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Abstract: Gravitational Search Algorithm (GSA) is a metaheuristic for solving unimodal problems. In this
paper, a K-means based GSA (KGSA) for multimodal optimization is proposed. This algorithm incorporates K-
means and a new elitism strategy called “loop in loop” into the GSA. First in KGSA, the members of the initial
population are clustered by K-means. Afterwards, new population is created and divided in different niches
(or clusters) to expand the search space. The “loop in loop” technique guides the members of each niche
to the optimum direction according to their clusters. This means that lighter members move faster towards
the optimum direction of each cluster than the heavier members. For evaluations, KGSA is benchmarked on
well-known functions and is compared with some of the state-of-the-art algorithms. Experiments show that
KGSA provides better results than the other algorithms in finding local and global optima of constrained and
unconstrained multimodal functions.

Keywords: Gravitational Search Algorithm (GSA), multimodal optimization, K-means, niching methods

1 Introduction

In addition to the need for finding several optima in many applications, solving multimodal problems can
be useful at least for two reasons; first, it can increase the chance of finding the global optimum and second,
it can help the researcher to become more familiar with the nature of the problem [1]. Population-based (or

*Corresponding Author: Shahram Golzari: Department of Electrical and Computer Engineering, University of Hormozgan,
Bandar Abbas, Iran, E-mail: golzari@hormozgan.ac.ir

Mohammad Nourmohammadi Zardehsavar: Department of Electrical and Computer Engineering, University of Hormozgan,
Bandar Abbas, Iran, E-mail: nourmohammadi.z.mohammad@gmail.com

Amin Mousavi: Department of Electrical and Computer Engineering, University of Hormozgan, Bandar Abbas, Iran, E-mail:
mousavi@hormozgan.ac.ir

Mahmoud Reza Saybani: Department of Computer Networks, Markaz-e Elmi Karbordi Bandar Abbas 1, University of Applied
Science and Technology, 79199-33153 Bandar Abbas, Iran, E-mail: saybani@gmail.com

Abdullah Khalili: Department of Electrical and Computer Engineering, University of Hormozgan, Bandar Abbas, Iran, E-mail:
khalili@hormozgan.ac.ir

*Corresponding Author: Shahaboddin Shamshirband: Department for Management of Science and Technology Develop-
ment, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam,

E-mail: shahaboddin.shamshirband@tdtu.edu.vn

3 Open Access. © 2018 Golzari et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 License.


https://doi.org/10.1515/math-2018-0132

DE GRUYTER KGSA: A Gravitational Search Algorithm =— 1583

meta-heuristic) algorithms have been used to solve optimization problems. Some of these algorithms are:
Genetic Algorithm (GA) by [2, 3], Simulated Annealing (SA) by [4], Artificial Immune Systems (AIS) by [5],
Ant Colony Optimization (ACO) by [6], Particle Swarm Optimization (PSO) by [7], and Gravitational Search
Algorithm (GSA) by [8, 9]. Generally speaking, these algorithms are inspired by nature and are effective in
solving unimodal optimization problems. However, they have not been very successful in solving multimodal
problems. To resolve this, two solutions have been provided: 1- Niching techniques to converge to more than
one solution by dividing the main population into non-overlapping areas and 2- Elitism strategy to accelerate
the convergence by selecting the best individuals from the current population and its offspring.

In this study, the Gravitational Search Algorithm (GSA) is boosted with the K-means niching and a new
elitism strategy called “loop in loop” to make an efficient algorithm (called KGSA) in solving multimodal
problems. GSA was selected since it is less dependent on parameters and can find existing optima with less
iterations without trapping in local minimum. In addition, K-means clustering technique was chosen for
its simplicity, effectiveness and, low time complexity in dividing the main population into non-overlapping
subpopulations. Results show that by incorporating K-means and “loop in loop” into the GSA, the proposed
algorithm has increased both ‘exploration’ and ‘exploitation’.

This paper is structured as follows: in section 2, some recent works regarding solving multimodal
problems are studied. Afterwards, in section 3, GSA, niching concepts and K-means clustering techniques
are described. Section 4, describes how the proposed algorithm is designed and how is “loop in loop” used.
In section 5, after introducing constrained and unconstrained benchmark functions, evaluation criteria
and parameters required for the suggestive algorithm are presented and results of implementation of the
suggestive algorithm on the benchmark functions are analyzed, and then the sensitivity of parameter T;
relevant to the suggestive algorithm on some functions is measured. At the end, in section 6, strengths and
weaknesses of the proposed algorithm are analyzed and some future works are suggested.

2 Literature review

Solving multimodal problems has always been one of the important and interesting issues for computer
science researchers. Authors in [10] presented NichePSO algorithm to solve multimodal problems and showed
its efficiency by solving some multimodal functions. In this algorithm, Guaranteed Convergence Particle
Swarm Optimization (GCPSO) and Faure-sequences [11] were used to optimize the sub-swarms and the
population initialization, respectively. In addition, two parameters § and y were defined in this algorithm.
If an individual’s variance was less than § or, in other words, if an individual did not change over several
generations, it may be an optimum member. Therefore, the individual and its closest member build a sub-
swarm. On the other hand, parameter y was used to merge the sub-swarms. Results indicated that NichePSO
is highly dependent on parameter u to explore the optimal solutions and this is a major weakness.

Authors in [12] presented Clustering-Based Niching (CBN) method to find global and local optima. The
main idea of this method for exploring optima and keeping variety of population was to use sub-populations
instead of one population. Species were formed using sub-populations and sub-populations were separated
by a density-based clustering algorithm which is appropriate for populations with different sizes and for
problems in which the number of clusters is not predetermined. In order to attach two members during
the clustering process in CBN, their distance should be less than parameter 0;;. Results showed that this
algorithm is highly dependent on o 4;5; which is a major drawback.

Authors in [13] presented a method in which PSO and cleansing technique were used. In this method,
population was divided into different species based on similarity of its members. Each species was then
formed around a dominant individual (or the ‘specie-seed’). In each phase, particles were selected from
the whole population and the species were formed adaptively based on the feedback of fitness space. The
method was named as Species based Particle Swarm Optimization (SPSO). Although SPSO was proven to be
effective in solving multimodal problems with small dimensions, the dependency on species’ radius is among
its weaknesses.
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Authors in [14] presented an algorithm for solving multimodal optimization problems. This new method
was named Multi-Grouped Particle Swarm Optimization (MGPSO) in which, if the number of groups is N,
PSO can search N peaks. The efficiency of this method was shown in [14]. Weaknesses of this algorithm are:
1) Determining the number of groups that is determining the number of optimal solutions by user while
initializing the algorithm. It is also possible that the function is unknown and no information about the
number of optimal points exists. 2) Determining the number of individuals for each group and selecting an
appropriate initial value for the radius of each gbest.

Authors in [15] used a new algorithm called NGSA for solving multimodal problems. The main idea was
that the initial swarm is divided into several sub-swarms. NGSA used following three strategies: i) an elitism
strategy, ii) a K-NN strategy, and iii) amendment of active gravitational mass formulation [15]. This algorithm
was applied on two important groups of constrained and unconstrained multimodal benchmark functions
and obtained good results, but this algorithm suffers from high dependency on two parameters K; and K.

Authors in [16] proposed Multimodal Cuckoo Search (MCS), a modified version of Cuckoo Search (CS)
with multimodal capacities provided by the following three mechanisms: (1) incorporating a memory mech-
anism which efficiently registers potential local optima based on their fitness value and the distance to
other potential solutions, (2) modifying of the original CS individual selection strategy for accelerating the
detection process of new local minima, and (3) including a depuration procedure for cyclically elimination
of duplicated memory elements. Experiments indicated that MCS provides competitive results compared to
other algorithms for multimodal optimization.

Author of [17] modified the original PSO by dividing the original population into several subpopulations
based on the order of particles. After this, the best particle in each subpopulation was employed in the velocity
updating formula instead of the global best particle in PSO. Evaluations showed that after modifying the
velocity updating formula, convergence behaviour of particles in terms of the number of iterations, and the
local and global solutions was improved.

Authors in [18] combined exploration mechanism of the Gravitational search algorithm with the exploita-
tion mechanism of Cuckoo search and called their method Cuckoo Search-Gravitational Search Algorithm
(CS-GSA). Evaluations on standard test functions showed that CS-GSA converges with less number of fitness
evaluations than both Cuckoo Search and GSA algorithms.

Authors in [19] proposed a multimodal optimization method based on firefly algorithm. In their method,
the optimal points are detected by evolving each sub-population separately. For determining the stability
of sub-populations, a stability criterion is used. Based on the criterion, stable sub-populations are found
and since they have optimal points, they are stored in the archive. After several iterations, all the optimums
are included in the archive. This algorithm also incorporates a simulated annealing local optimization
algorithm to enhance search power, accuracy and speed. Experiments show that the proposed algorithm can
successfully find optimums in multimodal optimization problems.

Authors in [20] proposed a niching method for Chaos Optimization Algorithm (COA) called NCOA. Their
method utilizes a number of techniques including simultaneously contracted multiple search scopes, deter-
ministic crowding, and clearing for niching. Experiments demonstrated that by using niching, NCOA can
compete the state-of-the-art multimodal optimization algorithms.

Authors in [21] presented a novel evolutionary algorithm called Negatively Correlated Search (NCS) which
parallels multiple individual search and models the behaviour of each individual search as a probability
distribution. Experiments showed that NCS provides competitive results to the state-of-the-art multimodal
optimization algorithms in the sense that NCS achieved the best overall performance on 20 non-convex
benchmark functions.

Author of [22] presented a modified PSO which in the first step randomly divides the original population
into two groups with one group focusing on the maximum optimization of the multimodal function and
the other on minimization. After this, each group is divided into subgroups for finding optimum points
simultaneously. The important point is that subgroups are not related and each one seeks for one optimum
individually. Similar to [17], the velocity updating formula is modified in the proposed method by replacing
the best particle of each subgroup instead of the global best. Evaluations on different kinds of multimodal
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optimization functions and one complex engineering problem demonstrated the applicability of the proposed
method.

Authorsin [1] incorporated a novel niching method into PSO (named NNGSA) by using Nearest Neighbour
(NN) mechanism for forming species inside the population. They also employed the hill valley algorithm
without a pairwise comparison between any pair of solutions for detecting niches inside the population.
Experiments showed the effectiveness of NNGSA compared to the well-known niching methods.

3 Basic concepts

3.1 Gravitational search algorithm

GSA was presented in [8] based on Newton’s law of gravitation. Agents in this algorithm are similar to
particles in the universe. The heavier the mass of an agent, the more efficient is that agent. This means that
agents with heavier mass have higher attractions and walk more slowly (Figure 1). The location of an agent
iin GSA is shown by Equation (1). Considering a system of N agents, the whole system can be formulated as
Equation (2).

Xié()(il, Xiz, ceey Xl'd,.....,Xin) (1)

X< X1, Xoy oovs Xiveonors X) ®)

In the above equations, x? is the location of agent i in dimension d, n is the dimension of the search space
and N is the number of individuals (or agents). At a given time t, the applied force on agent i by agent j is
calculated using Equation (3).

Mp; (1) x My (6)

d
Fj<G© Rj(D+e

CAGEEH0) €)
where M,; is the active gravitational mass of agent j, M), is the passive gravitational mass of agent i, G(t) is
gravitational constant at time ¢, € is a small constant and R;; is the Euclidian distance between the two agents
determined by Equation (4).

Ry (t) € || X: (6, X;(0)|| (4)

Assuming that Kbest is the set of K agents with the best fitness value and thus the biggest mass, the
whole applied force to the agent i in dimension d from agents in Kbest is computed by Equation (5).

Fl(y« Y rand;F} (5)
jeKbest, j=i

where rand; is a random number in [0,1]. It should be noted that Kbest changes with time, its initial value is
Ky and as time passes it decreases. The acceleration of the agent i in dimension d at time ¢ is calculated by
Equation (6).

Fa(¢)
M;;(t)

al (t) ¢ 6)

where M;; is the inertia mass of the agent i. In addition, the velocity and position of the agent i in dimension
d at time t + 1 are calculated by Equations (7) and (8) respectively. In equation (7), rand; is a random number
in [0,1].

v? (t + 1) €« rand; x v? )+ a?(t) @
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Figure 1: General principle of GSA[8]
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Gravitational fixed G is a function of time that is started with the initial value Gy and as time passes, it
decreases to control the accuracy of search. The value of this function is calculated by Equations (9) and
(10).

G (t) € (Go, 1) ©)

G() ¢ Goe T (10)

where a and G are fixed values and T indicates all iterations. In addition, inertia and gravitational masses
are updated using Equations (11)-(13)

My; = My; = Mj; = M; i=1,2,...,N (11)
. fit; (t) — worst(t)
m; () € best (t) - worst(t) 12
m; (t)
Mi() € ®)
Zjl\; m; (0)

where fit;(t) shows fitness value of the agent i at time ¢t and worst(t) and best(t) are calculated using
Equations (14) and (15).

best (t) < ]_E{lmax N}ﬁt]- (3] (14)
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3.2 Niching

As mentioned previously, niching is the concept of dividing the search space into different areas or niches
in a way that these areas are not overlapped. Evolutionary algorithm with niching technique search for
optimal solutions in each separated area to efficiently explore the search space for finding global optimal
solutions. Some of the well-known niching techniques are: fitness sharing [23], clearing [24], crowding [25],
deterministic crowding [26-28] and probabilistic crowding [29].

3.3 K-means algorithm

K-means is employed as the niching technique in KGSA. The most important parameter in K-means is the
number of clusters which is manually determined by the user. Clusters are represented by their centers which
are randomly selected at the beginning of K-means. Then, K-means works as follows: each point (or agent) is
assigned to the closest center, and in this way members of each cluster are determined. The mean of members
in each cluster is calculated as the new center of that cluster (Equation 16). This process continues until the
maximum number of iterations is reached or the members of clusters do not change.

Ckéi Z Xi (16)

ISl s,
In the above equation, X; is agent i which belongs to cluster Sy, c; is the center of S, and |Sy| is the number
of members (agents) in S;. A pseudocode of K-means algorithm is shown in Figure 2. Simplicity, flexibility
and being easy to understand are among the advantages of this algorithm, but determining the number
of clusters at the beginning of the algorithm is a weakness. In addition, since initial centers are randomly
selected, results are different in different runs.

Figure 2: Pseudocode of K-means algorithm for clustering population members

Input:
D={d1,d2,..... , dn} //set of n data items.

k //Number of desired clusters
Output:
A set of k clusters.
Steps:
1. Arbitrarily choose k data-items from D as initial centroids;
2. Repeat
Assign each item di to the cluster which has the closest centroid;
Calculate convergence criteria is met.

Until convergence criteria is met.

4 Proposed algorithm

GSA, K-means and a new elitism strategy called “loop in loop” are used to design the suggestive algorithm.
This algorithm is called KGSA (K-means gravitational search algorithm) owing to the use of K-means and
GSA. In this algorithm, firstly, the members of the initial population are clustered by K-means. Afterwards,
the population is created and divided into different niches or clusters, the reinforced GSA with “loop in
loop” technique guide the members of each niche to the optimum direction according to their clusters. More
specifically, members of each cluster apply force to each other so that lighter members move towards the
optimum direction of each cluster with higher velocity and heavier ones move to the direction slower. The
principle of KGSA is shown in Figure 3. Different parts of the KGSA are separately described in order to explain
more details.
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Figure 3: General principle of KGSA

v

Generating the
initial population
(Section 4.1)

!

Reforming the population for
constrained functions
(Section 4.2)

!

Clustering the population into
niches by K-means (Section

4.3 and Figure 2)

Yes

Inappropriate
niches?

1- Moving niche members towards the
optimum direction using GSA
(inner loop of “loop in loop™)

2- Creating a new population (Section

\ 4

4.4)

3- Selecting the candidate members of
the current population (Section 4.5
and Figure 4)

4- Forming the next generation by
selecting the most fitted members
from candidates and the new
population (Section 4.5 and Figure
5)

<«

Yes
Tsum < T

No

Selecting the final optimal
points

&
<

End

DE GRUYTER



DE GRUYTER KGSA: A Gravitational Search Algorithm =— 1589

4.1 Population initialization

Before initializing the population, the structure of individuals must be specified. In this research, phenotypic
structure is used where each member in each dimension gets a numerical value. To form the initial population,
uniform and partition methods adopted from [15] are used. In the uniform method, members are initialized
using Equation (17):

x? = Low + rand * (High - Low) @17)

where xl‘-i is the location of agent (member) i in dimension d, Low and High are respectively the lowest

and highest possible values in dimension d, and rand is a random number in [0,1]. Although the uniform
method is simple, members initialized with this approach may be placed close to each other resulting in poor
distribution in the search space.

In the partition method, the legal [Low, High] period in each dimension d is first divided into N smaller
sub-periods with equal length where N is the size of population. Then for each dimension d, members are
assigned to different sub-periods and similar to Equation (17), get a random value in that sub-period. With
this approach, the main problem of the uniform method is solved and members are better distributed in the
search space.

4.2 Population reformation

Population reformation is used for constrained functions so that infeasible solutions are avoided. It is clear
that infeasible solutions may be produced when the initial population or new population are created. In the
first case, the infeasible solutions are replaced by new solutions (members) created over and over again using
uniform or partition methods. This process continues until possible solutions are found. In the latter case, the
infeasible solutions are replaced by the most fitted members of the previous generation [30].

4.3 Production of appropriate clusters from population

Inappropriate clusters when initializing the population are either single-member or empty clusters. In other
phases of KGSA, only empty clusters are considered inappropriate. Depending on the type of population
initialization especially uniform method, some clusters may be inappropriate after executing the K-means
algorithm, resulting in losing niches. To resolve this problem, when a cluster is inappropriate in population
initialization, the population is rejected and the initial population is formed and clustered again until some
appropriate clusters are created. But in other phases of KGSA, clustering is iterated until none of the clusters
are inappropriate.

4.4 Calculation of mass, force, velocity and production of the next generation

Before calculating the mass of each member (agent), its neighbours should be determined. Since members
have been clustered before, other members within the cluster of each member are considered as its neigh-
bours. Then, using Equations (11)-(13), the mass of each member is calculated. After the mass of all members
were specified, according to the Equation (5), the total force on agent i in dimension d is determined. Applied
force to a member is only from its neighbours. When members apply force to each other, each member moves
towards a direction with different velocity which can be calculated using Equation (7). As a result of the
movement, new population is created. As will be discussed in the next section, this new population competes
with the candidate members of the current population to form the next generation.
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4.5 Use of innovative method “loop in loop” and discovery of optima

As described in the previous section, after the current population was developed by T, iterations using GSA
algorithm, the new population is created (section 4.4). Since this process needs T; iterations, it is called the
first (or inner) loop in the “loop in loop” method. Then, the most fitted members of the current population are
selected as candidates (Section 4.5.1) and they compete with members of the new population (Section 4.5.2)
to form the initial population for the next generation. This process continues until the maximum number of
repetitions or the maximum number of permitted evaluations is reached. This is actually the second (or outer)
loop of the “loop in loop”.

4.5.1 Selecting the candidate members from the current population

Since after developing the current population via T; iterations using GSA, members of the current population
are closer to the optimal solutions, the two closest members of each cluster (niche) are found, the most fitted
one is selected and kept and the other one is removed. This process continues until the number of selected
members reaches the number of optimal solutions (niches). These selected members along with the most
fitted members of the current population (i.e. the best individual in the whole population and those having at
least 80% of the fitness of the best individual) are candidate members for the next generation. The described
process is based on the work of [30] and illustrated in Figure 4.

Figure 4: Preparing candidate list at the end of inner loop of “loop in loop”
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4.5.2 Forming the next generation by selecting the best members of candidates and the new population

The candidate members of the current population compete with the new population in the following way: for
each candidate, the closest member of the new population is found. If the candidate is more fitted, it replaces
the closest member of the new population; otherwise, it is ignored (Figure 5). After all the candidates were
checked, the initial population for the next generation has been formed, so the next iteration of the inner
loop of the “loop in loop” is started. It is worth to mention that when going from one generation to the next,
niches are also transferred to the next generation.

Figure 5: Forming the initial population of the next generation by selecting the most fitted members of the candidate list and
the new population
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4.6 Conditions of ending the “loop in loop” algorithm

As illustrated in Figure 3, the maximum number of generations in “loop in loop” algorithm is fixed number T,
but for the K-means algorithm, stopping criteria is when, the center of clusters does not change anymore.

5 Experimental results

To evaluate KGSA, some standard constrained and unconstrained functions are used. These functions are
extracted from [15]. Results of benchmarking KGSA on these functions are compared to a number of algorithms
including r3PSO [31], r2PSO-lhc [31], r3PSO-lhc [31], SPSO [32], FER-PSO [33], NichePSO [10], deterministic
crowding [27], sequential niche [34], NGSA [15], NCOA [20], Firefly [19], and NNGSA [1]. It should be noted
that some benchmark functions of this study have not been used in NCOA [20], Firefly [19], and NNGSA [1]
and thus, the corresponding cells in tables showing the results are empty.



1592 —— Shahram Golzari et al. DE GRUYTER

At the end of section 5, KGSA is statistically compared with other algorithms using Friedman test to show
whether this algorithm is statistically superior or not.

5.1 Constrained and unconstrained benchmark functions
Unlike the constrained functions, when the domain is not considered in unconstrained functions, solutions
do not follow a specific pattern. Tables 1A and 2A in Appendix show, respectively, unconstrained and

constrained benchmark functions used in this study. Some of these benchmark functions along with the
position of their optimal solutions are presented in Figures 6-9.

Figure 6: Shekel’s Foxholes function

Figure 7: Inverted Vincent function

5.2 Evaluation Criteria of Algorithms

The KGSA algorithm is run multiple times and results of these independent runs are averaged. The evaluation
criteria are success rate, error rate, and the number of fitness evaluations.

5.2.1 Success rate

In each run of the algorithm, if all peaks are found, the run is successful. When an agent reaches 99% of its
highest value, it is considered as to have reached the peak value [15]. In addition, for a fair comparison, in



DE GRUYTER KGSA: A Gravitational Search Algorithm =— 1593

Figure 8: Inverted Shubert function
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cases that the error rate is reported, they are taken into account in KGSA. The success rate or the Average
Discovering Rate (ADR) is calculated by averaging the results of different runs.

5.2.2 Errorrate

Suppose that an algorithm finds a number of optimal solutions in an n dimensional space. The error rate is
the mean of the Euclidian distance of the position of the discovered solutions from the position of the real
optimum and is calculated using Equation (18).

1 m n . N 2 %
WHZZ[(#—%)} (18)
i=1 j=1
where m is the number of the optimal solutions found by the algorithm and n is the dimension of the problem.

In addition, s indicates the position of the optimum found by the algorithm and ¢ is the position of the real
optimum of the problem. Similar to the ADR, error rate for different runs are averaged.

5.2.3 Number of fitness evaluations

In each generation, when the algorithm finds the niches, number of times that the evaluation function has
been called is reported as the number of fitness evaluation. In another words, this number is the number of
times that fitness agent has been calculated from the beginning. Similar to success and error rates, this value
is also averaged for different runs.
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5.3 Parameters and results of other algorithms

The results and parameters of other algorithms including the number of population members or N, number
of iteration and maximum number of evaluations can be obtained from [15].

In KGSA, K is the number of clusters and is considered to be the total number of optimal solutions. In cases
that the number of optimal solutions is higher than 25, K is equal to the number of the optima that must be
discovered. Gy is set to 0.1 of the domain value and a is equal to 8. In both iterations, K-means algorithm
is executed once. In each generation, 70% of the best individuals of each cluster apply force to co-cluster
members. Other values from 20% to 95% (with step size 5%) were also tested for this. However, experiments
showed that values lower than 70% result in virtual (incorrect) niches and values higher than 85% lead to
losing some actual niches. Thus, the least appropriate value (70%) was selected since in addition to providing
the desired results, it has less computational cost.

5.4 Finding optimal solutions
5.4.1 Finding global optimum in unconstrained functions

For finding global optima, KGSA was executed on functions F; to F1, with partitioning initialization. Success
rate is reported in Table 1 and the number of fitness evaluations for discovering the global optima are reported
in Tables 3A and 4A in Appendix. Table 3A in Appendix compares KGSA with the well-known swarm-based
methods for multimodal optimization and Table 4A in Appendix presents the result of comparison with
NNGSA and some of the other evolutionary approaches. It should be mentioned that results are averaged
over 50 runs. In Table 2, the required parameters for algorithms NGSA and KGSA are shown. Unlike the other
algorithms, when executing NGSA on functions Fg to Fy, the number of the initial population was set to 100
instead of 50, but the maximum number of iterations was decreased such that the maximum number of all
evaluations is not exceeded.

As illustrated in Table 1, the KGSA has performed much better than the well-known swarm-based
algorithms in discovering all global optima for all functions. Table 3A in Appendix shows that the results of
Table 1 were obtained with less number of evaluations in most cases. Furthermore, as can be seen in Table 2,
the initial population size for KGSA was lower in all cases, except for function F;.

5.4.2 Finding local and global optima in unconstrained functions

In order to find global and local optima, KGSA is developed with different population sizes in at most 120
generations. Results of this evaluation is compared with that of NGSA algorithm with two different initial-
izations: 1) uniform initialization where the comparative results are presented in Table 3 and 2) partitioning
initialization where the results are shown in Table 4. Table 3 shows that the proposed algorithm performed
much better when the initialization is uniform. However, with partitioning initialization, both KGSA and
NGSA algorithms were equally successful in finding the global and local optima. In order to fine-tune the
population size, it was set to 20 and the error rates of KGSA and NGSA were recorded in Table 5. As can be seen
from this table, KGSA had lower error rate than NGSA for both initialization methods in this setting. The results
were averaged for 30 independent runs of both algorithms. It should be noted that T; for all experiments was
set to 15.

Considering the results presented in Tables 3-5, one can see that KGSA outperforms NGSA in terms of
finding global and local optima and lower error rate. In addition, when reducing the population size, NGSA
was sensitive to the initialization type but not the KGSA algorithm since it uses the “loop in loop” method
resulting in a larger search space.

In order to evaluate the algorithms in other settings and on more functions, the number of members
was set to 20, maximum numbers of iterations was set to 2000, initialization method was partitioning and
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Table 1: Comparison of found global maximum (%ADR) obtained with KGSA, NGSA, r2PS0, r3PS0O, r2PS0-lhc, r3PSO-lhc, FER-
PSO and SPSO using functions F; to F1. The results were averaged after fifty independent runs of algorithms.

NCOA FireFly

Function KGSA NGSA r2PSO r3PSO r2PSO -lhc r3PSO-lhc FER-PSO SPSO
[20] [19]
F; 100 100 100 100 100 100 100 100 100 100
F, 100 100 100 100 98 100 100 100 100 100
F3 100 100 100 100 98 98 100 100 100 100
F, 100 100 100 100 100 100 100 100 100 100
Fs 100 100 100 100 92 74 100 98 98 100
Fe 100 100 100 100 98 100 94 78 88 24
F, 100 100 100 100 100 96 98 88 100 22
Fg 100 100 100 94 100 96 96 96 98 40
Fg 100 100 100 100 100 100 100 100 100 100
Fio 100 90 100 100 100 100 72 78 100 50
F{1(2D) 100 93 100 100 90 98 98 100 56 49
F1,(1D) 100 -- 92 92 94 86 92 90 88 84

Table 2: List of required parameters for discovering global optima in unconstrained functions

Functio
n Fy F, F; Fy Fs Fe F7 Fg Fy Fio Fi1 Fiz

N 10 10 20 10 20 10 8 30 15 40 100 500

< Max
S / 800 600 800 750 2400 1800 1280 3600 1350 1000 60000 90000
¥ eva
T, 20 15 10 15 20 90 80 60 30 50 60 45
N 50 50 50 50 50 100 100 100 100 500 250 100
<
7))
g Max 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

eval 0 0 0 0 0 0 0 0 0 0 0 0

4 0.01 0.01 0.01 0.01 041 0.1 0.1 5 0.01 0.01 0.1 0.01

evaluations were performed on functions F; to Fs. Results of this evaluation for KGSA are presented in Tables 6
and 7, and results of other algorithms can be obtained from [15]. Table 6 shows that the proposed algorithm
has performed better than other algorithms in terms of finding global and local optima. The number of
necessary evaluations for finding optimal solutions is reported in Table 7. This table shows that for 100%
discovering the optima, KGSA needed less number of evaluations than the other algorithms. Furthermore,
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Table 3: %ADR obtained with the KGSA and NGSA using different population sizes, and uniform initialization for finding all local
and global maxima.

Function N=75 N=50 N=35 N=20

KGSA NGSA KGSA NGSA KGSA NGSA KGSA NGSA

F; 100 100 100 100 100 93 100 80
F, 100 100 100 100 100 96 100 73
F3 100 100 100 100 100 86 100 73
F, 100 100 100 96 100 90 100 66
Fs 100 100 100 100 100 96 100 76

Table 4: %ADR obtained with the KGSA and NGSA using different population sizes and partitioning initialization for finding all
local and global maxima.

N=75 N=50 N=35 N=20
Function
KGSA NGSA KGSA NGSA KGSA NGSA KGSA NGSA
Fiy 100 100 100 100 100 100 100 100
F, 100 100 100 100 100 100 100 100
Fs 100 100 100 100 100 100 100 100
F, 100 100 100 100 100 100 100 100
Fs 100 100 100 100 100 100 100 100

Table 5: The mean error {obtained with the KGSA and NGSA using N=20, T=120

Average {
Function KGSA uniform KGSA partitioning NGSA partitioning
initialization initialization initialization

F, 1.75e-6 +1.03e- 6 1.78e -6 £ 9.41e -7 1.62e-5+3.47e-5
F, 4.96e -7 +1.54e-6 2.75e-7£2.94e-7 0.001% 1.66e - 4
F; 2.4le-61%2.12e-6 2.35e-6+1.29e-6 0.0012 £5.04e - 4
F, 6.87e-7+1.98e-6 5.34e-7+6.81e-7 2.37e-4+3.38e-4
Fs 3.59e-3+2.13e-3 4.29e-314.22e-3 0.0570 + 0.0262

Table 5A in Appendix shows that KGSA achieved the results presented in Tables 6 and 7 with lower population
size and lower “maximum number of iterations” compared to the other algorithms.
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Table 6: Comparison of KGSA, NGSA, deterministic crowding, sequential niche and NichePSO algorithms in terms of %ADR for
functions F; to Fs. The results were averaged after thirty independent runs of algorithms.

Function KGSA NGSA Deterministic Crowding Sequential Niche NichePSO

Fy 100 100 100 100 100
F, 100 100 93 83 93
Fs 100 100 90 100 100
F, 100 100 90 93 93
Fs 100 100 90 86 100

Table 7: Average number of fitness function assessments needed to converge for each niching algorithm for functions F; to Fs.
The results were averaged after thirty independent runs of algorithms.

Function KGSA NGSA Deterministic Crowding Sequential Niche NichePSO
Fy 208 +115 1786 + 204 14647 + 4612 4102 + 577 2372 £ 109
F, 211+£103 1892561 13052 + 2507 3505 + 463 2934 £ 475
Fs 286 +136 1752273 13930 + 3284 4141 £ 554 2404 195
F, 272 +149 1806 + 307 13929 + 2996 3464 + 287 2820 £ 517
Fs 897 446 2033201 14296 + 3408 3423 £ 402 2151+ 200

Also, the KGSA algorithm was applied to functions Fg to F1o using partitioning initialization. Results of
this comparison are presented in Tables 8 and 9. The first table shows comparisons with NGSA and the latter
presents comparisons with NNGSA. As can be seen from Table 8, KGSA has higher success rate in all situations,
and the lower error-rate and the “number of evaluations” in most cases. Moreover, Table 6A in Appendix
shows that results presented in Table 8 were achieved with lower population size and lower “number of
evaluations” than those of NGSA. All parameters and results for NGSA and KGSA were adopted from [15].

5.4.3 Finding global optima in constrained functions

KGSA was also evaluated on constrained functions F;3 to F;5. Average results of 50 runs using partitioning
initialization are shown in Table 10. This table illustrates that KGSA achieved 100% success rate for all
the constrained functions in addition to having a lower error-rate than the other algorithms in most cases.
Moreover, this algorithm had the lowest “number of evaluations” on two out of three of these functions.
In case of function F;5, “number of evaluations” for KGSA was only greater than that of NGSA. Table 7A
in Appendix shows parameter settings used for these experiments and indicates that results of KGSA were
achieved with lower population size and less iterations.
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Table 8: Results of KGSA and NGSA in terms of %ADR and the number of fitness assessments needed to converge for each
niching algorithm using functions Fg to F1o. The results were averaged after fifty independent runs of algorithms.

KGSA NGSA
A Number of fitness Number of fitness
Function . Average { ADR(%) . Average { ADR(%)
evaluations evaluations
100 4.27e - 4 £ 4.18e - 100
Fe 413 +113 1.02e-4+138e-4 542 + 386 4
5.12e - 6 +5.66e — 100 7.44e - 6 £ 6.01e - 100
F, 267128 321+118
6 6
6.51e -5+ 2.08e - 100 94
Fg 873721 4 966 + 765 2.19e-3+137e-2
7.29e-511.88e - 100 1.50e -3 £3.33e - 98
Fgy 1097 + 856 1122 + 353
4 2
9.66e — 4 +1.18e - 100
Fio 11318 + 2861 4.51e-2+6.73e -3 6186 + 2133

3

Table 9: Results of KGSA and NNGSA in terms of %ADR and the number of fitness assessments needed to converge for each
niching algorithm using functions Fg to F1o. The results were averaged after fifty independent runs of algorithms.

KGSA NNGSA
[1]
. Number of fitness Number of fitness Average {
Function . Average { .
evaluations evaluations

1.02e -4+

Fe 413 113 .
1.38e -4
5.12e -6 +

F, 267 £128
5.66e — 6
6.51e -5+

Fg 873+721 -
2.08e-4
7.29e -5+

Fq 1,097 + 856 2000 0x0
1.88e -4
4.51e -2 % 1,5740e + 4 + 8.313e + 3,6015e -4 +0.151e

Fqo 11,318 + 2861
6.73e -3 3 -1

5.5 Sensitivity analysis of parameter T; in KGSA

In this section, sensitivity of KGSA to T, is evaluated. As stated previously, T;represents the number of
repetitions of the inner loop of “loop in loop” method. This parameter can affect the performance of KGSA
since loops have a major role in finding optima; therefore, correct setting of T; is very important. If T; is too
small, few generations will be created in a loop and therefore, the population will not develop adequately
and candidates with lower fitness will go to the next generation. On the other hand, if T; is too large, the
number of loops will reduce and consequently, search space will be small. Therefore, it is necessary to select
an appropriate value for T;. For doing this, an experiment was conducted to evaluate KGSA on functions F; to
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Table 10: Performance comparison when constrained test functions were used.
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Number of fitness

Function Methods Average { . ADR(%)
evaluations
Fq3 r2PSO 3.1586e - 04+0.0080 510+438.1082 100
3PSO 6.3425e - 04+0.0105 546+396.0056 100
r2PS0-lhc 5.5256€ - 04+0.0067 474+383.7569 100
r3PSO-lhc 1.2619e - 03+0.0083 450£292.2498 100
Deterministic
. 4.3717e - 04+0.0103 1,098+662.8602 100
crowding
NGSA 3.1255e - 04+0.0107 78+146.0919 100
2.5352-04 +6.1e -
NNGSA 2,080+19,110 100
03
6.04e - 05 £5.67e -
KGSA 9243 100
05
Fi4 r2PSO 2.3313e - 02+2.2522 2,396+0.1469 100
3PSO 7.1531e - 03+0.9835 2,092+0.5050 100
r2PS0-lhc 8.9047e - 03+1.8314 2,476+0.5123 100
r3PSO-lhc 1.3116e - 02+2.1065 2,232+0.5539 100
Deterministic
. 1.6902e - 02+0.4956 21,552+1.0056 100
crowding
NGSA 1.9672e - 02+0.3790 1,944 +1.2944e + 03 100
2.0176€-03+0.0365e-
NNGSA 1,413+1,080 100
02
KGSA 5.79e - 03 + 0.04098 1,395 + 587 100
Fis r2PS0O 0.3966+0.2352 788+0.0849 100
3PSO 0.381£0.1997 792+0.0849 100
r2PS0-lhc 4.9832e - 03+0.2081 812+0.0396 100
r3PS0-lhc 0.3237+0.1873 796+0.0480 100
Deterministic
. 6.2571e - 04+0.0552 6,672+0.0283 100
crowding
NGSA 5.0262e - 04:£0.0203 3,1161.0135 100
NNGSA 1.4415e-03+3.02e-02 5,183+1,560 100
3.37e-04+6.37e-
KGSA 480 +103 100

04

Fswith different values for T;. In this experiment, the population number was set to 20, the first population
was initialized by the partitioning method, and the maximum number of generations was set to 120. Result
of 50 independent runs of KGSA in this setting is shown in Table 8A in Appendix. As can be seen from this
table, KGSA success rate on F; to F4 has not been changed for different values of T;. However, for function Fs,
result is different. When T is 10, the success rate is 96% which indicates that the number of repetitions for
building the population is not enough. On the other hand, when T; is 40 and 60, the success rate is 98% and
949% respectively. This points out the excessive number of repetitions in a loop for building the population.
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This means that the search space has been reduced in this case. Overall, it can be concluded that the success
rate is not significantly affected by T}, showing the low sensitivity of KGSA to T;.

5.6 Statistical Tests

In the final test, KGSA is statistically compared with other methods. For this purpose, Friedman test has been
performed on possible metrics between KGSA and other methods. It is known that Friedman test is based
on the chi-square distribution with for analyzing the statistical significant difference between the results of
several methods [35]. The Friedman test is a non-parametric statistical test for ranking the algorithms and
evaluating whether their results are statistically significantly different or not. It computes a score for each
algorithm on a specific criterion and finally ranks them based on the scores. In the Friedman test, the null
hypothesis states that the methods are not statistically significantly different. If the p-value is less than a
predetermined level, null hypothesis is rejected which shows that results of the methods are significantly
different. In this paper, p-value was set to 0.05.

Results of Friedman test are provided in Table 11. In this table, the best method in each column is shown
in bold face and the second best is underlined. This table indicates that KGSA and Firefly [19] algorithms are
the most successful. It must be noted that since we did not have access to the codes of other algorithms and
some of the benchmark functions used in this study were different, all tests could not be performed on all
algorithms and thus, some of the cells in Table 11 are empty.

Table 11: Friedman test on KGSA and the other algorithms

Finding all global maxima Number of Function Evaluations

r2 PSO 3.77 7.25
r3 PSO 5.32 8.50
r2 PSO lhc 4.73 6.25
r3 PSO lhc 5.09 7.25
FER PSO 4.82 8.75
SPSO 4.77 7.75
NGSA 6.36 6.00
NCOA 6.23 5.25
Firefly 6.95 3.25
NNGSA 2.75
KGSA 6.95 2.50
P-value 0.006 0.033
Degree of Freedom 9 10

6 Conclusions and Future Works

In this paper, KSGA, a novel Gravitational Search Algorithm for multimodal problems was proposed.
KSGA incorporated k-means and a new elitism strategy called “loop in loop” into the conventional Gravita-
tional Search Algorithm (GSA). First in KGSA, the initial population was clustered by K-means and after that,
the first population was created by selecting the members from different clusters (niches). This resulted in a
large search space and thus increased the chance of finding local and global optima in KGSA. “loop in loop”
technique was used to guide the members of each niche to the optimum direction according to their clusters.
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With these modifications, KGSA does not need the following items: the type of population initialization and
parameter “radius of niche”. Evaluations on different benchmark functions showed that KGSA is superior to
other GSA based evolutionary algorithms in finding both local and global optima. We intend to exploit fuzzy
methods to determine the number of optima at the beginning of KGSA and incorporating the “loop in loop”
technique into unimodal problems for future works.
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Table 1A: Unconstrained test functions in the experiments (see [15])

) Numberof  Number of
Name Test function Range
global peak  all peak
Equal maxima F;(x) = sin®(5mx) 0<x<1 5 5
Decreasing maxima F,(x) = e2 lox;&)("%'l)zsms(snx) 0<x<1 1 5
Uneven maxima F3(x) = sin® (51'[ (x3/4 - 0.05)) 0sx<1 5 5
Uneven decreasing 210 (2)(X70.08)2 3
; F,(x) = e 21°8@ (G852 ) sin® (51-[ (x /4 — vos)) 0<x<1 1 5
maxima
Himmelblau’s
) Fs(Xq, %) = 200 — (x% + x, — 11)? — (% + x3 — 7)? —6<x,X, <6 4 4
function
160/, (15-x) for0<x<15
Two-peak trap Fe(x) = 200 0<x<20 1 2
/5 (x—15) for15<x <20
160/,0x for0<x<10
-peak
Central two-pea F,(x) ={160/c (15-x) for10<x<15 0<x<20 1 2
trap
(200/ (x—15) for15<x<20
[ 80(25—-x) for0.0<x<25
64(x—2.5) for2.5<x<5.0
64(7.5-x) for50<x<75
Five-uneven-peak- _ ) 28(x—75) for7.5<x<125
trap Fo()=128175-%) for125<x<175 0=x<30 2 >
32(x—17.5) for17.5<x<225
32(27.5—-x) for225 <x<275
80(x — 27.5) for27.5 <x <30
Six-Hump Camel B , X L, oz -19<x, <19
Back Fo(x1,%,) = —4 [(4 — 2.1xf +? X§ + x1%; + (—4 + 4x5)x3 Sl=x, <11 2 4
24 | -1
. N\ 6 61"
Shekel’s Foxholes  [10(u%2) =500 = {0'002 *ZO [141+ (= a@)° + (x2 = b®)] } —65.536 < x;, %, < 65.536 1 25
e
where a(i) = 16((i mod 5) — 2),and b(i) = 16(|(i/5)] — 2)
n 5
Inverted Shubert Fii(x) = — ﬂi:1zj:1j cos[(j + Dx; +j] -10<x <10 3n a
n
Inverted Vincent Fio(x) = 1/,12 sin(10 log(x;)) 0.25 < x; < 10 6" 6"
i=1
Table 2A: Constrained test functions in the experiments (see [15])
. Number of Number of all
Name Test function Range
global peak peak
n
F;3(x) = 10n + Z [x2
i=1
- — 10 cos(2nx;)] —-512 <x
cRastrigin ! 2 2
J n <5.12
s.t.h(x) = Z Xi=o
i=1
1 "2
Fia(0 = /400021=1 i
n X;
cGriewank - | l cos (_l> +1 —ol2sx 4 4
‘:1 Vi <512
hG9 = o= > 1 — byl = 0
s.th(x) =———= ) x{ —|xq| =
512(n—1) 4! t
i=2
_ 2 2
A Fis(x) = (x; +a)% + Xz +a,)* + ..
Deb’s + (%, + ap)?
n n —3<x<3 1 4

constrained

s.t.[(x; +b)? + ... (x, +by)?] =n?, =

—-(n+1)<x<n+1
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Table 3A: Mean value of fitness function assessments needed to converge for each PSO based algorithm for the results shown
in Table 1. The results were averaged over fifty independent runs of algorithms

Function KGSA NGSA r2 PSO 3 PSO r2 PSO -lhc r3 PSO -lhc FER-PSO SPSO
Fy 2142133 26389 37630 443151 39651 447452 38429 355430
F, 105+108 300£107 2120£1999 14111 143214 144113 170+12 12719
F3 2631140 334181 2430x1994 2440£1994 456133 623+273 317131 343x23
F, 130£124 31676 17517 160120 178+18 162£16 189+20 144£13
Fs 8641382 1632+330 78702891 214005467 1490138 7380£3347 5070£1945 1250+45
Fe 304£110 477409 3460£197 2620874 739043340 23200£5834  14400£4535 772005859
F, 290+130 234108 2960+1520 5340+2764 43402229 13100+4588 2110£227 7830045856
Fg 5571346 6941853 9781186 46502784 4710£2783 67303088 2660£1992 63300£6773
Fo 230121 10321892 619£24 684130 618130 650£25 965453 65332
Fio 31192172 41641768 4360559 5310453 29700£6277 248005738 34704336 428006968
F11(2D) 33344x8099  5369:1930 55900+2676  39100£1648 378001480 324004581 949001261 616004463
F1,(1D) 12480+18175 2134£430 831043371 15400£4906 960043824 14700£4344 130004601 1700045162

Table 4A: Average number of fitness function evaluations required to converge for each of the evolutionary algorithms. The
results were averaged over fifty independent runs of algorithms

Function KGSA NCOA Firefly NNGSA
[20] [19] [1]

F, 214£133 607131 182194 .

F, 105+108 614222 206191 .

Fs 263£140 622134 186101 .

F, 1304124 620131 180188 .

Fs 8641382 1180250 1152£274 14661513

Fs 3041110 498176 4602178 .

F, 290£130 477163 4892184 .

Fg 557+346 580£39 528215 2000

Fo 2302121 2196172 6921402 2000

Fio 311912172 275391431 - 15740£8313
F1(2D) 3334428099 29397+2555 1260394 30840£7254
F,(1D)  12480%18175 - 1002404 -
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Table 5A: List of required parameters for discovering local and global optima in Tables 6, 7

KGSA: A Gravitational Search Algorithm

Functio
1 F; F3 Fy Fy
n
N 10 10 20 10 20
3
) T 80 60 40 75 120
X
T, 20 15 10 15 20
w
. E N 20 20 20 20 20
2=
5 ¢
© ba T 2000 2000 2000 2000 2000
<
Table 6A: List of required parameters for discovering local and global optima in Table 8
Function Fe F, Fg Fy Fio
N 15 8 30 15 80
<
8 Max eval 2700 5600 3600 5250 20000
~
T, 90 70 60 50 50
3:, N 100 100 100 100 500
(L]
= Max eval 100000 100000 100000 100000 100000
& 0.1 0.1 5 0.01 0.01
Table 7A: List of required parameters for discovering global optima in Table 10
Function Fq3 Fi4 Fig
N 10 40 25
&
0] T 80 100 45
N4
T, 40 50 45
< N 300 200 200
(2]
Q
= T 200 100 100

— 1605
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Table 8A: Success rate of the KGSA for the different values of T;

Function Tl =10 Tl =15 Tl =20 Tl =30 Tl =40 Tl =60

Fy 100 100 100 100 100 100
F, 100 100 100 100 100 100
F3 100 100 100 100 100 100
F4 100 100 100 100 100 100

Fs 96 100 100 100 98 94
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