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Abstract: Homoclinic and heteroclinic solutions to a standard hepatitis C virus (HCV) evolution model
described by T. C. Reluga, H. Dahari and A. S. Perelson, (SIAM J. Appl. Math., 69 (2009), pp. 999-1023)
are considered in this paper. Inverse balancing and generalized differential techniques enable derivation
of necessary and sufficient existence conditions for homoclinic/heteroclinic solutions in the considered
system. It is shown that homoclinic/heteroclinic solutions do appear when the considered system describes
biologically significant evolution. Furthermore, it is demonstrated that the hepatitis C virus evolution model is
structurally stable in the topological sense and does maintain homoclinic/heteroclinic solutions as diffusive
coupling coefficients tend to zero. Computational experiments are used to illustrate the dynamics of such
solutions in the hepatitis C evolution model.

Keywords: hepatitis C model, homoclinic/heteroclinic solution, generalized differential operator, inverse
balancing
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1 Introduction

Modeling of biomedical processes using differential equations has become more and more widespread over
recent years [6, 12, 29]. Various differential equation models on the use of oncolytic viruses as therapeutic
agents against cancer are discussed in [28]. A clinically validated model of tumor-immune cell interactions
is considered in [4]. A new mathematical model for the explanation of the failure of cancer chemotherapy
treatment is presented in [22]. A mathematical model based on differential equations is used to describe the
interactions between Ebola virus and wild-type Vero cells in vitro in [21].

Beginning with the classical paper by Neumann et al [20], various differential equation models for the
modeling of hepatitis virus infection have been proposed. Global dynamics of a delay differential model
of hepatitis B infection evolution are studied in [5, 27]. The transmission of hepatitis C virus (HCV) among
injecting drug users is modeled using ordinary differential equations in [11]. A mathematical multi-scale

*Corresponding Author: Tadas Telksnys: Research Group for Mathematical and Numerical Analysis of Dynamical Systems,
Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania; E-mail: tadas.telksnys@ktu.lt

Zenonas Navickas: Research Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of
Technology, Studentu 50-147, Kaunas LT-51368, Lithuania; E-mail: zenonas.navickas@ktu.lt

Romas Marcinkevicius: Department of Software Engineering, Kaunas University of Technology, Studentu 50-415, Kaunas LT-
51368, Lithuania, E-mail: romas.marcinkevicius@ktu.lt

Maosen Cao: Department of Engineering Mechanics, Hohai University, Nanjing 210098, China; Email: cmszhy@hhu.edu.cn
Minvydas Ragulskis: Research Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of
Technology, Studentu 50-147, Kaunas LT-51368, Lithuania; E-mail: minvydas.ragulskis@ktu.lt

8 Open Access. © 2018 Telksnys et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 License.


https://doi.org/10.1515/math-2018-0130

1538 —— T.Telksnys etal. DE GRUYTER

model of the within-host dynamics of HCV infection is used to study patients under treatment with direct
acting antiviral medication in [3]. The authors of [2] give a review of recent HCV kinetics models.

Reluga et al [25] present the following model of hepatitis C virus infection that explicitly includes
proliferation of infected and uninfected hepatocytes:

7?=§+r77(1—7”) —dgT — (1— 1) BVT + 7

max

J?zrjj(l—T”)+(1_n)ﬁw—dﬂ—zﬂ; (1)
Tmax

V;=(1-¢€)pl -V,

where tis time; T (?) represents uninfected hepatocytes; J (?) represents infected cells and V (?) represents
free virus population. The parameters of (1) have the following meaning: f is the rate of infection per free
virus per hepatocyte; c is the immune virus clearance rate; p is the free virus production rate per infected
cell; d, dq are death rates for uninfected hepatocytes and infected cells respectively; r, rq are parameters of
the logistic proliferation of T and J respectively; logistic proliferation happens only if T < Tmax; parameters
s and g represent the increase rate of uninfected hepatocytes through immigration and spontaneous cure
by noncytolytic process respectively; finally the effect of antiviral treatment reduces the infection rate by a
fraction n and the viral production rate by a fraction €. Ranges of parameters are given in [25].

As shown in [25], V can be solved explicitly for patients in a steady state before treatment. Furthermore,
introducing dimensionless state variables and parameters transforms (1) into:

xr=x(1—x-y)—(1-0)bxy+qy+s;
yr=ry(1-x—y)+(1-6)bxy —dy —qy,
where x,y are dimensionless state variables for uninfected hepatocytes and infected cells respectively;

r,b,0,d,q,s € R are real parameters.
System (2) can be rewritten in a more general form:

@

X7 = dg + d1X + azx2 + asxy + agy; Xx

Yr = bo + bly + bzyz + ngy + byx; y

wherec,u,v,a;, by e R, k=1,...,4.

The main objective of this paper is to study soliton-like dynamics of the system (3). Note that since (3)
is not a system of nonlinear partial differential equations (PDEs), soliton (or solitary) solutions cannot exist,
due to their definition being closely connected to concrete physical phenomena. However, as is demonstrated
in the paper, solutions that exhibit analogous dynamics to those observed in solitary solutions, can be
constructed for system (3). Since the phase trajectories of these solutions are homoclinic or heteroclinic, we
refer to such solutions and homoclinic/heteroclinic solutions.

In the case a, = b, = 0, system (3) has already been shown to admit homoclinic/heteroclinic solutions
[19], [15]. Solutions described in [19] have simple monotonous transitions from two steady states, while
those found in [15] exhibit much more complicated transient effects. Because of this reason, only the latter
homoclinic and heteroclinic solutions to (2), (3) are considered.

Using the inverse balancing and generalized differential operator techniques, explicit homoclinic and
heteroclinic solution existence conditions are obtained in terms of the parameters of (2). These conditions,
together with explicit expressions of such solutions, provide insight not only into HCV model (2), but also
other models of nonlinear evolution.

Note that the application of direct techniques to compute the homoclinic/heteroclinic trajectories of (3)
is not straightforward. For example, computation of the first integral requires the solution of the following

first-order ODE:

gy = Dot arx+ arx* + asxy + asy %)
7 bo + b1y + bay? + bsxy + bux’
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While the above ODE can be integrated for some parameter values, there is no general method to determine
such cases. Furthermore, the generalized differential operator technique yields not only phase trajectories
of (3), but also its general solution and the conditions with respect to ao, ..., as; bg, . .., b, under which
homoclinic/heteroclinic solutions exist.

2 Preliminaries

2.1 Power series and their extensions

In this paper, functions of the following power series form are considered:
+0o0 ]
z
2)= > a4, ()
j—o

where z, a; € C. The coefficients of power series (33) are constructed via generalized differential operator
technique, described in the following sections of the paper.

We treat the convergence of series (33) as follows. If (33) converges in some ball |z| < R; R > 0, then it
is possible to extend (33) to a wider complex domain (not including the singularities of (33)) via classical
extension techniques. Let t € R denote a real argument of this extended function. Inserting ¢ into the
extension of (33) yields a real power series f(x) defined for values not necessarily in the radius |¢| < R. For
the purposes of this paper, we consider f(x) and its power series representation to be congruent.

2.2 Monotonous and non-monotonous homoclinic/heteroclinic solutions

First, let us consider monotonous homoclinic and heteroclinic solutions of the following soliton-like form
[23, 26]:

x(ric,uy) = o 2RI 2oy ©
exp( C)) (x)

y(Tsc,u,v) =5 exp (1 ( c)) .
exp(n(t—c)) -

where n # 0, 0, v € R are constants; ‘rgx), Tgy ) depend on initial conditions u, v.

The biological interpretation of (6), (7) represents the transition from the size of population of cells before
therapy to the size of population after therapy. However, this transition is monotonous; the solutions shown in
Fig. 1 (a) describe the difference between the sizes of populations before and after therapy, and the transition
between the steady states.

Non-monotonous homoclinic/heteroclinic solutions read [7, 26]:

2) . (8)

x(t;¢c,u,v) =0

©)

y(T50,u,v) =

where n # 0, 0, v € R are constants; T](:(), TI((Y) , Xks Vi» k = 1, 2 depend on initial conditions u, v.

Solutions (8), (9) describe much more complex transition processes between the steady states. The size of
the population of cells during the transient process exceeds populations both at the beginning and the end of
the therapy if only the considered solutions have minimum points (the black line in Fig. 1 (b)). Analogously,
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Figure 1: Monotonous (a) and non-monotonous homoclinic/heteroclinic solutions (b). Black and gray lines represent x(7) and
y(7) respectively. The parameters of solutionsread: n = 0 = 1;v = 1/2;¢c = 0;x1 = 3;x2 = 1;15") = —2;12") = -5y =
—8;y2 = 71/2;T§Y) = 73;‘[5’/) =-1.
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solutions with maximum points describe complex transitions from the population of cells before and after
the treatment (the gray line in Fig. 1 (b)).

From the biological point of view, transient processes governed by homoclinic and heteroclinic solutions
highlight important phenomena. Let us consider the dynamics of uninfected cells (the black line in Fig. 1 (b)).
The population of uninfected cells after the therapy becomes lower than the population before the therapy.
However, the number of uninfected cells grows during the therapy and exceeds the population of uninfected
cells at the beginning of the computational experiment (Fig. 1 (b)).

Note that the negative values of cell population x(7) and y(7) are a consequence of the non-
dimensionalization of system (1).

2.3 Solution transformation

In the following derivations, the standard independent variable transformation will be used:
t:=exp(n(r—c)); c:=exp(n(r—c)). (10)

Using (10), homoclinic/heteroclinic solutions (8), (9) can be written as:

- 1 1 (t=%X1) (t=X2) |
X(t;c,u,v):=x —lnr;flnc,u,v)=o (11)
( ) ('1 1 (t— t(")) (t t("))
N 1 1 (t—y1) (t—Y2)
T30, U, V) 1= flnr;flnc,u,v) = (12)
v )=y (n n (t ) (¢~ tg))

)

where t,(:‘) = ET]EX), t,?') = ¢, X = ¢y, Vi = €Yy, k = 1, 2. Using partial fractions (11), (12) can be rewritten

as:
- A A

X=0+ 13

1-p1(t=C) 1—py(t—0) (13)
5 M1 M2

Yt T =9 T 1w (=) (14)

where Ay, Uy, prs Vi, k = 1, 2 are functions of u, v.
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2.4 Generalized differential operator technique

In this section, a summary on the generalized differential operator technique for the construction of solutions
to ordinary differential equations in presented. More detailed derivations can be found in [16].

2.4.1 Generalized differential operators

Let P(c, u,v), Q(c, u, v) be trivariate analytic functions. A generalized differential operator D¢yy reads:

Dcuy := D¢ + P(c, u, v)Du + Q(c, u, v)Dy, (15)
where Dg := % for any variable B. Standard properties of differentiation operators hold true for (15) [14]:
d
Dewvf (g (c,u, V)) = é Dc,uv8; (16)
Dcuy (fg) =8 (Dcuvf) + f (Dcuvg) s (17)
D —f((D
Dcuvi _ g( CMVf)ng( cuvg) ’ (18)

where f, g denote arbitrary functions analytic in c, u, v.

2.4.2 Multiplicative operators

Using (15), the multiplicative operator can be constructed:

oG .
M:= Z ]-Tchuv’ (19)
j=0""

where t is an arbitrary real variable. Operator (19) has two important properties:

Mc" = (t+¢c)", m=0,1,...; (20)

Mf (c,s, t) = f (t + c, Ms, Mt) . (21
Note that (20) follows immediately from the definition of (19). Without loss of generality, the proof of (21) for
multiplicative operator M = ;”: 5 % (P(u, v)Dy + Q(u, v)DV)] is presented below.

Lety; := Mu = y1(t,u,v),ys := Mv = y,(t,u,v),z := Mf(u,v) = z(¢t,u,v) and w := f (Mu, Mv) =
f (y1,y2). To prove (21), it needs to be shown that z = w for all ¢, u, v.

Note that:
+00 tj . +o0 tjil .
Diz=D; ), j—'D{Nf(u, v)= >, mnfwf(u, V) = DuwyMf(u, v) = Duyz = PDyz + QD z. (22)
j=0"" j=1 :

Thus, the function z(¢, u, v) satisfies the partial differential equation:

0z 0z 0z

with initial condition z(0, u, v) = f(u, v) that follows from the definition of z.
Analogously, it is shown that:

Wk _pWVk . gWVk. 1 _1 9.
ot _Pau +Qav’ k=1,2; (24)
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with y1 (0, u, v) = uand y, (0, u, v) = v. Using (24) and the definition of w yields:

DtW:th(Y1,Y2): af(a’ﬁ) (P aYI +QaY1) af(a’ﬁ)

Y2 g2
o ou B ooy <P u t¢ av)
B=y2
_p| @B @B |, | A@B| i @B | @)
o |q—y, Ou 0B |a=y, Ou o |q—y, OV B |azy, OV
ﬁ:yz B=y: B=y: B=y,
ow

Note that w satisfies the initial condition w(0, u,v) = f (yl(O, u,v),y2(0,u, v)) = f(u,v), thus z and w
coincide, which results in the proof of (21).

Construction of general solutions to ODEs requires one final operator which is denoted as the generalized
multiplicative operator:

o ;
Z cuv (26)

Operator G has two properties analogous to (20), (21):
G =t", m=0,1,...; (7
Gf(c,u,v) =f (x,Gu,Gv), (28)

where f is a trivariate analytic function. The proof of (28) follows from (21):

Mf(c,u,v) <t+c Z D’mvu Z t]muvv) (29)

j=0

Substituting t for t — c yields (28).

2.4.3 Construction of solutions to ODEs

Let us consider the following system of ODEs:

t=C (30)

t=c
where P, Q are analytic functions. The generalized differential operator respective to (30) reads [13]:
D;,, :=D; +P(¢,u,v)Dy + Q(c,u,v)Dy. (31

Using (31), general solution to (30) is expressed as [13, 14]:

- & (t-¢)y s t— ¢y
X =Gu= Z j! euvt Z cuv v. (32
j=0 j=0
The convention Dew = I, where I is the identity operator, is used.

Identities (32) can be proven using properties (21) and (28) derived in the previous section. Consider
operators M, G defined with respect to the generalized differential operator (31). First, let z = z(t, C, u, v) =
Mu and w = w(t, C, u, v) = Mv. Property (21) yields:

D;z = D:Mu = Dg,,Mu = MDg,, = MP (C,u,v) = P(t + ¢, Mu,Mv) = P(t + c, z, w). (33)
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Analogously,
Diw = Q(t + ¢, z, w). (34)
Selecting X = z(t — ¢, C,u,v) = Guand y = w(t — ¢, C, u, v) = Gy yields the system (30). Furthermore, the
definition of operator G yields that x =uandy = v, thus (32) hold true.
t=¢ t=¢

In the following derivations, the notation

pj=p;(C,u,v) := Djewu; g;=q;(C,u,v):= D’éwv; j=0,1,... (35)
will be used, which transforms (32) into:
o ¢ j
X= ( o ) bj; (36)
e
o top_e j
A 3 Ul G7)
j= T
Furthermore, coefficients p;, g; satisfy recurrence relations:
Pj+1=Deawljs  djt1 = Dew ;- (38)

3 Existence of homoclinic/heteroclinic solutions in (30)

Let p1 # p». If (30) admits solutions (13), (14) then (13) and (36) must be equal. Expanding (13) in a power
series and equating to (36) yields:

to (p_ ) ) . . to (p_ )
o+AL +A4 + Z (]7') (]!Alp’l +]!/\2p’2) = Z ( i ) pj- (39)
j=1 j=0
Note that py = u by (35), thus (39) yields:
bo =1Uu; (40)
pj=j! (A1pj1+}l2pj2> , J=1,2,.... (41)
Analogous derivations with respect to y and vy # v, result in:
qo =V; (42)
g; =J! (ylvjl+y2vi2), i=1,2,.... (43)

Thus (30) admits solutions (13), (14) if and only if (41), (43) hold true.

Theorem 3.1. System (30) admits homoclinic/heteroclinic solutions (13), (14) with p1 # p- if and only if:

-2 —2v
M= zf)i (Pkﬁﬁl;ll); Hie= 2;172k (Vi —lqvll); (44)
D¢, Pk = Pis D¢y, Vi = Viis (45)
Dey Ak = Akpis DeyyMic = MrVis (46)
3pipi — 36p1pap3ps + 32p1p3 + 36p3ps — 36p5p3 # O; (47)
3¢3q% — 3641929344 + 324143 + 364344 — 364343 # O, (48)

k,1=1,2; k#1.
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Proof. 1t will be proven that (41), (43) hold true if and only if (44)-(48) hold true.
Necessity. Let (41) hold true. Taking j = 1, 2 yields:
p1 = A1p1 + Axp2; (49)
p2=2 (Alp% + AzP%) . (50)

Solving the above equations for A1, A, results in (44).
Equation (41) yields the following determinant equality:

P1 P2 p3
i 20 31
det | B2 B 2| =0; k=1,2. (51)
1 pi pi
Expanding the left side of (51) yields:
Aypp —Apr+ Ao =0; k=1,2, (52)
where
2
bipPs3 P2\ .
A2 ="37 - (?) : (53)
bibs  DaDP3
e TR TRETE (54)
2
Dapy pP3
Ao = 5T 41 ~ (?) ' 55)
Solving (52) for p; results in:
Ay + /A2 — 44540
P12 = 24, . (56)
Since p; # p,, the discriminant A? — 44,Aq # 0, which results in condition (47).
Denoting O := 4/A? — 4A,A, and applying operator D, to (56) results in:
(i@ - Al) (DEuvAZ) +4; ((DfuvAl) + (DEuv@))
DeyyP1,2 = 242 . (7)
Using recursion (38) it can be obtained that:
D;, A = p16pq _ P23p3; (58)
2
" _ bibs  b2p4y  P3,
Dewdi =54 — 54 — 120 (59)
n _ DaPs  5p3p4,
Pewlo = "4g™ = as (60)
1
Dz, 0 = ) (Al (DEuvAl) — 24 (DEuvAZ) —24; (DEuvAO)) . (61)
Relation (41) transforms (53)-(55) and © into:
Ay = AAzp1p:2 (1 —Pz)z ; (62)
Ay = AAzp1p2 (p1 +p2) (P2 —Pz)2 ; (63)
Ao = 5MAxp3p3 (p1 —p2)?s (64)
0 = A1A2p1p2 (1 —Pz)3 . (65)

Furthermore,

D, A2 = 4A12;p1p2 (p1 + p2) (p1 — /Oz)2 ; (66)
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D;,, A1 = AiAap1ps2 (p1 *Pz)z <5P% +8p1p2 + 5P%) ; (67)
D¢ o = 5MiAap3p3 (b1 +p2) (p1 —p2)% s (68)
D;,,0 = 5A1A2p1p2 (p1 + p2) (P1 —Pz)3 . (69)

Inserting (62)—(69) into (57) yields (45).
Applying operator D;,,,, to (44) and using (45) yields:

1, _ 4P1PkPL— P2 (2pk +3p1) + p3

D, A = (70)
cu Tk 2pi (px — P1)
Inserting (41) into (70) results in (46).
Sufficiency. Condition (44) yields:
p1 = A1p1 + Azp2. (71)

Applying operator D;,,,, to (71) results in:

DEupl =p1 (DEuvAl) +MA (DEuvpl) +p2 (DEuvAZ) +; (DEuvpz)

(72)
=2 (upt + 5p3) = pa-
Continuing by induction yields (41).
The proof for parameters of y is analogous. O

Corollary 3.1. If conditions of Theorem 3.1 hold true, then the third and higher order Hankel determinants of

sequences Iji{, %;j =1,2,...areequal to zero:
H = det [ﬂ] - 0; 73)
p (—+k-2)! 1<), k<n+1
H = det [M] -0, (74)
e U+k=2)]1gkent1
n=3,4,....
Proof. Proof results from the derivation of Theorem 3.1 and (41), (43). O

4 Necessary homoclinic/heteroclinic solution existence conditions
in (3)

The inverse balancing technique can be used to determine necessary existence conditions of solutions (8),
(9) to (3). The main principle of this technique is to insert the solution ansatz into the considered equations
and obtain a system of equations linear in system parameters ay, by, k = O, ..., 4. The inverse balancing
technique has been successfully used to obtain necessary solution existence conditions in a variety of
nonlinear ordinary and partial differential equations [10, 15, 18]. Note that the inverse balancing technique
does not possess the drawbacks associated with various solution construction (or direct ansatz) methods,
which have attracted a significant amount of criticism [1, 8, 9, 17, 24].

4.1 Transformation of (3)

Using the substitution (10), system (3) is transformed to:

NtXe = Ao + 1% + X + asxXy + asy; 75)
Ntye = bo + b1y + bay* + b3Xy + buXx,
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with initial conditions

X =u; y =v (76)
t=¢ t=c¢
The following notations are introduced:
X(t):=(t—x1) (t—%2); Y(t):=(t—y1) (t—Y2);3 (77)
Te(t) i= (= 67) (6= 69)s Ty() = (6= 67 (6= ), (78)
which transform solutions (11), (12) to:
f_o X(t) Y(t) (79)

4.2 Necessary existence conditions for (79) in (75)

Following the inverse balancing technique, solution ansatz (79) is inserted into (75). After simplification, (75)
reads:

ntoTy (XeTx — X (Tx);) = aoTx Ty + a10TxTyX + a20°X* Ty + a307XYTx + ayyYTx; (80)
ntyTx (YtTy Y (Ty)t> — boT2Tx + b1y TyTxY + by Y2 Tx + b3y YXTy + by XT2. (81)

Equation (78) results in:

T (67) = T (€)= 1 () = 1y (&) = 03 (82)

(T £ — 95 (Ty), =9 — ¢, (83)
=t t=t{V

) I S ) =
=t =t

Letting t = t(") t(x in (80), t = t(y ) tgy ) in (81) and using (82)-(84) yields the following equations:
Ty () (a202X2 (67) + ot (679 = §9) x (t("))) - 0; (85)

Ty (1) (a0 (157) + noty? (15— ) x (7))
T () (bﬂzyz (67) + et (67 - &) Y(tﬁ”)) - 0; 87)

( )¥ (&)

T (¢ (bﬂzyz () + ot (£ — e) v (¢

=0; (86)

=0. (88)

Equations (85)-(88) have nontrivial solutions only if:
0 = ¢, 0 =), (89)

thus (75) (and conversely (3)) only admits homoclinic/heteroclinic solutions with equal denominators. Let
t = tgx) = tgy ) and t, := tg") = tgy ). Equation (89) transforms (79) into:

s X)), 5 _Y()
=0T V=T 0

where T(t) := (t —t1) (t — t2).
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4.3 Necessary existence conditions for (90) in (75)

If (89) holds true, (80), (81) read:

nto (XT — XT;) = apT? + a10XT + a,0°X* + a0 XY + a;yYT; (91)
nty (Y¢T — YT¢) = boT? + b1y YT + by7?Y? + b304XY + b,0XT. (92)
Note that
T(t1))=T(t2)=X(X1) =X(X2) =Y (y1) =Y (y2) =0, (93)
and
Te=2t—t;—ty; Xe=2t—3%1—Xp; Ye=2t—Y1—7,. (94)

Taking t = ty, t, in (91) and using (93), (94) yields:

nty (t2 — t1) = 0X (1) ar +~Y (t1) as; (95)
nty (t1 — ) = 06X (t2) ar + 7Y (t2) as. (96)

Analogous computations with respect to (92) result in:

Nty (t2 —t1) = 7Y (t1) b2 + 0X (t1) bs3; 97)
nt; (tl —tz) :’YY(tz) b, +O'X(t2)b3. (98)

Solution of (95)-(98) with respect to a,, as, b, bs reads:

B Q(tz—tl)(tlY(tz +t2Y(t1)
2= = X ) Y () - Y () (99)
n(t— )(th(tl +t1 (t2))
v Y(t1))

(X (t1) Y (t2) - ty

bz =da3 = (100)

Similarly, taking t = X1, X» in (91) and t = y1, ¥, in (92) yields the following solutions for ag, a4, b, b4:

no (%1 — %,) (;?1Y (X2) + X2 ()?1)) .

O TR Y () TG Y () oy
V(T ()« BT (3
as = o - ) (fl (Xz)j - A(Xl)) ; (102)
(T () Y (%) =T (%) ¥ (1))
p, . 01 9) (91X (72) + 92X (91)) 0)
T(1) X (y2) =T (y2) X (1)
S N (9T (0w 9T (5
b (2 - y1) (iq (v2) A+yz E)’l))' (104
o (T (1) X (F2) - T (52) X (7))
Finally, taking t = 0 in (91), (92) yields a1, b1:
a; = —% (ao + 0‘2(12 + ovyas + 'ya4) ; (105)
by = _% (bo++2b2 + 09bs + 0bs) (106)

Note that there are 10 parameters in (75) and (91), (92) yields a non-degenerate system of 10 linear
balancing equations, thus no constraints on the parameters of solution (90) needs to be imposed. However,
as shown by (99), (100) conditions a3 = b, and b3 = a, must hold if (75) admits solution (90).

The results of this section are summarized in the following Lemma.
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Lemma 4.1. System (3) admits homoclinic/heteroclinic solutions (8), (9) only if:

P00 _ 00, 20 _ 0, (107)
as = bz; b3 =4daj. (108)

Note that condition (107) results from (89) and substitution (10). Also, p; = vi; k = 1,2 in (13), (14) when
(107) holds true.

5 Construction of homoclinic/heteroclinic solutions to (3)

In this section, explicit expressions of homoclinic and heteroclinic solutions to (3) are constructed. It is
assumed that the necessary existence conditions (107), (108) hold true.

5.1 Derivation of parameter n

Parameter 7 is derived using Corollary 3.1. Consider the following Hankel determinants:

p1 P> p3 a1 92 g3
3) T 21 31 3) ir 21 31
Hy' =5 5 Gt He =% % & (109)
p3 P4 Ps a3 44 495
3T 41 51 3T 41 B
Parameter 1 must be chosen to satisfy
HY =0; HY -o. (110)
Furthermore, 1 can only depend on coefficients ay, . .., as; bo, - . . , by, otherwise Theorem 3.1 does not hold
true and obtained solutions would not be valid for all initial conditions.
It can be observed that:
1
HY - s (Aé(u, VNG + Ay(u, v)n® + Ay (u, v)n? + Ao(u, v)) ; (111)
1
H,(f) = e (B6(u, v)n6 + B4(u, v)n" + By (u, v)n2 + Bo(u, v)) . (112)

Thus, roots of equations (111), (112) with respect to n that do not depend on u, v must be found. Note that:

1\ 3 2
Ag = (m) K, K:= (u a + (asv+ai)u+agv+ a0> ; (113)

and
A, =F (u,v)K, (114)
where F is a polynomial in u, v.

Since the roots n must not depend on initial conditions, any values of u, v can be chosen and inserted
into (111). Let
_a2u2 + aiju + aop

v=flu) = ST (1)

bou + ay

then A¢ = A, = 0 and using (111), n? can be expressed as:

2 __Ao(u, f(u)

= ———— 116
T = Ay f) (116)

The numerator and denominator of (116) depend linearly on u:
2 aiu+ao (117)

T = Biu+Bo’
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where ay, S are functions of ag, ..., as; bo, ..., bs.
Analogous computations with respect to H ((13) lead to:

_ _ b2V2+b1V+b0.
u=g(v)= ~ T avib, (118)

n? — _Bo(g(v),v) _aav+ Qo (119)

Bz(g(V)’V) 31V+E0

Parameter 1 does not depend on u, v only if:

alﬂo — aoﬁl = 0; (120)
@1Bo — A1 = O. (121)
Note that:
! (a1Bo — aoP1) = ! (511/}0 - 5‘0/?1) , (122)
aohs — arash; + aya; boa3 — bybsa; + by b

which leads to the following sufficient existence condition for homoclinic/heteroclinic solutions to (3):

9apaia; + 9b0b1b2 — 18agas b1 — 18b0b2a1 + 3(111)% + 3b1a% — Za% — Zb%
- 9a1a4b4 — 9b1b4(14 + 27(10bzb4 + 27b0a2a4 = 0.

(123)

If (123) holds true, 1 can be computed from either (117) or (119). Furthermore, if (123) holds true, the parameter
n does not depend on initial conditions c, u, v.

5.2 Necessary and sufficient existence conditions for homoclinic/heteroclinic
solutions to (3)

Theorem 3.1, Lemma 4.1 and condition (123) together with computer algebra computations result in the
following theorem.

Theorem 5.1. System (3) admits homoclinic/heteroclinic solutions (8), (9) if and only if conditions (107), (108)
and (123) hold true.

Note that
s k=1,2, (124)

”>‘§*

Pk =

where p} = pj (u, v).
Relations between parameters of (13), (14) and (8), (9) read:

=1+ k=1,2; (125)
k
1
X1,2 = 7 <Ax t \/A;Z( - 4Bx) H (126)
1
Y12 = 3 (Ay + \/A}Z/ — 4By) s (127)
where
Al Ay
=— t —5 H 12
Ay UPT + Up;‘ +T1 + Ty ( 8)
/11‘!'2 /121'1
= ; 12
By :=1172 + opt T opt’ (129)
Hi H2
Ay = + + T, + Ty (130)
R T
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HiT2 | JoTy
By =172 + + . (131)
VTR T s T p
Parameters o, - read:
o=u—A1—Ay y=V-—Hu—po. (132)

Note that (117) yields two values for 1, however, it is sufficient to consider only the positive or negative root
of (117) to obtain the general solution to (3) when Theorem 5.1 holds true, because the sign of 1 can be
interchanged:

(133)

As demonstrated in [15], the value ﬁ;g does not depend on initial conditions, which proves that changing

the sign of n does not yield new solutions.

6 Homoclinic/heteroclinic solutions to hepatitis C model (2)

6.1 Existence conditions

Comparing (2) to (3) it can be observed that:

ap=s; ar=1; a=-1; a3=b(0-1)-1; as=gq; (134)
b0=0; b1=r—d—q; b2=—l’; b3=b(1—9)—l’; b4=0. (135)

To preserve biological significance of system (2), the parameters (134), (135) must satisfy gq,s,r > 0; b €
[10—2; 103]; de [10—3; 102] [25].

Using Theorem 5.1 conditions for the existence of homoclinic/heteroclinic solutions to (2) can be derived.
Note that only homoclinic/heteroclinic solutions with T]((X) = Tf{y ) can be considered. Inserting (134), (135)
into (108) yields two congruent equations:

1-6)b—r=-1; b(O6-1)—1=-r. (136)
Both equations are satisfied if parameter r reads:
r=b(1-6)+1. (137)

Let (137) hold true. Denote Q := b (1 — 0) + 1 —d — g = r — d — q. Inserting (134), (135) into condition (123)
yields:
_ 172
s—§(.Q —Q—2>. (138)

Equations (137) and (138) result in the following corollary.

Corollary 6.1. Hepatitis C model (2) admits homoclinic/heteroclinic solutions if and only if T]((X) = T,((y ), (137)
and (138) hold true.

Computer algebra computations prove that when Corollary (6.1) holds true, parameters y; = y, = O.
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6.2 Equilibria

Let (137) and (138) hold true. The equilibria of (2) read:

2 0
R R L (139)
1 Q
1-6 b-q¢*+(1-d
NONIN! )Z(S+q) ¢ +(1-dgts (141)
(1-6)"b2—(1-6)(d+q-1)b—d
&) = 20 -1)° : (142)
9((1-6)*p?~(1-6)(d+q-1)b-d)
Equilibrium point (141), (142) is a stable node as T — +o0:
Jim (x(),y(1) = (6,7). (143)
Equilibrium point (139) is an unstable node as T — —oo:
. _ X1X2
im (x(1), (1)) = (am , o) . (144)
The remaining equilibrium point (140) is a saddle point.
6.3 Computational experiment
Let us consider the following system:
4
xT=x(1—x—y)+18xy+4y+§; x =u; (145)
T=cC
yr =19y (1 —x —y) — 18xy — 16y; y =v. (146)
T=C
The above system corresponds to (2) with the following parameters:
1 4
b=24; 0=>; q=4;, d=12; r=19; s=_. (147)

4’ 9

Note that parameters (147) satisfy the guidelines given in [25] for biologically significant systems. Further-

more, conditions of Corollary 6.1 are satisfied, thus homoclinic/heteroclinic solutions to (145), (146) do exist.
Equation (117) yields:

n==+s. (148)

Wl

As noted previously, it is sufficient to consider one value of 1 to obtain the general solution to (145), (146). In
subsequent computations the value n = % is used.
Theorem 3.1 yields the following parameters of homoclinic/heteroclinic solutions:

1
= —= |—>oU-— —1+VD); 1
P12 = 75a ( 3u—57v + \/>) (149)
3<@*(1083"2+(57“*202)V+5u+%)\/5136481/21(570u7760)v$(u7g)q;)
= ) .
A1,2 \/5(9u+171v+3$3ﬁ) ’ ( 50)
v (Bu+57v —9) VB F (A~ 30u —192v + 40))
Hi2 = , (151)

\/5<3u+57v+17\/5>
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Figure 2: Homoclinic/heteroclinic solutions to (145), (146). Black and gray lines correspond to x and y respectively. Dotted lines
denote singularity points in (c) and (d). Initial conditionsareu = —1,v = 1/10in(a@);u = 105/100,v = 3/100 in (b);
u=-2,v=-1/100in(c); u = —3;v = 2/100 in (d). Labels (a), (b), (c), (d) correspond to respectively labeled phase plane
trajectories in Fig. 3.

-4
T
-0.21
(a) (b)
4,
2,
- 0.5 0 . 0.5 1 15
j T
- - - 0|
_2,
_4,
_47
-6 6]
(0) (d)
where
@ = D(u,v) := 9u® + 342uv + 3249v* + 6u — 642V + 1. (152)
Derivations given in Subsection 5.2 result in:
92 29
0= 189° Y= 189° (153)
S VO T (Bu+57v— 9); (154)
VO F Bu+57v+1)
V3
X12= 155 (—15u +93v -5+ \/5) . y12=0. (155)
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Figure 3: Phase portrait of (145), (146). Gray circles denote the stable and unstable nodes; diamond denotes the saddle point.
Solid black lines correspond to solution trajectories. Dashed gray parabola corresponds to the separatrix between solutions
with elliptic and hyperbolic trajectories. Dashed gray lines denote stable and unstable manifolds of the saddle point. Labels
(@), (b), (), (d) correspond to respective parts of Fig. 2. Trajectories in the solid gray and horizontally striped filled regions are
elliptic and hyperbolic respectfully and do not have singularities. Trajectories in the unfilled regions are hyperbolic and have
one singularity. Trajectories in vertically striped regions are hyperbolic and have two singularities.

Solutions with parameters (153)—(155) are pictured in Fig. 2. Note that there are three types of solutions —
non-singular solutions (a), (b); solutions with one singularity (c) and solutions with two singularities (d).
The phase plane of (145), (146) can be seen in Fig. 3. Note that labels (a), (b), (c), (d) on the phase plane
correspond to respectively labeled solutions pictured in Fig. 2. System (145), (146) has the following equilibria
(19—829, %) — stable node; (f%, 0) — unstable node; (%, O) — saddle point.
It has been proven in [15] that homoclinic/heteroclinic solutions of the form (8), (9) correspond to phase
plane trajectories that satisfy the general conic section equation:

Ax* +Bxy+Cy* +Ex+Fy+G=0; A,B,C,E,F,GeR. (156)

Solution Fig. 3 (a) corresponds to an elliptic trajectory, while the remaining (b), (c), (d) have hyperbolic
trajectories. Furthermore, there is a single solution that satisfies the parabola equation:

@(x,y) = 0. (157)

Curve (157) is a separatrix that separates solutions with and without singularities in the phase plane (see
dashed gray parabola in Fig. 3).
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Stable and unstable manifolds of the saddle point are obtained by setting the numerator and denomina-
tor of 71 to zero [15]. This yields that the stable manifold of the saddle point is the x-axis, while the unstable
manifold lies on the straight line y = —3%)( + 25—4 Manifolds of the saddle point correspond to dashed gray
lines in Fig. 3.

7 Concluding remarks

Homoclinic and heteroclinic solutions to hepatitis C evolution model (2) have been constructed in this
paper. Inverse balancing and generalized differential operator techniques have enabled the derivation of
explicit necessary and sufficient homoclinic and heteroclinic solution existence conditions with respect to
the parameters of system (2). Furthermore, it has been shown that these existence conditions are satisfied
when (2) described a biologically significant system of HCV evolution.

It has been demonstrated that transient processes of the derived solutions to (2) reveal important
phenomena for understanding hepatitis C virus infection dynamics. Even though antiviral therapy reduces
the number of infected cells (comparing the beginning to the end of treatment), due to the transient processes
during the therapy, population size of infected cells is higher than before or after therapy - if only the
considered solutions are heteroclinic with maxima. Analogous biological interpretations can be made for
heteroclinic solutions with minima. The population of healthy cells is lower than before or after treatment
during antiviral therapy - if the number of uninfected hepatocytes is described by a heteroclinic solution
possessing minima.

The main mathematical advancements of this paper can be characterized by new applications of inverse
balancing technique and the development of generalized differential operator method for the solution of
coupled differential equations with multiplicative and diffusive terms. As noted in Section 4, direct bal-
ancing techniques may yield wrong solutions; inverse balancing of such a complex system of nonlinear
differential equations poses a number of technical problems. On the other hand, derivation of closed-form
homoclinic/heteroclinic solutions and explicit conditions of their existence poses serious mathematical
challenges. One of the main contributions of this paper are the necessary and sufficient conditions for the
existence of these solutions in the hepatitis C evolution model.

Comparing the results of this paper with [15] it can be concluded that system (3) (and, by extension
(2)) is structurally stable in the topological sense — when ay, b, tend to zero, the phase plane continuously
converges to the phase plane described in [15]. Moreover, structural stability can also be observed in homo-
clinic/heteroclinic solution existence condition (123) — in the case a4, b, — 0, such solutions also exist and
the condition (123) is maintained. Since such effects are observed in systems with biological significance, they
provide valuable insight not only into (2) but also other nonlinear evolution models.

Acknowledgement: This research was funded by a grant (No. MIP078/2015) from the Research Council of
Lithuania. This research was also funded by Jiangsu Provincial Recruitment Program of Foreign Experts (Type
B, Grant 172 no. JSB2017007).
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