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Abstract: Homoclinic and heteroclinic solutions to a standard hepatitis C virus (HCV) evolution model
described by T. C. Reluga, H. Dahari and A. S. Perelson, (SIAM J. Appl. Math., 69 (2009), pp. 999–1023)
are considered in this paper. Inverse balancing and generalized di�erential techniques enable derivation
of necessary and su�cient existence conditions for homoclinic/heteroclinic solutions in the considered
system. It is shown that homoclinic/heteroclinic solutions do appear when the considered system describes
biologically signi�cant evolution. Furthermore, it is demonstrated that thehepatitis C virus evolutionmodel is
structurally stable in the topological sense and does maintain homoclinic/heteroclinic solutions as di�usive
coupling coe�cients tend to zero. Computational experiments are used to illustrate the dynamics of such
solutions in the hepatitis C evolution model.

Keywords: hepatitis C model, homoclinic/heteroclinic solution, generalized di�erential operator, inverse
balancing
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1 Introduction
Modeling of biomedical processes using di�erential equations has become more and more widespread over
recent years [6, 12, 29]. Various di�erential equation models on the use of oncolytic viruses as therapeutic
agents against cancer are discussed in [28]. A clinically validated model of tumor-immune cell interactions
is considered in [4]. A new mathematical model for the explanation of the failure of cancer chemotherapy
treatment is presented in [22]. A mathematical model based on di�erential equations is used to describe the
interactions between Ebola virus and wild-type Vero cells in vitro in [21].

Beginning with the classical paper by Neumann et al [20], various di�erential equation models for the
modeling of hepatitis virus infection have been proposed. Global dynamics of a delay di�erential model
of hepatitis B infection evolution are studied in [5, 27]. The transmission of hepatitis C virus (HCV) among
injecting drug users is modeled using ordinary di�erential equations in [11]. A mathematical multi-scale
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model of the within-host dynamics of HCV infection is used to study patients under treatment with direct
acting antiviral medication in [3]. The authors of [2] give a review of recent HCV kinetics models.

Reluga et al [25] present the following model of hepatitis C virus infection that explicitly includes
proliferation of infected and uninfected hepatocytes:

T
pt “ ps ` rTT

ˆ

1´ T ` I

Tmax

˙

´ dTT ´
`

1´ η
˘

βVT ` pqI;

I
pt “ rII

ˆ

1´ T ` I

Tmax

˙

`
`

1´ η
˘

βVT ´ dII´ pqI;

V
pt “ p1´ ϵq pI´ cV,

(1)

wherept is time; T
´

pt
¯

represents uninfected hepatocytes; I
´

pt
¯

represents infected cells and V
´

pt
¯

represents
free virus population. The parameters of (1) have the following meaning: β is the rate of infection per free
virus per hepatocyte; c is the immune virus clearance rate; p is the free virus production rate per infected
cell; dT , dI are death rates for uninfected hepatocytes and infected cells respectively; rT , rI are parameters of
the logistic proliferation of T and I respectively; logistic proliferation happens only if T ă Tmax; parameters
ps and pq represent the increase rate of uninfected hepatocytes through immigration and spontaneous cure
by noncytolytic process respectively; �nally the e�ect of antiviral treatment reduces the infection rate by a
fraction η and the viral production rate by a fraction ϵ. Ranges of parameters are given in [25].

As shown in [25], V can be solved explicitly for patients in a steady state before treatment. Furthermore,
introducing dimensionless state variables and parameters transforms (1) into:

xτ “ x p1´ x ´ yq ´
`

1´ θ
˘

bxy ` qy ` s;
yτ “ ry p1´ x ´ yq `

`

1´ θ
˘

bxy ´ dy ´ qy,
(2)

where x, y are dimensionless state variables for uninfected hepatocytes and infected cells respectively;
r, b, θ, d, q, s P R are real parameters.

System (2) can be rewritten in a more general form:

xτ “ a0 ` a1x ` a2x2 ` a3xy ` a4y; x

∣∣∣∣∣
τ“c

“ u;

yτ “ b0 ` b1y ` b2y2 ` b3xy ` b4x; y

∣∣∣∣∣
τ“c

“ v,
(3)

where c, u, v, ak , bk P R, k “ 1, . . . , 4.
The main objective of this paper is to study soliton-like dynamics of the system (3). Note that since (3)

is not a system of nonlinear partial di�erential equations (PDEs), soliton (or solitary) solutions cannot exist,
due to their de�nition being closely connected to concrete physical phenomena. However, as is demonstrated
in the paper, solutions that exhibit analogous dynamics to those observed in solitary solutions, can be
constructed for system (3). Since the phase trajectories of these solutions are homoclinic or heteroclinic, we
refer to such solutions and homoclinic/heteroclinic solutions.

In the case a4 “ b4 “ 0, system (3) has already been shown to admit homoclinic/heteroclinic solutions
[19], [15]. Solutions described in [19] have simple monotonous transitions from two steady states, while
those found in [15] exhibit much more complicated transient e�ects. Because of this reason, only the latter
homoclinic and heteroclinic solutions to (2), (3) are considered.

Using the inverse balancing and generalized di�erential operator techniques, explicit homoclinic and
heteroclinic solution existence conditions are obtained in terms of the parameters of (2). These conditions,
together with explicit expressions of such solutions, provide insight not only into HCV model (2), but also
other models of nonlinear evolution.

Note that the application of direct techniques to compute the homoclinic/heteroclinic trajectories of (3)
is not straightforward. For example, computation of the �rst integral requires the solution of the following
�rst-order ODE:

yx “
a0 ` a1x ` a2x2 ` a3xy ` a4y
b0 ` b1y ` b2y2 ` b3xy ` b4x

. (4)
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While the above ODE can be integrated for some parameter values, there is no general method to determine
such cases. Furthermore, the generalized di�erential operator technique yields not only phase trajectories
of (3), but also its general solution and the conditions with respect to a0, . . . , a4; b0, . . . , b4 under which
homoclinic/heteroclinic solutions exist.

2 Preliminaries

2.1 Power series and their extensions

In this paper, functions of the following power series form are considered:

f pzq “
`8
ÿ

j“0
aj
zj
j! , (5)

where z, aj P C. The coe�cients of power series (33) are constructed via generalized di�erential operator
technique, described in the following sections of the paper.

We treat the convergence of series (33) as follows. If (33) converges in some ball |z| ă R; R ą 0, then it
is possible to extend (33) to a wider complex domain (not including the singularities of (33)) via classical
extension techniques. Let t P R denote a real argument of this extended function. Inserting t into the
extension of (33) yields a real power series f pxq de�ned for values not necessarily in the radius |t| ă R. For
the purposes of this paper, we consider f pxq and its power series representation to be congruent.

2.2 Monotonous and non-monotonous homoclinic/heteroclinic solutions

First, let us consider monotonous homoclinic and heteroclinic solutions of the following soliton-like form
[23, 26]:

x pτ; c, u, vq “ σ
exp

`

η pτ ´ cq
˘

´ x1
exp

`

η pτ ´ cq
˘

´ τpxq1

; (6)

y pτ; c, u, vq “ γ
exp

`

η pτ ´ cq
˘

´ y1
exp

`

η pτ ´ cq
˘

´ τpyq1

, (7)

where η ‰ 0, σ, γ P R are constants; τpxq1 , τpyq1 depend on initial conditions u, v.
The biological interpretation of (6), (7) represents the transition from the size of population of cells before

therapy to the size of populationafter therapy.However, this transition ismonotonous; the solutions shown in
Fig. 1 (a) describe the di�erence between the sizes of populations before and after therapy, and the transition
between the steady states.

Non-monotonous homoclinic/heteroclinic solutions read [7, 26]:

x pτ; c, u, vq “ σ

´

exp
`

η pτ ´ cq
˘

´ x1
¯´

exp
`

η pτ ´ cq
˘

´ x2
¯

´

exp
`

η pτ ´ cq
˘

´ τpxq1

¯´

exp
`

η pτ ´ cq
˘

´ τpxq2

¯ ; (8)

y pτ; c, u, vq “ γ

´

exp
`

η pτ ´ cq
˘

´ y1
¯´

exp
`

η pτ ´ cq
˘

´ y2
¯

´

exp
`

η pτ ´ cq
˘

´ τpyq1

¯´

exp
`

η pτ ´ cq
˘

´ τpyq2

¯ , (9)

where η ‰ 0, σ, γ P R are constants; τpxqk , τpyqk , xk , yk , k “ 1, 2 depend on initial conditions u, v.
Solutions (8), (9) describemuchmore complex transition processes between the steady states. The size of

the population of cells during the transient process exceeds populations both at the beginning and the end of
the therapy if only the considered solutions have minimum points (the black line in Fig. 1 (b)). Analogously,
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Figure 1: Monotonous (a) and non-monotonous homoclinic/heteroclinic solutions (b). Black and gray lines represent xpτq and
ypτq respectively. The parameters of solutions read: η “ σ “ 1; γ “ 1{2; c “ 0; x1 “ 3; x2 “ 1; τpxq

1 “ ´2; τpxq

2 “ ´5; y1 “
´8; y2 “ ´1{2; τpyq

1 “ ´3; τpyq

2 “ ´1.

(a) (b)

solutions with maximum points describe complex transitions from the population of cells before and after
the treatment (the gray line in Fig. 1 (b)).

From the biological point of view, transient processes governed by homoclinic and heteroclinic solutions
highlight important phenomena. Let us consider the dynamics of uninfected cells (the black line in Fig. 1 (b)).
The population of uninfected cells after the therapy becomes lower than the population before the therapy.
However, the number of uninfected cells grows during the therapy and exceeds the population of uninfected
cells at the beginning of the computational experiment (Fig. 1 (b)).

Note that the negative values of cell population xpτq and ypτq are a consequence of the non-
dimensionalization of system (1).

2.3 Solution transformation

In the following derivations, the standard independent variable transformation will be used:

t :“ exp
`

η pτ ´ cq
˘

; pc :“ exp
`

η pτ ´ cq
˘

. (10)

Using (10), homoclinic/heteroclinic solutions (8), (9) can be written as:

px pt; c, u, vq :“ x
ˆ

1
η ln τ;

1
η ln c, u, v

˙

“ σ
`

t ´ px1
˘ `

t ´ px2
˘

´

t ´ tpxq1

¯´

t ´ tpxq2

¯ ; (11)

py pτ; c, u, vq :“ y
ˆ

1
η ln τ;

1
η ln c, u, v

˙

“ γ

`

t ´ py1
˘ `

t ´ py2
˘

´

t ´ tpyq1

¯´

t ´ tpyq2

¯ , (12)

where tpxqk “ pcτpxqk , tpyqk “ pcτpyqk , pxk “ pcxk , pyk “ pcyk , k “ 1, 2.Usingpartial fractions (11), (12) canbe rewritten
as:

px “ σ ` λ1
1´ ρ1

`

t ´ pc
˘ `

λ2
1´ ρ2

`

t ´ pc
˘ ; (13)

py “ γ `
µ1

1´ ν1
`

t ´ pc
˘ `

µ2
1´ ν2

`

t ´ pc
˘ , (14)

where λk , µk , ρk , νk , k “ 1, 2 are functions of u, v.
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2.4 Generalized di�erential operator technique

In this section, a summary on the generalized di�erential operator technique for the construction of solutions
to ordinary di�erential equations in presented. More detailed derivations can be found in [16].

2.4.1 Generalized di�erential operators

Let Ppc, u, vq, Qpc, u, vq be trivariate analytic functions. A generalized di�erential operator Dcuv reads:

Dcuv :“ Dc ` Ppc, u, vqDu ` Qpc, u, vqDv , (15)

where Dβ :“
B

Bβ for any variable β. Standard properties of di�erentiation operators hold true for (15) [14]:

Dcuv f
`

g pc, u, vq
˘

“
df
dg Dc,uvg; (16)

Dcuv
`

fg
˘

“ g
`

Dcuv f
˘

` f pDcuvgq ; (17)

Dcuv
f
g “

g
`

Dcuv f
˘

´ f pDcuvgq
g2 , (18)

where f , g denote arbitrary functions analytic in c, u, v.

2.4.2 Multiplicative operators

Using (15), the multiplicative operator can be constructed:

M :“
`8
ÿ

j“0

tj
j!D

j
cuv , (19)

where t is an arbitrary real variable. Operator (19) has two important properties:

Mcm “ pt ` cqm , m “ 0, 1, . . . ; (20)
Mf pc, s, tq “ f pt ` c,Ms,Mtq . (21)

Note that (20) follows immediately from the de�nition of (19). Without loss of generality, the proof of (21) for
multiplicative operatorM “

ř`8
j“0

tj
j!
`

Ppu, vqDu ` Qpu, vqDv
˘j is presented below.

Let y1 :“ Mu “ y1pt, u, vq, y2 :“ Mv “ y2pt, u, vq, z :“ Mf pu, vq “ zpt, u, vq and w :“ f pMu,Mvq “
f py1, y2q. To prove (21), it needs to be shown that z “ w for all t, u, v.

Note that:

Dtz “ Dt
`8
ÿ

j“0

tj
j!D

j
uv f pu, vq “

`8
ÿ

j“1

tj´1
pj ´ 1q!D

j
uv f pu, vq “ DuvMf pu, vq “ Duvz “ PDuz ` QDvz. (22)

Thus, the function zpt, u, vq satis�es the partial di�erential equation:

Bz
Bt “ P

Bz
Bu ` Q

Bz
Bv , (23)

with initial condition zp0, u, vq “ f pu, vq that follows from the de�nition of z.
Analogously, it is shown that:

Byk
Bt “ P

Byk
Bu ` Q Byk

Bv ; k “ 1, 2; (24)



1542 | T. Telksnys et al.

with y1p0, u, vq “ u and y2p0, u, vq “ v. Using (24) and the de�nition of w yields:

Dtw “ Dt f py1, y2q “
B f pα, βq
Bα

∣∣∣∣∣α“y1
β“y2

ˆ

P By1
Bu ` Q By1

Bv

˙

`
B f pα, βq
Bβ

∣∣∣∣∣α“y1
β“y2

ˆ

P By2
Bu ` Q By2

Bv

˙

“ P

¨

˚

˚

˝

B f pα, βq
Bα

∣∣∣∣∣α“y1
β“y2

By1
Bu `

B f pα, βq
Bβ

∣∣∣∣∣α“y1
β“y2

By2
Bu

˛

‹

‹

‚

` Q

¨

˚

˚

˝

B f pα, βq
Bα

∣∣∣∣∣α“y1
β“y2

By1
Bv `

B f pα, βq
Bβ

∣∣∣∣∣α“y1
β“y2

By2
Bv

˛

‹

‹

‚

“ P Bw
Bu ` Q

Bw
Bv .

(25)

Note that w satis�es the initial condition wp0, u, vq “ f
`

y1p0, u, vq, y2p0, u, vq
˘

“ f pu, vq, thus z and w
coincide, which results in the proof of (21).

Construction of general solutions to ODEs requires one �nal operator which is denoted as the generalized
multiplicative operator:

G :“
`8
ÿ

j“0

pt ´ cqj
j! Djcuv . (26)

Operator G has two properties analogous to (20), (21):

Gcm “ tm , m “ 0, 1, . . . ; (27)
Gf pc, u, vq “ f

`

x,Gu,Gv
˘

, (28)

where f is a trivariate analytic function. The proof of (28) follows from (21):

Mf pc, u, vq “ f

¨

˝t ` c,
`8
ÿ

j“0

tj
j!D

j
cuvu,

`8
ÿ

j“0

tj
j!D

j
cuvv

˛

‚. (29)

Substituting t for t ´ c yields (28).

2.4.3 Construction of solutions to ODEs

Let us consider the following system of ODEs:

pxt “ P
`

t, px, py
˘

; px

∣∣∣∣∣
t“pc

“ u;

pyt “ Q
`

t, px, py
˘

; py

∣∣∣∣∣
t“pc

“ v,
(30)

where P, Q are analytic functions. The generalized di�erential operator respective to (30) reads [13]:

D
pcuv :“ D

pc ` P
`

pc, u, v
˘

Du ` Q
`

pc, u, v
˘

Dv . (31)

Using (31), general solution to (30) is expressed as [13, 14]:

px “ Gu “
`8
ÿ

j“0

`

t ´ pc
˘j

j! Dj
pcuvu; py “ Gv “

`8
ÿ

j“0

`

t ´ pc
˘j

j! Dj
pcuvv. (32)

The convention D0
pcuv “ I, where I is the identity operator, is used.

Identities (32) can be proven using properties (21) and (28) derived in the previous section. Consider
operatorsM,G de�ned with respect to the generalized di�erential operator (31). First, let z “ zpt, pc, u, vq “
Mu and w “ wpt, pc, u, vq “ Mv. Property (21) yields:

Dtz “ DtMu “ D
pcuvMu “ MD

pcuv “ MP
`

pc, u, v
˘

“ P pt ` c,Mu,Mvq “ Ppt ` c, z, wq. (33)
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Analogously,
Dtw “ Qpt ` c, z, wq. (34)

Selecting px “ zpt ´ c, pc, u, vq “ Gu and py “ wpt ´ c, pc, u, vq “ Gv yields the system (30). Furthermore, the

de�nition of operator G yields that px

∣∣∣∣∣
t“pc

“ u and py

∣∣∣∣∣
t“pc

“ v, thus (32) hold true.

In the following derivations, the notation

pj “ pj
`

pc, u, v
˘

:“ Dj
pcuvu; qj “ qj

`

pc, u, v
˘

:“ Dj
pcuvv; j “ 0, 1, . . . (35)

will be used, which transforms (32) into:

px “
`8
ÿ

j“0

`

t ´ pc
˘j

j! pj; (36)

py “
`8
ÿ

j“0

`

t ´ pc
˘j

j! qj . (37)

Furthermore, coe�cients pj , qj satisfy recurrence relations:

pj`1 “ D
pcuvpj; qj`1 “ D

pcuvqj . (38)

3 Existence of homoclinic/heteroclinic solutions in (30)
Let ρ1 ‰ ρ2. If (30) admits solutions (13), (14) then (13) and (36) must be equal. Expanding (13) in a power
series and equating to (36) yields:

σ ` λ1 ` λ2 `
`8
ÿ

j“1

`

t ´ pc
˘j

j!
´

j!λ1ρj1 ` j!λ2ρ
j
2

¯

“

`8
ÿ

j“0

`

t ´ pc
˘j

j! pj . (39)

Note that p0 “ u by (35), thus (39) yields:

p0 “ u; (40)

pj “ j!
´

λ1ρj1 ` λ2ρ
j
2

¯

, j “ 1, 2, . . . . (41)

Analogous derivations with respect to y and ν1 ‰ ν2 result in:

q0 “ v; (42)

qj “ j!
´

µ1νj1 ` µ2ν
j
2

¯

, j “ 1, 2, . . . . (43)

Thus (30) admits solutions (13), (14) if and only if (41), (43) hold true.

Theorem 3.1. System (30) admits homoclinic/heteroclinic solutions (13), (14) with ρ1 ‰ ρ2 if and only if:

λk “
p2 ´ 2ρlp1
2ρk

`

ρk ´ ρl
˘ ; µk “

q2 ´ 2νlq1
2ρk pνk ´ νlq

; (44)

D
pcuvρk “ ρ

2
k ; D

pcuvνk “ ν
2
k ; (45)

D
pcuvλk “ λkρk; D

pcuvµk “ µkνk; (46)
3p21p24 ´ 36p1p2p3p4 ` 32p1p33 ` 36p32p4 ´ 36p22p23 ‰ 0; (47)
3q21q24 ´ 36q1q2q3q4 ` 32q1q33 ` 36q32q4 ´ 36q22q23 ‰ 0, (48)

k, l “ 1, 2; k ‰ l.
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Proof. It will be proven that (41), (43) hold true if and only if (44)–(48) hold true.
Necessity. Let (41) hold true. Taking j “ 1, 2 yields:

p1 “ λ1ρ1 ` λ2ρ2; (49)

p2 “ 2
´

λ1ρ21 ` λ2ρ22
¯

. (50)

Solving the above equations for λ1, λ2 results in (44).
Equation (41) yields the following determinant equality:

det

»

—

—

–

p1
1!

p2
2!

p3
3!

p2
2!

p3
3!

p4
4!

1 ρk ρ2k

fi

ffi

ffi

fl

“ 0; k “ 1, 2. (51)

Expanding the left side of (51) yields:

∆2ρ2k ´ ∆1ρk ` ∆0 “ 0; k “ 1, 2, (52)

where

∆2 “
p1p3
3! ´

ˆ

p2
2!

˙2
; (53)

∆1 “
p1p4
4! ´

p2p3
2! ¨ 3! ; (54)

∆0 “
p2p4
2! ¨ 4! ´

ˆ

p3
3!

˙2
. (55)

Solving (52) for ρk results in:

ρ1,2 “
∆1 ˘

b

∆21 ´ 4∆2∆0
2∆2

. (56)

Since ρ1 ‰ ρ2, the discriminant ∆21 ´ 4∆2∆0 ‰ 0, which results in condition (47).
Denoting Θ :“

b

∆21 ´ 4∆2∆0 and applying operator D
pcuv to (56) results in:

D
pcuvρ1,2 “

p˘Θ ´ ∆1q
`

D
pcuv∆2

˘

` ∆2
´

`

D
pcuv∆1

˘

˘
`

D
pcuvΘ

˘

¯

2∆22
. (57)

Using recursion (38) it can be obtained that:

D
pcuv∆2 “

p1p4
6 ´

p2p3
3 ; (58)

D
pcuv∆1 “

p1p5
24 ´

p2p4
24 ´

p23
12; (59)

D
pcuv∆0 “

p2p5
48 ´

5p3p4
144 ; (60)

D
pcuvΘ “

1
Θ

´

∆1
`

D
pcuv∆1

˘

´ 2∆0
`

D
pcuv∆2

˘

´ 2∆2
`

D
pcuv∆0

˘

¯

. (61)

Relation (41) transforms (53)–(55) and Θ into:

∆2 “ λ1λ2ρ1ρ2
`

ρ1 ´ ρ2
˘2 ; (62)

∆1 “ λ1λ2ρ1ρ2
`

ρ1 ` ρ2
˘ `

ρ1 ´ ρ2
˘2 ; (63)

∆0 “ 5λ1λ2ρ21ρ22
`

ρ1 ´ ρ2
˘2 ; (64)

Θ “ λ1λ2ρ1ρ2
`

ρ1 ´ ρ2
˘3 . (65)

Furthermore,

D
pcuv∆2 “ 4λ1λ2ρ1ρ2

`

ρ1 ` ρ2
˘ `

ρ1 ´ ρ2
˘2 ; (66)
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D
pcuv∆1 “ λ1λ2ρ1ρ2

`

ρ1 ´ ρ2
˘2

´

5ρ21 ` 8ρ1ρ2 ` 5ρ22
¯

; (67)

D
pcuv∆0 “ 5λ1λ2ρ21ρ22

`

ρ1 ` ρ2
˘ `

ρ1 ´ ρ2
˘2 ; (68)

D
pcuvΘ “ 5λ1λ2ρ1ρ2

`

ρ1 ` ρ2
˘ `

ρ1 ´ ρ2
˘3 . (69)

Inserting (62)–(69) into (57) yields (45).
Applying operator D

pcuv to (44) and using (45) yields:

D
pcuvλk “

4p1ρkρl ´ p2
`

2ρk ` 3ρl
˘

` p3
2ρk

`

ρk ´ ρl
˘ . (70)

Inserting (41) into (70) results in (46).
Su�ciency. Condition (44) yields:

p1 “ λ1ρ1 ` λ2ρ2. (71)

Applying operator D
pcuv to (71) results in:

D
pcup1 “ ρ1

`

D
pcuvλ1

˘

` λ1
`

D
pcuvρ1

˘

` ρ2
`

D
pcuvλ2

˘

` λ2
`

D
pcuvρ2

˘

“ 2
´

λ1ρ21 ` λ2ρ22
¯

“ p2.
(72)

Continuing by induction yields (41).
The proof for parameters of y is analogous.

Corollary 3.1. If conditions of Theorem 3.1 hold true, then the third and higher order Hankel determinants of
sequences pj

j! ,
qj
j! ; j “ 1, 2, . . . are equal to zero:

Hpnqp “ det
„ pj`k´2
pj ` k ´ 2q!



1ďj,kďn`1
“ 0; (73)

Hpnqq “ det
„ qj`k´2
pj ` k ´ 2q!



1ďj,kďn`1
“ 0, (74)

n “ 3, 4, . . ..

Proof. Proof results from the derivation of Theorem 3.1 and (41), (43).

4 Necessary homoclinic/heteroclinic solution existence conditions
in (3)

The inverse balancing technique can be used to determine necessary existence conditions of solutions (8),
(9) to (3). The main principle of this technique is to insert the solution ansatz into the considered equations
and obtain a system of equations linear in system parameters ak , bk , k “ 0, . . . , 4. The inverse balancing
technique has been successfully used to obtain necessary solution existence conditions in a variety of
nonlinear ordinary and partial di�erential equations [10, 15, 18]. Note that the inverse balancing technique
does not possess the drawbacks associated with various solution construction (or direct ansatz) methods,
which have attracted a signi�cant amount of criticism [1, 8, 9, 17, 24].

4.1 Transformation of (3)

Using the substitution (10), system (3) is transformed to:

ηtpxt “ a0 ` a1px ` a2px2 ` a3pxpy ` a4py;
ηtpyt “ b0 ` b1py ` b2py2 ` b3pxpy ` b4px,

(75)
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with initial conditions

px

∣∣∣∣∣
t“pc

“ u; py

∣∣∣∣∣
t“pc

“ v. (76)

The following notations are introduced:

Xptq :“
`

t ´ px1
˘ `

t ´ px2
˘

; Yptq :“
`

t ´ py1
˘ `

t ´ py2
˘

; (77)

Txptq :“
´

t ´ tpxq1

¯´

t ´ tpxq2

¯

; Typtq :“
´

t ´ tpyq1

¯´

t ´ tpyq2

¯

, (78)

which transform solutions (11), (12) to:

px “ σ XptqTxptq
; py “ γ

Yptq
Typtq

. (79)

4.2 Necessary existence conditions for (79) in (75)

Following the inverse balancing technique, solution ansatz (79) is inserted into (75). After simpli�cation, (75)
reads:

ηtσTy
`

XtTx ´ X pTxqt
˘

“ a0T2xTy ` a1σTxTyX ` a2σ2X2Ty ` a3σγXYTx ` a4γYT2x ; (80)

ηtγTx
´

YtTy ´ Y
`

Ty
˘

t

¯

“ b0T2yTx ` b1γTyTxY ` b2γ2Y2Tx ` b3σγYXTy ` b4γXT2y . (81)

Equation (78) results in:

Tx
´

tpxq1

¯

“ Tx
´

tpxq2

¯

“ Ty
´

tpyq1

¯

“ Ty
´

tpyq2

¯

“ 0; (82)

pTxqt

∣∣∣∣∣
t“tpxq

1

“ tpxq1 ´ tpxq2 ; pTxqt

∣∣∣∣∣
t“tpxq

2

“ tpxq2 ´ tpxq1 ; (83)

`

Ty
˘

t

∣∣∣∣∣
t“tpyq

1

“ tpyq1 ´ tpyq2 ;
`

Ty
˘

t

∣∣∣∣∣
t“tpyq

2

“ tpyq2 ´ tpyq1 . (84)

Letting t “ tpxq1 , tpxq2 in (80), t “ tpyq1 , tpyq2 in (81) and using (82)–(84) yields the following equations:

Ty
´

tpxq1

¯

ˆ

a2σ2X2
´

tpxq1

¯

` ησtpxq1

´

tpxq1 ´ tpxq2

¯

X
´

tpxq1

¯

˙

“ 0; (85)

Ty
´

tpxq2

¯

ˆ

a2σ2X2
´

tpxq2

¯

` ησtpxq2

´

tpxq2 ´ tpxq1

¯

X
´

tpxq2

¯

˙

“ 0; (86)

Tx
´

tpyq1

¯

ˆ

b2γ2Y2
´

tpyq1

¯

` ηγtpyq1

´

tpyq1 ´ tpyq2

¯

Y
´

tpyq1

¯

˙

“ 0; (87)

Tx
´

tpyq2

¯

ˆ

b2γ2Y2
´

tpyq2

¯

` ηγtpyq2

´

tpyq2 ´ tpyq1

¯

Y
´

tpyq2

¯

˙

“ 0. (88)

Equations (85)–(88) have nontrivial solutions only if:

tpxq1 “ tpyq1 ; tpxq2 “ tpyq2 , (89)

thus (75) (and conversely (3)) only admits homoclinic/heteroclinic solutions with equal denominators. Let
t1 :“ tpxq1 “ tpyq1 and t2 :“ tpxq2 “ tpyq2 . Equation (89) transforms (79) into:

px “ σ XptqTptq ;
py “ γ

Yptq
Tptq , (90)

where Tptq :“ pt ´ t1q pt ´ t2q.
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4.3 Necessary existence conditions for (90) in (75)

If (89) holds true, (80), (81) read:

ηtσ pXtT ´ XTtq “ a0T2 ` a1σXT ` a2σ2X2 ` a3σγXY ` a4γYT; (91)
ηtγ pYtT ´ YTtq “ b0T2 ` b1γYT ` b2γ2Y2 ` b3σγXY ` b4σXT . (92)

Note that
T pt1q “ T pt2q “ X

`

px1
˘

“ X
`

px2
˘

“ Y
`

py1
˘

“ Y
`

py2
˘

“ 0, (93)

and
Tt “ 2t ´ t1 ´ t2; Xt “ 2t ´ px1 ´ px2; Yt “ 2t ´ py1 ´ py2. (94)

Taking t “ t1, t2 in (91) and using (93), (94) yields:

ηt1 pt2 ´ t1q “ σX pt1q a2 ` γY pt1q a3; (95)
ηt2 pt1 ´ t2q “ σX pt2q a2 ` γY pt2q a3. (96)

Analogous computations with respect to (92) result in:

ηt1 pt2 ´ t1q “ γY pt1q b2 ` σX pt1q b3; (97)
ηt2 pt1 ´ t2q “ γY pt2q b2 ` σX pt2q b3. (98)

Solution of (95)–(98) with respect to a2, a3, b2, b3 reads:

a2 “ b3 “
η
σ
pt2 ´ t1q

`

t1Y pt2q ` t2Y pt1q
˘

`

X pt1q Y pt2q ´ X pt2q Y pt1q
˘ ; (99)

b2 “ a3 “
η
γ

pt1 ´ t2q
`

t2X pt1q ` t1X pt2q
˘

`

X pt1q Y pt2q ´ X pt2q Y pt1q
˘ . (100)

Similarly, taking t “ px1, px2 in (91) and t “ py1, py2 in (92) yields the following solutions for a0, a4, b0, b4:

a0 “
ησ

`

px1 ´ px2
˘

´

px1Y
`

px2
˘

` px2Y
`

px1
˘

¯

T
`

px1
˘

Y
`

px2
˘

´ T
`

px2
˘

Y
`

px1
˘ ; (101)

a4 “
ησ

`

px2 ´ px1
˘

´

px1T
`

px2
˘

` px2T
`

px1
˘

¯

γ
´

T
`

px1
˘

Y
`

px2
˘

´ T
`

px2
˘

Y
`

px1
˘

¯ ; (102)

b0 “
ηγ

`

py1 ´ py2
˘

´

py1X
`

py2
˘

` py2X
`

py1
˘

¯

T
`

py1
˘

X
`

py2
˘

´ T
`

py2
˘

X
`

py1
˘ ; (103)

b4 “
ηγ

`

py2 ´ py1
˘

´

py1T
`

py2
˘

` py2T
`

py1
˘

¯

σ
´

T
`

py1
˘

X
`

py2
˘

´ T
`

py2
˘

X
`

py1
˘

¯ . (104)

Finally, taking t “ 0 in (91), (92) yields a1, b1:

a1 “ ´
1
σ
´

a0 ` σ2a2 ` σγa3 ` γa4
¯

; (105)

b1 “ ´
1
γ

´

b0 ` γ2b2 ` σγb3 ` σb4
¯

. (106)

Note that there are 10 parameters in (75) and (91), (92) yields a non-degenerate system of 10 linear
balancing equations, thus no constraints on the parameters of solution (90) needs to be imposed. However,
as shown by (99), (100) conditions a3 “ b2 and b3 “ a2 must hold if (75) admits solution (90).

The results of this section are summarized in the following Lemma.
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Lemma 4.1. System (3) admits homoclinic/heteroclinic solutions (8), (9) only if:

τpxq1 “ τpyq1 ; τpxq2 “ τpyq2 ; (107)
a3 “ b2; b3 “ a2. (108)

Note that condition (107) results from (89) and substitution (10). Also, ρk “ νk; k “ 1, 2 in (13), (14) when
(107) holds true.

5 Construction of homoclinic/heteroclinic solutions to (3)
In this section, explicit expressions of homoclinic and heteroclinic solutions to (3) are constructed. It is
assumed that the necessary existence conditions (107), (108) hold true.

5.1 Derivation of parameter η

Parameter η is derived using Corollary 3.1. Consider the following Hankel determinants:

Hp3qp “

∣∣∣∣∣∣∣
p1
1!

p2
2!

p3
3!

p2
2!

p3
3!

p4
4!

p3
3!

p4
4!

p5
5!

∣∣∣∣∣∣∣ ; Hp3qq “

∣∣∣∣∣∣∣
q1
1!

q2
2!

q3
3!

q2
2!

q3
3!

q4
4!

q3
3!

q4
4!

q5
5!

∣∣∣∣∣∣∣ . (109)

Parameter η must be chosen to satisfy

Hp3qp “ 0; Hp3qq “ 0. (110)

Furthermore, η can only depend on coe�cients a0, . . . , a4; b0, . . . , b4, otherwise Theorem 3.1 does not hold
true and obtained solutions would not be valid for all initial conditions.

It can be observed that:

Hp3qp “
1

η9pc9
´

A6pu, vqη6 ` A4pu, vqη4 ` A2pu, vqη2 ` A0pu, vq
¯

; (111)

Hp3qq “
1

η9pc9
´

B6pu, vqη6 ` B4pu, vqη4 ` B2pu, vqη2 ` B0pu, vq
¯

. (112)

Thus, roots of equations (111), (112) with respect to η that do not depend on u, v must be found. Note that:

A6 “
ˆ

1
2160

˙1{3
K3, K :“

´

u2a2 ` pa3v ` a1q u ` a4v ` a0
¯

; (113)

and
A4 “ F pu, vq K, (114)

where F is a polynomial in u, v.
Since the roots η must not depend on initial conditions, any values of u, v can be chosen and inserted

into (111). Let

v “ f puq “ ´a2u
2
` a1u ` a0
b2u ` a4

, (115)

then A6 “ A4 “ 0 and using (111), η2 can be expressed as:

η2 “ ´A0pu, f puqqA2pu, f puqq
. (116)

The numerator and denominator of (116) depend linearly on u:

η2 “ α1u ` α0
β1u ` β0

, (117)
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where αk , βk are functions of a0, . . . , a4; b0, . . . , b4.
Analogous computations with respect to Hp3qq lead to:

u “ gpvq “ ´b2v
2
` b1v ` b0
a2v ` b4

; (118)

η2 “ ´B0pgpvq, vqB2pgpvq, vq
“

pα1v ` pα0
pβ1v ` pβ0

. (119)

Parameter η does not depend on u, v only if:

α1β0 ´ α0β1 “ 0; (120)

pα1pβ0 ´ pα0pβ1 “ 0. (121)

Note that:
1

a0b22 ´ a1a4b2 ` a2a24

`

α1β0 ´ α0β1
˘

“
1

b0a22 ´ b1b4a2 ` b2b24

´

pα1pβ0 ´ pα0pβ1
¯

, (122)

which leads to the following su�cient existence condition for homoclinic/heteroclinic solutions to (3):

9a0a1a2 ` 9b0b1b2 ´ 18a0a2b1 ´ 18b0b2a1 ` 3a1b21 ` 3b1a21 ´ 2a31 ´ 2b31
´ 9a1a4b4 ´ 9b1b4a4 ` 27a0b2b4 ` 27b0a2a4 “ 0.

(123)

If (123) holds true, η can be computed from either (117) or (119). Furthermore, if (123) holds true, the parameter
η does not depend on initial conditions c, u, v.

5.2 Necessary and su�cient existence conditions for homoclinic/heteroclinic
solutions to (3)

Theorem 3.1, Lemma 4.1 and condition (123) together with computer algebra computations result in the
following theorem.

Theorem 5.1. System (3) admits homoclinic/heteroclinic solutions (8), (9) if and only if conditions (107), (108)
and (123) hold true.

Note that
ρk “

ρ˚k
pc ; k “ 1, 2, (124)

where ρ˚k “ ρ
˚
k pu, vq.

Relations between parameters of (13), (14) and (8), (9) read:

τk “ 1` 1
ρ˚k

; k “ 1, 2; (125)

x1,2 “
1
2

ˆ

Ax ˘
b

A2x ´ 4Bx
˙

; (126)

y1,2 “
1
2

ˆ

Ay ˘
b

A2y ´ 4By
˙

, (127)

where

Ax :“
λ1
σρ˚1

`
λ2
σρ˚2

` τ1 ` τ2; (128)

Bx :“ τ1τ2 `
λ1τ2
σρ˚1

`
λ2τ1
σρ˚2

; (129)

Ay :“
µ1
γρ˚1

`
µ2
γρ˚2

` τ1 ` τ2; (130)
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By :“ τ1τ2 `
µ1τ2
γρ˚1

`
µ2τ1
γρ˚2

. (131)

Parameters σ, γ read:
σ “ u ´ λ1 ´ λ2; γ “ v ´ µ1 ´ µ2. (132)

Note that (117) yields two values for η, however, it is su�cient to consider only the positive or negative root
of (117) to obtain the general solution to (3) when Theorem 5.1 holds true, because the sign of η can be
interchanged:

x “ σ

´

exp
`

η pτ ´ cq
˘

´ x1
¯´

exp
`

η pτ ´ cq
˘

´ x2
¯

´

exp
`

η pτ ´ cq
˘

´ τ1
¯´

exp
`

η pτ ´ cq
˘

´ τ2
¯

“ σ
x1x2

´

exp
`

´η pτ ´ cq
˘

´ 1
x1

¯´

exp
`

´η pτ ´ cq
˘

´ 1
x2

¯

τ1τ2
´

exp
`

´η pτ ´ cq
˘

´ 1
τ1

¯´

exp
`

´η pτ ´ cq
˘

´ 1
τ2

¯ .

(133)

As demonstrated in [15], the value x1x2
τ1τ2 does not depend on initial conditions, which proves that changing

the sign of η does not yield new solutions.

6 Homoclinic/heteroclinic solutions to hepatitis C model (2)

6.1 Existence conditions

Comparing (2) to (3) it can be observed that:

a0 “ s; a1 “ 1; a2 “ ´1; a3 “ b
`

θ ´ 1
˘

´ 1; a4 “ q; (134)
b0 “ 0; b1 “ r ´ d ´ q; b2 “ ´r; b3 “ b

`

1´ θ
˘

´ r; b4 “ 0. (135)

To preserve biological signi�cance of system (2), the parameters (134), (135) must satisfy q, s, r ě 0; b P
”

10´2; 103
ı

; d P
”

10´3; 102
ı

[25].
Using Theorem 5.1 conditions for the existence of homoclinic/heteroclinic solutions to (2) can be derived.

Note that only homoclinic/heteroclinic solutions with τpxqk “ τpyqk can be considered. Inserting (134), (135)
into (108) yields two congruent equations:

`

1´ θ
˘

b ´ r “ ´1; b
`

θ ´ 1
˘

´ 1 “ ´r. (136)

Both equations are satis�ed if parameter r reads:

r “ b
`

1´ θ
˘

` 1. (137)

Let (137) hold true. Denote Ω :“ b
`

1´ θ
˘

` 1´ d ´ q “ r ´ d ´ q. Inserting (134), (135) into condition (123)
yields:

s “ 1
9
´

Ω2
´ Ω ´ 2

¯

. (138)

Equations (137) and (138) result in the following corollary.

Corollary 6.1. Hepatitis C model (2) admits homoclinic/heteroclinic solutions if and only if τpxqk “ τpyqk , (137)
and (138) hold true.

Computer algebra computations prove that when Corollary (6.1) holds true, parameters y1 “ y2 “ 0.
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6.2 Equilibria

Let (137) and (138) hold true. The equilibria of (2) read:

xp1q˚ “
2
3 ´

Ω
3 ; yp1q˚ “ 0; (139)

xp2q˚ “
1
3 `

Ω
3 ; yp1q˚ “ 0; (140)

xp3q˚ “

`

1´ θ
˘

ps ` qq b ´ q2 `
`

1´ d
˘

q ` s
`

1´ θ
˘2 b2 ´

`

1´ θ
˘ `

d ` q ´ 1
˘

b ´ d
; (141)

yp3q˚ “
2 p2Ω ´ 1q2

9
´

`

1´ θ
˘2 b2 ´

`

1´ θ
˘ `

d ` q ´ 1
˘

b ´ d
¯ . (142)

Equilibrium point (141), (142) is a stable node as τ Ñ `8:

lim
τÑ`8

`

x pτq , y pτq
˘

“ pσ, γq . (143)

Equilibrium point (139) is an unstable node as τ Ñ ´8:

lim
τÑ´8

`

x pτq , y pτq
˘

“

ˆ

σ x1x2τ1τ2
, 0

˙

. (144)

The remaining equilibrium point (140) is a saddle point.

6.3 Computational experiment

Let us consider the following system:

xτ “ x p1´ x ´ yq ` 18xy ` 4y ` 4
9; x

∣∣∣∣∣
τ“c

“ u; (145)

yτ “ 19y p1´ x ´ yq ´ 18xy ´ 16y; y

∣∣∣∣∣
τ“c

“ v. (146)

The above system corresponds to (2) with the following parameters:

b “ 24; θ “ 1
4; q “ 4; d “ 12; r “ 19; s “ 4

9 . (147)

Note that parameters (147) satisfy the guidelines given in [25] for biologically signi�cant systems. Further-
more, conditions of Corollary 6.1 are satis�ed, thus homoclinic/heteroclinic solutions to (145), (146) do exist.

Equation (117) yields:
η “ ˘5

3 . (148)

As noted previously, it is su�cient to consider one value of η to obtain the general solution to (145), (146). In
subsequent computations the value η “ 5

3 is used.
Theorem 3.1 yields the following parameters of homoclinic/heteroclinic solutions:

ρ1,2 “
1
10pc

´

´3u ´ 57v ´ 1˘
?
Φ
¯

; (149)

λ1,2 “
3
ˆ?

Φ3
3 ´

´

1083v2`p57u´202qv`5u` 5
3

¯?
Φ¯3648v2¯p570u´760qv¯pu´ 4

3 qΦ
˙

?
Φ
´

9u`171v`3¯3
?
Φ
¯ ; (150)

µ1,2 “
v
´

p3u ` 57v ´ 9q
?
Φ ¯ pA ´ 30u ´ 192v ` 40q

¯

?
Φ
´

3u ` 57v ` 1´
?
Φ
¯ , (151)
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Figure 2: Homoclinic/heteroclinic solutions to (145), (146). Black and gray lines correspond to x and y respectively. Dotted lines
denote singularity points in (c) and (d). Initial conditions are u “ ´1, v “ 1{10 in (a); u “ 105{100, v “ 3{100 in (b);
u “ ´2, v “ ´1{100 in (c); u “ ´3; v “ 2{100 in (d). Labels (a), (b), (c), (d) correspond to respectively labeled phase plane
trajectories in Fig. 3.

(a) (b)

(c) (d)

where
Φ “ Φpu, vq :“ 9u2 ` 342uv ` 3249v2 ` 6u ´ 642v ` 1. (152)

Derivations given in Subsection 5.2 result in:

σ “ 92
189; γ “

29
189; (153)

τ1,2 “
?
Φ ¯ p3u ` 57v ´ 9q

?
Φ ¯ p3u ` 57v ` 1q

; (154)

x1,2 “
v3
138

´

´15u ` 93v ´ 5˘
?
Φ
¯

; y1,2 “ 0. (155)
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Figure 3: Phase portrait of (145), (146). Gray circles denote the stable and unstable nodes; diamond denotes the saddle point.
Solid black lines correspond to solution trajectories. Dashed gray parabola corresponds to the separatrix between solutions
with elliptic and hyperbolic trajectories. Dashed gray lines denote stable and unstable manifolds of the saddle point. Labels
(a), (b), (c), (d) correspond to respective parts of Fig. 2. Trajectories in the solid gray and horizontally striped �lled regions are
elliptic and hyperbolic respectfully and do not have singularities. Trajectories in the un�lled regions are hyperbolic and have
one singularity. Trajectories in vertically striped regions are hyperbolic and have two singularities.

Solutions with parameters (153)–(155) are pictured in Fig. 2. Note that there are three types of solutions –
non-singular solutions (a), (b); solutions with one singularity (c) and solutions with two singularities (d).

The phase plane of (145), (146) can be seen in Fig. 3. Note that labels (a), (b), (c), (d) on the phase plane
correspond to respectively labeled solutions pictured in Fig. 2. System (145), (146) has the following equilibria
´

92
189 ,

29
189

¯

– stable node;
´

´1
3 , 0

¯

– unstable node;
´

4
3 , 0

¯

– saddle point.
It has been proven in [15] that homoclinic/heteroclinic solutions of the form (8), (9) correspond to phase

plane trajectories that satisfy the general conic section equation:

Ax2 ` Bxy ` Cy2 ` Ex ` Fy ` G “ 0; A, B, C, E, F, G P R. (156)

Solution Fig. 3 (a) corresponds to an elliptic trajectory, while the remaining (b), (c), (d) have hyperbolic
trajectories. Furthermore, there is a single solution that satis�es the parabola equation:

Φpx, yq “ 0. (157)

Curve (157) is a separatrix that separates solutions with and without singularities in the phase plane (see
dashed gray parabola in Fig. 3).
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Stable and unstable manifolds of the saddle point are obtained by setting the numerator and denomina-
tor of τ1,2 to zero [15]. This yields that the stable manifold of the saddle point is the x-axis, while the unstable
manifold lies on the straight line y “ ´ 5

32 x `
5
24 . Manifolds of the saddle point correspond to dashed gray

lines in Fig. 3.

7 Concluding remarks
Homoclinic and heteroclinic solutions to hepatitis C evolution model (2) have been constructed in this
paper. Inverse balancing and generalized di�erential operator techniques have enabled the derivation of
explicit necessary and su�cient homoclinic and heteroclinic solution existence conditions with respect to
the parameters of system (2). Furthermore, it has been shown that these existence conditions are satis�ed
when (2) described a biologically signi�cant system of HCV evolution.

It has been demonstrated that transient processes of the derived solutions to (2) reveal important
phenomena for understanding hepatitis C virus infection dynamics. Even though antiviral therapy reduces
the number of infected cells (comparing the beginning to the end of treatment), due to the transient processes
during the therapy, population size of infected cells is higher than before or after therapy – if only the
considered solutions are heteroclinic with maxima. Analogous biological interpretations can be made for
heteroclinic solutions with minima. The population of healthy cells is lower than before or after treatment
during antiviral therapy – if the number of uninfected hepatocytes is described by a heteroclinic solution
possessing minima.

The main mathematical advancements of this paper can be characterized by new applications of inverse
balancing technique and the development of generalized di�erential operator method for the solution of
coupled di�erential equations with multiplicative and di�usive terms. As noted in Section 4, direct bal-
ancing techniques may yield wrong solutions; inverse balancing of such a complex system of nonlinear
di�erential equations poses a number of technical problems. On the other hand, derivation of closed-form
homoclinic/heteroclinic solutions and explicit conditions of their existence poses serious mathematical
challenges. One of the main contributions of this paper are the necessary and su�cient conditions for the
existence of these solutions in the hepatitis C evolution model.

Comparing the results of this paper with [15] it can be concluded that system (3) (and, by extension
(2)) is structurally stable in the topological sense – when a4, b4 tend to zero, the phase plane continuously
converges to the phase plane described in [15]. Moreover, structural stability can also be observed in homo-
clinic/heteroclinic solution existence condition (123) – in the case a4, b4 Ñ 0, such solutions also exist and
the condition (123) ismaintained. Since such e�ects are observed in systemswith biological signi�cance, they
provide valuable insight not only into (2) but also other nonlinear evolution models.
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