proc. Amer. Math. Soc., 2007, 135(9), 2803–2809.
- [13] Nowak M., Linear operators on vector-valued function spaces with the Mackey topologies, J. Convex Analysis, 2008, 15(1),
- [14] Kolwicz P., Płuciennik R., P-convexity of Orlicz-Bochner spaces, Proc. Amer. Math. Soc., 1998, 126(8), 2315-2322.
- [15] Shang S.Q., Cui Y.A., Uniformly nonsquarness and locally uniform nonsquarness in Orlicz-Bochner spaces, J. Funct. Analysis, 2014, 267(7), 2056–2076.
- [16] Feledziak K., Nowak M., Locally solid topologies on vector-valued function spaces, Collect. Math., 1997, 48(4-6), 487-511.
- [17] Nowak M., Lebesgue topologies on vector-valued function spaces, Math. Japonica, 2002, 52(2), 171-182.
- [18] Bukhvalov A.V., On an analytic representation of operators with abstract norm, Izv. Vyssh. Uchebn. Zaved. Mat., 1975, 11, 21–32.
- [19] Bukhvalov A.V., On an analytic representation of linear operators by means of measurable vector-valued functions, Izv. Vyssh. Uchebn. Zaved. Mat., 1977, 7, 21–32.
- [20] Diestel J., Uhl J.J., Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, 1977.
- [21] Nowak M., Conditional and relative weak compactness in vector-valued functions spaces, J. Convex Analysis, 2005, 12(2), 447–463.
- [22] Luxemburg W., Banach Functions Spaces, Thesis, Delft, 1955.

- [23] Aliprantis C.D., Burkinshaw O., Positive Operators, Pure and Applied Mathematics 119, Academic Press, Inc., Orlando, FL, 1985.
- [24] Edwards R.E., Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
- [25] Dodds P.G., o-weakly compact mappings of Riesz spaces, Trans. Amer. Math. Soc., 1975, 214, 389-402.
- [26] Musiał K., The weak Radon-Nikodym property in Banach spaces, Studia Math., 1979, 64, 151-174.
- [27] Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Marcel Dekker, New York, Basel, Hong Kong, 1991.
- [28] Nowak M., A characterization of the Mackey topology $\tau(L^{\varphi}, L^{\varphi^*})$ on Orlicz spaces, Bull. Polish Acad. Sci. Math., 1986, 34(9–10), 577–583.
- [29] Ando T., Weakly compact sets in Orlicz spaces, Canad. J. Math., 1962, 14, 170-176.
- [30] Bourgain J., Dunford-Pettis operators on L^1 and the Radon-Nikodym property, Israel J. Math., 1980, 37, 34–37.