DE GRUYTER Open Math. 2019; 17:559–574

Open Mathematics

Research Article

A. Ghareeb, H. S. Al-Saadi, and O. H. Khalil*

A new representation of α -openness, α -continuity, α -irresoluteness, and α -compactness in L-fuzzy pretopological spaces

https://doi.org/10.1515/math-2019-0047 Received January 17, 2018; accepted April 5, 2019

Abstract: This paper presents a new representation of α -openness, α -continuity, α -irresoluteness, and α -compactness based on L-fuzzy α -open operators introduced by Nannan and Ruiying [1] and implication operation. The proposed representation extends the properties of α -openness, α -continuity, α -irresoluteness, and α -compactness to the setting of L-fuzzy pretopological spaces based on graded concepts. Moreover, we introduce and establish the relationships among the new concepts.

Keywords: L-fuzzy pretopology, L-fuzzy α -open operator, L-fuzzy α -openness degree, L-fuzzy α -continuty degree, L-fuzzy α -compactness degree

PACS: 03E72, 54A40, 54C20

1 Introduction

Continuity is an important concept in topology, which has developed extensively with the emergence of fuzzy mathematics. In [2, 3], Šostak considered the degrees to which a mapping is continuous, open, and closed between two (L, M)-fuzzy topological spaces (including the fuzzifying case) for the first time. Subsequently, the degrees of continuity, openness, and closeness of mappings between L-fuzzifying topological spaces were discussed in detail by Pang [4]. Later on, Liang and Shi [5] clarified the relationship among these degrees and the degree of compactness and connectedness in the case of (L, M)-fuzzy setting.

Recently, Shi [6] measured preopenness and semiopenness of L-subset by introducing the concepts of L-fuzzy preopen operators and L-fuzzy semiopen operators, respectively. In [7], Shi and Li used L-fuzzy semiopen operators to introduce and characterize the semicompactness. Later on in [8] the degree of preconnectedness was introduced with the help of L-fuzzy preopen operators. In addition, he used Shi's operators to define new operators such as L-fuzzy semipreopen operators [9] and L-fuzzy \mathbf{F} -open operators [10]. These

A. Ghareeb: Department of Mathematics, College of Science, Al-Baha University, Al-Baha, Saudi Arabia Permanent address: Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt; E-mail: a.ghareeb@sci.svu.edu.eg, nasserfuzt@hotmail.com

H. S. Al-Saadi: Mathematics Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, P. O Box 11155, Saudi Arabia; Email: hasa112@hotmail.com

*Corresponding Author: O. H. Khalil: Department of Mathematics, College of Science, Majmaah University, Al-Majmaah, 11952, Saudi Arabia

Permanent address: Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; E-mail: o.khalil@mu.edu.sa

operators have proved to be of great importance in studying the characteristics of many concepts of L-fuzzy topology (see [11-14]).

In [1], Nannan and Ruiying introduced L-fuzzy α -open operators in L-fuzzy topological spaces and used it to study L-fuzzy α -compactness. Moreover, the concept of open cover and α -fuzzy α -compact are given and its related properties are discussed. Also, the relationship between L-fuzzy α -compactness and fuzzy α -compactness are discussed.

This paper first discusses some important properties of L-fuzzy α -open operators. It then introduces α openness, α -continuity, α -irresoluteness, and α -compactness degree based on the implication operation and L-fuzzy α -open operators. Further, some important properties of α -openness, α -continuity, α -irresoluteness, and α -compactness degree were extended to the setting of L-fuzzy pretopology based on graded concepts. Moreover, it presents a systematic discussion on the relationship among the new concepts.

2 Preliminaries

In the sequel, $X \neq \emptyset$, and L refers to a completely distributive De Morgan algebra (briefly, CDDA). Let $\mathbf{1}_L$ and $\mathbf{0}_L$ denote the greatest and smallest elements of L, respectively. For each $u, v \in L$, the element u is wedge below v [15], written $u \triangleleft v$, if for each $\mathfrak{D} \subseteq L$, $\mathfrak{V} \mathfrak{D} \ge v$ yields to $w \ge u$ for some $w \in \mathfrak{D}$. We say the complete lattice *L* is completely distributive (briefly, CD) if and only if $v = \bigvee \{u \in L | u \triangleleft v\}$ for any $v \in L$. A member $u \in L$ is said to be co-prime if $u \le v \lor w$ yields to $u \le v$ or $u \le w$. P(L) and J(L) refer to the family of nonunit prime members and non-zero co-prime members of L respectively. The greatest minimal family and the greatest maximal family of $v \in L$ are denoted by $\alpha(v)$ and $\beta(v)$ respectively. Moreover, $\alpha^*(v) = \alpha(v) \cap J(L)$ and $\beta^*(\nu) = \beta(\nu) \cap P(L)$. By L^X we refer to the set of all L-subsets on X. $2^{\mathcal{U}}$ denotes the collection of all finite subcollections of $\mathcal{U} \subseteq L^X$. Evidently, L^X is a CDDA when it inherits the structure of the lattice L in a natural way, by defining \bigvee , \bigwedge , \leq and ' pointwisely. Further, $\{x_u|u\in J(L)\}$ denotes the collection of non-zero co-primes of L^X .

For each CDDA L, there exists an implication operation \mapsto : $L \times L \longrightarrow L$ as the right adjoint for the meet operation \wedge is defined by

$$u\mapsto v=\bigvee\{w\in L|u\wedge w\leq v\}.$$

Further, the operation \leftrightarrow is given by

$$u \leftrightarrow v = (u \mapsto v) \land (v \mapsto u)$$
.

The following lemma lists some important properties of implication operation.

Lemma 2.1. [16] Let (L, \vee, \wedge) be a CD lattice and \mapsto be the implication operation corresponding to \wedge . Then for all $u, v, w \in L$, $\{u_i\}_{i \in \Gamma}$, and $\{v_i\}_{i \in \Gamma} \subseteq L$, we have the following statements:

- (I1) $(u \mapsto v) \ge w \iff u \land w \le v$.
- (12) $u \le v \Leftrightarrow u \mapsto v = \mathbf{1}_L$.
- (13) $u \mapsto (v \mapsto w) = (u \land v) \mapsto w$.
- **(I4)** $(w \mapsto u) \land (u \mapsto v) \le w \mapsto v$.
- (15) $w \mapsto u \leq (u \mapsto v) \mapsto (w \mapsto v)$.
- **(16)** $u \mapsto \bigwedge_{i \in \Gamma} u_i = \bigwedge_{i \in \Gamma} (u \mapsto u_i)$, hence $u \mapsto v \le u \mapsto w$ whenever $v \le w$. **(17)** $\bigvee_{i \in \Gamma} u_i \mapsto v = \bigwedge_{i \in \Gamma} (u_i \mapsto v)$, hence $u \mapsto w \ge v \mapsto w$ whenever $u \le v$.

An L-fuzzy inclusion [17, 18] on X is defined by the function $\tilde{\subset}: L^X \times L^X \longrightarrow L$, where $\tilde{\subset}(A_1, A_2) = \bigwedge_{x \in X} (A_1'(x) \vee A_2)$ $A_2(x)$). We shall denote an L-fuzzy inclusion by $[A_1 \tilde{\subset} A_2]$. For each function $f: X \longrightarrow Y$ and $\mathcal{C} \subseteq L^Y$, the next equality is defined in [19]:

$$\bigwedge_{y\in Y}\left\{f^{\rightarrow}(A)'(y)\vee\bigvee_{B\in\mathcal{C}}B(y)\right\}=\bigwedge_{x\in X}\left\{B'(x)\vee\bigvee_{B\in\mathcal{C}}f^{\leftarrow}(B)(x)\right\}.$$

An L-topological space (briefly, L-ts) is a pair (X, τ) , where the subfamily $\tau \subseteq L^X$ contains $\underline{\mathbf{0}}_{L^X}$, $\underline{\mathbf{1}}_{L^X}$, and closed for any suprema and finite infima. Elements of τ are called open L-subsets and their complements are called closed L-subsets. For an L-subset A of an L-topological space (X, τ) we denote by \bar{A} and A° the closure and the interior of A, respectively.

Definition 2.2. [16, 20–22] An L-fuzzy pretopology is given by the function $\sigma: L^X \longrightarrow L$ satisfies the following statements:

(O1)
$$\sigma(\underline{\mathbf{1}}_{L^X}) = \sigma(\underline{\mathbf{0}}_{L^X}) = \mathbf{1}_L.$$

(O2) $\sigma\left(\bigvee_{i \in I} A_i\right) \ge \bigwedge_{i \in I} \sigma(A_i), \forall \{A_i\}_{i \in I} \subseteq L^X.$

For any L-subset $A \in L^X$, $\sigma(A)$ refers to the degree of openness of A. $\sigma^*(A) = \sigma(A')$ is the closeness degree of A. The pair (X, σ) is said to be an L-fuzzy pretopological space (briefly, L-pfts). A function $f:(X, \sigma_1) \longrightarrow (Y, \sigma_2)$ is said to be L-fuzzy continuous with respect to L-fpts's (X, σ_1) and (Y, σ_2) if and only if $\sigma_1(f^{\leftarrow}(B)) \ge \sigma_2(B)$ for each $B \in L^Y$, where $f^{\leftarrow}(B)(x) = B(f(x))$.

Definition 2.3. [1] Let σ be an L-fpt on X and let the mapping $\mathscr{A}: L^X \longrightarrow L$ defined as follows:

$$\mathscr{A}(A) = \bigvee_{B \leq A} \left\{ \sigma(B) \wedge \bigwedge_{x_{u} \leq A} \bigvee_{x_{u} \leq C} \left\{ \sigma(C) \wedge \bigwedge_{y_{v} \leq C} \bigwedge_{y \neq SD \geq B} \left(\sigma(D') \right)' \right\} \right\}.$$

In this case, \mathscr{A} is the induced L-fuzzy α -open operator by σ . $\mathscr{A}(A)$ is called the degree of α -openness of A and $\mathscr{A}^*(A) = \mathscr{A}(A')$ can be regarded as the α -closeness degree of A.

Corollary 2.4. *If* σ *is an* L-*fpt on* X *and* $A \in L^X$, *then:*

$$\mathscr{A}(A) = \bigvee_{B \leq A} \left\{ \sigma(B) \wedge \bigwedge_{x_{u} \leq A} \bigvee_{x_{u} \leq C} \left\{ \sigma(C) \wedge \bigwedge_{y_{v} \leq C} Cl^{\sigma}(B)(y_{v}) \right\} \right\},$$

where Cl^{σ} refers to the L-fuzzy closure operator induced by σ (see [23]).

Theorem 2.5. [1] Let σ be an L-fpt on X, $A \in L^X$, and $u \in J(L)$, then $A \in \mathscr{A}_{[u]}$ if and only if A is an α -open set in $\mathscr{A}_{[u]}$, where $\mathscr{A}_{[u]} = \{A \in L^X \mid \mathscr{A}(A) \geq u\}$.

Theorem 2.6. Let $\sigma: L^X \longrightarrow \{\mathbf{0}_L, \mathbf{1}_L\}$ be an L-pts and let $\mathscr{A}: L^X \longrightarrow \{\mathbf{0}_L, \mathbf{1}_L\}$ be the corresponding L- α -open operator. Then $\mathscr{A}(A) = \mathbf{1}_L$ if and only if A is α -open L-subset.

Proof. We can prove the theorem by using the following fact:

$$\mathscr{A}(A) = \mathbf{1}_{L} \Leftrightarrow \bigvee_{B \leq A} \left\{ \sigma(B) \land \bigwedge_{x_{u} \lhd A} \bigvee_{x_{u} \lhd C} \left\{ \sigma(C) \land \bigwedge_{y_{v} \lhd C} Cl^{\sigma}(B)(y_{\mu}) \right\} \right\} = \mathbf{1}_{L}$$

$$\Leftrightarrow \exists B \leq A \text{ such that } \sigma(B) = \mathbf{1}_{L} \text{ and } \bigwedge_{x_{u} \lhd A} \bigvee_{x_{u} \lhd C} \left\{ \sigma(C) \land \bigwedge_{y_{v} \lhd C} Cl^{\sigma}(B)(y_{\mu}) \right\} = \mathbf{1}_{L}$$

$$\Leftrightarrow \exists B \leq A \text{ such that } \sigma(B) = \mathbf{1}_{L} \text{ and } \forall x_{u} \lhd A, \exists C \text{ with } x_{u} \lhd C \text{ such that } \sigma(C) = \mathbf{1}_{L}$$
and
$$\bigwedge_{y_{v} \lhd C} Cl^{\sigma}(B)(y_{\mu})$$

$$\Leftrightarrow \exists B \leq A \text{ such that } \sigma(B) = \mathbf{1}_{L} \text{ and } \forall x_{u} \lhd A, \exists C \text{ with } x_{u} \lhd C \text{ such that } \sigma(C) = \mathbf{1}_{L}$$

and
$$\forall y_{\nu} \lhd C$$
, $Cl^{\sigma}(B)(y_{\nu}) = \mathbf{1}_{L}$
 $\Leftrightarrow \exists B \leq A \text{ such that } \sigma(B) = \mathbf{1}_{L} \text{ and } \forall x_{u} \lhd A, \exists C \text{ with } x_{u} \lhd C \text{ such that } \sigma(C) = \mathbf{1}_{L}$
and $C \leq Cl^{\sigma}(B)$
 $\Leftrightarrow \exists B \in \sigma, B \leq A \leq (\bar{B})^{\circ}$
 $\Leftrightarrow A \text{ is } \alpha\text{-open } L\text{-subset.}$

Where and or refer to the closure and the interior operator, respectively.

Theorem 2.7. Let σ be an L-fpt on X and let \mathscr{A} be its corresponding L-fuzzy α -open operator. Then $\sigma(A) \leq \mathscr{A}(A)$ for all $A \in L^X$.

Proof. The proof can be obtained from the following inequality:

$$\mathscr{A}(A) = \bigvee_{B \leq A} \left\{ \sigma(B) \wedge \bigwedge_{x_{u} \prec A} \bigvee_{x_{u} \prec C} \left\{ \sigma(C) \wedge \bigwedge_{y_{v} \prec C} Cl^{\sigma}(B)(y_{\mu}) \right\} \right\}$$

$$\geq \sigma(A) \wedge \bigwedge_{x_{u} \prec A} \bigvee_{x_{u} \prec C} \left\{ \sigma(C) \wedge \bigwedge_{y_{v} \prec C} Cl^{\sigma}(A)(y_{\mu}) \right\}$$

$$\geq \sigma(A) \wedge \bigwedge_{x_{u} \prec A} \left\{ \sigma(A) \wedge \bigwedge_{y_{v} \prec A} Cl^{\sigma}(A)(y_{\mu}) \right\}$$

$$= \sigma(A) \wedge \sigma(A) \wedge \mathbf{1}_{L}$$

$$= \sigma(A).$$

Corollary 2.8. Let σ be an L-fpt on X and let \mathscr{A} be its corresponding L-fuzzy α -open operator. Then $\sigma^*(A) \leq \mathscr{A}^*(A)$ for all $A \in L^X$.

Theorem 2.9. Let $\mathscr{A}: L^X \longrightarrow L$ be an L-fuzzy α -open operator induced by L-fpt σ on X. Then \mathscr{A} satisfies the following conditions:

(1)
$$\mathscr{A}(\underline{\mathbf{0}}_{L^X}) = \mathscr{A}(\underline{\mathbf{1}}_{L^X}) = \mathbf{1}_L.$$

(2) $\mathscr{A}(\bigvee_{i \in I} A_i) \ge \bigwedge_{i \in I} \mathscr{A}(A_i)$ for any $\{A_i\}_{i \in I} \subseteq L^X.$

Proof. The proof of **(1)** is clear. To prove **(2)**, suppose that $w \in L$ and $w \triangleleft \bigwedge_{i \in I} \mathscr{A}(A_i)$. Then for any $i \in I$, there is $B_i \leq A_i$ such that

$$w \lhd \sigma(B_i)$$
 and $w \lhd \bigwedge_{x_u \lhd A_i} \bigvee_{x_u \lhd C_i} \left\{ \sigma(C_i) \land \bigwedge_{y_v \lhd C_i} \bigwedge_{y_{v'} \lhd C_i} (\sigma(D'))' \right\}$,

i.e., $w \lhd \sigma(B_i)$ and for any $i \in I$ and $x_u \lhd A_i$, there is $C_i \in L^X$ such that $x_u \lhd C_i$, $w \lhd \sigma(C_i)$ and $w \lhd \bigwedge_{y_v \lhd C_i} \bigwedge_{y_v \leq D \trianglerighteq_{i \in I}} \bigvee_{B_i} (\sigma(D'))'$. Hence

$$w \le \bigwedge_{i \in I} \sigma(B_i) \le \sigma\left(\bigvee_{i \in I} B_i\right), \quad w \le \bigwedge_{i \in I} \sigma(C_i) \le \sigma\left(\bigvee_{i \in I} C_i\right),$$

and

$$w \leq \bigwedge_{i \in I} \bigwedge_{y_{\nu} \lhd C_{i}} \bigwedge_{y_{\nu} \leq D \geq \bigvee_{i \in I}} (\sigma(D'))'.$$

Since
$$\left\{x_{u}|x_{u} \lhd\bigvee_{i \in I}A_{i}\right\} = \bigcup_{i \in I}\left\{x_{u}|x_{u} \lhd A_{i}\right\}$$
 and $\left\{y_{v}|y_{v} \lhd\bigvee_{i \in I}C_{i}\right\} = \bigcup_{i \in I}\left\{y_{v}|y_{v} \lhd C_{i}\right\}$, we have
$$\mathscr{A}\left(\bigvee_{i \in I}A_{i}\right) = \bigvee_{B \leq\bigvee_{i \in I}A_{i}}\left\{\sigma(B) \land\bigwedge_{x_{u} \lhd\bigvee_{i \in I}A_{i}}\bigvee_{x_{u} \lhd C}\left\{\sigma(C) \land\bigwedge_{y_{v} \lhd\subset y \neq sD \geq B}(\sigma(D'))'\right\}\right\}$$

$$\geq \sigma\left(\bigvee_{i \in I}B_{i}\right) \land\bigwedge_{i \in I}\bigwedge_{x_{u} \lhd\bigvee_{i \in I}A_{i}}\left\{\sigma\left(\bigvee_{i \in I}C_{i}\right) \land\bigwedge_{y_{v} \lhd\bigvee_{i \in I}C_{i}}\bigvee_{y \neq sD \geq\bigvee_{i \in I}B_{i}}(\sigma(D'))'\right\}$$

$$= \sigma\left(\bigvee_{i \in I}B_{i}\right) \land\bigwedge_{i \in I}\bigwedge_{x_{u} \lhd\bigvee_{i \in I}A_{i}}\left\{\sigma\left(\bigvee_{i \in I}C_{i}\right) \land\bigwedge_{i \in I}\bigvee_{y_{v} \lhd C_{i}}\bigvee_{y \neq sD \geq\bigvee_{i \in I}B_{i}}(\sigma(D'))'\right\}$$

$$\geq \sigma\left(\bigvee_{i \in I}B_{i}\right) \land\bigwedge_{i \in I}\bigwedge_{x_{u} \lhd A_{i}}\left\{\sigma\left(\bigvee_{i \in I}C_{i}\right) \land\bigwedge_{i \in I}\bigvee_{y_{v} \lhd C_{i}}\bigvee_{y \neq sD \geq\bigvee_{i \in I}B_{i}}(\sigma(D'))'\right\}$$

This shows
$$\mathscr{A}\left(\bigvee_{i\in I}A_i\right)\geq\bigwedge_{i\in I}\mathscr{A}(A_i)$$
.

In the following definition, we use L-fuzzy α -open operators to introduce generalized definitions for L-fuzzy α -open, L-fuzzy α -continuous and L-fuzzy α -irresolute functions.

Definition 2.10. If (X, σ_1) and (Y, σ_2) are *L*-fpts's and $f: (X, \sigma_1) \longrightarrow (Y, \sigma_2)$ is a function, then:

- (1) f is an L-fuzzy α -open function iff $\sigma_1(A) \leq \mathcal{A}_2(f^{\rightarrow}(A))$ for any $A \in L^X$.
- (2) f is an L-fuzzy α -continuous function iff $\sigma_2(B) \leq \mathscr{A}_1(f^{\leftarrow}(B))$ holds for any $B \in L^Y$.
- (3) f is an L-fuzzy α -irresolute iff $\mathscr{A}_2(B) \leq \mathscr{A}_1(f^{\leftarrow}(B))$ holds for any $B \in L^Y$.

Corollary 2.11. *If* (X, σ_1) *and* (Y, σ_2) *are* L-*fpts's and* $f: (X, \sigma_1) \longrightarrow (Y, \sigma_2)$ *is a function, then:*

- (1) f is an L-fuzzy α -continuous iff $\sigma_2^*(B) \leq \mathscr{A}_1^*(f^{\leftarrow}(B))$ for any $B \in L^Y$.
- (2) f is an L-fuzzy α -irresolute iff $\mathscr{A}_{2}^{\star}(B) \leq \mathscr{A}_{1}^{\star}(f^{\leftarrow}(B))$ for any $B \in L^{Y}$.

Definition 2.12. [24] For an L-fpt σ on X and an L-subset $A \in L^X$, the degree of fuzzy compactness $\mathbf{com}(A)$ of A is given by:

$$\mathbf{com}(A) = \bigwedge_{\mathcal{U} \subseteq L^{X}} \left\{ \left\{ \bigwedge_{B \in \mathcal{U}} \sigma(B) \wedge \bigwedge_{x \in X} \left(A' \vee \bigvee_{B \in \mathcal{U}} B \right) (x) \right\} \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(A' \vee \bigvee_{B \in \mathcal{V}} B \right) (x) \right\}$$
$$= \bigwedge_{\mathcal{U} \subseteq L^{X}} \left\{ \left\{ \bigwedge_{B \in \mathcal{U}} \sigma(B) \wedge \left[A \subseteq \bigvee \mathcal{U} \right] \right\} \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[A \subseteq \bigvee \mathcal{V} \right] \right\}.$$

In this case, an *L*-subset *A* is said to be fuzzy compact if and only if $com(A) = 1_L$.

Definition 2.13. [1] Let σ be an L-fpt on X. An L-subset $A \in L^X$ is called α -compact if

$$\bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \bigwedge_{x \in X} \left(A' \vee \bigvee_{B \in \mathcal{U}} B \right)(x) \leq \bigvee_{V \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(A' \vee \bigvee_{B \in \mathcal{V}} B \right)(x)$$

for every $\mathcal{U} \subset L^X$.

Definition 2.14. [25, 26] For an L-pt τ on X, $u \in L \setminus \{\mathbf{1}_L\}$ and $A \in L^X$, a family $\mathcal{U} \subseteq L^X$ is said to be a α_u -cover of *A* if for each $x \in X$, we have $u \in \alpha(A'(x) \vee \bigvee B(x))$. The family \mathcal{U} is said to be a strong α_u -cover of *A* if $u \in \alpha(\bigwedge_{x \in X} (A'(x) \vee \bigvee_{B \in \mathcal{U}} B(x))).$

Definition 2.15. [25, 26] For an L-pt τ on X, $u \in L \setminus \{\mathbf{1}_L\}$ and $A \in L^X$, a family $\mathcal{U} \subseteq L^X$ is said to be a Q_u -cover of *A* if for each $x \in X$, we have $A'(x) \lor \bigvee_{x \in X} B(x) \ge u$.

Definition 2.16. [25, 26] For an L-pt τ on X, $u \in L \setminus \{\mathbf{1}_L\}$ and $A \in L^X$, a family $\mathcal{U} \subseteq L^X$ is called:

- **(1)** a *u*-shading of *A* if for each $x \in X$, $(A'(x) \lor \bigvee_{B \in \mathcal{U}} B(x)) \le u$.
- (2) a strong u-shading of A if $\bigwedge_{x \in X} (A'(x) \vee \bigvee_{B \in \mathcal{U}} B(x))' \leq u$. (3) a u-remote family of A if for each $x \in X$, $(A(x) \land \bigwedge_{B \in \mathcal{U}} B(x))' \geq u$.
- **(4)** a strong *u*-remote family of *A* if $\bigvee_{x \in X} (A(x) \land \bigwedge_{B \in \mathcal{U}} B(x)) \ge u$.

3 Degree of α -openness, α -continuity and α -irresolutness for functions between L-fpts's

In this section, we will introduce the notions of α -openness, α -continuity, and α -irresolutness degree for functions between *L*-fpts's. Further, we will discuss their properties.

Definition 3.1. If (X, σ_1) and (Y, σ_2) are *L*-fpts's and $f: (X, \sigma_1) \longrightarrow (Y, \sigma_2)$ is a function, then:

(1) the α -openness degree of f with respect to σ_1 and σ_2 is defined by

$$\alpha \mathbf{o}(f) = \bigwedge_{A \in I^X} \left\{ \mathscr{A}_1(A) \mapsto \mathscr{A}_2(f^{\to}(A)) \right\}.$$

(2) the continuity degree of f with respect to σ_1 and σ_2 is defined by

$$\alpha \mathbf{c}(f) = \bigwedge_{B \in L^{Y}} \left\{ \sigma(B) \mapsto \mathscr{A}_{1}(f^{\leftarrow}(B)) \right\}.$$

(3) the irresoluteness degree of f with respect to σ_1 and σ_2 is defined by

$$\alpha \mathbf{i}(f) = \bigwedge_{B \subset I^Y} \left\{ \mathscr{A}_2(B) \mapsto \mathscr{A}_1(f^{\leftarrow}(B)) \right\}.$$

Definition 3.2. For any two *L*-fpts's (X, σ_1) and (Y, σ_2) and any bijective function $f: (X, \sigma_1) \longrightarrow (Y, \sigma_2)$, the α -homomorphism degree of f with respect to σ_1 and σ_2 is given by

$$\alpha$$
-**Hom** $(f) = \alpha \mathbf{i}(f) \wedge \alpha \mathbf{o}(f)$.

- (1) Based on (2) of Lemma 2.1, $\alpha \mathbf{c}(f) = \mathbf{1}_L$ implies to $\mathcal{A}_1(f^{\leftarrow}(B)) \geq \sigma_2(B)$ for all $B \in L^Y$. This Remark 3.3. is exactly the definition of α -continuous function. The cases $\alpha \mathbf{o}(f) = \mathbf{1}_L$ and $\alpha \mathbf{i}(f) = \mathbf{1}_L$ can be shown similarly. Thus (2) and (3) in Definition 3.1 are precisely the α -open and α -irresolute function's definition as in the sense of Definition 2.10.
 - (2) For the identity function $i:(X,\sigma_1)\longrightarrow (X,\sigma_1)$, we have $\alpha \mathbf{i}(i)=\alpha \mathbf{o}(i)=\alpha \mathbf{-Hom}(i)=\mathbf{1}_L$.

By using Definition 3.1 and Corollary 2.11, we can state the following corollary.

Corollary 3.4. If (X, σ_1) and (Y, σ_2) are L-fpts's and $f: (X, \sigma_1) \longrightarrow (Y, \sigma_2)$ is a function, then:

(1) the α -continuity degree of f is characterized by

$$\alpha \mathbf{c}(f) = \bigwedge_{B \in L^Y} \left\{ \sigma^*(B) \mapsto \mathscr{A}_1^*(f^{\leftarrow}(B)) \right\}.$$

(2) the α -irresoluteness degree of f is characterized by

$$\alpha \mathbf{i}(f) = \bigwedge_{B \in L^Y} \left\{ \mathscr{A}_2^{\star}(B) \mapsto \mathscr{A}_1^{\star}(f^{\leftarrow}(B)) \right\}.$$

Definition 3.5. For any function $f:(X,\sigma_1)\longrightarrow (Y,\sigma_2)$ where (X,σ_1) and (Y,σ_2) are two L-fpts's, the α -closeness degree of f is given by

$$\alpha \mathbf{cl}(f) = \bigwedge_{A \subset I^X} \left\{ \mathscr{A}_1^{\star}(A) \mapsto \mathscr{A}_2^{\star}(f^{\to}(A)) \right\}.$$

Theorem 3.6. If $f:(X, \sigma_1) \longrightarrow (Y, \sigma_2)$ and $g:(Y, \sigma_2) \longrightarrow (Z, \sigma_3)$ are two functions where $(X, \sigma_1), (Y, \sigma_2)$ and (Z, σ_3) are three L-fpts's, then:

- (1) $\alpha \mathbf{i}(f) \wedge \alpha \mathbf{i}(g) \leq \alpha \mathbf{i}(g \circ f)$.
- (2) $\alpha \mathbf{o}(f) \wedge \alpha \mathbf{o}(g) \leq \alpha \mathbf{i}(g \circ f)$.
- (3) $\alpha \operatorname{cl}(f) \wedge \alpha \operatorname{i}(g) \leq \alpha \operatorname{cl}(g \circ f)$.

Proof. Since the proof of **(2)** and **(3)** is clear, we only prove **(1)**. By using Definition 3.1 and Lemma 2.1 **(4)**, we obtain

$$\begin{aligned} \alpha \mathbf{i}(f) \wedge \alpha \mathbf{i}(g) &= \bigwedge_{B \in L^{Y}} \left\{ \mathscr{A}_{2}(B) \mapsto \mathscr{A}_{1}(f^{\leftarrow}(B)) \right\} \wedge \bigwedge_{C \in L^{Z}} \left\{ \mathscr{A}_{3}(C) \mapsto \mathscr{A}_{2}(g^{\leftarrow}(C)) \right\} \\ &\leq \bigwedge_{C \in L^{Z}} \left\{ \mathscr{A}_{2}(g^{\leftarrow}(C)) \mapsto \mathscr{A}_{1}(f^{\leftarrow}(g^{\leftarrow}(C))) \right\} \wedge \bigwedge_{C \in L^{Z}} \left\{ \mathscr{A}_{3}(C) \mapsto \mathscr{A}_{2}(g^{\leftarrow}(C)) \right\} \\ &= \bigwedge_{C \in L^{Z}} \left\{ \left(\mathscr{A}_{2}(g^{\leftarrow}(C)) \mapsto \mathscr{A}_{1}((g \circ g)^{\leftarrow}(C)) \right) \wedge \left(\mathscr{A}_{3}(C) \mapsto \mathscr{A}_{2}(g^{\leftarrow}(C)) \right) \right\} \\ &\leq \bigwedge_{C \in L^{Z}} \left\{ \mathscr{A}_{3}(g^{\leftarrow}(C)) \mapsto \mathscr{A}_{1}((g \circ f)^{\leftarrow}(C)) \right\} \\ &= \alpha \mathbf{i}(g \circ f). \end{aligned}$$

By using Definition 3.2 and Theorem 3.6, we have the following corollary.

Corollary 3.7. Let (X, σ_1) , (Y, σ_2) and (Z, σ_3) be L-fpts's, $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be two bijective functions. Then α -Hom $(f) \wedge \alpha$ -Hom $(g) \leq \alpha$ -Hom $(g \circ f)$.

Theorem 3.8. Let (X, σ_1) , (Y, σ_2) and (Z, σ_3) be L-fpts's and $g: Y \longrightarrow Z$ be a surjective function. Then:

- (1) $\alpha \mathbf{o}(g \circ f) \wedge \alpha \mathbf{i}(f) \leq \alpha \mathbf{o}(g)$.
- (2) $\alpha \mathbf{cl}(g \circ f) \wedge \alpha \mathbf{i}(f) \leq \alpha \mathbf{cl}(g)$.

Proof. (1) Since f is a surjective function, we have $(g \circ f)^{\rightarrow}(f^{\leftarrow}(B)) = g^{\rightarrow}(B)$ for each $B \in L^Y$. By using (4) of Lemma 2.1, we get

$$\alpha \mathbf{o}(g \circ f) \wedge \alpha \mathbf{i}(f) = \bigwedge_{A \in L^X} \left\{ \mathscr{A}_1(A) \mapsto \mathscr{A}_3((g \circ f)^{\rightarrow}(A)) \right\} \wedge \bigwedge_{B \in L^Y} \left\{ \mathscr{A}_2(B) \mapsto \mathscr{A}_1(f^{\leftarrow}(B)) \right\}$$

$$\leq \bigwedge_{B \in L^{Y}} \left\{ \mathscr{A}_{1}(f^{\leftarrow}(B)) \mapsto \mathscr{A}_{3}((g \circ f)^{\rightarrow}(f^{\leftarrow}(B))) \right\} \wedge \bigwedge_{B \in L^{Y}} \left\{ \mathscr{A}_{2}(B) \mapsto \mathscr{A}_{1}(g^{\leftarrow}(B)) \right\} \\
= \bigwedge_{B \in L^{Y}} \left\{ \left(\mathscr{A}_{1}(f^{\leftarrow}(B)) \mapsto \mathscr{A}_{3}(g^{\rightarrow}(B)) \right) \wedge \left(\mathscr{A}_{2}(B) \mapsto \mathscr{A}_{1}(f^{\leftarrow}(B)) \right) \right\} \\
\leq \bigwedge_{B \in L^{Y}} \left\{ \mathscr{A}_{2}(B) \mapsto \mathscr{A}_{3}(g^{\rightarrow}(B)) \right\} \\
= \alpha \mathbf{o}(g).$$

Analogously, we can prove (2).

Similarly, the following theorem is true.

Theorem 3.9. Given three L-fpts's (X, σ_1) , (Y, σ_2) and (Z, σ_3) . If $f: (X, \sigma_1) \longrightarrow (Y, \sigma_2)$ is an injective function and $g: Y \longrightarrow Z$ is any function, then

- (1) $\alpha \mathbf{o}(g \circ f) \wedge \alpha \mathbf{i}(g) \leq \alpha \mathbf{o}(f)$.
- (2) $\alpha \operatorname{cl}(g \circ f) \wedge \alpha \operatorname{i}(g) \leq \alpha \operatorname{cl}(f)$.

Theorem 3.10. If $f:(X, \sigma_1) \longrightarrow (Y, \sigma_2)$ is a bijective function where (X, σ_1) and (Y, σ_2) are two L-fpts's, then

(1)
$$\alpha \mathbf{i}(f) = \bigwedge_{A \in L^X} \left\{ \mathscr{A}_2(f^{\rightarrow}(A)) \mapsto \mathscr{A}_1(A) \right\}.$$

(2)
$$\alpha \mathbf{o}(f) = \bigwedge_{B \in L^Y} \left\{ \mathscr{A}_1(f^{\leftarrow}(B)) \mapsto \mathscr{A}_2(B) \right\}.$$

(3)
$$\alpha \mathbf{i}(f^{-1}) = \alpha \mathbf{o}(f) = \alpha \mathbf{cl}(f)$$
.

Proof. The proof of **(2)** is similar to **(1)**, we only prove **(1)** and **(3)**.

(1) From the bijectivity of f, we get $f^{\leftarrow}(f^{\rightarrow}(A)) = A$ for any $A \in L^X$, and $f^{\rightarrow}(f^{\leftarrow}(B)) = B$ for any $B \in L^Y$. It follows that

$$\bigwedge_{A \in L^{X}} \left\{ \mathscr{A}_{2}(f^{\rightarrow}(A)) \mapsto \mathscr{A}_{1}(A) \right\} = \bigwedge_{A \in L^{X}} \left\{ \mathscr{A}_{2}(f^{\rightarrow}(A)) \mapsto \mathscr{A}_{1}(f^{\leftarrow}(f^{\rightarrow}(A))) \right\}$$

$$\geq \bigwedge_{B \in L^{Y}} \left\{ \mathscr{A}_{2}(B) \mapsto \mathscr{A}_{1}(f^{\leftarrow}(B)) \right\}$$

$$= \bigwedge_{B \in L^{Y}} \left\{ \mathscr{A}_{2}(f^{\rightarrow}(f^{\leftarrow}(B))) \mapsto \mathscr{A}_{1}(f^{\leftarrow}(B)) \right\}$$

$$\geq \bigwedge_{A \in L^{X}} \left\{ \mathscr{A}_{2}(f^{\rightarrow}(A)) \mapsto \mathscr{A}_{1}(A) \right\}.$$

Hence

$$\alpha \mathbf{i}(f) = \bigwedge_{B \in L^{Y}} \left\{ \mathscr{A}_{2}(B) \mapsto \mathscr{A}_{1}(f^{\leftarrow}(B)) \right\}$$
$$= \bigwedge_{A \in L^{X}} \left\{ \mathscr{A}_{2}(f^{\rightarrow}(A)) \mapsto \mathscr{A}_{1}(A) \right\}.$$

(3) Since f is a bijective function, we get $(f^{-1})^{\leftarrow}(A) = f^{\rightarrow}(A)$ and $f^{\rightarrow}(A') = f^{\rightarrow}(A)'$ for any $A \in L^X$. Therefore

$$\alpha \mathbf{i}(f^{-1}) = \bigwedge_{A \in L^X} \left\{ \mathscr{A}_1(A) \mapsto \mathscr{A}_2((f^{-1})^{\leftarrow}(A)) \right\}$$
$$= \bigwedge_{A \in L^X} \left\{ \mathscr{A}_1(A) \mapsto \mathscr{A}_2(f^{\rightarrow}(A)) \right\}$$

П

$$=\alpha \mathbf{o}(f)$$
.

and

$$\alpha \mathbf{o}(f^{-1}) = \bigwedge_{A \in L^X} \left\{ \mathscr{A}_1(A) \mapsto \mathscr{A}_2(f^{\rightarrow}(A)) \right\}$$

$$= \bigwedge_{A \in L^X} \left\{ \mathscr{A}_1(A') \mapsto \mathscr{A}_2(f^{\rightarrow}(A')) \right\}$$

$$= \bigwedge_{A \in L^X} \left\{ \mathscr{A}_1(A') \mapsto \mathscr{A}_2(f^{\rightarrow}(A)') \right\}$$

$$= \alpha \mathbf{cl}(f).$$

The proof is completed.

Corollary 3.11. Given a bijective function $f:(X,\sigma_1) \longrightarrow (Y,\sigma_2)$ between two L-fpts's (X,σ_1) and (Y,σ_2) , then:

(1)
$$\alpha$$
-Hom $(f) = \alpha \mathbf{i}(f) \wedge \alpha \mathbf{i}(f^{-1}) = \alpha \mathbf{i}(f) \wedge \alpha \mathbf{cl}(f)$.

(2)
$$\alpha$$
-Hom $(f) = \bigwedge_{A \in L^X} \left\{ \mathscr{A}_2(f^{\to}(A)) \leftrightarrow \mathscr{A}_1(A) \right\}$

(2)
$$\alpha$$
-Hom $(f) = \bigwedge_{A \in L^{\chi}} \left\{ \mathscr{A}_{2}(f^{\to}(A)) \leftrightarrow \mathscr{A}_{1}(A) \right\}.$
(3) α -Hom $(f) = \bigwedge_{B \in L^{\chi}} \left\{ \mathscr{A}_{1}(f^{\leftarrow}(B)) \leftrightarrow \mathscr{A}_{2}(B) \right\}.$

4 A new extension of α -compactness

Nannan and Ruiying [1] introduced the notion of α -compactness in L-fuzzy topology with the help of L-fuzzy α -open operator. In the following definition, we present the degree of α -compactness based on implication operation as a new generalization of α -compactness.

Definition 4.1. Let (X, σ) be an L-fpts. For any $A \in L^X$, let

$$\alpha \mathbf{Com}(A) = \bigwedge_{\mathcal{U} \subseteq L^{X}} \left\{ \mathscr{A}(\mathcal{U}) \mapsto \left(\left[A \widetilde{\subset} \bigvee \mathcal{U} \right] \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[A \widetilde{\subset} \bigvee \mathcal{V} \right] \right) \right\}$$

$$= \bigwedge_{\mathcal{U} \subseteq L^{X}} \left\{ \bigwedge_{A_{1} \in \mathcal{U}} \mathscr{A}(A_{1}) \mapsto \left\{ \bigwedge_{x \in X} \left(A' \vee \bigvee_{A_{1} \in \mathcal{U}} A_{1} \right) (x) \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(A' \vee \bigvee_{A_{1} \in \mathcal{V}} A_{1} \right) (x) \right\} \right\}.$$

Then $\alpha \mathbf{Com}_i(A)$ is said to be the degree of α -compactness of A with respect to σ . By using Theorem 2.9, we have $\mathbf{Com}_{\mathscr{A}}(A) = \alpha \mathbf{Com}(A)$ for any $A \in L^X$.

Theorem 4.2. Let τ be an L-pt on X and $A \in L^X$. An L-subset A is fuzzy α -compact if and only if $\alpha \mathbf{Com}_{Y_{\tau}}(A) =$ $\mathbf{1}_L$, where the mapping $\chi_{\tau}:L^{X}\longrightarrow L$ is given by

$$\chi_{\tau}(A) = \begin{cases} \mathbf{1}_{L}, & \text{if } A \in \tau; \\ \mathbf{0}_{L}, & \text{if } A \neq \tau. \end{cases}$$

Proof. Let τ be an L-pt on X. It is clear that χ_{τ} is L-fpt. An L-subset $A \in L^X$ is α -open set with respect to τ if and only if $\mathscr{A}_{\chi_{\tau}}(A) = \mathbf{1}_{L}$. Based on the definition of fuzzy α -compactness, we have an L-subset $A \in L^{X}$ is fuzzy α -compact such that for any collection $\mathcal{U} \subseteq L^X$, we have that

$$\mathcal{A}_{\chi_{\mathfrak{r}}}(\mathfrak{U}) \leq \left[\left[A \tilde{\subseteq} \bigvee \mathfrak{U} \right] \leq \bigvee_{\mathfrak{V} \in 2^{(\mathfrak{U})}} \left[A \tilde{\subseteq} \bigvee \mathfrak{V} \right] \right].$$

By using Lemma 2.1, A is fuzzy α -compact if and only if for any collection $\mathcal{U} \subseteq L^X$, we have

$$\mathscr{A}_{\chi_{\tau}}(\mathfrak{U}) \mapsto \left(\left[A \widetilde{\subseteq} \bigvee \mathfrak{U} \right] \mapsto \bigvee_{\mathfrak{V} \in 2^{(\mathfrak{U})}} \left[A \widetilde{\subseteq} \bigvee \mathfrak{V} \right] \right)$$

$$= \mathbf{1}_{I}.$$

This result together with the definition of $\alpha \mathbf{Com}_{Y_{\tau}}(A)$ yields to $\alpha \mathbf{Com}_{Y_{\tau}}(A) = \mathbf{1}_{I}$.

Theorem 4.3. Let σ be an L-fpt on X and $A \in L^X$. An L-subset A is L-fuzzy α -compact if and only if α **Com** $(A) = \mathbf{1}_L$.

Proof. Based on Definition 4.1 and Lemma 2.1, the conclusion is straightforward.

Theorem 4.4. For any L-fpt σ on X and $A \in L^X$, we have $\alpha Com(A) \leq Com(A)$.

Proof. Straightforward.

Lemma 4.5. For any L-fpt σ on X and $A \in L^X$, we have $\alpha \mathbf{Com}(A) \ge u$ if and only if

$$\mathscr{A}(\mathfrak{U}) \wedge \left[A \widetilde{\subseteq} \bigvee \mathfrak{U} \right] \wedge u \leq \bigvee_{\mathfrak{V} \in 2^{(\mathfrak{U})}} \left[A \widetilde{\subseteq} \bigvee \mathfrak{V} \right],$$

for any $\mathcal{U} \subseteq L^X$.

Proof. For every $u \in L$, $A \in L^X$ and $\mathcal{U} \subseteq L^X$, we have

$$\alpha\mathbf{Com}(A) \geq u \Leftrightarrow \bigwedge_{\mathfrak{U}\subseteq L^{X}} \left\{ \mathscr{A}(\mathfrak{U}) \mapsto \left\{ \left[A\widetilde{\subseteq} \bigvee \mathfrak{U} \right] \mapsto \bigvee_{\mathfrak{V}\in 2^{(\mathfrak{U})}} \left[A\widetilde{\subseteq} \bigvee \mathfrak{V} \right] \right\} \right\} \geq u$$

$$\Leftrightarrow \mathscr{A}(\mathfrak{U}) \mapsto \left\{ \left[A\widetilde{\subseteq} \bigvee \mathfrak{U} \right] \mapsto \bigvee_{\mathfrak{V}\in 2^{(\mathfrak{U})}} \left[A\widetilde{\subseteq} \bigvee \mathfrak{V} \right] \right\} \geq u$$

$$\Leftrightarrow \left\{ \mathscr{A}(\mathfrak{U}) \wedge \left[A\widetilde{\subseteq} \bigvee \mathfrak{U} \right] \right\} \mapsto \bigvee_{\mathfrak{V}\in 2^{(\mathfrak{U})}} \left[A\widetilde{\subseteq} \bigvee \mathfrak{V} \right] \geq u$$

$$\Leftrightarrow \mathscr{A}(\mathfrak{U}) \wedge \left[A\widetilde{\subseteq} \bigvee \mathfrak{U} \right] \wedge u \leq \bigvee_{\mathfrak{V}\in 2^{(\mathfrak{U})}} \left[A\widetilde{\subseteq} \bigvee \mathfrak{V} \right].$$

Theorem 4.6. For any L-fpt σ on X and $A \in L^X$, we have $\alpha \mathbf{Com}(A) \ge u$ if and only if

$$\bigvee_{B\in\mathcal{M}} \mathscr{A}^{\star}(B)' \vee \left\{ \bigvee_{x\in X} \left\{ A(x) \wedge \bigwedge_{B\in\mathcal{M}} B(x) \right\} \right\} \vee u' \geq \bigwedge_{\mathcal{N}\in\mathcal{I}^{(\mathcal{N})}} \bigvee_{x\in X} \left(A(x) \wedge \bigwedge_{B\in\mathcal{N}} B(x) \right),$$

for each $\mathfrak{M} \subset L^X$.

Proof. Based on the definition of \mathscr{A}^* and Lemma 2.1, the proof is clear.

Theorem 4.7. For any L-fpt σ on X and $A \in L^X$, we have

$$\alpha \mathbf{Com}(A) = \bigvee \left\{ u \in L | \bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A \subseteq \bigvee \mathcal{U} \right] \wedge u \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[A \subseteq \bigvee \mathcal{V} \right], \ \forall \mathcal{U} \subseteq L^X \right\}.$$

Proof. By using Lemma 2.1, we have α **Com**(A) as the upper bound of

$$\left\{u \in L | \bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A \subseteq \bigvee \mathcal{U}\right] \wedge u \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[A \subseteq \bigvee \mathcal{V}\right], \ \forall \mathcal{U} \subseteq L^X\right\}.$$

By using the Definition 4.1, we have

$$\alpha \mathbf{Com}(A) \leq \bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \mapsto \left(\left[A \tilde{\subseteq} \bigvee \mathcal{U} \right] \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[A \tilde{\subseteq} \bigvee \mathcal{V} \right] \right)$$
$$= \left(\bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A \tilde{\subseteq} \bigvee \mathcal{U} \right] \right) \mapsto \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[A \tilde{\subseteq} \bigvee \mathcal{V} \right],$$

for each $\mathcal{U} \subseteq L^X$. By applying the properties of the operation " \mapsto ", we have

$$\bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A \tilde{\subseteq} \bigvee \mathcal{U} \right] \wedge \alpha \mathbf{Com}(A) \leq \bigvee_{\mathcal{V} \in \mathcal{V}^{(\mathcal{U})}} \left[A \tilde{\subseteq} \bigvee \mathcal{V} \right],$$

and hence

$$\alpha \mathbf{Com}(A) \in \bigvee \left\{ u \in L | \bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A \widetilde{\subseteq} \bigvee \mathcal{U} \right] \wedge u \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[A \widetilde{\subseteq} \bigvee \mathcal{V} \right], \ \forall \mathcal{U} \subseteq L^X \right\}.$$

Therefore, we completed the proof.

Theorem 4.8. For any L-fpt σ on X and A_1 , $A_2 \in L^X$, we have

$$\alpha$$
Com $(A_1 \vee A_2) \geq \alpha$ **Com** $(A_1) \wedge \alpha$ **Com** (A_2) .

Proof. We can prove the theorem by using the next inequality:

$$\alpha \mathbf{Com}(A_{1} \vee A_{2}) = \bigvee \left\{ u \in L \middle| \bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A_{1} \vee A_{2} \tilde{\subseteq} \bigvee \mathcal{U} \right] \wedge u \right\}$$

$$\leq \bigvee_{\mathcal{V} \in 2^{(1L)}} \left[A_{1} \vee A_{2} \tilde{\subseteq} \bigvee \mathcal{V} \right], \ \forall \mathcal{U} \subseteq L^{X} \right\}$$

$$= \bigvee \left\{ u \in L \middle| \bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A_{1} \tilde{\subseteq} \bigvee \mathcal{U} \right] \wedge \left[A_{2} \tilde{\subseteq} \bigvee \mathcal{U} \right] \right\}$$

$$\wedge u \leq \bigvee_{\mathcal{V} \in 2^{(1L)}} \left[A_{1} \tilde{\subseteq} \bigvee \mathcal{V} \right] \wedge \left[A_{2} \tilde{\subseteq} \bigvee \mathcal{V} \right], \ \forall \mathcal{U} \subseteq L^{X} \right\}$$

$$\geq \bigvee \left\{ u \in L \middle| \bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A_{1} \tilde{\subseteq} \bigvee \mathcal{U} \right] \right\}$$

$$\wedge u \leq \bigvee_{\mathcal{V} \in 2^{(1L)}} \left[A_{1} \tilde{\subseteq} \bigvee \mathcal{V} \right], \ \forall \mathcal{U} \subseteq L^{X} \right\}$$

$$\wedge \bigvee \left\{ u \in L \middle| \bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A_{2} \tilde{\subseteq} \bigvee \mathcal{U} \right] \right\}$$

$$\wedge u \leq \bigvee_{\mathcal{V} \in 2^{(1L)}} \left[A_{2} \tilde{\subseteq} \bigvee \mathcal{V} \right], \ \forall \mathcal{U} \subseteq L^{X} \right\}$$

$$= \alpha \mathbf{Com}(A_{1}) \wedge \alpha \mathbf{Com}(A_{2}).$$

Theorem 4.9. For any L-fpt σ on X and A_1 , $A_2 \in L^X$, we have

$$\alpha$$
Com $(A_1 \wedge A_2) \geq \alpha$ **Com** $(A_1) \wedge \mathscr{A}(A_2')$.

570 — A. Ghareeb et al. DE GRUYTER

Proof. We can prove the theorem by using the next inequality

$$\alpha \mathbf{Com}(A_{1} \wedge A_{2}) = \bigvee \left\{ u \in L | \bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A_{1} \wedge A_{2} \tilde{\subseteq} \bigvee \mathcal{U} \right] \right.$$

$$\wedge u \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[A_{1} \wedge A_{2} \tilde{\subseteq} \bigvee \mathcal{V} \right], \ \forall \mathcal{U} \subseteq L^{X} \right\}$$

$$= \bigvee \left\{ u \in L | \bigwedge_{B \in \mathcal{U}} \mathscr{A}(B) \wedge \left[A_{1} \tilde{\subseteq} A'_{2} \vee \bigvee \mathcal{U} \right] \right.$$

$$\wedge u \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \left[A_{1} \tilde{\subseteq} A'_{2} \vee \bigvee \mathcal{V} \right], \ \forall \mathcal{U} \subseteq L^{X} \right\}$$

$$\geq \alpha \mathbf{Com}(A_{1}) \wedge \mathscr{A}(A'_{2}).$$

Corollary 4.10. For any L-fpt σ on X and $A \in L^X$, we have

$$\alpha \mathbf{Com}(A) \geq \alpha \mathbf{Com}(\mathbf{1}_L) \wedge \mathscr{A}(A').$$

Theorem 4.11. For any L-fts's (X, σ_1) and (X, σ_2) such that $\sigma_1 \leq \sigma_2$ and for any $A \in L^X$, we have $\alpha \mathbf{Com}_{\sigma_2}(A) \leq \alpha \mathbf{Com}_{\sigma_1}(A)$.

Corollary 4.12. For any L-fpts (X, σ) with the base or the subbase \mathcal{B} , we have $\alpha \mathbf{Com}(A) \leq \alpha \mathbf{Com}_{\mathcal{B}}(A)$, for any $A \in L^X$.

Theorem 4.13. For any L-fpts's (X, σ_1) and (Y, σ_2) , if $f: (X, \sigma_1) \longrightarrow (Y, \sigma_2)$ is an L-fuzzy α -irresolute function, then

$$\alpha \mathbf{Com}_{\sigma_2}(f_L^{\rightarrow}(C)) \geq \alpha \mathbf{Com}_{\sigma_1}(C),$$

for every $C \in L^X$.

Proof. For each $C \in L^X$, we have

$$\alpha\mathbf{Com}_{\sigma_{2}}(f_{L}^{\rightarrow}(C)) = \bigvee \left\{ u \in L | \mathscr{A}_{2}(\mathfrak{U}) \wedge \left[f_{L}^{\rightarrow}(C) \widetilde{\subseteq} \bigvee \mathfrak{U} \right] \right.$$

$$\wedge u \leq \bigvee_{\mathcal{V} \in 2^{(\mathfrak{U})}} \left[f_{L}^{\rightarrow}(C) \widetilde{\subseteq} \bigvee \mathcal{V} \right], \, \forall \mathfrak{U} \subseteq L^{Y} \right\}$$

$$\geq \bigvee \left\{ u \in L | \mathscr{A}_{1}(f_{L}^{\leftarrow}(\mathfrak{U})) \wedge \left[C \widetilde{\subseteq} \bigvee f_{L}^{\leftarrow}(\mathfrak{U}) \right] \right.$$

$$\wedge u \leq \bigvee_{\mathcal{V} \in 2^{(\mathfrak{U})}} \left[C \widetilde{\subseteq} \bigvee f_{L}^{\leftarrow}(\mathcal{V}) \right], \, \forall \mathfrak{U} \subseteq L^{Y} \right\}$$

$$\geq \bigvee \left\{ u \in L | \mathscr{A}_{1}(\mathcal{P}) \wedge \left[C \widetilde{\subseteq} \bigvee \mathcal{P} \right] \right.$$

$$\wedge u \leq \bigvee_{\mathfrak{R} \in 2^{(\mathcal{P})}} \left[C \widetilde{\subseteq} \bigvee \mathfrak{R} \right], \, \forall \mathfrak{R} \subseteq L^{X} \right\}$$

$$= \alpha \mathbf{Com}_{\sigma_{1}}(C).$$

Theorem 4.14. For any L-fpts's (X, σ_1) and (Y, σ_2) , if $f: (X, \sigma_1) \longrightarrow (Y, \sigma_2)$ is an L-fuzzy α -continuous function, then

$$\mathbf{Com}_{\sigma_2}(f_L^{\rightarrow}(C)) \geq \alpha \mathbf{Com}_{\sigma_1}(C),$$

for every $C \in L^X$.

Proof. For each $C \in L^X$, we have

$$\mathbf{Com}_{\sigma_{2}}(f_{L}^{\rightarrow}(C)) = \bigvee \left\{ u \in L | \sigma_{2}(\mathfrak{U}) \wedge \left[f_{L}^{\rightarrow}(C) \widetilde{\subseteq} \bigvee \mathfrak{U} \right] \right.$$

$$\wedge u \leq \bigvee_{\mathcal{V} \in 2^{(\mathfrak{U})}} \left[f_{L}^{\rightarrow}(C) \widetilde{\subseteq} \bigvee \mathcal{V} \right], \ \forall \mathfrak{U} \subseteq L^{Y} \right\}$$

$$\geq \bigvee \left\{ u \in L | \mathscr{A}_{1}(f_{L}^{\leftarrow}(\mathfrak{U})) \wedge \left[C \widetilde{\subseteq} \bigvee f_{L}^{\leftarrow}(\mathfrak{U}) \right] \right.$$

$$\wedge u \leq \bigvee_{\mathcal{V} \in 2^{(\mathfrak{U})}} \left[C \widetilde{\subseteq} \bigvee f_{L}^{\leftarrow}(\mathcal{V}) \right], \ \forall \mathfrak{U} \subseteq L^{Y} \right\}$$

$$\geq \bigvee \left\{ u \in L | \mathscr{A}_{1}(\mathcal{P}) \wedge \left[C \widetilde{\subseteq} \bigvee \mathcal{P} \right] \right.$$

$$\wedge u \leq \bigvee_{\mathcal{R} \in 2^{(\mathcal{P})}} \left[C \widetilde{\subseteq} \bigvee \mathcal{R} \right], \ \forall \mathcal{R} \subseteq L^{X} \right\}$$

$$= \alpha \mathbf{Com}_{\sigma_{1}}(C).$$

Theorem 4.15. For any L-fpt σ on X, $A \in L^X$ and $u \in L \setminus \{\mathbf{0}_L\}$, the next statements are equivalent:

- (1) $\alpha \mathbf{Com}(A) \geq u$.
- **(2)** For each $v \in P(L)$, $\psi \ge u$, every strong v-shading $\mathbb U$ of A with $\mathscr A(\mathbb U) \le v$ has a finite sub-collection $\mathbb V$ which is a strong v-shading of A.
- **(3)** For each $v \in P(L)$, $v/\ge u$, every strong v-shading U of A with $\mathscr{A}(U) \le v$, there exists a finite sub-collection V of U and $w \in \beta^*(v)$ such that V is a w-shading of A.
- **(4)** For each $v \in P(L)$, $v \ge u$, every strong v-shading U of A with $\mathscr{A}(U) \le v$, there exists a finite sub-collection V of U and $w \in \beta^*(v)$ such that V is a strong w-shading of A.
- **(5)** For each $v \in J(L)$, $v/\le u'$, every strong v-remote collection W of A with $\mathscr{A}^*(W)/\le v'$ has a finite subcollection \Re which is a strong v-remote collection of A.
- **(6)** For each $v \in J(L)$, $v/\le u'$, every strong v-remote collection W of A with $\mathscr{A}^*(W)/\le v'$, there exist a finite sub-collection \mathbb{R} of W and $w \in \alpha^*(v)$ such that \mathbb{R} is an w-remote collection of A.
- (7) For each $v \in J(L)$, $v/\le u'$, every strong v-remote collection W of A with $\mathscr{A}^*(W)/\le v'$, there exist a finite sub-collection \mathbb{R} of W and $w \in \alpha^*(v)$ such that \mathbb{R} is a strong w-remote collection of A.
- **(8)** For each $v \le u$, $u \in \alpha(v)$, v, $w \ne \mathbf{0}_L$, every Q_v -cover $\mathcal{U} \subseteq (\mathscr{A})_v$ of A has a finite sub-collection \mathcal{V} which is a Q_w -cover of A.
- **(9)** For each $v \le u$, $w \in \alpha(v)$, v, $w \ne \mathbf{0}_L$, every Q_v -cover $\mathcal{U} \subseteq (\mathscr{A})_v$ of A has a finite sub-collection \mathcal{V} which is a strong α_w -cover of A.
- **(10)** For each $v \le u$, $w \in \alpha(v)$, v, $w \ne \mathbf{0}_L$, every Q_v -cover $\mathcal{U} \subseteq (\mathscr{A})_v$ of A has a finite sub-collection \mathcal{V} which is a α_w -cover of A.
- **(11)** For each $v \le u$, $w \in \alpha(v)$, v, $u \ne \mathbf{0}_L$, every strong α_v -cover $\mathcal{U} \subseteq (\mathscr{A})_v$ of A has a finite sub-collection \mathcal{V} which is a Q_w -cover of A.
- **(12)** For each $v \le u$, $w \in \alpha(v)$, v, $w \ne \mathbf{0}_L$, every strong α_v -cover $\mathcal{U} \subseteq (\mathscr{A})_v$ of A has a finite sub-collection \mathcal{V} which is a strong α_w -cover of A.
- **(13)** For each $v \le u$, $w \in \alpha(v)$, v, $w \ne \mathbf{0}_L$, every strong α_v -cover $\mathcal{U} \subseteq (\mathscr{A})_v$ of A has a finite sub-collection \mathcal{V} which is a α_w -cover of A.

Theorem 4.16. For any L-fpt σ on X, $A \in L^X$, and $u \in L \setminus \{\mathbf{0}_L\}$, if $\alpha(w \wedge s) = \alpha(w) \wedge \alpha(s)$ for each w, $s \in L$, then the next statements will be equivalent:

572 — A. Ghareeb et al. DE GRUYTER

- (1) $\alpha \mathbf{Com}(A) \geq u$.
- **(2)** For each $v \in \alpha(u)$, $v \neq \mathbf{0}_L$, every strong α_v -cover \mathcal{U} of A with $v \in \alpha(\mathscr{A}(\mathcal{U}))$ has a finite sub-collection \mathcal{V} which is a Q_v -cover of A.
- **(3)** For each $v \in \alpha(u)$, $v \neq \mathbf{0}_L$, every strong α_v -cover \mathcal{U} of A with $v \in \alpha(\mathscr{A}(\mathcal{U}))$ has a finite sub-collection \mathcal{V} which is a strong α_v -cover of A.
- **(4)** For each $v \in \alpha(u)$, $v \neq \mathbf{0}_L$, every strong α_v -cover \mathcal{U} of A with $v \in \alpha(\mathscr{A}(\mathcal{U}))$ has a finite sub-collection \mathcal{V} which is a α_v -cover of A.

The following theorem and its corollary verify the relationship between α -irresoluteness degree and α -compactness degree.

Theorem 4.17. If $f:(X,\sigma_1) \longrightarrow (Y,\sigma_2)$ is a function between two L-fpts's (X,σ_1) and (Y,σ_2) , then

$$\alpha \mathbf{Com}_{\mathscr{A}_1}(A) \wedge \alpha \mathbf{i}(f) \leq \alpha \mathbf{Com}_{\mathscr{A}_2}(f^{\rightarrow}(A))$$

for any $A \in L^X$.

Proof. Suppose that $u_1 \in L$ with $u_1 \triangleleft \alpha \mathbf{Com}_{\mathscr{A}_1}(A) \land \alpha \mathbf{i}(f)$. Then

$$u_1 \lhd \alpha \mathbf{i}(f) = \bigwedge_{B \subset \Gamma^Y} \left\{ \mathscr{A}_2(B) \mapsto \mathscr{A}_1(f^{\leftarrow}(B)) \right\},$$

and

$$u_1 \vartriangleleft \alpha \mathbf{Com}_{\mathscr{A}_1}(A)$$

$$= \bigwedge_{\mathcal{U} \in L^X} \left\{ \left\{ \bigwedge_{A_1 \in \mathcal{U}} \mathscr{A}_1(A_1) \land \bigwedge_{x \in X} \left(A' \lor \bigvee_{A_1 \in \mathcal{U}} A_1 \right) (x) \right\} \mapsto \bigvee_{\mathcal{V} \in \mathcal{V}(\mathcal{U})} \bigwedge_{x \in X} \left(A' \lor \bigvee_{A_1 \in \mathcal{V}} A_1 \right) (x) \right\}$$

Then for any $B \in L^Y$ and $\mathcal{U} \subset L^X$, we have $u_1 \leq \mathscr{A}_2(B) \mapsto \mathscr{A}_1(f^{\leftarrow}(B))$ and

$$u_1 \leq \left\{ \bigwedge_{A_1 \in \mathcal{U}} \mathscr{A}_1(A_1) \wedge \bigwedge_{x \in X} \left(A' \vee \bigvee_{A_1 \in \mathcal{U}} A_1 \right)(x) \right\} \mapsto \bigvee_{\mathcal{V} \in \mathcal{U}^{(\mathcal{U})}} \bigwedge_{x \in X} \left(A' \vee \bigvee_{A_1 \in \mathcal{V}} A_1 \right)(x).$$

By Lemma 2.1 (1), we have $u_1 \wedge \mathscr{A}_2(B) \leq \mathscr{A}_1(f^{\leftarrow}(B))$ for any $B \in L^Y$, and

$$u_1 \wedge \bigwedge_{W \in \mathcal{U}} \mathcal{A}_1(W) \wedge \bigwedge_{x \in X} \left(A' \vee \bigvee_{W \in \mathcal{U}} W\right)(x) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(A' \vee \bigvee_{W \in \mathcal{U}} W\right)(x).$$

To prove

$$u_{1} \leq \alpha \mathbf{Com}_{\mathscr{A}_{2}}(f^{\rightarrow}(A))$$

$$= \bigwedge_{\mathcal{W} \in L^{Y}} \left\{ \left(\bigwedge_{B_{1} \in \mathcal{W}} \mathscr{A}_{2}(B_{1}) \wedge \bigwedge_{y \in Y} \left(f^{\rightarrow}(A)' \vee \bigvee_{B_{1} \in \mathcal{W}} B_{1} \right) (y) \right) \right.$$

$$\mapsto \bigvee_{\mathcal{D} \in 2^{(\mathcal{W})}} \bigwedge_{y \in Y} \left(f^{\rightarrow}(A)' \vee \bigvee_{B_{1} \in \mathcal{W}} B_{1} \right) (y) \right\},$$

for all $W \subseteq L^Y$, let $f^{\leftarrow}(W) = \{f^{\leftarrow}(B_1) | B_1 \in W\} \subseteq L^X$. Then, we have

$$u_{1} \wedge \bigwedge_{B_{1} \in \mathcal{W}} \mathscr{A}_{2}(B_{1}) \wedge \bigwedge_{y \in Y} \left(f^{\rightarrow}(A)' \vee \bigvee_{B_{1} \in \mathcal{W}} B_{1} \right) (y)$$

$$\leq u_{1} \wedge \bigwedge_{B_{1} \in \mathcal{W}} \mathscr{A}_{1}(f^{\leftarrow}(B_{1})) \wedge \bigwedge_{y \in Y} \left(f^{\rightarrow}(A)' \vee \bigvee_{B_{1} \in \mathcal{W}} B_{1} \right) (y)$$

$$= u_{1} \wedge \bigwedge_{B_{1} \in \mathcal{W}} \mathscr{A}_{1}(f^{\leftarrow}(B_{1})) \bigwedge_{x \in X} \left(A' \vee \bigvee_{B_{1} \in \mathcal{W}} f^{\leftarrow}(B_{1})\right)(x)$$

$$= u_{1} \wedge \bigwedge_{A_{1} \in f^{\leftarrow}(\mathcal{W})} \mathscr{A}_{1}(A_{1}) \wedge \bigwedge_{x \in X} \left(A' \vee \bigvee_{A_{1} \in f^{\leftarrow}(\mathcal{W})} (A_{1})\right)(x)$$

$$\leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{V}^{\leftarrow}(\mathcal{W}))}} \bigwedge_{x \in X} \left(A' \vee \bigvee_{A_{1} \in \mathcal{W}} (A_{1})\right)(x)$$

$$= \bigvee_{\mathcal{D} \in 2^{(\mathcal{W})}} \bigwedge_{x \in X} \left(A' \vee \bigvee_{B_{1} \in \mathcal{D}} f^{\leftarrow}(B_{1})\right)(x)$$

$$= \bigvee_{\mathcal{D} \in 2^{(\mathcal{W})}} \bigwedge_{y \in Y} \left(f^{\rightarrow}(A)' \vee \bigvee_{B_{1} \in \mathcal{D}} B_{1}\right)(y).$$

By using Lemma 2.1 (1), we know

$$u_{1} \leq \left(\bigwedge_{B_{1} \in \mathcal{W}} \mathcal{A}_{2}(B_{1}) \wedge \bigwedge_{y \in Y} \left(f^{\rightarrow}(A)' \vee \bigvee_{B_{1} \in \mathcal{W}} B_{1} \right)(y) \right)$$

$$\mapsto \bigvee_{\mathcal{D} \in 2^{(\mathcal{W})}} \bigwedge_{y \in Y} \left(f^{\rightarrow}(A)' \vee \bigvee_{B_{1} \in \mathcal{D}} B_{1} \right)(y).$$

Thus

$$u_{1} \leq \bigwedge_{\mathcal{W} \subseteq L^{Y}} \left\{ \left(\bigwedge_{B_{1} \in \mathcal{W}} \mathscr{A}_{2}(B_{1}) \wedge \bigwedge_{y \in Y} \left(f^{\rightarrow}(A)' \vee \bigvee_{B_{1} \in \mathcal{W}} B_{1} \right)(y) \right) \\ \mapsto \bigvee_{\mathcal{D} \in 2^{(\mathcal{W})}} \bigwedge_{y \in Y} \left(f^{\rightarrow}(A)' \vee \bigvee_{B_{1} \in \mathcal{D}} B_{1} \right)(y) \right\} = \alpha \mathbf{Com}_{\mathscr{A}_{2}}(f^{\rightarrow}(A)).$$

Since u_1 is arbitrary, we have $\alpha \mathbf{Com}_{\mathscr{A}}(A) \wedge \alpha \mathbf{i}(f) \leq \alpha \mathbf{Com}_{\mathscr{A}}(f^{\rightarrow}(A))$. The proof is completed.

Corollary 4.18. For any surjective function $f:(X,\sigma_1) \longrightarrow (Y,\sigma_2)$ where (X,σ_1) and (Y,σ_2) are L-fpts's, we have

$$\alpha \mathbf{Com}_{\mathscr{A}_1}(\mathbf{1}_{L^X}) \wedge \alpha \mathbf{i}(f) \leq \alpha \mathbf{Com}_{\mathscr{A}_2}(\mathbf{1}_{L^Y}).$$

Acknowledgement: The authors would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No. 1440-91. Moreover, we are extremely grateful to the editors and the anonymous referees for their valuable comments and suggestions in improving this paper.

References

- [1] Nannan L. and Ruiying W., Regular open set in *L*-fuzzy topology, *Pure and Applied Mathematics*, 2016, 32, no. 4, 409-415 (in Chinese)
- [2] Šostak A. P., Fuzzy categories related to algebra and topology, Tatra Mount Math Publ, 1999, 16, 159-185
- [3] Šostak A. P., *Categorical structures and their applications*, Chapter: *L*-valued categories: generalities and examples related to algebra and topology, 2004, 291-311, World scientific publ.
- [4] Pang B., Degrees of continuous mappings, open mappings, and closed mappings in *L*-fuzzifying topological spaces, *Journal of Intelligent and Fuzzy Systems*, 2014, 27, no. 2, 805-816
- [5] Liang C.-Y. and Shi F.-G., Degree of continuity for mappings of (*L*, *M*)-fuzzy topological spaces, *Journal of Intelligent and Fuzzy Systems*, 2014, 27, no. 5, 2665-2677
- [6] Shi F.-G., L-fuzzy semiopenness and L-fuzzy preopenness. J. Nonlinear Sci. Appl., Accepted.
- [7] Shi F.-G. and Li R.X., Semicompactness in *L*-fuzzy topological spaces, *Annals of Fuzzy Mathematics and Informatics*, 2011, 2, 163-169
- [8] Ghareeb A., Preconnectedness degree of *L*-fuzzy topological spaces, *International Journal of Fuzzy Logic and Intelligent Systems*, 2011, 11, no. 1, 54-58

- [9] Ghareeb A., L-fuzzy semi-preopen operator in L-fuzzy topological spaces, *Neural Computing and Applications*, 2012, 21, no. 1, 87-92
- [10] Ghareeb A., A new form of F-compactness in L-fuzzy topological spaces, Mathematical and Computer Modelling, 2011, 54, no. 9, 2544-2550
- [11] Ghareeb A. and Shi F.-G., SP-compactness and SP-connectedness degree in *L*-fuzzy pretopological spaces, *Journal of Intelligent and Fuzzy Systems*, 2016, 31, no. 3, 1435-1445
- [12] Al-Omeri W. F., Khalil O. H., and Ghareeb A., Degree of (L, M)-fuzzy semi-precontinuous and (L, M)-fuzzy semi-preirresolute functions, *Demonstratio Mathematica*, 2018, 51, no. 1, 182-197
- [13] Ghareeb A. and Al-Omeri W. F., New degrees for functions in (*L*, *M*)-fuzzy topological spaces based on (*L*, *M*)-fuzzy semiopen and (*L*, *M*)-fuzzy preopen operators, *Journal of Intelligent and Fuzzy Systems*, 2019, 36, no. 1, 787-803
- [14] Ghareeb A., Degree of **F**-irresolute function in (*L*, *M*)-fuzzy topological spaces, *Iranian Journal of Fuzzy Systems*, 2019, DOI: 10.22111/IJFS.2019.4431, Article in press.
- [15] Raney G. N., A subdirect-union representation for completely distributive complete lattices, *Proceedings of the American Mathematical Society*, 1953, 4, no. 4, 518-522
- [16] Höhle U. and Šostak A. P., *Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory*, Chapter: Axiomatic Foundations Of Fixed-Basis Fuzzy Topology, 1999, 123-272, Springer US, Boston, MA.
- [17] Šostak A. P., *General Topology and its Relations to Modern Analysis and Algebra*, Chapter: On compactness and connectedness degrees of fuzzy sets in fuzzy topological spaces, 1988, 123-272, Heldermann Verlag, Berlin.
- [18] Šostak A. P., Two decades of fuzzy topology: basic ideas, notions, and results, *Russian Mathematical Surveys*, 1989, 44, no. 6, 1-25
- [19] Shi F.-G., A new definition of fuzzy compactness, Fuzzy Sets and Systems, 2007, 158, no. 13, 1486-1495
- [20] Kubiak T., On fuzzy topologies, 1985, Ph.D. Thesis, Adam Mickiewicz, Poznan, Poland.
- [21] Rodabaugh S. E., Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Chapter: Categorical Foundations of Variable-Basis Fuzzy Topology, 1999, 273-388, Springer US, Boston, MA.
- [22] Šostak A. P., On a fuzzy topological structure, Rendiconti Circolo Matematico Palermo, 1985, 11(Suppl. Ser. II), 89-103
- [23] Shi F.-G., L-fuzzy interiors and L-fuzzy closures, Fuzzy Sets and Systems, 2009, 160, no. 9, 1218-1232
- [24] Shi F.-G. and Liang C., Measures of compactness in *L*-fuzzy pretopological spaces, *Journal of Intelligent and Fuzzy Systems*, 2014, 26, no. 3, 1557-1561
- [25] Shi F.-G., Countable compactness and the Lindelöf property of L-fuzzy sets, Iranian Journal of Fuzzy Systems, 2004, 1, no. 1, 79-88
- [26] Shi F.-G., A new notion of fuzzy compactness in L-topological spaces, Information Science, 2005, 173, no. 1-3, 35-48