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Abstract: Gravitational Search Algorithm (GSA) is a metaheuristic for solving unimodal problems. In this
paper, a K-means based GSA (KGSA) for multimodal optimization is proposed. This algorithm incorporates K-
means and a new elitism strategy called “loop in loop” into the GSA. First in KGSA, the members of the initial
population are clustered by K-means. Afterwards, new population is created and divided in di�erent niches
(or clusters) to expand the search space. The “loop in loop” technique guides the members of each niche
to the optimum direction according to their clusters. This means that lighter members move faster towards
the optimum direction of each cluster than the heavier members. For evaluations, KGSA is benchmarked on
well-known functions and is compared with some of the state-of-the-art algorithms. Experiments show that
KGSA provides better results than the other algorithms in �nding local and global optima of constrained and
unconstrained multimodal functions.

Keywords: Gravitational Search Algorithm (GSA), multimodal optimization, K-means, niching methods

1 Introduction
In addition to the need for �nding several optima in many applications, solving multimodal problems can
be useful at least for two reasons; �rst, it can increase the chance of �nding the global optimum and second,
it can help the researcher to become more familiar with the nature of the problem [1]. Population-based (or
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meta-heuristic) algorithms have been used to solve optimization problems. Some of these algorithms are:
Genetic Algorithm (GA) by [2, 3], Simulated Annealing (SA) by [4], Arti�cial Immune Systems (AIS) by [5],
Ant Colony Optimization (ACO) by [6], Particle Swarm Optimization (PSO) by [7], and Gravitational Search
Algorithm (GSA) by [8, 9]. Generally speaking, these algorithms are inspired by nature and are e�ective in
solving unimodal optimization problems. However, they have not been very successful in solvingmultimodal
problems. To resolve this, two solutions have been provided: 1- Niching techniques to converge to more than
one solution by dividing themain population into non-overlapping areas and 2- Elitism strategy to accelerate
the convergence by selecting the best individuals from the current population and its o�spring.

In this study, the Gravitational Search Algorithm (GSA) is boosted with the K-means niching and a new
elitism strategy called “loop in loop” to make an e�cient algorithm (called KGSA) in solving multimodal
problems. GSA was selected since it is less dependent on parameters and can �nd existing optima with less
iterations without trapping in local minimum. In addition, K-means clustering technique was chosen for
its simplicity, e�ectiveness and, low time complexity in dividing the main population into non-overlapping
subpopulations. Results show that by incorporating K-means and “loop in loop” into the GSA, the proposed
algorithm has increased both ‘exploration’ and ‘exploitation’.

This paper is structured as follows: in section 2, some recent works regarding solving multimodal
problems are studied. Afterwards, in section 3, GSA, niching concepts and K-means clustering techniques
are described. Section 4, describes how the proposed algorithm is designed and how is “loop in loop” used.
In section 5, after introducing constrained and unconstrained benchmark functions, evaluation criteria
and parameters required for the suggestive algorithm are presented and results of implementation of the
suggestive algorithm on the benchmark functions are analyzed, and then the sensitivity of parameter Tl
relevant to the suggestive algorithm on some functions is measured. At the end, in section 6, strengths and
weaknesses of the proposed algorithm are analyzed and some future works are suggested.

2 Literature review
Solving multimodal problems has always been one of the important and interesting issues for computer
science researchers. Authors in [10] presentedNichePSOalgorithm to solvemultimodal problems and showed
its e�ciency by solving some multimodal functions. In this algorithm, Guaranteed Convergence Particle
Swarm Optimization (GCPSO) and Faure-sequences [11] were used to optimize the sub-swarms and the
population initialization, respectively. In addition, two parameters δ and µ were de�ned in this algorithm.
If an individual’s variance was less than δ or, in other words, if an individual did not change over several
generations, it may be an optimum member. Therefore, the individual and its closest member build a sub-
swarm. On the other hand, parameter µ was used to merge the sub-swarms. Results indicated that NichePSO
is highly dependent on parameter µ to explore the optimal solutions and this is a major weakness.

Authors in [12] presented Clustering-Based Niching (CBN) method to �nd global and local optima. The
main idea of this method for exploring optima and keeping variety of population was to use sub-populations
instead of one population. Species were formed using sub-populations and sub-populations were separated
by a density-based clustering algorithm which is appropriate for populations with di�erent sizes and for
problems in which the number of clusters is not predetermined. In order to attach two members during
the clustering process in CBN, their distance should be less than parameter σdist. Results showed that this
algorithm is highly dependent on σdist which is a major drawback.

Authors in [13] presented a method in which PSO and cleansing technique were used. In this method,
population was divided into di�erent species based on similarity of its members. Each species was then
formed around a dominant individual (or the ‘specie-seed’). In each phase, particles were selected from
the whole population and the species were formed adaptively based on the feedback of �tness space. The
method was named as Species based Particle Swarm Optimization (SPSO). Although SPSO was proven to be
e�ective in solvingmultimodal problemswith small dimensions, the dependency on species’ radius is among
its weaknesses.
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Authors in [14] presented an algorithm for solving multimodal optimization problems. This new method
was named Multi-Grouped Particle Swarm Optimization (MGPSO) in which, if the number of groups is N,
PSO can search N peaks. The e�ciency of this method was shown in [14]. Weaknesses of this algorithm are:
1) Determining the number of groups that is determining the number of optimal solutions by user while
initializing the algorithm. It is also possible that the function is unknown and no information about the
number of optimal points exists. 2) Determining the number of individuals for each group and selecting an
appropriate initial value for the radius of each gbest.

Authors in [15] used a new algorithm called NGSA for solving multimodal problems. The main idea was
that the initial swarm is divided into several sub-swarms. NGSA used following three strategies: i) an elitism
strategy, ii) a K-NN strategy, and iii) amendment of active gravitational mass formulation [15]. This algorithm
was applied on two important groups of constrained and unconstrained multimodal benchmark functions
and obtained good results, but this algorithm su�ers from high dependency on two parameters Ki and Kf .

Authors in [16] proposed Multimodal Cuckoo Search (MCS), a modi�ed version of Cuckoo Search (CS)
with multimodal capacities provided by the following three mechanisms: (1) incorporating a memory mech-
anism which e�ciently registers potential local optima based on their �tness value and the distance to
other potential solutions, (2) modifying of the original CS individual selection strategy for accelerating the
detection process of new local minima, and (3) including a depuration procedure for cyclically elimination
of duplicated memory elements. Experiments indicated that MCS provides competitive results compared to
other algorithms for multimodal optimization.

Author of [17] modi�ed the original PSO by dividing the original population into several subpopulations
basedon theorder of particles. After this, the best particle in each subpopulationwas employed in the velocity
updating formula instead of the global best particle in PSO. Evaluations showed that after modifying the
velocity updating formula, convergence behaviour of particles in terms of the number of iterations, and the
local and global solutions was improved.

Authors in [18] combined explorationmechanism of the Gravitational search algorithmwith the exploita-
tion mechanism of Cuckoo search and called their method Cuckoo Search-Gravitational Search Algorithm
(CS-GSA). Evaluations on standard test functions showed that CS-GSA converges with less number of �tness
evaluations than both Cuckoo Search and GSA algorithms.

Authors in [19] proposed a multimodal optimization method based on �re�y algorithm. In their method,
the optimal points are detected by evolving each sub-population separately. For determining the stability
of sub-populations, a stability criterion is used. Based on the criterion, stable sub-populations are found
and since they have optimal points, they are stored in the archive. After several iterations, all the optimums
are included in the archive. This algorithm also incorporates a simulated annealing local optimization
algorithm to enhance search power, accuracy and speed. Experiments show that the proposed algorithm can
successfully �nd optimums in multimodal optimization problems.

Authors in [20] proposed a niching method for Chaos Optimization Algorithm (COA) called NCOA. Their
method utilizes a number of techniques including simultaneously contracted multiple search scopes, deter-
ministic crowding, and clearing for niching. Experiments demonstrated that by using niching, NCOA can
compete the state-of-the-art multimodal optimization algorithms.

Authors in [21] presented a novel evolutionary algorithm calledNegatively Correlated Search (NCS)which
parallels multiple individual search and models the behaviour of each individual search as a probability
distribution. Experiments showed that NCS provides competitive results to the state-of-the-art multimodal
optimization algorithms in the sense that NCS achieved the best overall performance on 20 non-convex
benchmark functions.

Author of [22] presented a modi�ed PSO which in the �rst step randomly divides the original population
into two groups with one group focusing on the maximum optimization of the multimodal function and
the other on minimization. After this, each group is divided into subgroups for �nding optimum points
simultaneously. The important point is that subgroups are not related and each one seeks for one optimum
individually. Similar to [17], the velocity updating formula is modi�ed in the proposed method by replacing
the best particle of each subgroup instead of the global best. Evaluations on di�erent kinds of multimodal
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optimization functions andone complex engineeringproblemdemonstrated the applicability of theproposed
method.

Authors in [1] incorporated a novel nichingmethod into PSO (namedNNGSA) by usingNearest Neighbour
(NN) mechanism for forming species inside the population. They also employed the hill valley algorithm
without a pairwise comparison between any pair of solutions for detecting niches inside the population.
Experiments showed the e�ectiveness of NNGSA compared to the well-known niching methods.

3 Basic concepts
3.1 Gravitational search algorithm

GSA was presented in [8] based on Newton’s law of gravitation. Agents in this algorithm are similar to
particles in the universe. The heavier the mass of an agent, the more e�cient is that agent. This means that
agents with heavier mass have higher attractions and walk more slowly (Figure 1). The location of an agent
i in GSA is shown by Equation (1). Considering a system of N agents, the whole system can be formulated as
Equation (2).

Xi ← (xi1, xi2, . . . , xi d , . . . .., xi n) (1)

X ← (X1, X2, . . . , Xi , . . . .., XN) (2)

In the above equations, xdi is the location of agent i in dimension d, n is the dimension of the search space
and N is the number of individuals (or agents). At a given time t, the applied force on agent i by agent j is
calculated using Equation (3).

Fdij ← G (t)
Mpi (t) ×Maj (t)
Rij (t) + ϵ

(xdj (t) − xdi (t)) (3)

where Maj is the active gravitational mass of agent j, Mpi is the passive gravitational mass of agent i, G(t) is
gravitational constant at time t, ϵ is a small constant and Rij is the Euclidian distance between the two agents
determined by Equation (4).

Rij (t) ←
∥∥Xi (t) , Xj(t)∥∥ (4)

Assuming that Kbest is the set of K agents with the best �tness value and thus the biggest mass, the
whole applied force to the agent i in dimension d from agents in Kbest is computed by Equation (5).

Fdi (t) ←
∑

jϵKbest, j ̸=i
randjFdij (5)

where randj is a random number in [0,1]. It should be noted that Kbest changes with time, its initial value is
K0 and as time passes it decreases. The acceleration of the agent i in dimension d at time t is calculated by
Equation (6).

adi (t) ←
Fdi (t)
Mii(t)

(6)

whereMii is the inertia mass of the agent i. In addition, the velocity and position of the agent i in dimension
d at time t +1 are calculated by Equations (7) and (8) respectively. In equation (7), randi is a random number
in [0,1].

vdi (t + 1) ← randi × vdi (t) + adi (t) (7)
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Figure 1: General principle of GSA [8]

xdi (t + 1) ← xdi (t) + vdi (t) (8)

Gravitational �xed G is a function of time that is started with the initial value G0 and as time passes, it
decreases to control the accuracy of search. The value of this function is calculated by Equations (9) and
(10).

G (t) ← (G0, t) (9)

G(t) ← G0e
−αt
T (10)

where α and G0 are �xed values and T indicates all iterations. In addition, inertia and gravitational masses
are updated using Equations (11)–(13)

Mai = Mpi = Mii = Mi i = 1, 2, . . . , N (11)

mi (t) ←
�ti (t) − worst(t)
best (t) − worst(t)

(12)

Mi (t) ←
mi (t)∑N
j=1 mj (t)

(13)

where �ti(t) shows �tness value of the agent i at time t and worst(t) and best(t) are calculated using
Equations (14) and (15).

best (t) ← max
j∈{1,. . . .., N}

�tj (t) (14)

worst (t) ← min
j∈{1,. . . .., N}

�tj (t) (15)
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3.2 Niching
As mentioned previously, niching is the concept of dividing the search space into di�erent areas or niches
in a way that these areas are not overlapped. Evolutionary algorithm with niching technique search for
optimal solutions in each separated area to e�ciently explore the search space for �nding global optimal
solutions. Some of the well-known niching techniques are: �tness sharing [23], clearing [24], crowding [25],
deterministic crowding [26–28] and probabilistic crowding [29].

3.3 K-means algorithm
K-means is employed as the niching technique in KGSA. The most important parameter in K-means is the
number of clusters which ismanually determined by the user. Clusters are represented by their centers which
are randomly selected at the beginning of K-means. Then, K-means works as follows: each point (or agent) is
assigned to the closest center, and in this waymembers of each cluster are determined. Themean ofmembers
in each cluster is calculated as the new center of that cluster (Equation 16). This process continues until the
maximum number of iterations is reached or the members of clusters do not change.

ck ←
1

|Sk|
∑

∀Xi∈Sk

Xi (16)

In the above equation, Xi is agent i which belongs to cluster Sk, ck is the center of Sk and |Sk| is the number
of members (agents) in Sk. A pseudocode of K-means algorithm is shown in Figure 2. Simplicity, �exibility
and being easy to understand are among the advantages of this algorithm, but determining the number
of clusters at the beginning of the algorithm is a weakness. In addition, since initial centers are randomly
selected, results are di�erent in di�erent runs.

Figure 2: Pseudocode of K-means algorithm for clustering population members

4 Proposed algorithm
GSA, K-means and a new elitism strategy called “loop in loop” are used to design the suggestive algorithm.
This algorithm is called KGSA (K-means gravitational search algorithm) owing to the use of K-means and
GSA. In this algorithm, �rstly, the members of the initial population are clustered by K-means. Afterwards,
the population is created and divided into di�erent niches or clusters, the reinforced GSA with “loop in
loop” technique guide the members of each niche to the optimum direction according to their clusters. More
speci�cally, members of each cluster apply force to each other so that lighter members move towards the
optimum direction of each cluster with higher velocity and heavier ones move to the direction slower. The
principle of KGSA is shown in Figure 3. Di�erent parts of the KGSA are separately described in order to explain
more details.
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Figure 3: General principle of KGSA
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4.1 Population initialization

Before initializing the population, the structure of individualsmust be speci�ed. In this research, phenotypic
structure is usedwhere eachmember in eachdimensiongets anumerical value. To form the initial population,
uniform and partition methods adopted from [15] are used. In the uniform method, members are initialized
using Equation (17):

xdi = Low + rand * (High − Low) (17)

where xdi is the location of agent (member) i in dimension d, Low and High are respectively the lowest
and highest possible values in dimension d, and rand is a random number in [0,1]. Although the uniform
method is simple, members initialized with this approachmay be placed close to each other resulting in poor
distribution in the search space.

In the partition method, the legal [Low, High] period in each dimension d is �rst divided into N smaller
sub-periods with equal length where N is the size of population. Then for each dimension d, members are
assigned to di�erent sub-periods and similar to Equation (17), get a random value in that sub-period. With
this approach, the main problem of the uniform method is solved and members are better distributed in the
search space.

4.2 Population reformation

Population reformation is used for constrained functions so that infeasible solutions are avoided. It is clear
that infeasible solutions may be produced when the initial population or new population are created. In the
�rst case, the infeasible solutions are replaced by new solutions (members) created over and over again using
uniformor partitionmethods. This process continues until possible solutions are found. In the latter case, the
infeasible solutions are replaced by the most �tted members of the previous generation [30].

4.3 Production of appropriate clusters from population

Inappropriate clusters when initializing the population are either single-member or empty clusters. In other
phases of KGSA, only empty clusters are considered inappropriate. Depending on the type of population
initialization especially uniform method, some clusters may be inappropriate after executing the K-means
algorithm, resulting in losing niches. To resolve this problem, when a cluster is inappropriate in population
initialization, the population is rejected and the initial population is formed and clustered again until some
appropriate clusters are created. But in other phases of KGSA, clustering is iterated until none of the clusters
are inappropriate.

4.4 Calculation of mass, force, velocity and production of the next generation

Before calculating the mass of each member (agent), its neighbours should be determined. Since members
have been clustered before, other members within the cluster of each member are considered as its neigh-
bours. Then, using Equations (11)-(13), the mass of each member is calculated. After the mass of all members
were speci�ed, according to the Equation (5), the total force on agent i in dimension d is determined. Applied
force to amember is only from its neighbours. Whenmembers apply force to each other, eachmember moves
towards a direction with di�erent velocity which can be calculated using Equation (7). As a result of the
movement, newpopulation is created. Aswill be discussed in the next section, this newpopulation competes
with the candidate members of the current population to form the next generation.
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4.5 Use of innovative method “loop in loop” and discovery of optima

As described in the previous section, after the current population was developed by Tl iterations using GSA
algorithm, the new population is created (section 4.4). Since this process needs Tl iterations, it is called the
�rst (or inner) loop in the “loop in loop”method. Then, themost �ttedmembers of the current population are
selected as candidates (Section 4.5.1) and they compete with members of the new population (Section 4.5.2)
to form the initial population for the next generation. This process continues until the maximum number of
repetitions or themaximumnumber of permitted evaluations is reached. This is actually the second (or outer)
loop of the “loop in loop”.

4.5.1 Selecting the candidate members from the current population

Since after developing the current population via Tl iterations using GSA,members of the current population
are closer to the optimal solutions, the two closest members of each cluster (niche) are found, the most �tted
one is selected and kept and the other one is removed. This process continues until the number of selected
members reaches the number of optimal solutions (niches). These selected members along with the most
�ttedmembers of the current population (i.e. the best individual in the whole population and those having at
least 80% of the �tness of the best individual) are candidate members for the next generation. The described
process is based on the work of [30] and illustrated in Figure 4.

Figure 4: Preparing candidate list at the end of inner loop of “loop in loop”
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4.5.2 Forming the next generation by selecting the best members of candidates and the new population

The candidate members of the current population compete with the new population in the following way: for
each candidate, the closest member of the new population is found. If the candidate is more �tted, it replaces
the closest member of the new population; otherwise, it is ignored (Figure 5). After all the candidates were
checked, the initial population for the next generation has been formed, so the next iteration of the inner
loop of the “loop in loop” is started. It is worth to mention that when going from one generation to the next,
niches are also transferred to the next generation.

Figure 5: Forming the initial population of the next generation by selecting the most �tted members of the candidate list and
the new population

4.6 Conditions of ending the “loop in loop” algorithm

As illustrated in Figure 3, the maximum number of generations in “loop in loop” algorithm is �xed number T,
but for the K-means algorithm, stopping criteria is when, the center of clusters does not change anymore.

5 Experimental results
To evaluate KGSA, some standard constrained and unconstrained functions are used. These functions are
extracted from [15]. Results of benchmarkingKGSAon these functions are compared to anumber of algorithms
including r3PSO [31], r2PSO-lhc [31], r3PSO-lhc [31], SPSO [32], FER-PSO [33], NichePSO [10], deterministic
crowding [27], sequential niche [34], NGSA [15], NCOA [20], Fire�y [19], and NNGSA [1]. It should be noted
that some benchmark functions of this study have not been used in NCOA [20], Fire�y [19], and NNGSA [1]
and thus, the corresponding cells in tables showing the results are empty.



1592 | Shahram Golzari et al.

At the end of section 5, KGSA is statistically compared with other algorithms using Friedman test to show
whether this algorithm is statistically superior or not.

5.1 Constrained and unconstrained benchmark functions

Unlike the constrained functions, when the domain is not considered in unconstrained functions, solutions
do not follow a speci�c pattern. Tables 1A and 2A in Appendix show, respectively, unconstrained and
constrained benchmark functions used in this study. Some of these benchmark functions along with the
position of their optimal solutions are presented in Figures 6-9.

Figure 6: Shekel’s Foxholes function

Figure 7: Inverted Vincent function

5.2 Evaluation Criteria of Algorithms

The KGSA algorithm is runmultiple times and results of these independent runs are averaged. The evaluation
criteria are success rate, error rate, and the number of �tness evaluations.

5.2.1 Success rate

In each run of the algorithm, if all peaks are found, the run is successful. When an agent reaches 99% of its
highest value, it is considered as to have reached the peak value [15]. In addition, for a fair comparison, in



KGSA: A Gravitational Search Algorithm | 1593

Figure 8: Inverted Shubert function

Figure 9: Himmelblau’s function

cases that the error rate is reported, they are taken into account in KGSA. The success rate or the Average
Discovering Rate (ADR) is calculated by averaging the results of di�erent runs.

5.2.2 Error rate

Suppose that an algorithm �nds a number of optimal solutions in an n dimensional space. The error rate is
the mean of the Euclidian distance of the position of the discovered solutions from the position of the real
optimum and is calculated using Equation (18).

ζ ← 1
m

m∑
i=1

n∑
j=1

[(
sji − φ

j
i

)2] 1
2

(18)

wherem is the number of the optimal solutions found by the algorithm and n is the dimension of the problem.
In addition, s indicates the position of the optimum found by the algorithm and φ is the position of the real
optimum of the problem. Similar to the ADR, error rate for di�erent runs are averaged.

5.2.3 Number of �tness evaluations

In each generation, when the algorithm �nds the niches, number of times that the evaluation function has
been called is reported as the number of �tness evaluation. In another words, this number is the number of
times that �tness agent has been calculated from the beginning. Similar to success and error rates, this value
is also averaged for di�erent runs.
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5.3 Parameters and results of other algorithms

The results and parameters of other algorithms including the number of population members or N, number
of iteration and maximum number of evaluations can be obtained from [15].

InKGSA,K is thenumber of clusters and is considered tobe the total number of optimal solutions. In cases
that the number of optimal solutions is higher than 25, K is equal to the number of the optima that must be
discovered. G0 is set to 0.1 of the domain value and α is equal to 8. In both iterations, K-means algorithm
is executed once. In each generation, 70% of the best individuals of each cluster apply force to co-cluster
members. Other values from 20% to 95% (with step size 5%) were also tested for this. However, experiments
showed that values lower than 70% result in virtual (incorrect) niches and values higher than 85% lead to
losing some actual niches. Thus, the least appropriate value (70%)was selected since in addition to providing
the desired results, it has less computational cost.

5.4 Finding optimal solutions

5.4.1 Finding global optimum in unconstrained functions

For �nding global optima, KGSAwas executed on functions F1 to F12 with partitioning initialization. Success
rate is reported in Table 1 and the number of �tness evaluations for discovering the global optima are reported
in Tables 3A and 4A in Appendix. Table 3A in Appendix compares KGSA with the well-known swarm-based
methods for multimodal optimization and Table 4A in Appendix presents the result of comparison with
NNGSA and some of the other evolutionary approaches. It should be mentioned that results are averaged
over 50 runs. In Table 2, the required parameters for algorithms NGSA and KGSA are shown. Unlike the other
algorithms, when executing NGSA on functions F6 to F9, the number of the initial population was set to 100
instead of 50, but the maximum number of iterations was decreased such that the maximum number of all
evaluations is not exceeded.

As illustrated in Table 1, the KGSA has performed much better than the well-known swarm-based
algorithms in discovering all global optima for all functions. Table 3A in Appendix shows that the results of
Table 1 were obtained with less number of evaluations in most cases. Furthermore, as can be seen in Table 2,
the initial population size for KGSA was lower in all cases, except for function F12.

5.4.2 Finding local and global optima in unconstrained functions

In order to �nd global and local optima, KGSA is developed with di�erent population sizes in at most 120
generations. Results of this evaluation is compared with that of NGSA algorithm with two di�erent initial-
izations: 1) uniform initialization where the comparative results are presented in Table 3 and 2) partitioning
initialization where the results are shown in Table 4. Table 3 shows that the proposed algorithm performed
much better when the initialization is uniform. However, with partitioning initialization, both KGSA and
NGSA algorithms were equally successful in �nding the global and local optima. In order to �ne-tune the
population size, it was set to 20 and the error rates of KGSA andNGSAwere recorded in Table 5. As can be seen
from this table, KGSAhad lower error rate thanNGSA for both initializationmethods in this setting. The results
were averaged for 30 independent runs of both algorithms. It should be noted that Tl for all experiments was
set to 15.

Considering the results presented in Tables 3-5, one can see that KGSA outperforms NGSA in terms of
�nding global and local optima and lower error rate. In addition, when reducing the population size, NGSA
was sensitive to the initialization type but not the KGSA algorithm since it uses the “loop in loop” method
resulting in a larger search space.

In order to evaluate the algorithms in other settings and on more functions, the number of members
was set to 20, maximum numbers of iterations was set to 2000, initialization method was partitioning and
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Table 1: Comparison of found global maximum (%ADR) obtained with KGSA, NGSA, r2PSO, r3PSO, r2PSO-lhc, r3PSO-lhc, FER-
PSO and SPSO using functions F1 to F12. The results were averaged after �fty independent runs of algorithms.

SPSO FER-PSO r3 PSO -lhc r2 PSO –lhc r3 PSO r2 PSO NGSA 
FireFly 

[19] 

NCOA 

[20] 
KGSA Function 

100 100 100 100 100 100 100 100 100 100 F1 

100 100 100 100 100 98 100 100 100 100 F2 

100 100 100 100 98 98 100 100 100 100 F3 

100 100 100 100 100 100 100 100 100 100 F4 

100 98 98 100 74 92 100 100 100 100 F5 

24 88 78 94 100 98 100 100 100 100 F6 

22 100 88 98 96 100 100 100 100 100 F7 

40 98 96 96 96 100 94 100 100 100 F8 

100 100 100 100 100 100 100 100 100 100 F9 

50 100 78 72 100 100 100 100 90 100 F10 

49 56 100 98 98 90 100 100 93 100 F11(2D) 

84 88 90 92 86 94 92 92 -- 100 F12(1D) 
 

Table 2: List of required parameters for discovering global optima in unconstrained functions

𝐅𝐅𝟏𝟏𝟏𝟏 𝐅𝐅𝟏𝟏𝟏𝟏 𝐅𝐅𝟏𝟏𝟏𝟏 𝐅𝐅𝟗𝟗 𝐅𝐅𝟖𝟖 𝐅𝐅𝟕𝟕 𝐅𝐅𝟔𝟔 𝐅𝐅𝟓𝟓 𝐅𝐅𝟒𝟒 𝐅𝐅𝟑𝟑 𝐅𝐅𝟐𝟐 𝐅𝐅𝟏𝟏 
Functio

n 
 

500 100 40 15 30 8 10 20 10 20 10 10 𝑵𝑵 

KG
SA

 

90000 60000 1000 1350 3600 1280 1800 2400 750 800 600 800 
Max 
eval 

45 60 50 30 60 80 90 20 15 10 15 20 𝑻𝑻𝒍𝒍 

100 250 500 100 100 100 100 50 50 50 50 50 𝑵𝑵 

NG
SA

 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

10000
0 

Max 
eval 

0.01 0.1 0.01 0.01 5 0.1 0.1 0.1 0.01 0.01 0.01 0.01 𝜺𝜺  

 

evaluationswereperformedon functionsF1 to F5. Results of this evaluation forKGSAarepresented inTables 6
and 7, and results of other algorithms can be obtained from [15]. Table 6 shows that the proposed algorithm
has performed better than other algorithms in terms of �nding global and local optima. The number of
necessary evaluations for �nding optimal solutions is reported in Table 7. This table shows that for 100%
discovering the optima, KGSA needed less number of evaluations than the other algorithms. Furthermore,
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Table 3:%ADR obtained with the KGSA and NGSA using di�erent population sizes, and uniform initialization for �nding all local
and global maxima.

𝑵𝑵=20 𝑵𝑵=35 𝑵𝑵=50 𝑵𝑵=75 Function 

NGSA KGSA NGSA KGSA NGSA KGSA NGSA KGSA  

80 100 93 100 100 100 100 100 F1 

73 100 96 100 100 100 100 100 F2 

73 100 86 100 100 100 100 100 F3 

66 100 90 100 96 100 100 100 F4 

76 100 96 100 100 100 100 100 F5 

 
Table 4:%ADR obtained with the KGSA and NGSA using di�erent population sizes and partitioning initialization for �nding all
local and global maxima.

𝑵𝑵=20 𝑵𝑵=35 𝑵𝑵=50 𝑵𝑵=75 
Function 

NGSA KGSA NGSA KGSA NGSA KGSA NGSA KGSA 

100 100 100 100 100 100 100 100 F1 

100 100 100 100 100 100 100 100 F2 

100 100 100 100 100 100 100 100 F3 

100 100 100 100 100 100 100 100 F4 

100 100 100 100 100 100 100 100 F5 

  

Table 5: The mean error ζobtained with the KGSA and NGSA using N=20, T=120

Average 𝜻𝜻 
Function NGSA partitioning 

initialization 
KGSA partitioning 

initialization 
KGSA uniform 
initialization 

1.62e - 5 ± 3.47e - 5 1.78e - 6 ± 9.41e - 7 1.75e - 6 ± 1.03e - 6 F1 

0.001± 1.66e - 4 2.75e - 7 ± 2.94e - 7 4.96e - 7 ± 1.54e - 6 F2 

0.0012 ± 5.04e - 4 2.35e - 6 ± 1.29e - 6 2.41e - 6 ± 2.12e - 6 F3 

2.37e - 4 ± 3.38e - 4 5.34e - 7 ± 6.81e - 7 6.87e - 7 ± 1.98e - 6 F4 

0.0570 ± 0.0262 4.29e - 3 ± 4.22e - 3 3.59e - 3 ± 2.13e - 3 F5 

 

Table 5A inAppendix shows that KGSA achieved the results presented in Tables 6 and 7with lower population
size and lower “maximum number of iterations” compared to the other algorithms.
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Table 6: Comparison of KGSA, NGSA, deterministic crowding, sequential niche and NichePSO algorithms in terms of %ADR for
functions F1 to F5. The results were averaged after thirty independent runs of algorithms.

 

NichePSO  Sequential Niche Deterministic Crowding NGSA KGSA Function 

100 100 100 100 100 F1 

93 83 93 100 100 F2 

100 100 90 100 100 F3 

93 93 90 100 100 F4 

100 86 90 100 100 F5 

 

Table 7: Average number of �tness function assessments needed to converge for each niching algorithm for functions F1 to F5.
The results were averaged after thirty independent runs of algorithms.

NichePSO  Sequential Niche Deterministic Crowding NGSA KGSA Function 

2372 ± 109 4102 ± 577 14647 ± 4612 1786 ± 204 208 ± 115 F1 

2934 ± 475 3505 ± 463 13052 ± 2507 1892 ± 561 211 ± 103 F2 

2404 ± 195 4141 ± 554 13930 ± 3284 1752 ± 273 286 ± 136 F3 

2820 ± 517 3464 ± 287 13929 ± 2996 1806 ± 307 272 ± 149 F4 

2151 ± 200 3423 ± 402 14296 ± 3408 2033 ± 201 897 ± 446 F5 

 

 
Also, the KGSA algorithm was applied to functions F6 to F10 using partitioning initialization. Results of

this comparison are presented in Tables 8 and 9. The �rst table shows comparisons with NGSA and the latter
presents comparisonswithNNGSA.As canbe seen fromTable 8, KGSAhashigher success rate in all situations,
and the lower error-rate and the “number of evaluations” in most cases. Moreover, Table 6A in Appendix
shows that results presented in Table 8 were achieved with lower population size and lower “number of
evaluations” than those of NGSA. All parameters and results for NGSA and KGSA were adopted from [15].

5.4.3 Finding global optima in constrained functions

KGSA was also evaluated on constrained functions F13 to F15. Average results of 50 runs using partitioning
initialization are shown in Table 10. This table illustrates that KGSA achieved 100% success rate for all
the constrained functions in addition to having a lower error-rate than the other algorithms in most cases.
Moreover, this algorithm had the lowest “number of evaluations” on two out of three of these functions.
In case of function F15, “number of evaluations” for KGSA was only greater than that of NGSA. Table 7A
in Appendix shows parameter settings used for these experiments and indicates that results of KGSA were
achieved with lower population size and less iterations.
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Table 8: Results of KGSA and NGSA in terms of %ADR and the number of �tness assessments needed to converge for each
niching algorithm using functions F6 to F10. The results were averaged after �fty independent runs of algorithms.

NGSA KGSA  

ADR(%) Average 𝜻𝜻 
Number of fitness 

evaluations 
ADR(%) Average 𝜻𝜻 

Number of fitness 
evaluations 

Function 

100 4.27e – 4 ± 4.18e – 
4 

542 ± 386 
100 

1.02e – 4 ± 1.38e – 4 413 ± 113 F6 

100 7.44e – 6 ± 6.01e – 
6 

321 ± 118 
100 5.12e – 6 ± 5.66e – 

6 
267 ± 128 F7 

94 
2.19e – 3 ± 1.37e – 2 966 ± 765 

100 6.51e – 5 ± 2.08e – 
4 

873 ± 721 F8 

98 1.50e – 3 ± 3.33e – 
2 

1122 ± 353 
100 7.29e – 5 ± 1.88e – 

4 
1097 ± 856 F9 

100 9.66e – 4 ± 1.18e – 
3 

6186 ± 2133 
100 

4.51e – 2 ± 6.73e – 3 11318 ± 2861 F10 

 
Table 9: Results of KGSA and NNGSA in terms of %ADR and the number of �tness assessments needed to converge for each
niching algorithm using functions F6 to F10. The results were averaged after �fty independent runs of algorithms.

NNGSA 
[1] 

KGSA  

Average 𝜻𝜻 Number of fitness 
evaluations 

 Average 𝜻𝜻 
Number of fitness 
evaluations 

Function 

- - 
 1.02e – 4 ± 

1.38e – 4 
413 ± 113 𝑭𝑭𝟔𝟔 

- - 
 5.12e – 6 ± 

5.66e – 6 
267 ± 128 𝑭𝑭𝟕𝟕 

- - 
 6.51e – 5 ± 

2.08e – 4 
873 ± 721 𝑭𝑭𝟖𝟖 

0 ± 0 200 ± 0 
 7.29e – 5 ± 

1.88e – 4 
1,097 ± 856 𝑭𝑭𝟗𝟗 

3,6015e - 4 ± 0.151 e 
- 1 

1,5740e + 4 ± 8.313e + 
3 

 4.51e – 2 ± 
6.73e – 3 

11,318 ± 2861 𝑭𝑭𝟏𝟏𝟏𝟏 

 

5.5 Sensitivity analysis of parameter Tl in KGSA

In this section, sensitivity of KGSA to Tl is evaluated. As stated previously, Tlrepresents the number of
repetitions of the inner loop of “loop in loop” method. This parameter can a�ect the performance of KGSA
since loops have a major role in �nding optima; therefore, correct setting of Tl is very important. If Tl is too
small, few generations will be created in a loop and therefore, the population will not develop adequately
and candidates with lower �tness will go to the next generation. On the other hand, if Tl is too large, the
number of loops will reduce and consequently, search space will be small. Therefore, it is necessary to select
an appropriate value for Tl. For doing this, an experiment was conducted to evaluate KGSA on functions F1 to



KGSA: A Gravitational Search Algorithm | 1599

Table 10: Performance comparison when constrained test functions were used.

ADR(%) 
Number of fitness 

evaluations 
Average 𝜻𝜻 Methods Function 

 

100 510±438.1082 3.1586e - 04±0.0080 r2PSO 𝑭𝑭𝟏𝟏𝟏𝟏  

100 546±396.0056 6.3425e - 04±0.0105 r3PSO   

100 474±383.7569 5.5256e - 04±0.0067 r2PSO-lhc   

100 450±292.2498 1.2619e - 03±0.0083 r3PSO-lhc   

100 1,098±662.8602 4.3717e - 04±0.0103 
Deterministic 

crowding 
 

 

100 78±146.0919 3.1255e - 04±0.0107 NGSA   

100 2,080±19,110 
2.5352 - 04 ± 6.1e - 

03 
NNGSA  

 

100 92±43 
6.04e - 05 ± 5.67e - 

05 
KGSA  

 

100 2,396±0.1469 2.3313e - 02±2.2522 r2PSO 𝑭𝑭𝟏𝟏𝟏𝟏  

100 2,092±0.5050 7.1531e - 03±0.9835 r3PSO   

100 2,476±0.5123 8.9047e - 03±1.8314 r2PSO-lhc   

100 2,232±0.5539 1.3116e - 02±2.1065 r3PSO-lhc   

100 21,552±1.0056 1.6902e - 02±0.4956 
Deterministic 

crowding 
 

 

100 1,944 ± 1.2944e + 03 1.9672e - 02±0.3790 NGSA   

100 1,413±1,080 
2.0176e-03±0.0365e-

02 
NNGSA  

 

100 1,395 ± 587 5.79e - 03 ± 0.04098 KGSA   

100 788±0.0849 0.3966±0.2352 r2PSO 𝑭𝑭𝟏𝟏𝟏𝟏  

100 792±0.0849 0.381±0.1997 r3PSO   

100 812±0.0396 4.9832e - 03±0.2081 r2PSO-lhc   

100 796±0.0480 0.3237±0.1873 r3PSO-lhc   

100 6,672±0.0283 6.2571e - 04±0.0552 
Deterministic 

crowding 
 

 

100 3,116±1.0135 5.0262e - 04±0.0203 NGSA   

100 5,183±1,560 1.4415e-03±3.02e-02 NNGSA   

100 480 ± 103 
3.37e - 04 ± 6.37 e - 

04 
KGSA  

 

 
F5with di�erent values for Tl. In this experiment, the population number was set to 20, the �rst population
was initialized by the partitioning method, and the maximum number of generations was set to 120. Result
of 50 independent runs of KGSA in this setting is shown in Table 8A in Appendix. As can be seen from this
table, KGSA success rate on F1to F4 has not been changed for di�erent values of Tl. However, for function F5,
result is di�erent. When Tl is 10, the success rate is 96% which indicates that the number of repetitions for
building the population is not enough. On the other hand, when Tl is 40 and 60, the success rate is 98% and
94% respectively. This points out the excessive number of repetitions in a loop for building the population.
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This means that the search space has been reduced in this case. Overall, it can be concluded that the success
rate is not signi�cantly a�ected by Tl, showing the low sensitivity of KGSA to Tl.

5.6 Statistical Tests

In the �nal test, KGSA is statistically compared with other methods. For this purpose, Friedman test has been
performed on possible metrics between KGSA and other methods. It is known that Friedman test is based
on the chi-square distribution with for analyzing the statistical signi�cant di�erence between the results of
several methods [35]. The Friedman test is a non-parametric statistical test for ranking the algorithms and
evaluating whether their results are statistically signi�cantly di�erent or not. It computes a score for each
algorithm on a speci�c criterion and �nally ranks them based on the scores. In the Friedman test, the null
hypothesis states that the methods are not statistically signi�cantly di�erent. If the p-value is less than a
predetermined level, null hypothesis is rejected which shows that results of the methods are signi�cantly
di�erent. In this paper, p-value was set to 0.05.

Results of Friedman test are provided in Table 11. In this table, the best method in each column is shown
in bold face and the second best is underlined. This table indicates that KGSA and Fire�y [19] algorithms are
the most successful. It must be noted that since we did not have access to the codes of other algorithms and
some of the benchmark functions used in this study were di�erent, all tests could not be performed on all
algorithms and thus, some of the cells in Table 11 are empty.

Table 11: Friedman test on KGSA and the other algorithms

 Finding all global maxima Number of Function Evaluations 
r2 PSO 3.77 7.25 
r3 PSO 5.32 8.50 
r2 PSO lhc 4.73 6.25 
r3 PSO lhc 5.09 7.25 
FER PSO 4.82 8.75 
SPSO 4.77 7.75 
NGSA 6.36 6.00 
NCOA 6.23 5.25 
Firefly 6.95 3.25 
NNGSA --- 2.75 
KGSA 6.95 2.50 

P-value 0.006 0.033 

Degree of Freedom 9 10 
 

6 Conclusions and Future Works
In this paper, KSGA, a novel Gravitational Search Algorithm for multimodal problems was proposed.

KSGA incorporated k-means and a new elitism strategy called “loop in loop” into the conventional Gravita-
tional Search Algorithm (GSA). First in KGSA, the initial population was clustered by K-means and after that,
the �rst population was created by selecting the members from di�erent clusters (niches). This resulted in a
large search space and thus increased the chance of �nding local and global optima in KGSA. “loop in loop”
technique was used to guide the members of each niche to the optimum direction according to their clusters.
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With these modi�cations, KGSA does not need the following items: the type of population initialization and
parameter “radius of niche”. Evaluations on di�erent benchmark functions showed that KGSA is superior to
other GSA based evolutionary algorithms in �nding both local and global optima. We intend to exploit fuzzy
methods to determine the number of optima at the beginning of KGSA and incorporating the “loop in loop”
technique into unimodal problems for future works.
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Table 1A: Unconstrained test functions in the experiments (see [15])

Name Test function Range 
Number of 

global peak 
Number of 

all peak 
Equal maxima F1(x) = sin6(5πx) 0 ≤ x ≤ 1 5 5 

Decreasing maxima F2(x) = e−2 log(2)�x−0.1
0.8 �

2

sin6(5πx) 0 ≤ x ≤ 1 1 5 

Uneven maxima F3(x) = sin6 �5π �x3 4� − 0.05�� 0 ≤ x ≤ 1 5 5 

Uneven decreasing 
maxima F4(x) = e−2 log(2)�x−0.08

0.854 �
2

sin6 �5π �x3 4� − 0.05�� 0 ≤ x ≤ 1 1 5 

Himmelblau’s 
function 

F5(x1, x2) = 200 − (x12 + x2 − 11)2 − (x1 + x22 − 7)2 −6 ≤ x1, x2 ≤ 6 4 4 

Two-peak trap F6(x) = �
160

15� (15 − x)     for 0 ≤ x ≤ 15
200

5� (x − 15)     for 15 ≤ x ≤ 20
 0 ≤ x ≤ 20 1 2 

Central two-peak 
trap 

F7(x) =

⎩
⎨

⎧
160

10� x     for 0 ≤ x ≤ 10
160

5� (15 − x)     for 10 ≤ x ≤ 15
200

5� (x − 15)     for 15 ≤ x ≤ 20

 0 ≤ x ≤ 20 1 2 

Five-uneven-peak-
trap 

F8(x) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

80(2.5 − x)     for 0.0 ≤ x ≤ 2.5
64(x − 2.5)     for 2.5 ≤ x ≤ 5.0
64(7.5 − x)     for 5.0 ≤ x ≤ 7.5

28(x − 7.5)     for 7.5 ≤ x ≤ 12.5
28(17.5 − x)     for 12.5 ≤ x ≤ 17.5
32(x − 17.5)     for 17.5 ≤ x ≤ 22.5
32(27.5 − x)     for 22.5 ≤ x ≤ 27.5

80(x − 27.5)     for 27.5 ≤ x ≤ 30

 0 ≤ x ≤ 30 2 5 

Six-Hump Camel 
Back 

F9(x1, x2) = −4 ��4 − 2.1x12 +
x14

3
� x12 + x1x2 + (−4 + 4x22)x22� 

−1.9 ≤ x1 ≤ 1.9 
−1.1 ≤ x2 ≤ 1.1 2 4 

Shekel’s Foxholes F10(x1, x2) = 500 − �0.002 + ��1 + i + �x1 − a(i)�
6

+ �x2 − b(i)�
6
�
−1

24

i=0

�

−1

 

where a(i) = 16�(i mod 5) − 2�, and b(i) = 16(⌊(i 5⁄ )⌋ − 2) 
−65.536 ≤ x1, x2 ≤ 65.536 1 25 

Inverted Shubert  F11(x) = −� � j
5

j=1
cos[(j + 1)xi + j]

n

i=1
 −10 ≤ xi ≤ 10 3n a 

Inverted Vincent  F12(x) = 1 𝑛𝑛� � sin(10 log(xi))
n

i=1

 0.25 ≤ xi ≤ 10 6n 6n 

 

 

Table 2A: Constrained test functions in the experiments (see [15])

Name Test function Range 
Number of 

global peak 
Number of all 

peak 

cRastrigin 

F13(x) = 10n + � [xi2
n

i=1
− 10 cos(2nxi)] 

s. t. h(x) = � xi=0

n

i=1

 

− 5.12 ≤ xi
≤ 5.12 2 2 

cGriewank 

F14(x) = 1
4000� � xi2

n

i=1

−� cos �
xi
√i
� + 1

n

i=1
 

s. t. h(x) =
1

512(n − 1)� xi2 − |x1|
n

i=2

= 0 

− 512 ≤ xi
≤ 512 4 4 

Deb’s 
constrained  

F15(x) = (x1 + a1)2 + (x2 + a2)2 + …
+ (xn + an)2 

s. t. [(x1 + b1)2 +  … (xn + bn)2] ≥ n2, 
−(n + 1) ≤ xi ≤ n + 1 

− 3 ≤ xi ≤ 3 1 4 
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Table 3A:Mean value of �tness function assessments needed to converge for each PSO based algorithm for the results shown
in Table 1. The results were averaged over �fty independent runs of algorithms

SPSO FER-PSO r3 PSO -lhc r2 PSO -lhc r3 PSO r2 PSO NGSA KGSA Function 

355±30 384±29 447±52 396±51 443±51 376±30 263±89 214±133 F1 

127±9 170±12 144±13 143±14 141±11 2120±1999 300±107 105±108 F2 

343±23 317±31 623±273 456±33 2440±1994 2430±1994 334±81 263±140 F3 

144±13 189±20 162±16 178±18 160±20 175±17 316±76 130±124 F4 

1250±45 5070±1945 7380±3347 1490±138 21400±5467 7870±2891 1632±330 864±382 F5 

77200±5859 14400±4535 23200±5834 7390±3340 2620±874 3460±197 477±409 304±110 F6 

78300±5856 2110±227 13100±4588 4340±2229 5340±2764 2960±1520 234±108 290±130 F7 

63300±6773 2660±1992 6730±3088 4710±2783 4650±2784 978±186 694±853 557±346 F8 

653±32 965±53 650±25 618±30 684±30 619±24 1032±892 230±121 F9 

42800±6968 3470±336 24800±5738 29700±6277 5310±453 4360±559 4164±1768 3119±2172 F10 

61600±4463 94900±1261 32400±581 37800±1480 39100±1648 55900±2676 5369±1930 33344±8099 F11(2D) 

17000±5162 13000±4601 14700±4344 9600±3824 15400±4906 8310±3371 2134±430 12480±18175 F12(1D) 

 

Table 4A: Average number of �tness function evaluations required to converge for each of the evolutionary algorithms. The
results were averaged over �fty independent runs of algorithms

NNGSA 
[1] 

Firefly 
[19] 

NCOA 
[20] 

KGSA Function 

- 182±94 607±31 214±133 F1 

- 206±91 614±22 105±108 F2 

- 186±101 622±34 263±140 F3 

- 180±88 620±31 130±124 F4 

1466±513 1152±274 1180±50 864±382 F5 

- 460±178 498±76 304±110 F6 

- 489±184 477±63 290±130 F7 

200±0 528±215 580±39 557±346 F8 

200±0 692±402 2196±72 230±121 F9 

15740±8313 - 27539±1431 3119±2172 F10 

30840±7254 1260±394 29397±2555 33344±8099 F11(2D) 

- 1002±404 - 12480±18175 F12(1D) 
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Table 5A: List of required parameters for discovering local and global optima in Tables 6, 7

𝐅𝐅𝟓𝟓 𝐅𝐅𝟒𝟒 𝐅𝐅𝟑𝟑 𝐅𝐅𝟐𝟐 𝐅𝐅𝟏𝟏 
Functio

n 
 

20 10 20 10 10 𝑵𝑵 

KG
SA

 

120 75 40 60 80 𝑻𝑻 

20 15 10 15 20 𝑻𝑻𝒍𝒍 

20 20 20 20 20 𝑵𝑵 

Ot
he

r 
Al

go
rit

hm
s

 

2000 2000 2000 2000 2000 𝑻𝑻 

 

 Table 6A: List of required parameters for discovering local and global optima in Table 8

𝐅𝐅𝟏𝟏𝟏𝟏 𝐅𝐅𝟗𝟗 𝐅𝐅𝟖𝟖 𝐅𝐅𝟕𝟕 𝐅𝐅𝟔𝟔 Function 
 

80 15 30 8 15 N 

KG
SA

 

20000 5250 3600 5600 2700 𝑴𝑴𝑴𝑴𝑴𝑴 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 

50 50 60 70 90 𝑻𝑻𝒍𝒍 

500 100 100 100 100 𝑵𝑵 

NG
SA

 100000 100000 100000 100000 100000 𝑴𝑴𝑴𝑴𝑴𝑴 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 

0.01 0.01 5 0.1 0.1 𝜺𝜺  

 

Table 7A: List of required parameters for discovering global optima in Table 10

𝑭𝑭𝟏𝟏𝟏𝟏 𝑭𝑭𝟏𝟏𝟏𝟏 𝑭𝑭𝟏𝟏𝟏𝟏 Function  

25 40 10 𝑁𝑁 

KG
SA

 

45 100 80 𝑇𝑇 

45 50 40 𝑇𝑇𝑙𝑙  

200 200 300 𝑁𝑁 

NG
SA

 

100 100 200 𝑇𝑇 
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Table 8A: Success rate of the KGSA for the di�erent values of Tl

𝑻𝑻𝒍𝒍 = 𝟔𝟔𝟔𝟔 𝑻𝑻𝒍𝒍 = 𝟒𝟒𝟒𝟒 𝑻𝑻𝒍𝒍 = 𝟑𝟑𝟑𝟑 𝑻𝑻𝒍𝒍 = 𝟐𝟐𝟐𝟐 𝑻𝑻𝒍𝒍 = 𝟏𝟏𝟏𝟏 𝑻𝑻𝒍𝒍 = 𝟏𝟏𝟏𝟏 Function 

100 100 100 100 100 100 𝑭𝑭𝟏𝟏 

100 100 100 100 100 100 𝑭𝑭𝟐𝟐 

100 100 100 100 100 100 𝑭𝑭𝟑𝟑 

100 100 100 100 100 100 𝑭𝑭𝟒𝟒 

94 98 100 100 100 96 𝑭𝑭𝟓𝟓 
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