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Abstract: This article deals with univariate binary approximating subdivision schemes and their general-
ization to non-tensor product bivariate subdivision schemes. The two algorithms are presented with one
tension and two integer parameters which generate families of univariate and bivariate schemes. The tension
parameter controls the shape of the limit curve and surface while integer parameters identify the members
of the family. It is demonstrated that the proposed schemes preserve monotonicity of initial data. Moreover,
continuity, polynomial reproduction and generation of the schemes are also discussed. Comparison with
existing schemes is also given.

Keywords: Subdivision scheme, continuity, polynomial reproduction, monotonicity, non-tensor product

MSC: 65D17; 65D07; 65D05

1 Introduction
One of the important areas of study in Computer AidedGeometric Design is subdivision. Subdivision schemes
have become very important for providing smooth curves and surfaces through an iterative process from
a �nite set of control points. At each step of iteration, a new set of points is created from the old points.
In general, approximating subdivision schemes produce smoother curves and surfaces as compared to
interpolating subdivision schemes.

Approximating schemes were �rst developed by Rham [1]. A famous corner cutting linear approximation
scheme was introduced by Chaikin [2], which can generate the piecewise continuous C1 limiting curves.
Consequent to this, a lot of work has been done by di�erent authors in the area of binary approximating
subdivision schemes. Mustafa et al. [3] presented the m-point binary approximating subdivision scheme.
Zheng et al. [4] introduced a general formula to generate a family of integer-point binary approximating sub-
division schemeswith a parameter.Mustafa et al. [5] presented a family of (2n−1)-point binary approximating
subdivision schemes with free parameters for describing curves. Khan and Mustafa [6] introduced a new
approach to construct a non-tensor product C1 subdivision scheme for quadrilateral meshes. Zheng et al. [7]
devised a multi-parameter method which generates a class of existing binary subdivision schemes. By using
theirmethod continuity of existing schemes can be increased up to Ck+n bymultiplying the factor

(1+z
2
)k with

the symbol of the existing scheme.
Lane and Riesenfeld [8] then presented a uni�ed framework to represent the uniform B-spline curves

and their tensor product extensions by a subdivision process. This framework consists of two stages, the �rst
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stage doubles the control point by taking each point twice and the second stage is the midpoint averaging of
these points.

Cashman et al. [9] presented the generalized Lane-Riesenfeld algorithm with 4-point variant. A subdivi-
sion step T is therefore

T = SkR,

where R is re�ne stage and S is smoothing stage.
Ashraf et al. [10] applied a six point variant on the Lane-Riesenfeld algorithm to generate a family of
subdivision schemes by de�ning

Qq = Smq Wq ,

whereWq is re�ne stage and Sq is smoothing stage.
Hormann and Sabin [11] proposed a family of subdivision schemes with symbol ak(z) by convolution of
uniform B-spline with kernel given by

ak(z) = 2σ(z)kKk(z),

where σ(z) is a smoothing operator of the B-spline and Kk(z) is a convolution of the order-k B-spline with the
kernel.
Conti and Romani [12] proposed a strategy for constructing dual m-ary approximating subdivision schemes
of de Rham-type, starting from two primal schemes of arity m and 2 respectively. Symbol of their scheme is

c(z) = aodd(z)b(z),

where aodd(z) is the odd sub-symbol of a primal binary scheme and b(z) is the symbol of a primal m-ary
scheme.Mustafa et al. [13] presented analgorithm that generates a family of binaryunivariate dual andprimal
approximating subdivision schemes, starting with two binary schemes, de�ned as

Pl(z) = (meven(z))ln(z),

where meven(z) is the even sub-symbol of [14] and n(z) is the symbol of [11]. Romani [15] introduced an
algorithmwhich generates the univariate and bivariate non-tensor product subdivision schemeswith tension
parameter. The symbol of the scheme is de�ned as

an,w(z) = (s(z))nrn,w(z),

where s(z) = 1+z
2 is smoothing stage while rn,w(z) is re�ne stage.

1.1 Motivation

All the above algorithms are also calledRe�ne-Smooth algorithms. In these algorithms there is one smoothing
operator followed by one re�ning operator. But in the proposed algorithm there are two smoothing operators
followed by one re�ning operator. That is, we propose an algorithm which uses symbols of well known
subdivision schemes, starting with three binary schemes i.e.

qm,n,µ(z) = (αodd(z))m(βeven(z))nγµ(z),

where αodd(z) is the extracted odd sub-symbol of [4], βeven(z) is the extracted even sub-symbol of [14] and
γµ(z) is the symbol of [5]. The schemes produced by this algorithm are continuous up to Cm+n+2, wherem and
n are parameters that identify members of the family and play a crucial role in the continuity of the proposed
schemes. The parameter µ controls the shape of the limit curves of the schemes. Moreover, this algorithm
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produces higher order continuous schemes compared with to the existing algorithms. This algorithm can
easily be generalized to produce non-tensor product binary approximating schemes for surface generation.
Furthermore, monotonicity preservation is also an important shape preserving property of subdivision
schemes. In [16–21] the monotonicity of univariate schemes has been discussed. In this paper, we examine
monotonicity preservation of univariate schemes and non-tensor product schemes.

The remainder of this article is organized into 3 sections. In Section 2, �rstly we present an algorithm
which generates a family of univariate binary approximating subdivision schemes with a tension parameter.
Secondly, we discuss the smoothness analysis of univariate schemes and �nally we discuss themonotonicity,
polynomial generation and reproduction of the schemes. Section 3 extends the ideas presented in Section 2
to design a new family of non-tensor product subdivision schemes for quadrilateral meshes. The smoothness
analysis of non-tensor product schemes is also discussed in the same section. In Section 3, we also discuss
the monotonicity, polynomial generation and reproduction properties of non-tensor product subdivision
schemes. Applications and conclusion are also given in this section.

2 Algorithm for univariate schemes
In this section, we present an algorithm for the construction of a family of binary approximating subdivision
schemes.
For this, we consider the odd sub-symbol of cubic B-spline scheme [4]

αodd(z) =
1 + z
2 . (1)

Similarly, the even sub-symbol of 4-point binary interpolating scheme [14] is

βeven(z) =
(
1 + z
2

)(
−18 z

2 + 10
8 z −

1
8

)
. (2)

The symbol of the three point scheme [5] is given by

γµ(z) =
(
1 + z
2

)3 (
8µz2 + (2 − 16µ)z + 8µ

)
. (3)

Let us denote the family of the binary approximating subdivision scheme by Pqm,n,µ , where the general
member of the proposed family has the symbol of the form

qm,n,µ(z) = (αodd(z))m(βeven(z))nγµ(z). (4)

Substituting (1), (2) and (3) in (4), we get the symbol of the scheme Pqm,n,µ

qm,n,µ(z) =
(
1 + z
2

)m+n+3(
−18 z

2 + 10
8 z −

1
8

)n (
8µz2 + (2 − 16µ)z + 8µ

)
, (5)

wherem and n are non-negative integers. As it is apparent that the symbol of the scheme Pqm,n,µ is dependent
on the parameter µ and on two other parameters m and n. The parameter µ controls the shape of the limit
curves of the schemes while m and n characterize the elements of the scheme Pqm,n,µ .

2.1 Smoothness analysis of univariate schemes

In this section, we discuss the continuity and Hölder continuity of the schemes. We use the theory of
generating function [22] for continuity and Rioul’s [23] method for Hölder continuity.
In the following theorem, we examine the convergence and smoothness of the scheme Pqm,0,µ .
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Theorem 2.1. The scheme Pqm,0,µ is Cm+2 for µ ∈ (0, 0.125).

Proof. Symbol of the scheme Pqm,0,µ is given by

qm,0,µ(z) =
(
1 + z
2

)m
a(z), (6)

where

a(z) =
(
1 + z
2

)3
b(z), (7)

and

b(z) = 8µz2 + (2 − 16µ)z + 8µ.

Let Sb be the scheme corresponding to the symbol b(z). Since

∥∥∥∥12 Sb
∥∥∥∥
∞
= max

1
2
∑
j∈Z

|b2j|,
1
2
∑
j∈Z

|b2j+1|

 ,

then for µ ∈ (0, 0.125), we have∥∥∥∥12 Sb
∥∥∥∥
∞
= max

{∣∣∣∣8µ2
∣∣∣∣ + ∣∣∣∣8µ2

∣∣∣∣ , ∣∣∣∣2 − 16µ2

∣∣∣∣} < 1.

Hence Sb is contractive. Therefore, by Corollary 4.11 of [22], the scheme Sa is C2 for µ ∈ (0, 0.125). So by (6)
scheme Pqm,0,µ is Cm+2 for µ ∈ (0, 0.125).

Similarly, we can easily �nd out the continuity of other schemes Pqm,n,µ by taking into account the same
formalism. The order of continuity of some proposed univariate subdivision schemes Pqm,0,µ , Pqm,1,µ , Pqm,2,µ
and Pqm,3,µ for certain ranges of parameter is shown in Table 1. Hölder continuity is an extension to the notion

Table 1: The order of continuity O(C) of proposed binary approximating schemes for certain ranges of parameter.

n Scheme Ranges O(C) n Scheme Ranges O(C)
0 Pqm,0,µ −0.375 < µ < 0.625 Cm+0 2 Pqm,2,µ −0.195 < µ < 0.445 Cm+0

. . . −0.125 < µ < 0.375 Cm+1 . . . −0.194 < µ < 0.442 Cm+1

. . . 0 < µ < 0.125 Cm+2 . . . −0.034 < µ < 0.282 Cm+2

. . . −0.026 < µ < 0.235 Cm+3

. . . 0.045 < µ < 0.09 Cm+4

1 Pqm,1,µ −0.275 < µ < 0.525 Cm+0 3 Pqm,3,µ −0.356 < µ < 0.618 Cm+0

. . . −0.075 < µ < 0.3 Cm+1 . . . −0.131 < µ < 0.380 Cm+1

. . . −0.068 < µ < 0.295 Cm+2 . . . −0.128 < µ < 0.375 Cm+2

. . . 0.025 < µ < 0.104 Cm+3 . . . −0.002 < µ < 0.235 Cm+3

. . . 0.003 < µ < 0.191 Cm+4

. . . 0.006 < µ < 0.081 Cm+5

of continuity. In the following theorem, we compute the Hölder continuity of the scheme Pqm,0,µ .

Theorem 2.2. The Hölder continuity of the scheme Pqm,0,µ is 3.
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Proof. From (7), let b0 = 8µ, b1 = 2 − 16µ, b2 = 8µ, then M0, M1 are the matrices with elements{
(M0)ij = b2+i−2j ,
(M1)ij = b2+i−2j+1,

where i, j = 1, 2. This implies

M0 =
(
2 − 16µ 0

8µ 8µ

)
, M1 =

(
8µ 8µ
0 2 − 16µ

)
. (8)

From (8) and [23], the spectral radius λ of the metrics M0 and M1 can be express as follows

max {2 − 16µ, 2 − 16µ} ≤ λ ≤ max {2 − 16µ, 2 − 16µ} .

Since the largest eigenvalue and the max-norm of the metrics is 1 for µ = 0.0625, where µ ∈ (0, 0.125), so
the Hölder continuity h = 2 − log2(1) = 3. So by (6), the Hölder continuity of the scheme Pqm,0,µ is Cm+3.

Similarly, we can compute the Hölder continuity of other members of the family. If the largest eigenvalue

Table 2: Continuity of some members of the family of schemes

n µ Continuity Lower bound on Upper bound on
Hölder continuity Hölder continuity

0 0.0625 Cm+2 Cm+3 Cm+3

1 0.0375 Cm+3 Cm+3.255 Cm+3.2603

2 0.0676 Cm+3 Cm+4.478 Cm+5

and the max-norm of the metrics are not equal then we calculate the lower and upper bounds of the Hölder
continuity. The lower bound of the Hölder continuity is h = 2 − log2(‖b‖l)/l for some integer l and the upper
bound of the Hölder continuity is h = 2 − log2(λ). It is clear from Table 2 that as we increase n, the level of
continuity and the Hölder continuity of the schemes Pqm,n,µ increase.

2.2 Response of univariate schemes to polynomial and monotone data

In this section,we examine the response of schemes to polynomial data by taking into account the polynomial
generation and reproduction. We also examine the behaviour of the schemes for monotone data. We use the
techniques developed in [15] to discuss polynomial generation and polynomial reproduction.

2.2.1 Polynomial generation

The polynomial generation of degree d is the ability of subdivision scheme to generate the full space of
polynomials up to degree d denoted by πd. The generation degree of a subdivision scheme is the maximum
degree of a polynomial that can potentially be generated by the scheme.

Theorem 2.3. The subdivision scheme Pqm,n,µ generates πm+n+2 for all m, n ∈ N. Moreover, if µ = 1
16 , then

Pqm,n,µ generates πm+n+4.
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Proof. Since conditions

qm,n,µ(1) = 2, qm,n,µ(−1) = 0, D(k)qm,n,µ(−1) = 0, k = 1, 2, . . . ,m + n + 2,

are veri�ed by qm,n,µ(z) for all µ ∈ R and D(k) denotes the kth derivative. Thus, in view of Proposition 2.1 of
[15] degree of polynomial generation is m + n + 2 for all µ ∈ R. Moreover, by setting µ = 1

16 two more terms
(1+ z) can be factored out from qm,n,µ(z), thenwe have D(k+1)qm,n,µ(−1) = D(k+2)qm,n,µ(−1) = 0. So the degree
of polynomial generation is m + n + 4.

2.2.2 Polynomial reproduction

Polynomial reproduction is an attractive property for a subdivision scheme. For a subdivision scheme to
reproduce πd it must be able to generate polynomials of the same degree as the limit functions for some
initial data. The degree of polynomial reproduction can never exceed the degree of polynomial generation.

Theorem 2.4. If applying the parameter shift τ = 5+m+3n
2 , then the subdivision scheme Pqm,n,µ reproduces π1

with respect to the parametrization in [15] for all m, n ∈ N and µ ∈ R. Moreover, if µ = −3+m32 , then Pqm,n,µ
reproduces π3 for all m, n ∈ N.

Proof. Since the condition D(1)qm,n,µ(1) = 5 + m + 3n is veri�ed by the symbol qm,n,µ(z) for all µ ∈ R, so
polynomial reproduction of Pqm,n,µ is π1 with the parameter shift τ = 5+m+3n

2 . We observe that when µ = −3+m32 ,
the following two more conditions

D(2)qm,n,µ(z)|z=1 = 2τ(τ − 1), D(3)qm,n,µ(z)|z=1 = 2τ(τ − 1)(τ − 2),

are satis�ed for all m, n ∈ N. Thus reproduction of Pqm,n,µ is π3.

2.3 Monotonicity preservation

Monotonicity preserving plays a key role in the shape preserving properties of subdivision schemes.

De�nition 2.1. [18] Univariate data (xi , fi), i = 0, 1, 2, . . . , n is monotonically increasing if fi < fi+1 ∀ i =
0, 1, 2, . . . , n and the derivative at the data points obey the condition di > 0 ∀ i = 0, 1, 2, . . . , n.

In the following, we examine monotonicity preservation of binary scheme Pq1,0,µ .

Theorem 2.5. Let {f 0i }i∈Z satisfy

. . . f 0−1 < f 00 < f 01 < . . . < f 0n−1 < f 0n < f 0n+1 . . . .

Denote

dki = f ki+1 − f ki , rki =
dki+1
dki

, Rk = max
i

{rki ,
1
rki

}, k ≥ 0, k ∈ Z, i ∈ Z.

Furthermore, let 0.1 ≤ µ ≤ 0.9 and ξ = − 1
µ , ξ ∈ R. If 1

ξ ≤ R
0 ≤ ξ , {f ki } is de�ned by the subdivision scheme

Pq1,0,µ , then

dki > 0,
1
ξ ≤ R

k ≤ ξ , k ≥ 0, k ∈ Z, i ∈ Z. (9)

Proof. We use mathematical induction to prove (9). When k = 0,
d0i = f 0i+1 − f 0i > 0, 1

ξ ≤ R
0 ≤ ξ , then (9) is true.
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Suppose that (9) holds for k, dki = f ki+1 − f ki > 0, 1
ξ ≤ R

k ≤ ξ . Next we will prove that (9) holds for k + 1.
Consider

dk+12i =
{(

1
8 + 1

2µ
)
dki +

(
3
8 − µ

)
dki+1 +

(
1
2µ
)
dki+2

}
.

This implies

dk+12i = dki
{(

1
8 + 1

2µ
)
+
(
3
8 − µ

)
rki +

(
1
2µ
)
rki+1rki

}
.

This further implies

dk+12i ≥ dki
{(

1
8 + 1

2µ
)
+
(
3
8 − µ

)
1
ξ +

(
1
2µ
)

1
ξ2

}
.

We know that dki > 0 and

dki
{(

1
8 + 1

2µ
)
+
(
3
8 − µ

)
1
ξ +

(
1
2µ
)

1
ξ2

}
> 0, for 0.1 ≤ µ ≤ 0.9 and ξ = −1µ .

This implies that dk+12i > 0. Similarly, we see that dk+12i+1 > 0 for 0.1 ≤ µ ≤ 0.9 and ξ = − 1
µ . Now we prove that

1
ξ ≤ R

k+1 ≤ ξ . First we show that rk+12i − ξ ≤ 0. Since

rk+12i = d
k
2i+1
dk2i

=

{(1
2µ
)
dki +

(3
8 − µ

)
dki+1 +

(1
8 +

1
2µ
)
dki+2

}
{(1

8 +
1
2µ
)
dki +

(3
8 − µ

)
dki+1 +

(1
2µ
)
dki+2

} ,
then

rk+12i − ξ ≤
dki
{(3

8 +
1
2µ
)
ξ2 +

(1
4 −

3
2µ
)
ξ +
(3
2µ −

3
8
)
+
(
−12µ

) 1
ξ

}
dki+1

{(1
8 + µ

)
ξ +
(3
8µ
)} .

The denominator and numerator of the right hand side of the above expression are less than and greater than
zero respectively for 0.1 ≤ µ ≤ 0.9 and ξ = − 1

µ .
This implies that

rk+12i − ξ ≤ 0.

It implies further that rk+12i ≤ ξ . Now we show that 1
rk+13i
− ξ < 0.

1
rk+12i

= dk2i
dk2i+1

=

{(1
8 +

1
2µ
)
dki +

(3
8 − µ

)
dki+1 +

(1
2µ
)
dki+2

}
{(1

2µ
)
dki +

(3
8 − µ

)
dki+1 +

(1
8 +

1
2µ
)
dki+2

} .
This implies

1
rk+12i

− ξ ≤
dki {12µξ

2 − 1
4 ξ − (

1
2µ +

1
4 )}

dki+1{(
1
8 + µ)ξ + (

3
8 − µ)}

.

The denominator and numerator of the right hand side of the above expression are less than and greater
than zero respectively for 0.1 ≤ µ ≤ 0.9 and ξ = − 1

µ .
This implies that

1
rk+12i

− ξ ≤ 0.

It implies further that 1
rk+12i

≤ ξ . In the same way, we can get rk+12i+1 ≤ ξ and 1
rk+12i+1

≤ ξ . So Rk+1 ≤ ξ . Since

Rk+1 = maxi{rki , 1
rki
}, it is obvious that Rk+1 ≥ 1

ξ . This completes the proof.
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2.4 Numerical experiments of univariate schemes

In this section, we present the performance, geometrical behaviour and e�ect of a parameter on the limit
curves of the schemes. We also present the response of the limit curves produced by the schemes towards the
initial data.

Table 3:Monotone data set [24].

i 1 2 3 4 5 6 7 8 9 10 11
xi 0.1 4 6.5 10 15 25 40 50 62 65 66
yi 1 1 2 3.5 5.5 5.5 10 10 12.5 18 20

Figure 1: The curves (a), (b), (c) and (d) are generated by the schemes Pq1,0,µ , Pq1,1,µ , Pq1,2,µ and Pq1,3,µ respectively, using the
monotone data set given below.

(a) (b)

(c) (d)
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Figure 2: Most expanded and most shrinked curves: The curves (a), (b), (c) and (d) are generated by the schemes Pq2,0,µ , Pq1,2,µ ,
Pq2,2,µ and [15] respectively.

(a) m = 2, n = 0 (b) m = 1, n = 2

(c) m = 2, n = 2 (d) n = 2

Figure 3: Interpolating behaviour: The curves (a) , (b) and (c) are generated by the schemes Pq2,0,µ , Pq1,2,µ and [15] respectively.

(a) m = 2, n = 0 (b) m = 1, n = 2 (c) n = 2
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Figure 4: Most expanded and most shrinked curves: The curves (a), (b) and (c) are generated by the schemes Pq1,0,µ , Pq1,1,µ and
[15] respectively.

(a) m = 1, n = 0 (b) m = 1, n = 1 (c) n = 1

Figure 5: Interpolating behaviour: The curves (a), (b) and (c) are generated by the schemes Pq1,0,µ , Pq1,1,µ and [15] respectively.

(a) m = 1, n = 0 (b) m = 1, n = 1 (c) n = 1

Figure 1 is produced by using the monotone data set given in Table 3. Figures 1(a)-1(d) are monotone
curves obtained by the schemes Pq1,0,µ , Pq1,1,µ , Pq1,2,µ and Pq1,3,µ respectively.
The Figure 2-5 shows a comparison of proposed schemes with existing schemes [15]. Dashed dotted lines
indicate the initial polygon. Solid lines show the most expanded curves and dashed lines show the most
shrinked curves. Arrows show the distance between most expanded and most shrinked curves. Figures 2(a)-
2(c) show that the most expanded and most shrinked curves are obtained by the schemes Pq2,0,µ , Pq1,2,µ and
Pq2,2,µ at di�erent parametric values and Figure 2(d) shows the behaviour of existing scheme of [15].
We can see that the Figures 3(a)-3(b) represent the interpolating behaviour of proposed scheme Pq2,0,µ ,
Pq1,2,µ respectively. Figure 3(c) shows the non-interpolating behaviour of [15] at any parametric value. The
proposed schemes Pq2,0,µ and Pq1,2,µ show the approximating behaviour aswell as the interpolating behaviour
at di�erent parametric values.
The Figures 4(a)-4(c) show the most expanded and most shrinked curves that are generated by the schemes
Pq1,0,µ , Pq1,1,µ and [15] at di�erent parametric values respectively. The limit curves presented in Figures 5(a)-
5(c) show the interpolating behaviour by of schemes Pq1,0,µ , Pq1,1,µ and [15] respectively.
The schemes Pq1,0,µ and Pq1,1,µ have both approximating and interpolating behaviour while the scheme in [15]
gives only interpolating behaviour.
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3 Algorithm for non-tensor product schemes
By generalizing the algorithm as devised in Section 2, we get a family of non-tensor product approximating
schemes with tension parameter µ for quadrilateral meshes. Let Pqm,n,µ be the family of non-tensor product
bivariate subdivision schemes then we propose the symbol of this family as

qm,n,µ(z1, z2) = (αodd(z1))m(βeven(z2))nγµ(z1)γµ(z2). (10)

By substituting m = 1 and n = 0 in (10), we get symbol of the scheme Pq1,0,µ as follows:

q1,0,µ(z1, z2) =
(
1 + z1
2

)4(1 + z2
2

)3 (
8µz21 + (2 − 16µ)z1 + 8µ

)
× (11)(

8µz22 + (2 − 16µ)z2 + 8µ
)
.

The bivariate subdivision scheme Pq1,0,µ has the mask

q1,0,µ(z1, z2) =



1
2 µ

2 1
2 µ

2 + 1
8 µ −µ2 + 3

8 µ

µ2 + 1
8 µ µ2 + 3

8 µ +
1
32 2µ2 + 1

2 µ +
3
32

− 1
2 µ

2 + 1
2 µ − 1

2 µ
2 + 3

8 µ +
1
8 µ2 − 11

8 µ +
3
8

−2µ2 + 3
4 µ −2µ

2 + 1
4 µ +

3
16 4µ2 − 3µ + 9

16

− 1
2 µ

2 + 1
2 µ − 1

2 µ
2 + 3

8 µ +
1
8 µ2 − 11

8 µ +
3
8

µ2 + 1
8 µ µ2 + 3

8 µ +
1
32 −2µ

2 + 1
2 µ +

3
32

1
2 µ

2 1
2 µ

2 + 1
8 µ −µ2 + 3

8 µ

−µ2 + 3
8 µ

1
2 µ

2 + 1
8 µ

1
2 µ

2

−2µ2 + 1
2 µ +

3
32 µ2 + 3

8 µ +
1
32 µ2 + 1

8 µ

µ2 − 11
8 µ +

3
8 − 1

2 µ
2 + 3

8 µ +
1
8 −

1
2 µ

2 + 1
2 µ

4µ2 − 3µ + 9
16 −2µ

2 + 1
4 µ +

3
16 −2µ2 + 3

4 µ

µ2 − 11
8 µ +

3
8 − 1

2 µ
2 + 3

8 µ +
1
8 −

1
2 µ

2 + 1
2 µ

−2µ2 + 1
2 µ +

3
32 µ2 + 3

8 µ +
1
32 µ2 + 1

8 µ

−µ2 + 3
8 µ

1
2 µ

2 + 1
8 µ

1
2 µ

2



. (12)

3.1 Smoothness analysis of bivariate proposed schemes

Here, we use the theory of generating function [22] to derive continuity of non-tensor product schemes.

Theorem 3.1. If µ ∈ (−0.2215, 0.4785) then the subdivision scheme Pq1,0,µ converges to a continuous
surface when starting from any regular quadrilateral mesh. Moreover, if µ ∈ (−0.05178, 0.3017) and µ ∈
(−0.0517, 0.25), then the limit surfaces generated by scheme Pq1,0,µ have C

1 and C2-continuity respectively.
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Proof. From (11), we have

b1,0,µ(z1, z2) =
(
8µz21 + (2 − 16µ)z1 + 8µ

)(
8µz22 + (2 − 16µ)z2 + 8µ

)
.

In view of [22](Theorem 4.30), we can determine the range of the parameter µ which guarantees the con-
vergence of the scheme Pq1,0,µ by checking the contractivity of the scheme. Since the scheme with symbol
1
2
(1+z1

2
)3 (1+z2

2
)3 b1,0,µ(z1, z2), 1

2
(1+z1

2
)4 (1+z2

2
)2 b1,0,µ(z1, z2) is contractive for µ ∈ (−0.2215, 0.4785) and

then scheme Pq1,0,µ is convergent for µ ∈ (−0.2215, 0.4785). In the same way, the scheme with symbol
1
2
(1+z1

2
)2 (1+z2

2
)3 b1,0,µ(z1, z2), 1

2
(1+z1

2
)3 (1+z2

2
)2 b1,0,µ(z1, z2), 1

2
(1+z1

2
)4(1+z2

2
)
b1,0,µ(z1, z2) is contractive for µ ∈ (−0.05178, 0.3017) therefore the scheme Pq1,0,µ is C

1-continuous.
Again since, the scheme with symbol 1

2
(1+z1

2
) ( 1+z2

2
)3

b1,0,µ(z1, z2), 1
2
(1+z1

2
)2 (1+z2

2
)2 b1,0,µ(z1, z2), 1

2
(1+z1

2
)3 (1+z2

2
)
b1,0,µ(z1, z2), 1

2
(1+z1

2
)4

b1,0,µ(z1, z2) is contractive for µ ∈ (−0.0517, 0.25), so the scheme Pq1,0,µ is C
2-continuous.

Table 4: The order of continuity O(C) of proposed non-tensor product schemes with some existing non-tensor product schemes.

Scheme Type O(C)
Binary non-tensor product [15] Interpolating C1

Binary non-tensor product [15] Approximating C1

Binary non-tensor product [6] Approximating C1

Proposed binary non-tensor product Pq1,0,µ Approximating C2

Proposed binary non-tensor product Pq1,1,µ Approximating C3

In Table 4, we compare the continuity of proposed non-tensor product schemes with some existing
binary non-tensor product schemes. It is observed that the continuity of proposed schemes is better than
the continuity of existing schemes.

3.2 Response of non-tensor product schemes to polynomial and monotone data

In this section, we investigate the capability of the non-tensor product approximating subdivision schemes
Pq1,0,µ andPq1,1,µ of generating and reproducing polynomials aswell asmonotonicity preservation of the data.

Theorem 3.2. The subdivision scheme Pq1,0,µ generates π2 for all µ ∈ R and generates π4 for µ = 1
16 .

Proof. Let w1 = (1, −1), w2 = (−1, 1), w3 = (−1, −1) and let Dj with j ∈ N2, denote a directional derivative.
Since q1,0,µ(1, 1) = 4 and

D(1,0)q1,0,µ(w1) = 0, D(1,0)q1,0,µ(w2) = 0, D(1,0)q1,0,µ(w3) = 0,

D(0,1)q1,0,µ(w1) = 0, D(0,1)q1,0,µ(w2) = 0, D(0,1)q1,0,µ(w3) = 0,

then scheme Pq1,0,µ generates π1 for all µ ∈ R. Again since

D(1,1)q1,0,µ(w1) = 0, D(1,1)q1,0,µ(w2) = 0, D(1,1)q1,0,µ(w3) = 0,

D(2,0)q1,0,µ(w1) = 0, D(2,0)q1,0,µ(w2) = 0, D(2,0)q1,0,µ(w3) = 0,

D(0,2)q1,0,µ(w1) = 0, D(0,2)q1,0,µ(w2) = 0, D(0,2)q1,0,µ(w3) = 0,
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then the scheme Pq1,0,µ generates π2 for all µ ∈ R. Further

D(2,1)q1,0,µ(w1) = 0, D(2,1)q1,0,µ(w2) = 0, D(2,1)q1,0,µ(w3) = 0,

D(1,2)q1,0,µ(w1) = 0, D(1,2)q1,0,µ(w2) = 0, D(1,2)q1,0,µ(w3) = 0,

D(3,0)q1,0,µ(w1) = 0, D(3,0)q1,0,µ(w2) = 0, D(3,0)q1,0,µ(w3) = 0,

D(0,3)q1,0,µ(w1) = 48µ − 3, D(0,3)q1,0,µ(w2) = 0, D(0,3)q1,0,µ(w3) = 0,

so the scheme Pq1,0,µ generates π3 for µ = 1
16 . Further more

D(2,2)q1,0,µ(w1) = 0, D(2,2)q1,0,µ(w2) = 0, D(2,2)q1,0,µ(w3) = 0,

D(3,1)q1,0,µ(w1) = 0, D(3,1)q1,0,µ(w2) = 0, D(3,1)q1,0,µ(w3) = 0,

D(1,3)q1,0,µ(w1) = 144µ − 9, D(1,3)q1,0,µ(w2) = 0, D(1,3)q1,0,µ(w3) = 0,

D(4,0)q1,0,µ(w1) = 0, D(4,0)q1,0,µ(w2) = 96µ − 6, D(4,0)q1,0,µ(w3) = 0,

D(0,4)q1,0,µ(w1) = 48µ − 3, D(0,4)q1,0,µ(w2) = 0, D(0,4)q1,0,µ(w3) = 0,

so the scheme Pq1,0,µ generates π4 for µ = 1
16 . This completes the proof.

Theorem 3.3. For the parameter shift (τ1, τ2) = (124 ,
10
4 ), the subdivision scheme Pq1,0,µ reproduces π1 with

respect to the parametrization de�ned in [15] for all µ ∈ R.

Proof. Let Dj with j ∈ N2, denote a directional derivative. Since the symbol q1,0,µ(z1, z2) satis�es the
conditions in Theorem 3.2. Since q1,0,µ(1, 1) = 4 and

D(1,0)q1,0,µ(1, 1) − 4τ1 = 0, D(0,1)q1,0,µ(1, 1) − 4τ2 = 0,

then the scheme Pq1,0,µ produced π1 for all µ ∈ R.

Similarly, we can prove the following theorems.

Theorem 3.4. The subdivision scheme Pq1,1,µ generates π3 for all µ ∈ R and generates π4 for µ = 1
16 .

Theorem 3.5. If applying the parameteric shift (τ1, τ2) = (3, 4), the subdivision scheme Pq1,1,µ reproduces π1
with respect to the parametrization in [15] for all µ ∈ R.

Now, we examine monotonicity preservation of the binary non-tensor product approximating subdivision
scheme Pq1,0,µ .

De�nition 3.1. [18] Bivariate data (xi , yj , fi,j), i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . ,m, where x1 < x2 <
. . . < xn and y1 < y2 < . . . < ym are said to be monotonically increasing if fi,j < fi+1,j and fi,j < fi,j+1 ∀
i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . ,m, if the derivative at the data points obey the condition di,j > 0 ∀
i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . ,m.

Theorem 3.6. Suppose that the initial data {f 0i,j} = (x0i , y0j , f 0i,j) are strictly monotonically increasing for all
i, j ∈ Z.
Denote

dki,j = f ki+1,j+1 − f ki+1,j − f ki,j+1 + f ki,j ,

yki,j+t =
dki+1,j+t
dki,j+t

, yki+1,j+t =
dki+2t,j+t+1
dki+1,j+t

,

Yki,j+t = max
i,j

{yki,j+t ,
1
yki,j+t

}, Yki+1,j+t = max
i,j

{yki+1,j+t ,
1

yki+1,j+t
},
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where t = 0, 1 and k ≥ 0, k ∈ Z, i, j ∈ Z.

Furthermore, let 0.1 ≤ µ ≤ 0.9 and δ = − 1
µ , δ ∈ R. If 1

δ ≤ Y
0
i,j+t , Y0i+1,j+t ≤ δ, {f ki,j} is de�ned by the subdivision

scheme Pq1,0,µ , then

dki,j > 0,
1
δ ≤ Y

k
i,j+t , Yki+1,j+t ≤ δ, k ≥ 0, k ∈ Z, i, j ∈ Z. (13)

Proof. We use mathematical induction to prove (13). When k = 0, d0i,j > 0, 1
δ ≤ Y

0
i,j+t , Y0i+1,j+t ≤ δ, then (13) is

true.
Suppose that (13) holds for k i.e. dki,j > 0, 1

δ ≤ Y
k
i,j+t , Yki+1,j+t ≤ δ. Next we will prove that (13) holds for k + 1.

First we show that dk+12i,2j > 0. Consider

dk+12i,2j = f k+12i+1,2j+1 − f k+12i+1,2j − f k+12i,2j+1 + f k+12i,2j .

After some simpli�cation and substituting δ = − 1
µ , we get

dk+12i,2j = dki,j+3
{
−272 µ

11 + 153
8 µ10 − 363

16 µ
9 + 781

32 µ
8 − 831

32 µ
7 + 881

32 µ
6 − 711

64 µ
5

+37764 µ
4 − 105

32 µ
3 + 2µ2 − 19

32µ +
5
32

}
.

We know that dki,j+3 > 0 and{
−272 µ

11 + 153
8 µ10 − 363

16 µ
9 + 781

32 µ
8 − 831

32 µ
7 + 881

32 µ
6 − 711

64 µ
5

+37764 µ
4 − 105

32 µ
3 + 2µ2 − 19

32µ +
5
32

}
> 0.

This implies that dk+12i,2j > 0. Similarly, we see that dk+12i+1,2j > 0, dk+12i,2j+1 > 0 and dk+12i+1,2j+1 > 0 for 0.1 ≤ µ ≤ 0.9
and δ = − 1

µ .
Now we prove that 1

δ ≤ Y
k
i,j+t , Yki+1,j+t ≤ δ. First we show that yk+12i,2j − δ ≤ 0.

For this, consider

yk+12i,2j − δ =
dk+12i+1,2j

dk+12i,2j
− δ.

After some simpli�cation and substituting δ = − 1
µ , we get

yk+12i,2j − δ ≤
ψ1
ψ2

,

where

ψ1 =
{
−98µ

3 + 549
32 µ

2 − 287
8 µ + 2885

64 + 5
16µ8 −

53
32µ7 + 285

32µ6 −
341
16µ5 + 1543

32µ4

− 821
16µ3 + 3461

64µ2 −
1679
32µ

}
,

and

ψ2 =
{
−98µ

3 + 513
32 µ

2 − 635
32 µ +

1615
64 − 5

32µ7 + 3
4µ6 −

69
16µ5 + 41

4µ4 −
783
32µ3
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+ 859
32µ2 −

1743
64µ

}
.

The denominator and numerator of the right hand side of the above expression are less than and greater than
zero respectively for 0.1 ≤ µ ≤ 0.9. This implies that

yk+12i,2j − δ ≤ 0.

Further this implies that yk+12i,2j ≤ δ. Now we show that 1
yk+12i,2j

− δ < 0.
For this, consider

1
yk+12i,2j

− δ =
dk2i,2j
dk2i,2j+1

− δ.

After some simpli�cation and substituting δ = − 1
µ , we get

1
yk+12i,2j

− δ ≤ χ1χ2
,

where

χ1 =
{
−98µ

3 + 549
32 µ

2 − 287
8 µ + 2885

64
5

32µ9 + 29
32µ8 −

19
4µ7 + 189

16µ6 −
449
16µ5 + 1111

32µ4

− 821
16µ3 + 3461

64µ2 −
1679
32µ

}
,

and

χ2 =
{
−98µ

3 + 513
32 µ

2 − 635
32 µ +

1615
64 + 5

32µ8 −
29
32µ7 + 147

32µ6 −
177
16µ5 + 95

4µ4 −
783
32µ3

+ 859
32µ2 −

1743
64µ

}
.

The denominator and numerator of the right hand side of the above expression are greater than and less than
zero respectively for 0.1 ≤ µ ≤ 0.9. This implies that

1
yk+12i,2j

− δ ≤ 0.

Further this implies that 1
yk+12i,2j

≤ δ. In the sameway,we can get yk+12i,2j+1 ≤ δ, yk+12i+1,2j ≤ δ, yk+12i+1,2j+1 ≤ δ, 1
yk+12i,2j+1

≤ δ,
1

yk+12i+1,2j
≤ δ and 1

yk+12i+1,2j+1
≤ δ. So Yki,j+t , Yki+1,j+t ≤ δ. Since Yki,j+t = maxi,j{yki,j+t , 1

yki,j+t
} and Yki+1,j+t = maxi,j{yki+1,j+t ,

1
yki+1,j+t

}, it is obvious that Yki,j+t , Yki+1,j+t ≥ 1
δ . This completes the proof.

3.3 Numerical experiments of non-tensor product schemes

In this section, we show the performance, geometrical behaviour and e�ect of a parameter on the limit
surfaces of the schemes Pq1,0,µ and Pq1,1,µ .

The monotone data set given in Table 5 has been used to produce monotone surfaces. Figure 6(a) is the
initial mesh of themonotone data. Figure 6(b) is themonotone surface generated by the scheme Pq1,0,µ for µ =
0.5. Figure 7(a) is the initial control mesh while Figures 7(b)-7(d) are the surfaces produced by the proposed
scheme Pq1,0,µ at �rst, second and third subdivision levels with µ = 0.1 respectively. Figure 8(a) is the initial
control meshwhile Figures 8(b)-8(d) are the surfaces produced by the proposed scheme Pq1,1,µ at �rst, second
and third subdivision levels with µ = 0.15 respectively.
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Figure 6: (a) Initial monotone data. (b) A monotonicity preserving surface obtained by the proposed scheme Pq1,0,µ .
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Figure 7: (a) Control mesh. (b)-(d) Surfaces obtained by the proposed schemes Pq1,0,µ at �rst, second and third subdivision
levels respectively.

(a) (b)

(c) (d)

3.4 Conclusion

In this paper, we have proposed two algorithms to generate the families of univariate and bivariate approx-
imating subdivision schemes with one tension and two integer parameters. The integer parameters identify
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Figure 8: (a) Control mesh. (b)-(d) Surfaces obtained by the proposed schemes Pq1,1,µ at �rst, second and third subdivision
levels respectively.

(a) (b)

(c) (d)

Table 5:Monotone data set [25].

x/y 1 100 200 300
1 0.6931 9.2104 10.5967 11.4076
100 9.2104 9.9035 10.8198 11.5129
200 10.5967 10.8198 11.2898 11.7753
300 11.4076 11.5129 11.7753 12.1007

members of the proposed family. It has been shown that the proposed schemes have higher continuity and
Hölder continuity compared with existing schemes. Comparison of the continuity of proposed non-tensor
product schemeswith someof the existing non-tensor schemes has also been given. It has beendemonstrated
through several examples that geometrical behaviour of the univariate and bivariate subdivision schemes
depends on the tension parameter. Monotonicity preservation of proposed univariate and bivariate schemes
has been proved.Moreover, polynomial reproduction and generation of the proposed schemes have also been
discussed.
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