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Abstract: In this paper we introduce and investigate the regularity properties of one-sided multilinear
fractional maximal operators, both in continuous case and in discrete case. In the continuous setting, we
prove that the one-sided multilinear fractional maximal operators S)JIE and Mg map WLHPH(R) x - - - x WHPm(RR)
into WH9(R) with 1 < pq,...,pm < oo, 1< g < ooand 1/q = 3°I'; 1/p; - B, boundedly and continuously.
In the discrete setting, we show that the discrete one-sided multilinear fractional maximal operators are
bounded and continuous from ¢*(Z) x - - - x ¢1(Z) to BV(Z). Here BV(Z) denotes the set of functions of bounded
variation defined on Z. Our main results represent significant and natural extensions of what was known
previously.
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1 Introduction and the main results

Over the last several years a considerable amount of attention has been given to investigate the behavior
of differentiability of maximal function. A good start was due to Kinnunen [1] who showed that the usual
centered Hardy-Littlewood maximal function M is bounded on W*P(R9) forall 1 < p < oo, where WHP(RY)
is the first order Sobolev space, which consists of functions f € L?(R?), whose first weak partial derivatives
Dif,i=1,2,...,d,belong to L?(R?). We endow W'P(R4) with the norm

Ifll1,p = ”fHLP(Rd) + HVfHLP(]Rd)’

where Vf = (D+f, D-f, ..., Dsf)is the weak gradient of f. Later on, Kinnunen’s result was extended to a local
version in [2], to a fractional version in [3], to a multilinear version in [4, 5] and to a one-sided version in [6].
Meanwhile, the continuity of M : WP > WP for 1 < p < oo was proved by Luiro in [7] and in [8] for its local
version. Since Kinnunen’s result does not hold for p = 1, an important question was posed by Hajtasz and
Onninen in [9]: Is the operator f » |VMf| bounded from WLL(R?) to LY (RY)? Progress on the above problem
has been restricted to dimension d = 1. In 2002, Tanaka [10] showed that if f € W''1(R), then the uncentered
Hardy-Littlewood maximal function Mf is weakly differentiable and

IOV llary < 201 1l gy- (1.1)
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This result was later sharpened by Aldaz and Pérez Lazaro [11] who proved that if f is of bounded variation
on R, then Mf is absolutely continuous and its total variation satisfies

Var(Mf) < Var(f). (1.2)

The above result implies directly (1.1) with constant C = 1 (also see [12] for a simple proof). In remarkable
work [13], Kurka obtained that (1.1) and (1.2) hold for M (with constant C = 240, 004). Recently, Carneiro and
Madrid [14] extended (1.1) and (1.2) to a fractional setting. Very recently, Liu and Wu [15] extended the partial
result of [14] to a multilinear setting. For other interesting works related to this theory, we refer the reader to
[16-25], among others.

In this paper we focus on the regularity properties of the one-sided multilinear fractional maximal
operators. More precisely, let m be a positive integer. For 0 < 8 < m, we define the one-sided multilinear
fractional maximal operators zmg and Mg by

m X+S m X
300 = sup 5 TT [ iwldy ana oo -sup 1 TT [ 10)lay.

i=1 % i=1,7,
where f = (fi,...,fm) with each f; € L}OC(R). When 8 = 0, the operator EDTE (resp., 9)?3) reduces to the
one-sided multilinear Hardy-Littlewood maximal operator 9" (resp., 9t"). When m = 1, the operator m/;
(resp., ED“(B) reduces to the one-sided fractional maximal operator M/} (resp., Mﬁ). Especially, the one-sided
Hardy-Littlewood maximal operator M* (resp., M~) corresponds to the operator .’J\/[f3 (resp., Ml}) in this case
B=0.

As we all known, the reasons to study one-sided operators involve not only the generalization of the
theory of the two-sided operators but also the close connection between the one-sided operators and two-
sided operators. The one-sided Hardy-Littlewood maximal operator M* can be seen as the special case of
the ergodic maximal operator. Furthermore, there is a close connection between the one-sided fractional
maximal functions and the well-known Riemann-Liourille fractional integral that can be viewed as the one-
sided version of Riesz potential and the Weyl fractional integral (see [26]). It was known that both J\/[E and
ME are of type (p, g)for 1 < p < o0,0< B < 1/p and g = p/(1 — pB). Moreover, both ME and Mg are of weak
type (1, g) for0 < B < 1 and g = 1/(1 - ). Observing that the following inequalities are valid:

m
M) < [[ Mz fix), VxR, (1.3)
i-1
wheref = (fi5...,fm)and B = Z;’;’lﬁi with §; = 0(i = 1,2,...,m). By (1.3), the L? bounds for ME and
Holder’s inequality, one has

m
19 )y < CBs P1s -+ o) [ [ Ifilliricey (1.4)
i=1
for1/q=>"1", 1/p; - B, provided that () f=0,1 < g<ocand 1 < py,...,pm<o0; (i) 0<B<m, 1< g < oo
and 1< pq,...,Ppm < oo. The same result holds for zm,;

The investigation on the regularity of one-sided maximal operator began with Tanaka [10] in 2002 when
he observed that if f € Wb1(R), then the distributional derivatives of M*f and M~f are integrable functions,
and

IO Ny < I Noagey and IOV Iy < IF Nz wy-
By a combination of arguments in [10, 12], both M*f and M™f are absolutely continuous on R. Recently,
Liu and Mao [6] proved that both M* and M~ are bounded and continuous on WYP(R) for 1 < p < oo.
Very recently, Liu [27] extended the main results of [6] to the fractional case. More precisely, Liu proved the
following result.

Theorem A ([27]). Let 1 < p < 00,0 < B < 1/p and q = p/(1 — pB). Then both J\/[E and Jv[l} map WYP(R) into
WY4(R) boundedly and continuously. Moreover, if f € WP (R), then

(MR ()] < MpfF (x) and |(Mpf) (x)] < Mpf (x)
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for almost every x € R.

In this paper we shall extended Theorem A to the multilinear case. We now formulate our main results
as follows.

Theorem 1.1. Let 1 < p1, ..., pm < 00,0 < B < 31", 1/p;, 1/q = 371, 1/p; - B and 1 < q < oo. Then 9 maps
WLPL(R) x - - - x WEPn(R) into WH9(R) boundedly and continuously. Especially, if f = (f1, ..., fm) with each
f; € WYPi(R), then the weak derivative (g (f)) exists almost everywhere. More precisely,

) 00l < > M)

j=1

for almost every x ¢ R, whereff =(f1,... ,fj_l,ff,fm, ..., fm). Moreover,

195 Pl < CB, p1, - o) [ [ Ifill1,p1

i=1
The same results hold for M.

Theorem 1.2. Let f = (f1, ..., fm) with each f; € LPi(R) for1 < p1,...,pm <ocand 1< B < Z;’ll 1/p;.
(i) Then the weak derivative (zml; (f)) exists almost everywhere. Precisely,

MR (0] < Cm, B4 (F)(x)

for almost every x € R.
(i) Let 1/qg = 3", 1/p; — B+ 1. Then

m
IEEE | Lary < COm, B, p1s -+ om) [ [ Ifillin ey

i-1
The same results hold for M.

Remark 1.1. Theorem 1.1 extends Theorems 1.11.2 in [6], which correspond to the case m = 1 and 8 = 0.
Theorem 1.1 also extends Theorem A, which corresponds to the case m = 1.

On the other hand, the investigation of the regularity properties of discrete maximal operators has also
attracted the attention of many authors (see [6, 14, 16, 27-33] for example). Let us recall some notation and
relevant results. For 1 < p < oo and a discrete function f : Z - R, we define the #-norm and the ¢*°-norm
of fy Ifllerzy = Qnez If()|P)'/P and Ifllg=(z)y = SUPpez |f(n)|. We also define the first derivative of f by
f(n) = f(n+1)-f(n) forany n € Z. For f : Z > R, we define the total variation of f by

Var(f) = |If | nz)-

We denote by BV(Z) the set of all functions f : Z - R satisfying Var(f) < oo.
In 2011, Bober et al. [28] first studied the regularity properties of discrete Hardy-Littlewood maximal
operators and proved that

Var(]T/If) < Var(f) (1.5)
and 146
var(Mf) < (2+ 372 ) Ifll- (1.6)

Here M (resp., M) denotes the discrete centered (resp., uncentered) Hardy-Littlewood maximal operator,
which are defined by

1 ~ 1 o
Mf(n) = flelg 731 Z If(n+ k)| and Mf(n) = rsllepN P Z If(n+k),
k=1 ’ k=-r
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where N = {0, 1, 2, 3, ..., }. We note that inequality (1.5) is sharp. It was known that inequality Var(Mf) <
294,912, 004Var(f) was established by Temur in [32]. Inequality (1.6) is not optimal, and it was asked in [28]
whether the sharp constant for (1.6) is in fact C = 2, which was addressed by Madrid in [31]. Recently, Carneiro
and Madrid [14] extended (1.5) to the fractional setting. They also pointed out that the discrete fractional
maximal operators Mg and M  are bounded and continuous from 1(Z) to BV(Z) (also see [29, 34]). Here M B
and M p are the discrete centered and uncentered fractional maximal operators, which are defined by

1 S
Mpf(n) = Elelg 7(2 Dip Z If(n+ k)| and Mpf(n) = rsllepN rrss DB k:z—r If(n+k)|.

Our second aim of this paper is to consider the discrete one-sided multilinear fractional maximal
operators

M) = sup g i H S itn+ K,

=1 k=0

M;(H(n) = SUD (B H Z fi(n + k),
i=1 k=-r
where 0 < 8 < m and f = (f1,...,fm) witheach f; € Llloc(Z). When 8 = 0, the operators M/§ and ME reduce
to the discrete one-sided multilinear Hardy-Littlewood maximal operators M* and M~, respectively. When
m = 1, the operators ME and ME reduce to the discrete one-sided fractional maximal operators ME and MB,
respectively. Particularly, the discrete one-sided Hardy-Littlewood maximal operators M* and M~ correspond
to the special case of M and M when 8 = O, respectively. Recently, Liu and Mao [6] proved that both M* and
M-~ are bounded and continuous from ¢1(Z) to BV(Z). Moreover, if f € BV(Z), then

max{Var(M*f), Var(M™f)} < Var(f). 1.7)

We notice that the constant C = 1 in inequality (1.7) is sharp. Very recently, Liu [27] pointed out that ME and
Ml_i are not bounded from BV(Z) to BV(Z) when 0 < 8 < 1. However, Liu established the following result.

Theorem B ([27]). Let O < B < 1. Then Mg is bounded and continuous from (* (Z) to BV(Z). Moreover, if f € ¢(Z),
then

Var(Mgf) < 2(fll a2y
and the constant C = 2 is the best possible. The same results hold for Mp.

In this paper we shall extended Theorem B to the following.

Theorem 1.3. Let O < § < m. Then ME is bounded and continuous from ¢X(Z) x - - - x ¢X(Z) to BV(Z). Moreover,
iff = (f1, ..., fm) with each f; € ¢*(Z), then

VarMz(P) < 2m [ [ Ifillx -

i=1
The same results hold for Mg.
Remark 1.2. When m = 1, Theorem 1.3 implies Theorem B.

The rest of this paper is organized as follows. Section 2 contains some notation and preliminary lemmas,
which can be used to prove the continuity part in Theorem 1.1. Motivated by the ideas in [5, 7], we give
the proofs of Theorems 1.1-1.2 in Section 3. Finally, we prove Theorem 1.3 in Section 4. It should be pointed
out that the proof of the boundedness part in Theorem 1.3 is based on the method of [31]. The proof of the
continuity part in Theorem 1.3 relies on the previous boundedness result and a useful application of the
Brezis-Lieb lemma in [35]. Throughout this paper, the letter C, sometimes with additional parameters, will
stand for positive constants, not necessarily the same one at each occurrence but independent of the essential
variables.
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2 Preliminary notation and lemmas

In this section we shall introduce some notation and lemmas, which play key roles in the proof of the
continuity part in Theorem 1.1. Let A C R and r € R. We define

d(r,A) := ;Ie'lg [r—al and Ay :={x e R: d(x,A) <A} forA=0.

Denote ||f[|, 4 by the LP-norm of fy4 for all measurable sets A C R. Letf = (f, ..., fm) with each f; € LPi(R)
for1 < p;j <ecand 1 < g < cowith1/q = Z;’il 1/p; - B. In what follows, we only consider the operator im;

and the other case is analogous. Fix x € R, we define the set %E(f)(x) by

X+Sk

SRB(f)(x) = {s >0: imﬁ(f)(x) = hmsup ﬁ H / Ifi(y)|dy for some s; > 0, 55 > s}.

We also define the function u 7 : [0, 0) » R by

m : ifB-o0:
Xfﬁ(O)—{H'f’(")' iff -0
0 ifo<B<m,

: 1 1
U 7 5(8) = snp | 1 / Ifi(y)|dy for s € (0, o).
=1 x

We notice that the followings are valid.
(1) 1s continuous on (0, o) for all x € R and at r = O for almost everywhere x € R;

(ii) Sll)rg uxf’ﬁ(s) = 0 since uxj’ﬁ(s) < T2 Wfill ooy s ™%

(iii) The set ERE (j?)(x) is nonempty and closed for any x € R;
(iv) Almost every point is a Lebesgue point.
From the above observations we have

MEA0) = uy 7 4()iF 0 < s € (AR, vx € R,

Sﬁ;g(f)(x) = u; 7 /;(O) for almost every x € R such that 0 € %EG)(X).

Lemma2.1. Let 1 < pq,...,pm <ooand 1 < q < cowith1/q = 1", 1/p; - B Letfj = (fij»+--sfm,j) and
f=(f1,...,fm) suchthat f; ; > f; in LP{(R) when j > oo. Then, for all R > 0 and A > 0, it holds that

lim [{x € (=R, R) : R € RE(A )y} = 0. (2.1)

Proof. Without loss of generality, we may assume that all f; ; > 0 and f; = 0. By the similar argument as in the
proof of Lemma 2.2 in [7], we can conclude that the set {x € R : i)‘i',;(fj)(x) g Q%E(f)(x)(,\)} is measurable for
anyj € Z.Let A > 0 and R > 0. We first claim that for almost every x € (-R, R), there exists v(x) € N\ {0}
such that

u; f,ﬁ(s) < m;(f)(x) - when d(s, E)Q‘E(f)(x)) > A, (2.2)

1
v(x)

Otherwise, for almost every x € (-R, R), there exists a bounded sequence of radii {s;};2, such that

lim w2 (si) = M) and disy, Ry(HG)) > A.
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We can choose a subsequence {ry} 3, of {sy}32; such that r, > s as k > . Then we have s € SRI*,(}?)(X) and

d(s, fRE(f)(X)) > A, which is a contradiction. Thus (2.2) holds. Given € € (0, 1), (2.2) yields that there exists
v =~(R, A, €) € N\ {0} and a measurable set E with |E| < € such that

(-R,R) C {x € R:uy 7 o(s) < MEFAC) 7 if dls, R5(F)00) > A} UE.

Notice that
WE(f)(X)—u p(8) = M) - im/;(f)(X)|+|qu PO uxfﬁ(5)|+9ﬁﬁ(f,)()<) U 7 4(S):
It yields that
{xeR:u (s)<£m,3(f)(x) yHifd(s, (H0)) > A} C Ay jUA, U A,
where

Arj = {x e R: MF(FC) - MO = (47)71,
Ayji={xeR: |u;£_’p(s) - u;f,ﬁ(s)| > (24)"! for some s such that d(s, %E(f)(x)) > 1},

A= xR L (9) < MGE0 - ) i dls, R > A).

Hence,
(—R,R) CAl’jUAZ’jUAl]'UE. (23)

Let A be the set of all points x such that x is a Lebesgue point of all f;. Note that [R \ A| = 0and A;; N A C
{xeR: SRZ;(fj)(x) C D%E(f)(x)(,\)}. This together with (2.3) implies
{x € (4R, R) : M5(F)(x) € Rp(AW)y} € ArjUA,; UEU R\ A).

It follows that
{x € CR.B) : R0 & BP0} < A+ 1Az + €. (2.4)

We can write

Ifmﬁ(f,)(X) M|

<sup - ‘H/Sf,,(y)dy H/fz(}’)d)/’

i=1 %
1y xes X+s (2.5)
z sup 1 H / fu(y)dyv I, / o)y / 100 - Fiy)ldy
< meﬁ(ff)(x)
-1
for any x € R, where f}l = (f1, -+ fi-1s f1j = fis frrjs - - - » fm,j)- From (2.5) we have
Ay < {x €R: Zm:zm;(f,’)(x) > (zw)‘l}‘
1-1
fj [{x € R: MG(F ) = (4my) 1 (2.6)

=1

m
< @my)® > 1M, -

=1

Since f; ; > f; in LPi(R) as j > oo, then there exists Ny = No(€, ) € N\ {0} such that

€ )
fij = fill oi ey < 5 and |Ifi jllzriw) < Ifillriey + 1, Vi 2 No. (2.7)



1562 =—— F. LuiandL.Xu DE GRUYTER

(2.7) together with (2.6) and (1.4) yields that
|A1,]" Sc(m’ q’B’pla--~’pm’f)€7 v]‘2]\10- (2.8)

On the other hand, one can easily check that

m
+ + +( £l
I RORLMHOIE ;fmﬁ(f,-)(x), Vs > 0.

This together with the argument similar to those used in deriving (2.8) implies

‘AZ,j|SC(m) q,ﬁ,Ply---me,f)ey VjENo. (2.9)

It follows from (2.4), (2.8) and (2.9) that

|{X € (_R’ R) H m;(ﬁ)(x) ,¢_ m/‘;(f)(x)(/l)}‘ < C(m’ q’ ﬁ’pl) cee apmaf)ey V] 2 NO’
which gives (2.1) and completes the proof of Lemma 2.1. O

We now define the Hausdorff distance between two sets A and B by
ﬂ(A,B) = 1nf{6 >0: AC B(é) and B C A(5)}

The following result can be obtained by Lemma 2.1 and a similar argument as in the proof of Corollary 2.3 in
[7], we omit the details.

Lemma 2.2. Letf = (f1,...,fm) witheach f; € LPI(R) for 1 < p1,...,pm < oo.Let1 < q < coand 1/q =
Z;’ll 1/p; - B. Then, for all R > 0 and A > 0, we have

lim |{x € (-R, R) : i3, R3(Ax + W) > A} = 0.

The following result presents some formulas for the derivatives of the one-sided multilinear fractional
maximal functions, which play the key roles in the proof of the continuity part in Theorem 1.1.
Lemma?2.3.Letf = (f, ..., fm) witheach f; € W“Pi(R) for1 < p; < oo.Let1 < q < coand 1/q = S 1/pi-B.
Then, for almost every x € R, we have

OG0 -3 g TT [ 150y [ 1l 0dy forail 0 < s < 557005 (2.10)
=1 2

1sjsm
X

., il 0O TT Ifix)], if =0and 0 € R5(HX),
(M) () = ; l 111_[»1 } ’ (2.11)

=1

0, if0<B<mandO ¢ DQE(f)(x).

Proof. We may assume that all f; > 0 since |f| € WYP(R) if f € WYP(R) with 1 < p < oc. By the
boundedness part in Theorem 1.1 we see that zmg(f) e W%4(R). Invoking Lemma 2.2, we can choose a
sequence {Sy}y2;, Sk > O such that limy., S = 0 and limye, n(ﬁ)%g(f)(x), E(f)(x + S;)) = O for almost
everyx € (-R,R).For1<i<mandh € R, we set

f-ll:(h)(x) - fit)
h

flx) = and fL,(x) = fi(x + h).

It was known that
If2(sp ~ fill Lriry > 0 @s k > oo,

Hfslk - (fi)IHLPi(R) >0 ask > oo,
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||M+(f‘ll:(sk) _fi)HLl’i(R) >0 ask~> oo,
|‘M+(fsik —fiI)HLp,-(R) -0 ask > oo,
H(ng(f))sk - (mz(f)),HLQ(R) >0 ask > oo.

Here (Sﬁ/; (f))sk(x) = é(smg (j?)(x +SK) - DLTI/;()?)(X)). Furthermore, there exists a subsequence {hy}7>; of {s;}%;
and a measurable set A; C (=R, R) with |(-R, R)\A1| = 0 such that

)£ ) 00 > Fi00, £, 60 > £100, M (Pl ~FIX) > 0,0 (7], )00 > 0 and @FENn, 00 > @) 00
when k > oo foranyx € Ajand 1 <i < m;

(ii) limyy oo ﬂ(%ﬁ(f)(x), D%E(f)(x +hy))=0forany x € A;.

Let

A = m{X eR: imfs(f)(x +hy) = u;+hk,7,ﬁ(0)}’
k=1

Az == ([{x € R: M) x + hy) = uy,, #,(0)if0 € RE(Hx + h)},
k=1
Ay := {x € R: D00 = U] 7 ,(0)if 0 € WA}
It is obvious that |(-R, R)\Aj| = Oforj = 2, 3, 4. Let x € A1 N A, N A3 N A4 be a Lebesgue point of all f; and f;.
Fix s € ERE(]?)(X), there exists radii r; € D%E(j?)(x + hy) such that lim;., ry = s. We consider the following two

cases:
Case A (s > 0). Without loss of generality we may assume that all r; > 0. Then

@GP 00 = Jim i(zm;(f)(x + hy) - M)

X+hy+ry X+Tg
< li d d
< lim hk r”’ ﬂ / fiy)dy - H /ﬁ(y) y (2.12)
=1 iy X

m -1 X*Tk m Xt X+Tg

. 1

>t TT [ fay TT [ gy [ £, 00ay.

=1 kK p=17 v=l+1 X

Since frp Xoxxery) 2 fXoxss) and fth(x ) FiXxxss) D LY (R) as k > oo. Then (2.12) yields that

) 0 < 2 _ﬁH / f)dy / fio)dy. (2.13)

1s, ] m
On the other hand,

O () = lim Z-ERICx + k) - ML)
X+hy+s

tim (T [ fioay- 11 / fi)dy)

i=1 x+hy i=1 %

-1 X38 (2.14)

- fim e H / hoay | / frno0)dy / frdy

v=I+1

DI / Hdy / fi)ay.

Combining (2.14) with (2.13) yields that (2.10) holds for almost every x € (-R, R).
Case B (s = 0). We shall discuss the following two cases:
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(i) When 0 < B8 < m. Since zm;(f)(x) = 0, then all f;(y) = 0 for almost every y € (x, o). Thus zm;(f)(y) =0
for y = x. It follows that
2 1 - -
() 00 = Jim - OREx + ) = DG = 0

This yields that (2.11) holds for almost every x € (-R, R) in this case 0 < 8 < m.
(if) When 8 = 0. We notice that

m -1 m
lim - ( Hf,(x +hy) - Hf,(x)) Z im fhk(x) 11500 TT Atx+he)
=1 u=1 v=I+1
= (2.15)
=> A0 ] k.
=1 1sjsm
-
It follows that 1 B
(M) () = lim h—(‘.mz(f)(x + hy) - M)
-t g (T mo - [w) (.16

- Zfl(X) 11 .

1]m

Below we estimate the upper bound of (Dﬁﬁ(f)) (x). If there exists ko € N\ {0} such that s; > 0 for any k > ko,
then, by the argument similar to those used in deriving (2.12),

O 00 < th (ﬁ -/ o) (11 - Fag0d)
x+rk}l x l+1 x (2.17)

(5 [ o).

Since oy
llm* /fr(hk)(y)dy fv(X)‘
<lim = [ 1200~ SO)ldy < Jim My - F)00 - 0.

It follows that o

lim L / F 0y = Fox). (2.18)
Similarly,

)gm— / f )y = fi(x). (2.19)
It follows from (2.17)-(2.19) that

D) (x) < Zfz(X) I1 5. (2.20)

1<jsm
J=1

If s = O for infinitely many k, then, by (2.15) we have
+(A\Y : 1 +(F + P
) 00 = Jim - O+ h) - DGP00)

= lim —(Hfl(X+hk) Hfz(X)) => A0 I] fix
-1

1]m
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This together with (2.16) and (2.20) yields that (2.11) holds for almost every x € (R, R) in the case 8 = 0. Since
R was arbitrary, this proves Lemma 2.3. O

3 Proofs of Theorems 1.1-1.2

In this section we shall prove Theorems 1.1-1.2. Let us begin with the proof of Theorem 1.1.
Proof of Theorem 1.1. We only prove Theorem 1.1 for sm; and the other case is analogous. Let {sy}.1 be an
enumeration of positive rational numbers. Then we can write

X+Sk

MEPC) - e H [ 1ray.

Define the family of operators { Ty } -1 by

X+S;

1) = max 5 T [ 1wy,

j=1 %

Fix x, h € R, one has

IT(Hx + h) - T (F)(0)|

x+h+s; X+Si
et ﬂ\H [ 1rmay- H/us(y)\dy\
x+h
m -1 X+Si X+Si X+S;
1 v 1
< max LT [ oy [ / FWidy [ 1) -F0ldy.
=1 S u=1y v=l+1 %
It follows that .
(T () < >~ mz(F) ) (3.1)

=1

for almost every x € R, where f! = (f1,..., fi_1,f;» fis1» - - - » fm). Here we used the fact that ||f|' (x)| = |f (x)|
for almost every x € R. By (3.1), (1.4) and Minkowski’s inequality, we obtain

ITeP g < 1 TeOll o) + 1TE) llo)
m
< 9P acey + | ()

Li(R)

<CB.p1s - ,pm)(H Wfillmi ey + Z Il TT 15l

1sjsm
4=l

<C(m,B,p1,... ,pm)H Ifill1,p;-
i-1
Therefore, {Tk(f)} is a bounded sequence in W'*4(R) which converges to S)th(f) pointwise. The weak com-
pactness of Sobolev spaces implies that Sﬁg (f) € WI(R), Ti(f) converges to zmg (f) weakly in LI(R) and
(Tk(f))' converges to (S)Jt[,(f))' weakly in L(R). This together with (3.1) yields that

) 00l < S MEE) (3.2)

=1

for almost every x € R. It follows from (3.2) and (1.4) that

m
19 (1,q = 1995l ory + 1O oy < Cm, By o1, bm) [ [ Il

i=1
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This completes the boundedness part of Theorem 1.1.
We now prove the continuity for zm; by employing the idea in [20]. Let 8, m, p1, ..., pm, g be given as in

Theorem 1.1. Let f = (fy, . .., fm) with each f; € W'Pi(R) and f; = (f, j, . . ., fn;)) such that f; ; > f; in WEPi(R)
when j - oo. We get from (2.5) that

0 (F) ) - MO < > MG(F) ) (3.3)

=1

for any x € R, where fll is given as in (2.5). (3.3) together with (1.4) implies that

199857 = M) Laey

m -1
< Z Hfmﬁ(fjl)HLﬂ(R) < C(m, B, p1,... ,Pm)z f1,j = fill Loy H (1ol o () H 1fv.illLo )
=1 =1 u=1 v=I+1
It follows that

194 (F) — M5l oy > O When j > os.

Hence, to prove the continuity for 93“(;}, it suffices to show that
15N = @OBE) lla) > O when j > oo, (3.4)

Below we prove (3.4). We may assume that all f;; > Oand f; > 0. For 1 < [ < m, we set fl =
(Fis---sfi1s f1s f1s1s - - - » fm). Fix € € (0,1). We can choose R > 0 such that ", ||E)Jtl§(j?’)|\q,,g1 < € with
B; = (o0, —R)U(R, =0). The absolute continuity implies that there exists 1 > 0 such that Zﬁl ||9ﬁ/§(fl)|\q,3 <e
for any measurable subset B of (-R, R) with |B| < 1. As already observed, for almost every x € R, the function

is uniformly continuous on [0, co). Therefore, for almost every x € R, the function > ", u®

flﬁ xfip 'S

uniformly continuous on [0, c0). We can find §(x) > 0 such that
m m
‘ Z u;j,’ﬁ(sl) - Z u;jl’ﬂ(sz)’ <R Yi¢ if |s1 - s3] = 8(x).
=1 =1

We can write (-R, R) as

LS

RR) = (U {xe R B :600> L) U,

k=1
where |N| = 0. We can choose § > O such that

m m
{xeCRRB: D uls 60wl 4(s2)
=1 =1
= |By| < §

> R"Y4¢ for some S1, S with [s1 — s3] < 6}‘

By Lemma 2.1, there exists N; € N\ {0} such that
[{x € (=R, R) : R5(F)(x) & K506} =: |B] < g Vj 2 Nj.

Fixj = Nj. Letfu =(f1,js--- ,f171,j,f1,,;,f1+1,j, «.o»fmj)ands e SRZ;()?]-)(X). We consider the following two
cases:
(i) s > 0. We can write

ORI O]

W8

i H / fui)dy / fij0)dy - H / fuy)dy / fidy| o)

-1
Zsmﬁ(F D0+ Z MGy, )0 + Mp(Hy () =: B1,500),
u=1 v=Il+1
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where

Fouj=(f1seesfucts fug = Fus fustyjo oo fiotjo fujo fisnjo - o fi)s
Grj=Frseeesfrasfisfisrs e s fots foj = Fos Fostjo oo oo finj)s
Hyj=(froeeos firs fj = fis fienjo oo oo fing)-
(ii) s = 0.If 0 < B < m, then ‘ux,f,,,-,ﬁ(s) - uxj,,ﬂ(s)\ = 0.If B = 0, then we have

+ oyt
68 U i )

-1 p-1 -1 m

< (TTA.0) G =G ( TT fuy00)fes00( TT £,50)
u=1 L=1 L=p+1 L=l+1
m -1 , v-1 m

> (TTAC)IA@I( TT £0) e -fe1( T £i10)
v=l+1 L1=1 L=I+1 L=v+1
-1 m

+(TTA.0)1f,00 -0l T f1s0).
L=1 L=l+1

This together with (3.5) and the Lebesgue differentiation theorem leads to

+ +
\ule’j’ﬁ(s) - ule’ﬁ(s)\ < ®l,j(x)

for almost every x ¢ Rand s € %E(}?j)(x). By (3.6) and Lemma 2.3, we obtain
MR () = O )|
m m
DI CHED SIRRCS]
I=1 I=1
m m m m
; TICHE ; i 51| + | ; w5 4(s1) - ; U, 71(52)|

m m mn
< Z 61,]'()() + ‘ Z ux’f,’ﬂ(Sﬂ - Z usz’ﬁ(SZ)‘
1-1 1=1 =1

for almost every x € R and any s; € 9%; (fj)(x) and s, € %E(f)(x). On can easily check that

<

11)111 ”QSI,J'HL‘J(]R) = 0, V1ls<l<sm.
] oo

It follows that there exists N, € N\ {0} such that /", [|& ;|| q(r) < € for any j > N,.
Ifx ¢ B; UB, UB/, we can choose s € S%E(fj)(x) ands, € D%E(f)(x) such that |s; - s;| < § and

m m
- - -1/q
’ IZ ux,f‘,ﬁ(sl) El ”X,fz,ﬁ(sz)‘ < |R|"e.
-1 =)

On the other hand, we have that forany =1, 2,...,m,s; € ERE(E)(X) ands, € %E(/?)(x),

m m
‘ IZ U, 7 p(51) - IZ U, 71 5(52)
-1 -1

Note that |B, U B| < iy for any j > N;. Thus we get from (3.7) that
1O~ @) Loy
m

m
: +|||RI"Ye +2H M (! H < Ce,
D 01y IR el 2| ST

for any j = max{N;, N, }, which leads to
im |85~ MG oy = O-

<23 (k).
=1

<

LI(R)

This yields (3.4) and completes the proof of Theorem 1.1.

Proof of Theorem 1.2. The proof is similar to the proof of Theorem 2.3 in [5]. We omit the details.

(3.6)

(3.7)
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4 Proof of Theorem 1.3

We only prove Theorem 1.3 for M[; and the other case is analogous.

Step 1: proof of the boundedness for M/§. We shall adopt the method in [31] to prove the boundedness for M/§.

Let f = (f1,...,fm) with each f; € £1(Z). Without loss of generality, we may assume f; > 0. For convenience,
let I'(x) = (x + 1)P™ - (x + 2)P™ for any x > 0. One can easily check that I'(x) is decreasing on [0, co) and
Y nen I'(n) = 1. Since all f; € (X(Z), then, for any n € Z, there exists s, € N such that Mg(f)(n) = As,(f)(n),

where

m S
As(H) = s+ D] D filn+ 10
i=1 k=0
forany s € Nand n € Z. Let

X' ={neZ:My(H)n+1)>M;PA)} and X = {n € Z : My(H)(n) > M3(F)(n + 1)}

Then we can write

Var(MZ,(fz) . ) )

= > MEA®+ 1) - MA@ + > (MG ”) - Mz + 1)
neX+ neX-

< 3 (A O+ 1) = Ag, 1 (OM) + Y (As, (M) - Ag, 1 (An + 1)),
nex* nex-

Fix n € Z, by direct computations we obtain

As,..(H(n+1) - A, 1(H(n)

m Sps+1 m Spi1+l

=Gna + VP D fin+ 1410 = (spea + 2P [ D filn+ B0
i=1 k=0 i=1 k=0
m Sn+1 Sn+1+1
<Y (Gna+ 1/ '"Zfl(m L+ = (5w + 2P 7 filn+ 1)
l=1l 1 Sps1+l m Sn+1 =0
x i+ ][> _p+1+k).
u=1 k=0 v=I k=0
Since
Sn+1 Spr1tl
(St + D™D fin+ 141 = (sper + 2P Z fitn+1)
k=0
e+ UP ™S T sy 100~ 5t + 2P S 0K 5001100
kezZ keZ
< Zfl(k)r(sml)X[n+1,n+s,,+1+1](k)
kEeZ
<3 AU (k = 1= 1) 00 (K).
keZ

Combining (4.3) with (4.2) yields that

Asa P+ 1) = A, a OO = > TT fillerey (D AU =1 = Dyr o (0)).

=1 175" keZ

On the other hand, one finds

m Sp+1
s (D) ~ A1 (P + 1) = (s5n + 1P '"HZf,(mk) (sn+ 2P [ D filn+1+K)
i=1 k= 0 i=1 k=0
m Sp+1l
=Z (5n+1ﬁm2fl(n+k) (sn+2)ﬁm2fl(n+1+k))
=1 k=0 k=0
1-1 sp+1

x fuln+1+k) H va(n+k)

u=1 k=0 v=I+1 k=0

(4.1)

(4.2)

(4.3)

(4.4)
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It follows that
As,(H() - A1 (F)(n + 1)
= Z ((Sn + 1)B—m Zfl(k))([n,;ﬁsn](k) —(sn+ z)ﬁ—m Zfl(k)X[n+1,n+sn+2](k))

=1 keZ kez

x H HfjH(Zl(Z)

it (4.5)
<> T Wl (D AUOTG N e, nss, 8 + fiw)

=1 1/:Im keZ
<> TT Il (D AUOTG=n= 1y, + ().

I=1 1sjzm kez

=1

(4.1) and (4.4)-(4.5) imply that

Var(M;(f)) < ZHII;‘,IIp(Z)(Zfl(k)(ZFk n-1)

=1 11m keZ "ff,‘:
3 k- D)+ Y filn)
nex-
<3 TT o (A0S Tthk=n= 1)+ fillnem)
=1 11m keZ n<k
<2m H Ifillerzy-
1gjzm

Step 2: proof of the continuity for M[,. Let f = (fi,...,fm) with each f; N7) andfj = (frjs-eesfmyj)
such that f; ; > f; in 01(Z) as j > oo. By the boundedness part in Theorem 1.3, we know that (M;}()? ) € (2).
Without loss of generality we may assume that all f; ; > 0 and f; > O since | If;| = If| { < |fj - f|. We want to show
that

lim IMEED) - MEE) 141z = O (4.6)

Given € € (0, 1), there exists N1 = Nl(e,f) > 0 such that

fij—fillnz) < € (4.7)

and
Ifiilaz) < Wfij = fillo@y + Willo @y < Ifilloz) +1 (4.8)
foranyj > Ny and all 1 < i < m. We get from (4.7)-(4.8) that

IME(f)(n) - M(F)(n)|

< sug(s + 1)5""" 11D fim+ -] fitn+ k)‘
se

i=1 k=0 i=1 k=0
-1 s
< sup(s + 1) ’"ZZ\E,(mk) fin+ 0T fuln+ k) H va,(mk)
seN =1 k=0 y=1 k=0 Vv=l+1 k=0
-1
anl, filla@ [T 1fullerczy H Ifville
u=1 v=Il+1
< c(Pe

for any n € Z and j = Ny, which implies that ME(fj) > M;g(f) pointwise as j - oo and

lm ;7)) () = O3 ) (4.9)
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for all n € Z. By the fact that (MEO?))' € ¢1(2) and the classical Brezis-Lieb lemma in [35], to prove (4.6), it
suffices to show that

tim | (M) ey = IMGE) 1oy (4.10)
By (4.9) and Fatou’s lemma, one finds
|G lexczy < tim inf IOMGE -
Thus, to prove (4.10), it suffices to show that

“I.‘L sup (M) 1oz < IMEE) 11z - (4.11)
] oo

We now prove (4.11). Since each f; € ¢*(Z), then there exists a sufficiently large positive integer Ry =

R (e, f) such that

sup Z fi(n) < e. (4.12)

1<ism

|n|=Ry
Note that
lim ME(f')(n) =0.

[n|>o0
It follows that there exists an integer R, = R,(€) > 0 such that Mg(f)(n) < ¢ for all |n| = R,. Moreover, there
exists an integer R; > 0 such that s#™ < eif s > R; since B < m. Let R = max{R1, R,, R3}. (4.9) yields that
there exists an integer N, = N(e, R) > 0 such that

€

B () = MEE) ()] < 3 (4.13)
foranyj = N, and |n| < 2R. From (4.13) we have
|EED o N N N
< > IMEE) () = MEED ()] + M) ey + D IMEE) ()]
|n|<2R . - [n|22R (4.14)
< [IMEEN llazy + €+ Y [(Mp(FH) ()]
|n|=2R

for any j = N,. Fixj = N, and set
X; ={|n|=2R: Mg(fj)(n +1)> Mg(fj)(n)},
X; = {In| 2 2R : Mj(f)(n) = M(f)(n + 1)}.

Sinceall f; j € ¢X(Z), then, for any n € Z, there exists r, € N such that MZ,(fj)(n) = A,n(fj)(n). Then we have

> IMEE) ()]

|n|=2R
= ST MGER + D -ME) + S MEE R - ME)n + 1) 415
nex; nex; )
<> B )+ D = Ayt B + 3 (Ar, F)) - A a B+ 1)),
neX}T neX]T
By the arguments similar to those used in deriving (4.4) and (4.5), one has
Ar,s (,?})(n +1) - Ar,,+1+1(]?j)(n) S Z H 1fuwiller@ ( Zfl,j(k)r(k -n- 1))((,1,00)(’()) , (4.16)

=1 17451'" keZ

Ar, (fj)(n) - Ar,,+1(fj)(n +1) < Z H Ifwiller@) ( Zfl,j(k)r(k =1 = 1)X(n,00)(K) +fl,j(n)> . (4.17)

=1 13451"! keZ
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It follows from (4.13)-(4.15) that

> IMEE) ()]

|n|=2R

<> I Il

el(z)( >N fiortc-n- 1)X(n,oo)(k))

=1 1;ij neX].* kez
m (4.18)
30 T Wslloe (32 S As00TUc=n - D@+ 3 fi00)
=1 1;“:51"' I’IGX}T keZ YIEX]T
m
ST Willoe (X0 S AOMK=n-Dxpm@+ S fijm).
=1 1;145["' |n|22R keZ |n|=2R
By (4.7)-(4.8) and (4.12), we obtain
> AT (= n = 1)y 00 (k)
|n|22R keZ
< Zfz,;(k) Z I'k-n-1)
kez Inl=2R
<> fil0 > Tlk-n-1)+>" fi;() > Tk-n-1) (4.19)
|k|=R \"“\:;R |k|<R ns-2R
<> fi00+> fij00 Y T(n-R)
|k|=R |k|<R n=2R
< \frj = fillozy + 1fiXnj=2r ller(z) + RE™|fil o) < CR)e
for any j > N;. It follows from (4.8), (4.12) and (4.18)-(4.19) that
ST IMEE) ()] < C(fe (4.20)
|n|=2R
for any j > N;. Combining (4.20) with (4.14) yields that
IMEE) Nz = IMEE 1) + Ce
for any j = max{Ny, N, }. This proves (4.11) and finishes the proof of Theorem 1.3. O
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