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Abstract: In this paper we introduce and investigate the regularity properties of one-sided multilinear
fractional maximal operators, both in continuous case and in discrete case. In the continuous setting, we
prove that the one-sidedmultilinear fractional maximal operatorsM+

β andM−
β mapW1,p1 (R)× · · ·×W1,pm (R)

into W1,q(R) with 1 < p1, . . . , pm < ∞, 1 ≤ q < ∞ and 1/q =
∑m

i=1 1/pi − β, boundedly and continuously.
In the discrete setting, we show that the discrete one-sided multilinear fractional maximal operators are
bounded and continuous from `1(Z)× · · ·×`1(Z) to BV(Z). Here BV(Z) denotes the set of functions of bounded
variation de�ned on Z. Our main results represent signi�cant and natural extensions of what was known
previously.
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bounded variation, continuity
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1 Introduction and the main results
Over the last several years a considerable amount of attention has been given to investigate the behavior
of di�erentiability of maximal function. A good start was due to Kinnunen [1] who showed that the usual
centered Hardy-Littlewood maximal function M is bounded on W1,p(Rd) for all 1 < p ≤ ∞, where W1,p(Rd)
is the �rst order Sobolev space, which consists of functions f ∈ Lp(Rd), whose �rst weak partial derivatives
Di f , i = 1, 2, . . . , d, belong to Lp(Rd). We endowW1,p(Rd) with the norm

‖f‖1,p = ‖f‖Lp(Rd) + ‖∇f‖Lp(Rd),

where∇f = (D1f , D2f , . . . , Dd f ) is theweak gradient of f . Later on, Kinnunen’s result was extended to a local
version in [2], to a fractional version in [3], to a multilinear version in [4, 5] and to a one-sided version in [6].
Meanwhile, the continuity ofM : W1,p → W1,p for 1 < p < ∞was proved by Luiro in [7] and in [8] for its local
version. Since Kinnunen’s result does not hold for p = 1, an important question was posed by Hajłasz and
Onninen in [9]: Is the operator f 7→ |∇Mf | bounded fromW1,1(Rd) to L1(Rd)? Progress on the above problem
has been restricted to dimension d = 1. In 2002, Tanaka [10] showed that if f ∈ W1,1(R), then the uncentered
Hardy-Littlewood maximal function M̃f is weakly di�erentiable and

‖(M̃f )′‖L1(R) ≤ 2‖f ′‖L1(R). (1.1)
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This result was later sharpened by Aldaz and Pérez Lázaro [11] who proved that if f is of bounded variation
on R, then M̃f is absolutely continuous and its total variation satis�es

Var(M̃f ) ≤ Var(f ). (1.2)

The above result implies directly (1.1) with constant C = 1 (also see [12] for a simple proof). In remarkable
work [13], Kurka obtained that (1.1) and (1.2) hold forM (with constant C = 240, 004). Recently, Carneiro and
Madrid [14] extended (1.1) and (1.2) to a fractional setting. Very recently, Liu andWu [15] extended the partial
result of [14] to a multilinear setting. For other interesting works related to this theory, we refer the reader to
[16–25], among others.

In this paper we focus on the regularity properties of the one-sided multilinear fractional maximal
operators. More precisely, let m be a positive integer. For 0 ≤ β < m, we de�ne the one-sided multilinear
fractional maximal operatorsM+

β andM−
β by

M+
β(~f )(x) = sup

s>0

1
sm−β

m∏
i=1

x+s∫
x

|fi(y)|dy and M−
β(~f )(x) = sup

r>0

1
rm−β

m∏
i=1

x∫
x−r

|fi(y)|dy,

where ~f = (f1, . . . , fm) with each fi ∈ L1
loc(R). When β = 0, the operator M+

β (resp., M−
β) reduces to the

one-sided multilinear Hardy-Littlewood maximal operator M+ (resp., M−). When m = 1, the operator M+
β

(resp., M−
β) reduces to the one-sided fractional maximal operator M+

β (resp., M−
β). Especially, the one-sided

Hardy-Littlewood maximal operator M+ (resp., M−) corresponds to the operator M+
β (resp., M−

β) in this case
β = 0.

As we all known, the reasons to study one-sided operators involve not only the generalization of the
theory of the two-sided operators but also the close connection between the one-sided operators and two-
sided operators. The one-sided Hardy-Littlewood maximal operator M+ can be seen as the special case of
the ergodic maximal operator. Furthermore, there is a close connection between the one-sided fractional
maximal functions and the well-known Riemann-Liourille fractional integral that can be viewed as the one-
sided version of Riesz potential and the Weyl fractional integral (see [26]). It was known that both M+

β and
M−
β are of type (p, q) for 1 < p < ∞, 0 ≤ β < 1/p and q = p/(1 − pβ). Moreover, bothM+

β andM−
β are of weak

type (1, q) for 0 ≤ β < 1 and q = 1/(1 − β). Observing that the following inequalities are valid:

M+
β(~f )(x) ≤

m∏
i=1

M+
βi fi(x), ∀x ∈ R, (1.3)

where ~f = (f1, . . . , fm) and β =
∑m

i=1 βi with βi ≥ 0 (i = 1, 2, . . . ,m). By (1.3), the Lp bounds for M+
β and

Hölder’s inequality, one has

‖M+
β(~f )‖Lq(R) ≤ C(β, p1, . . . , pm)

m∏
i=1
‖fi‖Lpi (R) (1.4)

for 1/q =
∑m

i=1 1/pi − β, provided that (i) β = 0, 1 ≤ q ≤ ∞ and 1 < p1, . . . , pm ≤ ∞; (ii) 0 < β < m, 1 ≤ q < ∞
and 1 < p1, . . . , pm < ∞. The same result holds forM−

β.
The investigation on the regularity of one-sided maximal operator began with Tanaka [10] in 2002 when

he observed that if f ∈ W1,1(R), then the distributional derivatives ofM+f andM−f are integrable functions,
and

‖(M+f )′‖L1(R) ≤ ‖f
′‖L1(R) and ‖(M−f )′‖L1(R) ≤ ‖f

′‖L1(R).

By a combination of arguments in [10, 12], both M+f and M−f are absolutely continuous on R. Recently,
Liu and Mao [6] proved that both M+ and M− are bounded and continuous on W1,p(R) for 1 < p < ∞.
Very recently, Liu [27] extended the main results of [6] to the fractional case. More precisely, Liu proved the
following result.

Theorem A ([27]). Let 1 < p < ∞, 0 ≤ β < 1/p and q = p/(1 − pβ). Then bothM+
β andM−

β map W
1,p(R) into

W1,q(R) boundedly and continuously. Moreover, if f ∈ W1,p(R), then

|(M+
β f )

′(x)| ≤M+
β f
′(x) and |(M−

β f )
′(x)| ≤M−

β f
′(x)
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for almost every x ∈ R.

In this paper we shall extended Theorem A to the multilinear case. We now formulate our main results
as follows.

Theorem 1.1. Let 1 < p1, . . . , pm < ∞, 0 ≤ β <
∑m

i=1 1/pi, 1/q =
∑m

i=1 1/pi − β and 1 ≤ q < ∞. ThenM+
β maps

W1,p1 (R) × · · · × W1,pm (R) into W1,q(R) boundedly and continuously. Especially, if ~f = (f1, . . . , fm) with each
fi ∈ W1,pi (R), then the weak derivative (M+

β(~f ))′ exists almost everywhere. More precisely,

|(M+
β(~f ))′(x)| ≤

m∑
j=1

M+
β(~f j)(x)

for almost every x ∈ R, where~f j = (f1, . . . , fj−1, f ′j , fj+1, . . . , fm). Moreover,

‖M+
β(~f )‖1,q ≤ C(β, p1, . . . , pm)

m∏
i=1
‖fi‖1,pi .

The same results hold forM−
β .

Theorem 1.2. Let~f = (f1, . . . , fm) with each fi ∈ Lpi (R) for 1 < p1, . . . , pm < ∞ and 1 ≤ β <
∑m

i=1 1/pi.
(i) Then the weak derivative (M+

β(~f ))′ exists almost everywhere. Precisely,

|(M+
β(~f ))′(x)| ≤ C(m, β)M+

β−1(~f )(x)

for almost every x ∈ R.
(ii) Let 1/q =

∑m
i=1 1/pi − β + 1. Then

‖(M+
β(~f ))′‖Lq(R) ≤ C(m, β, p1, . . . , pm)

m∏
i=1
‖fi‖Lpi (R).

The same results hold forM−
β .

Remark 1.1. Theorem 1.1 extends Theorems 1.1-1.2 in [6], which correspond to the case m = 1 and β = 0.
Theorem 1.1 also extends Theorem A, which corresponds to the case m = 1.

On the other hand, the investigation of the regularity properties of discrete maximal operators has also
attracted the attention of many authors (see [6, 14, 16, 27–33] for example). Let us recall some notation and
relevant results. For 1 ≤ p < ∞ and a discrete function f : Z → R, we de�ne the `p-norm and the `∞-norm
of f by ‖f‖`p(Z) = (

∑
n∈Z |f (n)|p)1/p and ‖f‖`∞(Z) = supn∈Z |f (n)|. We also de�ne the �rst derivative of f by

f ′(n) = f (n + 1) − f (n) for any n ∈ Z. For f : Z → R, we de�ne the total variation of f by

Var(f ) = ‖f ′‖`1(Z).

We denote by BV(Z) the set of all functions f : Z → R satisfying Var(f ) < ∞.
In 2011, Bober et al. [28] �rst studied the regularity properties of discrete Hardy-Littlewood maximal

operators and proved that
Var(M̃f ) ≤ Var(f ) (1.5)

and
Var(Mf ) ≤

(
2 + 146

315

)
‖f‖`1(Z). (1.6)

Here M (resp., M̃) denotes the discrete centered (resp., uncentered) Hardy-Littlewood maximal operator,
which are de�ned by

Mf (n) = sup
r∈N

1
2r + 1

r∑
k=−r
|f (n + k)| and M̃f (n) = sup

r, s∈N

1
r + s + 1

s∑
k=−r
|f (n + k)|,
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where N = {0, 1, 2, 3, . . . , }. We note that inequality (1.5) is sharp. It was known that inequality Var(Mf ) ≤
294, 912, 004Var(f ) was established by Temur in [32]. Inequality (1.6) is not optimal, and it was asked in [28]
whether the sharp constant for (1.6) is in fact C = 2,whichwas addressed byMadrid in [31]. Recently, Carneiro
and Madrid [14] extended (1.5) to the fractional setting. They also pointed out that the discrete fractional
maximal operators Mβ and M̃β are bounded and continuous from `1(Z) to BV(Z) (also see [29, 34]). Here Mβ

and M̃β are the discrete centered and uncentered fractional maximal operators, which are de�ned by

Mβ f (n) = sup
r∈N

1
(2r + 1)1−β

r∑
k=−r
|f (n + k)| and M̃β f (n) = sup

r, s∈N

1
(r + s + 1)1−β

s∑
k=−r
|f (n + k)|.

Our second aim of this paper is to consider the discrete one-sided multilinear fractional maximal
operators

M+
β(~f )(n) = sup

s∈N

1
(s + 1)m−β

m∏
i=1

s∑
k=0
|fi(n + k)|,

M−
β(~f )(n) = sup

r∈N

1
(r + 1)m−β

m∏
i=1

0∑
k=−r
|fi(n + k)|,

where 0 ≤ β < m and ~f = (f1, . . . , fm) with each fi ∈ L1
loc(Z). When β = 0, the operators M+

β and M−
β reduce

to the discrete one-sided multilinear Hardy-Littlewood maximal operators M+ and M−, respectively. When
m = 1, the operators M+

β and M−
β reduce to the discrete one-sided fractional maximal operators M+

β and M−β,
respectively. Particularly, the discrete one-sidedHardy-Littlewoodmaximal operatorsM+ andM− correspond
to the special case ofM+

β andM
−
β when β = 0, respectively. Recently, Liu andMao [6] proved that bothM+ and

M− are bounded and continuous from `1(Z) to BV(Z). Moreover, if f ∈ BV(Z), then

max{Var(M+f ), Var(M−f )} ≤ Var(f ). (1.7)

We notice that the constant C = 1 in inequality (1.7) is sharp. Very recently, Liu [27] pointed out that M+
β and

M−β are not bounded from BV(Z) to BV(Z) when 0 < β < 1. However, Liu established the following result.

TheoremB ([27]).Let0 ≤ β < 1. ThenM+
β is boundedand continuous from `1(Z) toBV(Z).Moreover, if f ∈ `1(Z),

then
Var(M+

β f ) ≤ 2‖f‖`1(Z),

and the constant C = 2 is the best possible. The same results hold for M−β .

In this paper we shall extended Theorem B to the following.

Theorem 1.3. Let 0 ≤ β < m. Then M+
β is bounded and continuous from `1(Z) × · · · × `1(Z) to BV(Z). Moreover,

if~f = (f1, . . . , fm) with each fi ∈ `1(Z), then

Var(M+
β(~f )) ≤ 2m

m∏
i=1
‖fi‖`1(Z).

The same results hold for M−
β .

Remark 1.2.When m = 1, Theorem 1.3 implies Theorem B.

The rest of this paper is organized as follows. Section 2 contains some notation and preliminary lemmas,
which can be used to prove the continuity part in Theorem 1.1. Motivated by the ideas in [5, 7], we give
the proofs of Theorems 1.1-1.2 in Section 3. Finally, we prove Theorem 1.3 in Section 4. It should be pointed
out that the proof of the boundedness part in Theorem 1.3 is based on the method of [31]. The proof of the
continuity part in Theorem 1.3 relies on the previous boundedness result and a useful application of the
Brezis-Lieb lemma in [35]. Throughout this paper, the letter C, sometimes with additional parameters, will
stand for positive constants, not necessarily the same one at each occurrence but independent of the essential
variables.
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2 Preliminary notation and lemmas
In this section we shall introduce some notation and lemmas, which play key roles in the proof of the
continuity part in Theorem 1.1. Let A ⊂ R and r ∈ R. We de�ne

d(r, A) := inf
a∈A
|r − a| and A(λ) := {x ∈ R : d(x, A) ≤ λ} for λ ≥ 0.

Denote ‖f‖p,A by the Lp-norm of fχA for all measurable sets A ⊂ R. Let~f = (f1, . . . , fm) with each fi ∈ Lpi (R)
for 1 < pi < ∞ and 1 ≤ q < ∞ with 1/q =

∑m
i=1 1/pi − β. In what follows, we only consider the operator M+

β

and the other case is analogous. Fix x ∈ R, we de�ne the setR+
β(~f )(x) by

R+
β(~f )(x) :=

{
s ≥ 0 : M+

β(~f )(x) = lim sup
k→∞

1
sm−βk

m∏
i=1

x+sk∫
x

|fi(y)|dy for some sk > 0, sk → s
}
.

We also de�ne the function u+
x,~f ,β : [0,∞) 7→ R by

u+
x,~f ,β(0) =


m∏
i=1
|fi(x)|, if β = 0;

0, if 0 < β < m,

u+
x,~f ,β(s) = 1

sm−β
m∏
i=1

x+s∫
x

|fi(y)|dy for s ∈ (0,∞).

We notice that the followings are valid.
(i) u+

x,~f ,β is continuous on (0,∞) for all x ∈ R and at r = 0 for almost everywhere x ∈ R;

(ii) lim
s→∞

u+
x,~f ,β(s) = 0 since u+

x,~f ,β(s) ≤
∏m
i=1 ‖fi‖Lpi (R)s−1/q;

(iii) The setR+
β(~f )(x) is nonempty and closed for any x ∈ R;

(iv) Almost every point is a Lebesgue point.
From the above observations we have

M+
β(~f )(x) = u+

x,~f ,β(s) if 0 < s ∈ R+
β(~f )(x), ∀x ∈ R,

M+
β(~f )(x) = u+

x,~f ,β(0) for almost every x ∈ R such that 0 ∈ R+
β(~f )(x).

Lemma 2.1. Let 1 < p1, . . . , pm < ∞ and 1 ≤ q < ∞ with 1/q =
∑m

i=1 1/pi − β. Let ~fj = (f1,j , . . . , fm,j) and
~f = (f1, . . . , fm) such that fi,j → fi in Lpi (R) when j → ∞. Then, for all R > 0 and λ > 0, it holds that

lim
j→∞
|{x ∈ (−R, R) : R+

β(~fj)(x) * R+
β(~f )(x)(λ)}| = 0. (2.1)

Proof. Without loss of generality, we may assume that all fi,j ≥ 0 and fi ≥ 0. By the similar argument as in the
proof of Lemma 2.2 in [7], we can conclude that the set {x ∈ R : R+

β(~fj)(x) * R+
β(~f )(x)(λ)} is measurable for

any j ∈ Z. Let λ > 0 and R > 0. We �rst claim that for almost every x ∈ (−R, R), there exists γ(x) ∈ N \ {0}
such that

u+
x,~f ,β(s) < M+

β(~f )(x) − 1
γ(x) when d(s,R+

β(~f )(x)) > λ. (2.2)

Otherwise, for almost every x ∈ (−R, R), there exists a bounded sequence of radii {sk}∞k=1 such that

lim
k→∞

u+
x,~f ,β(sk) = M+

β(~f )(x) and d(sk ,R+
β(~f )(x)) > λ.
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We can choose a subsequence {rk}∞k=1 of {sk}∞k=1 such that rk → s as k → ∞. Then we have s ∈ R+
β(~f )(x) and

d(s,R+
β(~f )(x)) ≥ λ, which is a contradiction. Thus (2.2) holds. Given ϵ ∈ (0, 1), (2.2) yields that there exists

γ = γ(R, λ, ϵ) ∈ N \ {0} and a measurable set E with |E| < ϵ such that

(−R, R) ⊂ {x ∈ R : u+
x,~f ,β(s) < M+

β(~f )(x) − γ−1 if d(s,R+
β(~f )(x)) > λ} ∪ E.

Notice that

M+
β(~f )(x) − u+

x,~f ,β(s) ≤ |M+
β(~fj)(x) −M+

β(~f )(x)| + |u+
x,~fj ,β

(s) − u+
x,~f ,β(s)| + M+

β(~fj)(x) − u+
x,~fj ,β

(s).

It yields that

{x ∈ R : u+
x,~f ,β(s) < M+

β(~f )(x) − γ−1 if d(s,R+
β(~f )(x)) > λ} ⊂ A1,j ∪ A2,j ∪ A3,j ,

where
A1,j := {x ∈ R : |M+

β(~fj)(x) −M+
β(~f )(x)| ≥ (4γ)−1},

A2,j := {x ∈ R : |u+
x,~fj ,β

(s) − u+
x,~f ,β(s)| ≥ (2γ)−1 for some s such that d(s,R+

β(~f )(x)) > λ},

A3,j := {x ∈ R : u+
x,~fj ,β

(s) < M+
β(~fj)(x) − (4γ)−1 if d(s,R+

β(~f )(x)) > λ}.

Hence,
(−R, R) ⊂ A1,j ∪ A2,j ∪ A3,j ∪ E. (2.3)

Let Ā be the set of all points x such that x is a Lebesgue point of all fj. Note that |R \ Ā| = 0 and A3,j ∩ Ā ⊂
{x ∈ R : R+

β(~fj)(x) ⊂ R+
β(~f )(x)(λ)}. This together with (2.3) implies

{x ∈ (−R, R) : R+
β(~fj)(x) * R+

β(~f )(x)(λ)} ⊂ A1,j ∪ A2,j ∪ E ∪ (R \ Ā).

It follows that
|{x ∈ (−R, R) : R+

β(~fj)(x) * R+
β(~f )(x)(λ)}| ≤ |A1,j| + |A2,j| + ϵ. (2.4)

We can write
|M+

β(~fj)(x) −M+
β(~f )(x)|

≤ sup
s>0

1
sm−β

∣∣∣ m∏
i=1

x+s∫
x

fi,j(y)dy −
m∏
i=1

x+s∫
x

fi(y)dy
∣∣∣

≤
m∑
l=1

sup
s>0

1
sm−β

l−1∏
µ=1

x+s∫
x

fµ(y)dy
m∏

ν=l+1

x+s∫
x

fν,j(y)dy
x+s∫
x

|fl,j(y) − fl(y)|dy

≤
m∑
l=1

M+
β(~f lj )(x)

(2.5)

for any x ∈ R, where~f lj = (f1, . . . , fl−1, fl,j − fl , fl+1,j , . . . , fm,j). From (2.5) we have

|A1,j| ≤
∣∣∣{x ∈ R :

m∑
l=1

M+
β(~f lj )(x) ≥ (4γ)−1

}∣∣∣
≤

m∑
l=1
|{x ∈ R : M+

β(~f lj )(x) ≥ (4mγ)−1}|

≤ (4mγ)q
m∑
l=1
‖M+

β(~f lj )‖
q
Lq(R).

(2.6)

Since fi,j → fi in Lpi (R) as j → ∞, then there exists N0 = N0(ϵ, γ) ∈ N \ {0} such that

‖fi,j − fi‖Lpi (R) <
ϵ
γ

and ‖fi,j‖Lpi (R) ≤ ‖fi‖Lpi (R) + 1, ∀j ≥ N0. (2.7)
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(2.7) together with (2.6) and (1.4) yields that

|A1,j| ≤ C(m, q, β, p1, . . . , pm ,~f )ϵ, ∀j ≥ N0. (2.8)

On the other hand, one can easily check that

|u+
x,~fj ,β

(s) − u+
x,~f ,β(s)| ≤

m∑
l=1

M+
β(~f lj )(x), ∀s > 0.

This together with the argument similar to those used in deriving (2.8) implies

|A2,j| ≤ C(m, q, β, p1, . . . , pm ,~f )ϵ, ∀j ≥ N0. (2.9)

It follows from (2.4), (2.8) and (2.9) that

|{x ∈ (−R, R) : R+
β(~fj)(x) * R+

β(~f )(x)(λ)}| ≤ C(m, q, β, p1, . . . , pm ,~f )ϵ, ∀j ≥ N0,

which gives (2.1) and completes the proof of Lemma 2.1.

We now de�ne the Hausdor� distance between two sets A and B by

π(A, B) := inf{δ > 0 : A ⊂ B(δ) and B ⊂ A(δ)}.

The following result can be obtained by Lemma 2.1 and a similar argument as in the proof of Corollary 2.3 in
[7], we omit the details.
Lemma 2.2. Let ~f = (f1, . . . , fm) with each fi ∈ Lpi (R) for 1 < p1, . . . , pm < ∞. Let 1 ≤ q < ∞ and 1/q =∑m

i=1 1/pi − β. Then, for all R > 0 and λ > 0, we have

lim
h→0
|{x ∈ (−R, R) : π(R+

β(~f )(x),R+
β(~f )(x + h)) > λ}| = 0.

The following result presents some formulas for the derivatives of the one-sided multilinear fractional
maximal functions, which play the key roles in the proof of the continuity part in Theorem 1.1.
Lemma 2.3. Let~f = (f1, . . . , fm)with each fi ∈ W1,pi (R) for 1 < pi < ∞. Let 1 ≤ q < ∞ and 1/q =

∑m
i=1 1/pi −β.

Then, for almost every x ∈ R, we have

(M+
β(~f ))′(x) =

m∑
l=1

1
sm−β

∏
1≤j≤m
j ̸=l

x+s∫
x

|fj(y)|dy
x+s∫
x

|fl|′(y)dy for all 0 < s ∈ R+
β(~f )(x); (2.10)

(M+
β(~f ))′(x) =


m∑
l=1
|fl|′(x)

∏
1≤j≤m
j ̸=l

|fj(x)|, if β = 0 and 0 ∈ R+
β(~f )(x),

0, if 0 < β < m and 0 ∈ R+
β(~f )(x).

(2.11)

Proof. We may assume that all fi ≥ 0 since |f | ∈ W1,p(R) if f ∈ W1,p(R) with 1 < p < ∞. By the
boundedness part in Theorem 1.1 we see that M+

β(~f ) ∈ W1,q(R). Invoking Lemma 2.2, we can choose a
sequence {sk}∞k=1, sk > 0 such that limk→∞ sk = 0 and limk→∞ π(R+

β(~f )(x),R+
β(~f )(x + sk)) = 0 for almost

every x ∈ (−R, R). For 1 ≤ i ≤ m and h ∈ R, we set

f ih(x) =
f iτ(h)(x) − fi(x)

h and f iτ(h)(x) = fi(x + h).

It was known that
‖f iτ(sk) − fi‖Lpi (R) → 0 as k → ∞,

‖f isk − (fi)′‖Lpi (R) → 0 as k → ∞,
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‖M+(f iτ(sk) − fi)‖Lpi (R) → 0 as k → ∞,

‖M+(f isk − f
′
i )‖Lpi (R) → 0 as k → ∞,

‖(M+
β(~f ))sk − (M+

β(~f ))′‖Lq(R) → 0 as k → ∞.

Here (M+
β(~f ))sk (x) = 1

sk (M+
β(~f )(x+ sk) −M+

β(~f )(x)). Furthermore, there exists a subsequence {hk}∞k=1 of {sk}∞k=1
and a measurable set A1 ⊂ (−R, R) with |(−R, R)\A1| = 0 such that

(i) f iτ(hk)(x) → fi(x), f ihk (x) → f ′i (x),M+(f iτ(hk)−fi)(x) → 0,M+(f ihk−f
′
i )(x) → 0 and (M+

β(~f ))hk (x) → (M+
β(~f ))′(x)

when k → ∞ for any x ∈ A1 and 1 ≤ i ≤ m;
(ii) limk→∞ π(R+

β(~f )(x),R+
β(~f )(x + hk)) = 0 for any x ∈ A1.

Let

A2 :=
∞⋂
k=1
{x ∈ R : M+

β(~f )(x + hk) ≥ u+
x+hk ,~f ,β

(0)},

A3 :=
∞⋂
k=1
{x ∈ R : M+

β(~f )(x + hk) = u+
x+hk ,~f ,β

(0) if 0 ∈ R+
β(~f )(x + hk)},

A4 := {x ∈ R : M+
β(~f )(x) = u+

x,~f ,β(0) if 0 ∈ R+
β(~f )(x)}.

It is obvious that |(−R, R)\Aj| = 0 for j = 2, 3, 4. Let x ∈ A1 ∩A2 ∩A3 ∩A4 be a Lebesgue point of all fi and f ′i .
Fix s ∈ R+

β(~f )(x), there exists radii rk ∈ R+
β(~f )(x + hk) such that limk→∞ rk = s. We consider the following two

cases:
Case A (s > 0). Without loss of generality we may assume that all rk > 0. Then

(M+
β(~f ))′(x) = lim

k→∞

1
hk

(M+
β(~f )(x + hk) −M+

β(~f )(x))

≤ lim
k→∞

1
hk

1
rm−βk

( m∏
i=1

x+hk+rk∫
x+hk

fi(y)dy −
m∏
i=1

x+rk∫
x

fi(y)dy
)

=
m∑
l=1

lim
k→∞

1
rm−βk

l−1∏
µ=1

x+rk∫
x

fµ(y)dy
m∏

ν=l+1

x+rk∫
x

f ντ(hk)(y)dy
x+rk∫
x

f lhk (y)dy.

(2.12)

Since f ντ(hk)χ(x,x+rk) → fνχ(x,x+s) and f lhk χ(x,x+rk) → f ′l χ(x,x+s) in L1(R) as k → ∞. Then (2.12) yields that

(M+
β(~f ))′(x) ≤

m∑
l=1

1
sm−β

∏
1≤j≤m
j ̸=l

x+s∫
x

fj(y)dy
x+s∫
x

f ′l (y)dy. (2.13)

On the other hand,

(M+
β(~f ))′(x) = lim

k→∞

1
hk

(M+
β(~f )(x + hk) −M+

β(~f )(x))

≥ lim
k→∞

1
hk

1
sm−β

( m∏
i=1

x+hk+s∫
x+hk

fi(y)dy −
m∏
i=1

x+s∫
x

fi(y)dy
)

=
m∑
l=1

lim
k→∞

1
sm−β

l−1∏
µ=1

x+s∫
x

fµ(y)dy
m∏

ν=l+1

x+s∫
x

f ντ(hk)(y)dy
x+s∫
x

f lhk (y)dy

=
m∑
l=1

1
sm−β

∏
1≤j≤m
j ̸=l

x+s∫
x

fj(y)dy
x+s∫
x

f ′l (y)dy.

(2.14)

Combining (2.14) with (2.13) yields that (2.10) holds for almost every x ∈ (−R, R).
Case B (s = 0). We shall discuss the following two cases:
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(i) When 0 < β < m. SinceM+
β(~f )(x) = 0, then all fi(y) ≡ 0 for almost every y ∈ (x, ∞). ThusM+

β(~f )(y) ≡ 0
for y ≥ x. It follows that

(M+
β(~f ))′(x) = lim

k→∞

1
hk

(M+
β(~f )(x + hk) −M+

β(~f )(x)) = 0.

This yields that (2.11) holds for almost every x ∈ (−R, R) in this case 0 < β < m.
(ii) When β = 0. We notice that

lim
k→∞

1
hk

( m∏
i=1
fi(x + hk) −

m∏
i=1
fi(x)

)
=

m∑
l=1

lim
k→∞

f lhk (x)
l−1∏
µ=1

fµ(x)
m∏

ν=l+1
fν(x + hk)

=
m∑
l=1

f ′l (x)
∏
1≤j≤m
j ̸=l

fj(x).
(2.15)

It follows that
(M+

β(~f ))′(x) = lim
k→∞

1
hk

(M+
β(~f )(x + hk) −M+

β(~f )(x))

≥ lim
k→∞

1
hk

( m∏
i=1
fi(x + hk) −

m∏
i=1
fi(x)

)
=

m∑
l=1

f ′l (x)
∏
1≤j≤m
j ̸=l

fj(x).

(2.16)

Below we estimate the upper bound of (M+
β(~f ))′(x). If there exists k0 ∈ N \ {0} such that sk > 0 for any k ≥ k0,

then, by the argument similar to those used in deriving (2.12),

(M+
β(~f ))′(x) ≤

m∑
l=1

lim
k→∞

( l−1∏
µ=1

1
rk

x+rk∫
x

fµ(y)dy
)( m∏

ν=l+1

1
rk

x+rk∫
x

f ντ(hk)(y)dy
)

×
( 1
rk

x+rk∫
x

f lhk (y)dy
)
.

(2.17)

Since ∣∣∣ lim
k→∞

1
rk

x+rk∫
x

f ντ(hk)(y)dy − fν(x)
∣∣∣

≤ lim
k→∞

1
rk

x+rk∫
x

|f ντ(hk)(y) − fν(y)|dy ≤ lim
k→∞

M+(f ντ(hk) − fν)(x) = 0.

It follows that

lim
k→∞

1
rk

x+rk∫
x

f ντ(hk)(y)dy = fν(x). (2.18)

Similarly,

lim
k→∞

1
rk

x+rk∫
x

f lhk (y)dy = f ′l (x). (2.19)

It follows from (2.17)-(2.19) that

(M+
β(~f ))′(x) ≤

m∑
l=1

f ′l (x)
∏
1≤j≤m
j ̸=l

fj(x). (2.20)

If sk = 0 for in�nitely many k, then, by (2.15) we have

(M+
β(~f ))′(x) = lim

k→∞

1
hk

(M+
β(~f )(x + hk) −M+

β(~f )(x))

= lim
k→∞

1
hk

( m∏
i=1
fi(x + hk) −

m∏
i=1
fi(x)

)
=

m∑
l=1

f ′l (x)
∏
1≤j≤m
j ̸=l

fj(x).
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This together with (2.16) and (2.20) yields that (2.11) holds for almost every x ∈ (−R, R) in the case β = 0. Since
R was arbitrary, this proves Lemma 2.3. �

3 Proofs of Theorems 1.1-1.2
In this section we shall prove Theorems 1.1-1.2. Let us begin with the proof of Theorem 1.1.
Proof of Theorem 1.1. We only prove Theorem 1.1 for M+

β and the other case is analogous. Let {sk}k≥1 be an
enumeration of positive rational numbers. Then we can write

M+
β(~f )(x) = sup

k≥1

1
sm−βk

m∏
i=1

x+sk∫
x

|fi(y)|dy.

De�ne the family of operators {Tk}k≥1 by

Tk(~f )(x) = max
1≤i≤k

1
sm−βi

m∏
j=1

x+si∫
x

|fj(y)|dy.

Fix x, h ∈ R, one has

|Tk(~f )(x + h) − Tk(~f )(x)|

≤ max
1≤i≤k

1
sm−βi

∣∣∣ m∏
j=1

x+h+si∫
x+h

|fj(y)|dy −
m∏
j=1

x+si∫
x

|fj(y)|dy
∣∣∣

≤
m∑
l=1

max
1≤i≤k

1
sm−βi

l−1∏
µ=1

x+si∫
x

|fµ(y)|dy
m∏

ν=l+1

x+si∫
x

|f ντ(h)(y)|dy
x+si∫
x

|f lτ(h)(y) − fl(y)|dy.

It follows that

(Tk(~f ))′(x) ≤
m∑
l=1

M+
β(~f l)(x) (3.1)

for almost every x ∈ R, where ~f l = (f1, . . . , fl−1, f ′l , fl+1, . . . , fm). Here we used the fact that ||f |′(x)| = |f ′(x)|
for almost every x ∈ R. By (3.1), (1.4) and Minkowski’s inequality, we obtain

‖Tk(~f )‖1,q ≤ ‖Tk(~f )‖Lq(R) + ‖(Tk(~f ))′‖Lq(R)

≤ ‖M+
β(~f )‖Lq(R) +

∥∥∥ m∑
l=1

M+
β(~f l)

∥∥∥
Lq(R)

≤ C(β, p1, . . . , pm)
( m∏
i=1
‖fi‖Lpi (R) +

m∑
l=1
‖f ′l‖Lpl (R)

∏
1≤j≤m
j ̸=l

‖fj‖Lpj (R)

)

≤ C(m, β, p1, . . . , pm)
m∏
i=1
‖fi‖1,pi .

Therefore, {Tk(~f )} is a bounded sequence in W1,q(R) which converges to M+
β(~f ) pointwise. The weak com-

pactness of Sobolev spaces implies that M+
β(~f ) ∈ W1,q(R), Tk(~f ) converges to M+

β(~f ) weakly in Lq(R) and
(Tk(~f ))′ converges to (M+

β(~f ))′ weakly in Lq(R). This together with (3.1) yields that

|(M+
β(~f ))′(x)| ≤

m∑
l=1

M+
β(~f l)(x) (3.2)

for almost every x ∈ R. It follows from (3.2) and (1.4) that

‖M+
β(~f )‖1,q = ‖M+

β(~f )‖Lq(R) + ‖(M+
β(~f ))′‖Lq(R) ≤ C(m, β, p1, . . . , pm)

m∏
i=1
‖fi‖1,pi .
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This completes the boundedness part of Theorem 1.1.
We now prove the continuity forM+

β by employing the idea in [20]. Let β,m, p1, . . . , pm , q be given as in
Theorem 1.1. Let~f = (f1, . . . , fm) with each fi ∈ W1,pi (R) and~fj = (f1,j , . . . , fm,j) such that fi,j → fi inW1,pi (R)
when j → ∞. We get from (2.5) that

|M+
β(~fj)(x) −M+

β(~f )(x)| ≤
m∑
l=1

M+
β(~f lj )(x) (3.3)

for any x ∈ R, where~f lj is given as in (2.5). (3.3) together with (1.4) implies that

‖M+
β(~fj) −M+

β(~f )‖Lq(R)

≤
m∑
l=1
‖M+

β(~f lj )‖Lq(R) ≤ C(m, β, p1, . . . , pm)
m∑
l=1
‖fl,j − fl‖Lpl (R)

l−1∏
µ=1
‖fµ‖Lpµ (R)

m∏
ν=l+1

‖fν,j‖Lpν (R).

It follows that
‖M+

β(~fj) −M+
β(~f )‖Lq(R) → 0 when j → ∞.

Hence, to prove the continuity forM+
β, it su�ces to show that

‖(M+
β(~fj))′ − (M+

β(~f ))′‖Lq(R) → 0 when j → ∞. (3.4)

Below we prove (3.4). We may assume that all fi,j ≥ 0 and fi ≥ 0. For 1 ≤ l ≤ m, we set ~f l =
(f1, . . . , fl−1, f ′l , fl+1, . . . , fm). Fix ϵ ∈ (0, 1). We can choose R > 0 such that

∑m
l=1 ‖M

+
β(~f l)‖q,B1 < ϵ with

B1 = (−∞, −R)∪(R, ∞). The absolute continuity implies that there exists η > 0 such that
∑m

l=1 ‖M
+
β(~f l)‖q,B < ϵ

for anymeasurable subset B of (−R, R) with |B| < η. As already observed, for almost every x ∈ R, the function
u+
x,~f l ,β is uniformly continuous on [0,∞). Therefore, for almost every x ∈ R, the function

∑m
l=1 u

+
x,~f l ,β is

uniformly continuous on [0,∞). We can �nd δ(x) > 0 such that∣∣∣ m∑
l=1

u+
x,~f l ,β(s1) −

m∑
l=1

u+
x,~f l ,β(s2)

∣∣∣ < R−1/qϵ if |s1 − s2| ≤ δ(x).

We can write (−R, R) as

(−R, R) =
( ∞⋃
k=1

{
x ∈ (−R, R) : δ(x) > 1

k

})
∪N,

where |N| = 0. We can choose δ > 0 such that∣∣∣{x ∈ (−R, R) :
∣∣∣ m∑
l=1

u+
x,~f l ,β(s1) −

m∑
l=1

u+
x,~f l ,β(s2)

∣∣∣ ≥ R−1/qϵ for some s1, s2 with |s1 − s2| ≤ δ
}∣∣∣

=: |B2| < η
2 .

By Lemma 2.1, there exists N1 ∈ N \ {0} such that

|{x ∈ (−R, R) : R+
β(~fj)(x) * R+

β(~f )(x)(δ)}| =: |Bj| < η2 ∀j ≥ N1.

Fix j ≥ N1. Let ~fl,j = (f1,j , . . . , fl−1,j , f ′l,j , fl+1,j , . . . , fm,j) and s ∈ R+
β(~fj)(x). We consider the following two

cases:
(i) s > 0. We can write

|u+
x,~fl,j ,β

(s) − u+
x,~f l ,β(s)|

= 1
sm−β

∣∣∣ ∏
1≤µ≤m
µ ̸=l

x+s∫
x

fµ,j(y)dy
x+s∫
x

f ′l,j(y)dy −
∏

1≤µ≤m
µ ̸=l

x+s∫
x

fµ(y)dy
x+s∫
x

f ′l (y)dy
∣∣∣

≤
l−1∑
µ=1

M+
β(~Fµ,j)(x) +

m∑
ν=l+1

M+
β(~Gν,j)(x) + M+

β(~Hl,j)(x) =: Gl,j(x),

(3.5)
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where
~Fµ,j = (f1, . . . , fµ−1, fµ,j − fµ , fµ+1,j , . . . , fl−1,j , f ′l,j , fl+1,j , . . . , fm,j),
~Gν,j = (f1, . . . , fl−1, f ′l , fl+1, . . . , fν−1, fν,j − fν , fν+1,j , . . . , fm,j),

~Hl,j = (f1, . . . , fl−1, f ′l,j − f
′
l , fl+1,j , . . . , fm,j).

(ii) s = 0. If 0 < β < m, then |ux,~fl,j ,β(s) − ux,~f l ,β(s)| = 0. If β = 0, then we have

|u+
x, ~fl,j ,β

(s) − u+
x,~f l ,β

(s)|

≤
l−1∑
µ=1

( µ−1∏
l1=1

fl1 (x)
)

(fµ,j(x) − fµ(x))
( l−1∏
l2=µ+1

fl2 ,j(x)
)
|f ′l,j(x)|

( m∏
l3=l+1

fl3 ,j(x)
)

+
m∑

ν=l+1

( l−1∏
l1=1

fl1 (x)
)
|f ′l (x)|

( ν−1∏
l2=l+1

fl2 (x)
)
|fν,j(x) − fν(x)|

( m∏
l3=ν+1

fl3 ,j(x)
)

+
( l−1∏
l1=1

fl1 (x)
)
|f ′l,j(x) − f ′l (x)|

( m∏
l2=l+1

fl2 ,j(x)
)
.

This together with (3.5) and the Lebesgue di�erentiation theorem leads to

|u+
x,~fl,j ,β

(s) − u+
x,~f l ,β(s)| ≤ Gl,j(x) (3.6)

for almost every x ∈ R and s ∈ R+
β(~fj)(x). By (3.6) and Lemma 2.3, we obtain

|(M+
β(~fj))′(x) − (M+

β(~f ))′(x)|

=
∣∣∣ m∑
l=1

ux,~fl,j ,β(s1) −
m∑
l=1

ux,~f l ,β(s2)
∣∣∣

≤
∣∣∣ m∑
l=1

ux,~fl,j ,β(s1) −
m∑
l=1

ux,~f l ,β(s1)
∣∣∣ +
∣∣∣ m∑
l=1

ux,~f l ,β(s1) −
m∑
l=1

ux,~f l ,β(s2)
∣∣∣

≤
m∑
l=1

Gl,j(x) +
∣∣∣ m∑
l=1

ux,~f l ,β(s1) −
m∑
l=1

ux,~f l ,β(s2)
∣∣∣

(3.7)

for almost every x ∈ R and any s1 ∈ R+
β(~fj)(x) and s2 ∈ R+

β(~f )(x). On can easily check that

lim
j→∞
‖Gl,j‖Lq(R) = 0, ∀1 ≤ l ≤ m.

It follows that there exists N2 ∈ N \ {0} such that
∑m

l=1 ‖Gl,j‖Lq(R) < ϵ for any j ≥ N2.
If x /∈ B1 ∪ B2 ∪ Bj, we can choose s1 ∈ R+

β(~fj)(x) and s2 ∈ R+
β(~f )(x) such that |s1 − s2| ≤ δ and∣∣∣ m∑

l=1
ux,~f l ,β(s1) −

m∑
l=1

ux,~f l ,β(s2)
∣∣∣ < |R|−1/qϵ.

On the other hand, we have that for any l = 1, 2, . . . ,m, s1 ∈ R+
β(~fj)(x) and s2 ∈ R+

β(~f )(x),∣∣∣ m∑
l=1

ux,~f l ,β(s1) −
m∑
l=1

ux,~f l ,β(s2)
∣∣∣ ≤ 2

m∑
l=1

M+
β(~f l)(x).

Note that |B2 ∪ Bj| < η for any j ≥ N1. Thus we get from (3.7) that

‖(M+
β(~fj))′ − (M+

β(~f ))′‖Lq(R)

≤
∥∥∥ m∑
l=1

Gl,j

∥∥∥
Lq(R)

+ ‖|R|−1/qϵ‖q,(−R,R) + 2
∥∥∥ m∑
l=1

M+
β(~f l)

∥∥∥
q,B1∪B2∪Bj

≤ Cϵ,

for any j ≥ max{N1, N2}, which leads to

lim
j→∞
‖(M+

β(~fj))′ − (M+
β(~f ))′‖Lq(R) = 0.

This yields (3.4) and completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. The proof is similar to the proof of Theorem 2.3 in [5]. We omit the details. �
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4 Proof of Theorem 1.3
We only prove Theorem 1.3 for M+

β and the other case is analogous.
Step 1: proof of theboundedness forM+

β .Weshall adopt themethod in [31] to prove theboundedness forM+
β.

Let ~f = (f1, . . . , fm) with each fi ∈ `1(Z). Without loss of generality, we may assume fi ≥ 0. For convenience,
let Γ(x) = (x + 1)β−m − (x + 2)β−m for any x ≥ 0. One can easily check that Γ(x) is decreasing on [0,∞) and∑

n∈N Γ(n) = 1. Since all fi ∈ `1(Z), then, for any n ∈ Z, there exists sn ∈ N such that M+
β(~f )(n) = Asn (~f )(n),

where

As(~f )(n) = (s + 1)β−m
m∏
i=1

s∑
k=0

fi(n + k)

for any s ∈ N and n ∈ Z. Let

X+ = {n ∈ Z : M+
β(~f )(n + 1) > M+

β(~f )(n)} and X− = {n ∈ Z : M+
β(~f )(n) ≥ M+

β(~f )(n + 1)}.

Then we can write
Var(M+

β(~f ))
=
∑
n∈X+

(M+
β(~f )(n + 1) − M+

β(~f )(n)) +
∑
n∈X−

(M+
β(~f )(n) − M+

β(~f )(n + 1))

≤
∑
n∈X+

(Asn+1 (~f )(n + 1) − Asn+1+1(~f )(n)) +
∑
n∈X−

(Asn (~f )(n) − Asn+1(~f )(n + 1)).
(4.1)

Fix n ∈ Z, by direct computations we obtain

Asn+1 (~f )(n + 1) − Asn+1+1(~f )(n)

= (sn+1 + 1)β−m
m∏
i=1

sn+1∑
k=0

fi(n + 1 + k) − (sn+1 + 2)β−m
m∏
i=1

sn+1+1∑
k=0

fi(n + k)

≤
m∑
l=1

(
(sn+1 + 1)β−m

sn+1∑
k=0

fl(n + 1 + k) − (sn+1 + 2)β−m
sn+1+1∑
k=0

fl(n + k)
)

×
l−1∏
µ=1

sn+1+1∑
k=0

fµ(n + k)
m∏
ν=l

sn+1∑
k=0

fν(n + 1 + k).

(4.2)

Since

(sn+1 + 1)β−m
sn+1∑
k=0

fl(n + 1 + k) − (sn+1 + 2)β−m
sn+1+1∑
k=0

fl(n + k)

≤ (sn+1 + 1)β−m
∑
k∈Z

fl(k)χ[n+1,n+sn+1+1](k) − (sn+1 + 2)β−m
∑
k∈Z

fl(k)χ[n,n+sn+1+1](k)

≤
∑
k∈Z

fl(k)Γ(sn+1)χ[n+1,n+sn+1+1](k)

≤
∑
k∈Z

fl(k)Γ(k − n − 1)χ(n,∞)(k).

(4.3)

Combining (4.3) with (4.2) yields that

Asn+1 (~f )(n + 1) − Asn+1+1(~f )(n) ≤
m∑
l=1

∏
1≤j≤m
j ̸=l

‖fj‖`1(Z)

(∑
k∈Z

fl(k)Γ(k − n − 1)χ(n,∞)(k)
)
. (4.4)

On the other hand, one �nds

Asn (~f )(n) − Asn+1(~f )(n + 1) = (sn + 1)β−m
m∏
i=1

sn∑
k=0

fi(n + k) − (sn + 2)β−m
m∏
i=1

sn+1∑
k=0

fi(n + 1 + k)

=
m∑
l=1

(
(sn + 1)β−m

sn∑
k=0

fl(n + k) − (sn + 2)β−m
sn+1∑
k=0

fl(n + 1 + k)
)

×
l−1∏
µ=1

sn+1∑
k=0

fµ(n + 1 + k)
m∏

ν=l+1

sn∑
k=0

fν(n + k).



Regularity of one-sided multilinear fractional maximal functions | 1569

It follows that

Asn (~f )(n) − Asn+1(~f )(n + 1)

≤
m∑
l=1

(
(sn + 1)β−m

∑
k∈Z

fl(k)χ[n,n+sn ](k) − (sn + 2)β−m
∑
k∈Z

fl(k)χ[n+1,n+sn+2](k)
)

×
∏
1≤j≤m
j ̸=l

‖fj‖`1(Z)

≤
m∑
l=1

∏
1≤j≤m
j ̸=l

‖fj‖`1(Z)

(∑
k∈Z

fl(k)Γ(sn)χ[n+1,n+sn+1](k) + fl(n)
)

≤
m∑
l=1

∏
1≤j≤m
j ̸=l

‖fj‖`1(Z)

(∑
k∈Z

fl(k)Γ(k − n − 1)χ(n,∞)(k) + fl(n)
)
.

(4.5)

(4.1) and (4.4)-(4.5) imply that

Var(M+
β(~f )) ≤

m∑
l=1

∏
1≤j≤m
j ̸=l

‖fj‖`1(Z)

(∑
k∈Z

fl(k)
( ∑

n∈X+
n<k

Γ(k − n − 1)

+
∑
n∈X−
n<k

Γ(k − n − 1)
)

+
∑
n∈X−

fl(n)
)

≤
m∑
l=1

∏
1≤j≤m
j ̸=l

‖fj‖`1(Z)

(∑
k∈Z

fl(k)
∑
n<k

Γ(k − n − 1) + ‖fl‖`1(Z)

)
≤ 2m

∏
1≤j≤m

‖fj‖`1(Z).

Step 2: proof of the continuity for M+
β . Let ~f = (f1, . . . , fm) with each fj ∈ `1(Z) and ~fj = (f1,j , . . . , fm,j)

such that fi,j → fi in `1(Z) as j → ∞. By the boundedness part in Theorem 1.3, we know that (M+
β(~f ))′ ∈ `1(Z).

Without loss of generality we may assume that all fi,j ≥ 0 and fi ≥ 0 since
∣∣|fj| − |f |∣∣ ≤ |fj − f |. We want to show

that
lim
j→∞
‖(M+

β(~fj))′ − (M+
β(~f ))′‖`1(Z) = 0. (4.6)

Given ϵ ∈ (0, 1), there exists N1 = N1(ϵ,~f ) > 0 such that

‖fi,j − fi‖`1(Z) < ϵ (4.7)

and
‖fi,j‖`1(Z) ≤ ‖fi,j − fi‖`1(Z) + ‖fi‖`1(Z) < ‖fi‖`1(Z) + 1 (4.8)

for any j ≥ N1 and all 1 ≤ i ≤ m. We get from (4.7)-(4.8) that

|M+
β(~fj)(n) − M+

β(~f )(n)|

≤ sup
s∈N

(s + 1)β−m
∣∣∣ m∏
i=1

s∑
k=0

fi,j(n + k) −
m∏
i=1

s∑
k=0

fi(n + k)
∣∣∣

≤ sup
s∈N

(s + 1)β−m
m∑
l=1

s∑
k=0
|fi,j(n + k) − fi(n + k)|

l−1∏
µ=1

s∑
k=0

fµ(n + k)
m∏

ν=l+1

s∑
k=0

fν,j(n + k)

≤
m∑
l=1
‖fl,j − fl‖`1(Z)

l−1∏
µ=1
‖fµ‖`1(Z)

m∏
ν=l+1

‖fν,j‖`1(Z)

≤ c(~f )ϵ

for any n ∈ Z and j ≥ N1, which implies that M+
β(~fj) → M+

β(~f ) pointwise as j → ∞ and

lim
j→∞

(M+
β(~fj))′(n) = (M+

β(~f ))′(n) (4.9)
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for all n ∈ Z. By the fact that (M+
β(~f ))′ ∈ `1(Z) and the classical Brezis-Lieb lemma in [35], to prove (4.6), it

su�ces to show that
lim
j→∞
‖(M+

β(~fj))′‖`1(Z) = ‖(M+
β(~f ))′‖`1(Z). (4.10)

By (4.9) and Fatou’s lemma, one �nds

‖(M+
β(~f ))′‖`1(Z) ≤ lim inf

j→∞
‖(M+

β(~fj))′‖`1(Z).

Thus, to prove (4.10), it su�ces to show that

lim sup
j→∞

‖(M+
β(~fj))′‖`1(Z) ≤ ‖(M

+
β(~f ))′‖`1(Z). (4.11)

We now prove (4.11). Since each fi ∈ `1(Z), then there exists a su�ciently large positive integer R1 =
R1(ϵ,~f ) such that

sup
1≤i≤m

∑
|n|≥R1

fi(n) < ϵ. (4.12)

Note that
lim

|n|→∞
M+
β(~f )(n) = 0.

It follows that there exists an integer R2 = R2(ϵ) > 0 such that M+
β(~f )(n) < ϵ for all |n| ≥ R2. Moreover, there

exists an integer R3 > 0 such that sβ−m < ϵ if s ≥ R3 since β < m. Let R = max{R1, R2, R3}. (4.9) yields that
there exists an integer N2 = N(ϵ, R) > 0 such that

|(M+
β(~fj))′(n) − (M+

β(~f ))′(n)| ≤ ϵ
4R + 2 (4.13)

for any j ≥ N2 and |n| ≤ 2R. From (4.13) we have

‖(M+
β(~fj))′‖`1(Z)

≤
∑

|n|≤2R

|(M+
β(~fj))′(n) − (M+

β(~f ))′(n)| + ‖(M+
β(~f ))′‖`1(Z) +

∑
|n|≥2R

|(M+
β(~fj))′(n)|

≤ ‖(M+
β(~f ))′‖`1(Z) + ϵ +

∑
|n|≥2R

|(M+
β(~fj))′(n)|

(4.14)

for any j ≥ N2. Fix j ≥ N2 and set

X+
j = {|n| ≥ 2R : M+

β(~fj)(n + 1) > M+
β(~fj)(n)},

X−j = {|n| ≥ 2R : M+
β(~fj)(n) ≥ M+

β(~fj)(n + 1)}.

Since all fi,j ∈ `1(Z), then, for any n ∈ Z, there exists rn ∈ N such that M+
β(~fj)(n) = Arn (~fj)(n). Then we have∑

|n|≥2R

|(M+
β(~fj)′(n)|

=
∑
n∈X+

j

(M+
β(~fj)(n + 1) − M+

β(~fj)(n)) +
∑
n∈X−j

(M+
β(~fj)(n) − M+

β(~fj)(n + 1))

≤
∑
n∈X+

j

(Arn+1 (~fj)(n + 1) − Arn+1+1(~fj)(n)) +
∑
n∈X−j

(Arn (~fj)(n) − Arn+1(~fj)(n + 1)).

(4.15)

By the arguments similar to those used in deriving (4.4) and (4.5), one has

Arn+1 (~fj)(n + 1) − Arn+1+1(~fj)(n) ≤
m∑
l=1

∏
1≤µ≤m
µ ̸=l

‖fµ,j‖`1(Z)

(∑
k∈Z

fl,j(k)Γ(k − n − 1)χ(n,∞)(k)
)
, (4.16)

Arn (~fj)(n) − Arn+1(~fj)(n + 1) ≤
m∑
l=1

∏
1≤µ≤m
µ ̸=l

‖fµ,j‖`1(Z)

(∑
k∈Z

fl,j(k)Γ(k − n − 1)χ(n,∞)(k) + fl,j(n)
)
. (4.17)
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It follows from (4.13)-(4.15) that∑
|n|≥2R

|(M+
β(~fj)′(n)|

≤
m∑
l=1

∏
1≤µ≤m
µ ̸=l

‖fµ,j‖`1(Z)

( ∑
n∈X+

j

∑
k∈Z

fl,j(k)Γ(k − n − 1)χ(n,∞)(k)
)

+
m∑
l=1

∏
1≤µ≤m
µ ̸=l

‖fµ,j‖`1(Z)

( ∑
n∈X−j

∑
k∈Z

fl,j(k)Γ(k − n − 1)χ(n,∞)(k) +
∑
n∈X−j

fl,j(n)
)

≤
m∑
l=1

∏
1≤µ≤m
µ ̸=l

‖fµ,j‖`1(Z)

( ∑
|n|≥2R

∑
k∈Z

fl,j(k)Γ(k − n − 1)χ(n,∞)(k) +
∑

|n|≥2R

fl,j(n)
)
.

(4.18)

By (4.7)-(4.8) and (4.12), we obtain∑
|n|≥2R

∑
k∈Z

fl,j(k)Γ(k − n − 1)χ(n,∞)(k)

≤
∑
k∈Z

fl,j(k)
∑
|n|≥2R
n<k

Γ(k − n − 1)

≤
∑
|k|≥R

fl,j(k)
∑
|n|≥2R
n<k

Γ(k − n − 1) +
∑
|k|<R

fl,j(k)
∑
n≤−2R

Γ(k − n − 1)

≤
∑
|k|≥R

fl,j(k) +
∑
|k|<R

fl,j(k)
∞∑

n=2R
Γ(n − R)

≤ ‖fl,j − fl‖`1(Z) + ‖flχ|n|≥2R‖`1(Z) + Rβ−m‖fl,j‖`1(Z) ≤ C(fl)ϵ

(4.19)

for any j ≥ N1. It follows from (4.8), (4.12) and (4.18)-(4.19) that∑
|n|≥2R

|(M+
β(~fj))′(n)| ≤ C(~f )ϵ (4.20)

for any j ≥ N1. Combining (4.20) with (4.14) yields that

‖(M+
β(~fj))′‖`1(Z) ≤ ‖(M

+
β(~f ))′‖`1(Z) + Cϵ

for any j ≥ max{N1, N2}. This proves (4.11) and �nishes the proof of Theorem 1.3. �
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