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Abstract: This article deals with univariate binary approximating subdivision schemes and their general-
ization to non-tensor product bivariate subdivision schemes. The two algorithms are presented with one
tension and two integer parameters which generate families of univariate and bivariate schemes. The tension
parameter controls the shape of the limit curve and surface while integer parameters identify the members
of the family. It is demonstrated that the proposed schemes preserve monotonicity of initial data. Moreover,
continuity, polynomial reproduction and generation of the schemes are also discussed. Comparison with
existing schemes is also given.
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1 Introduction

One of the important areas of study in Computer Aided Geometric Design is subdivision. Subdivision schemes
have become very important for providing smooth curves and surfaces through an iterative process from
a finite set of control points. At each step of iteration, a new set of points is created from the old points.
In general, approximating subdivision schemes produce smoother curves and surfaces as compared to
interpolating subdivision schemes.

Approximating schemes were first developed by Rham [1]. A famous corner cutting linear approximation
scheme was introduced by Chaikin [2], which can generate the piecewise continuous C! limiting curves.
Consequent to this, a lot of work has been done by different authors in the area of binary approximating
subdivision schemes. Mustafa et al. [3] presented the m-point binary approximating subdivision scheme.
Zheng et al. [4] introduced a general formula to generate a family of integer-point binary approximating sub-
division schemes with a parameter. Mustafa et al. [5] presented a family of (2n-1)-point binary approximating
subdivision schemes with free parameters for describing curves. Khan and Mustafa [6] introduced a new
approach to construct a non-tensor product C! subdivision scheme for quadrilateral meshes. Zheng et al. [7]
devised a multi-parameter method which generates a class of existing binary subdivision schemes. By using
their method continuity of existing schemes can be increased up to C**" by multiplying the factor (%)k with
the symbol of the existing scheme.

Lane and Riesenfeld [8] then presented a unified framework to represent the uniform B-spline curves
and their tensor product extensions by a subdivision process. This framework consists of two stages, the first
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stage doubles the control point by taking each point twice and the second stage is the midpoint averaging of
these points.

Cashman et al. [9] presented the generalized Lane-Riesenfeld algorithm with 4-point variant. A subdivi-
sion step T is therefore

T = S*R,

where R is refine stage and S is smoothing stage.
Ashraf et al. [10] applied a six point variant on the Lane-Riesenfeld algorithm to generate a family of
subdivision schemes by defining

Qq = Sg' Wy,

where Wy is refine stage and Sq is smoothing stage.
Hormann and Sabin [11] proposed a family of subdivision schemes with symbol a;(z) by convolution of
uniform B-spline with kernel given by

ai(2) = 20(2)" K (2),

where 0(z) is a smoothing operator of the B-spline and K;(z) is a convolution of the order-k B-spline with the
kernel.

Conti and Romani [12] proposed a strategy for constructing dual m-ary approximating subdivision schemes
of de Rham-type, starting from two primal schemes of arity m and 2 respectively. Symbol of their scheme is

c(2) = apq4(2)b(2),

where a,4,4(2) is the odd sub-symbol of a primal binary scheme and b(z) is the symbol of a primal m-ary
scheme. Mustafa et al. [13] presented an algorithm that generates a family of binary univariate dual and primal
approximating subdivision schemes, starting with two binary schemes, defined as

Pi(2) = (Meven(2))'n(2),

where Meyen(z) is the even sub-symbol of [14] and n(z) is the symbol of [11]. Romani [15] introduced an
algorithm which generates the univariate and bivariate non-tensor product subdivision schemes with tension
parameter. The symbol of the scheme is defined as

an,w(z) = (s(2)"rn,w(2),

where s(z) = 147 is smoothing stage while rp,(z) is refine stage.

1.1 Motivation

All the above algorithms are also called Refine-Smooth algorithms. In these algorithms there is one smoothing
operator followed by one refining operator. But in the proposed algorithm there are two smoothing operators
followed by one refining operator. That is, we propose an algorithm which uses symbols of well known
subdivision schemes, starting with three binary schemes i.e.

qdm,n,u (2) = (aodd(z))m(ﬁeven (Z))n%x (2),

where a,44(2) is the extracted odd sub-symbol of [4], Beven(2) is the extracted even sub-symbol of [14] and
vu(2) is the symbol of [5]. The schemes produced by this algorithm are continuous up to C™*"*?, where m and
n are parameters that identify members of the family and play a crucial role in the continuity of the proposed
schemes. The parameter u controls the shape of the limit curves of the schemes. Moreover, this algorithm
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produces higher order continuous schemes compared with to the existing algorithms. This algorithm can
easily be generalized to produce non-tensor product binary approximating schemes for surface generation.
Furthermore, monotonicity preservation is also an important shape preserving property of subdivision
schemes. In [16-21] the monotonicity of univariate schemes has been discussed. In this paper, we examine
monotonicity preservation of univariate schemes and non-tensor product schemes.

The remainder of this article is organized into 3 sections. In Section 2, firstly we present an algorithm
which generates a family of univariate binary approximating subdivision schemes with a tension parameter.
Secondly, we discuss the smoothness analysis of univariate schemes and finally we discuss the monotonicity,
polynomial generation and reproduction of the schemes. Section 3 extends the ideas presented in Section 2
to design a new family of non-tensor product subdivision schemes for quadrilateral meshes. The smoothness
analysis of non-tensor product schemes is also discussed in the same section. In Section 3, we also discuss
the monotonicity, polynomial generation and reproduction properties of non-tensor product subdivision
schemes. Applications and conclusion are also given in this section.

2 Algorithm for univariate schemes

In this section, we present an algorithm for the construction of a family of binary approximating subdivision
schemes.
For this, we consider the odd sub-symbol of cubic B-spline scheme [4]

1+z

- o

Aqa(2) =

Similarly, the even sub-symbol of 4-point binary interpolating scheme [14] is

Beven(2) = <1;Z> (—%Zz+%z—%> . 2

The symbol of the three point scheme [5] is given by

3
(z) = (%) (8;122 +(2-16p)z+ 8;1) . 3)

Let us denote the family of the binary approximating subdivision scheme by Py, , ,, where the general
member of the proposed family has the symbol of the form

Qm,n,y(z) = (aodd(z))m(ﬁeven(Z))n’Y}l(Z)- 4)

Substituting (1), (2) and (3) in (4), we get the symbol of the scheme Py, ,

1+2\™3 /7 1, 10 1
8 8°7 8

qmnu(2) = < 3 -z T+ —z- )n (8}122 +(2-16p)z+ 8}1) , (5)

where m and n are non-negative integers. As it is apparent that the symbol of the scheme Py, , , is dependent
on the parameter y and on two other parameters m and n. The parameter y controls the shape of the limit
curves of the schemes while m and n characterize the elements of the scheme Pg,,,, .

2.1 Smoothness analysis of univariate schemes
In this section, we discuss the continuity and Hoélder continuity of the schemes. We use the theory of

generating function [22] for continuity and Rioul’s [23] method for Holder continuity.
In the following theorem, we examine the convergence and smoothness of the scheme Pg,, , .
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Theorem 2.1. The scheme Py, ,, is C"*? for u € (0, 0.125).

Proof. Symbol of the scheme Py, , , is given by

anos@ - (15%) ata) ©
where
_(1+z >
a@ - (15%) b )
and

b(z) = 8;122 +(2-16p)z + 8.

Let S;, be the scheme corresponding to the symbol b(z). Since

1 1
=maxq 5 > Ibyl, 5 > byl ¢ s

1
o JEZL JEZ

then for u € (0, 0.125), we have

s

1
B

max d[BH] 4|82
—max{‘2‘+‘2

2-16u
> ’}<1.

S

Hence S, is contractive. Therefore, by Corollary 4.11 of [22], the scheme S, is C? for u € (0, 0.125). So by (6)
scheme Py, ,, is C™*2 for u € (0, 0.125). O

Similarly, we can easily find out the continuity of other schemes Pg, ,, by taking into account the same
formalism. The order of continuity of some proposed univariate subdivision schemes Pq,,,» Pgn1,> Pgno,
and Py, , , for certain ranges of parameter is shown in Table 1. Hélder continuity is an extension to the notion

Table 1: The order of continuity O(C) of proposed binary approximating schemes for certain ranges of parameter.

n | Scheme Ranges 0(C) | n | Scheme Ranges 0(0)
0| Pgno, | -0.375<u<0.625 | C™° | 2| Pg,,, | —0.195<pu<0.445 | C"™°
-0.125 <u <0.375 | c™*! -0.194 < u < 0.442 | c™*!

0<pu<0.125 cm+2 -0.034 < pu <0.282 | cC™*2

-0.026 < u <0.235 | C™*3
0.045<u <0.09 | C™**
1| Pg., | -0.275<pu<0.525 | C™° |3 | Pg,,, | -0.356<u<0.618 | C™°

-0.075<u<0.3 | C™*1! -0.131<u <0.380 | cC™*!
-0.068 < u <0.295 | C"*? -0.128 < u < 0.375 | C™*?
0.025<u <0.104 | cC™3 -0.002 <y <0.235 | C™*3

0.003 < u<0.191 | C™4
0.006 < u <0.081 | C™>

of continuity. In the following theorem, we compute the Holder continuity of the scheme Pg,,, .

Theorem 2.2. The Holder continuity of the scheme Py, , is 3.
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Proof. From (7), let bg = 8u, by = 2 - 16y, b, = 8, then My, M, are the matrices with elements

(Mo)ij = bayizjs
(M1)ij = bayiczjers

where i, j = 1, 2. This implies

Mo - 2-16u O M = 8u 8u ] ®)
8u 8u 02-16u

From (8) and [23], the spectral radius A of the metrics My and M; can be express as follows
max {2 -16u, 2 -16u} <A <max{2-16u, 2 -16u}.

Since the largest eigenvalue and the max-norm of the metrics is 1 for u = 0.0625, where u € (0, 0.125), so
the Hélder continuity h = 2 - log,(1) = 3. So by (6), the H6lder continuity of the scheme Py, , , is c™3, O

Similarly, we can compute the Holder continuity of other members of the family. If the largest eigenvalue

Table 2: Continuity of some members of the family of schemes

n u Continuity | Lower bound on Upper bound on
Holder continuity | Holder continuity

0 | 0.0625 cm+? cm+3 cm+3

1 0.0375 Cm+3 Cm+3.255 Cm+3.2603

2 0.0676 Cm+3 Cm+4.478 Cm+5

and the max-norm of the metrics are not equal then we calculate the lower and upper bounds of the Holder
continuity. The lower bound of the Holder continuity is h = 2 - log, (|| b||")/1 for some integer I and the upper
bound of the Holder continuity is h = 2 - log,(A). It is clear from Table 2 that as we increase n, the level of
continuity and the Holder continuity of the schemes Py, , , increase.

2.2 Response of univariate schemes to polynomial and monotone data

In this section, we examine the response of schemes to polynomial data by taking into account the polynomial
generation and reproduction. We also examine the behaviour of the schemes for monotone data. We use the
techniques developed in [15] to discuss polynomial generation and polynomial reproduction.

2.2.1 Polynomial generation

The polynomial generation of degree d is the ability of subdivision scheme to generate the full space of
polynomials up to degree d denoted by ;. The generation degree of a subdivision scheme is the maximum
degree of a polynomial that can potentially be generated by the scheme.

Theorem 2.3. The subdivision scheme Pq, ,, generates my.ns2 for all m,n € N. Moreover, if u = %, then
Py, .. generates mm,n4.
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Proof. Since conditions
Qm,n,y(l) =2, Qm,n,y(—l) =0, D(k)Qm,n,y(—l) =0, k=1,2,....,m+n+2,

are verified by gm,n,u(z) for all y € R and DW denotes the kth derivative. Thus, in view of Proposition 2.1 of
[15] degree of polynomial generation is m + n + 2 for all u € R. Moreover, by setting u = % two more terms
(1+2) can be factored out from gm,n,u(2), then we have D(k”)qm,n,y(—l) = D(’“z)qm,n,y(—l) = 0. So the degree
of polynomial generation is m + n + 4. O

2.2.2 Polynomial reproduction

Polynomial reproduction is an attractive property for a subdivision scheme. For a subdivision scheme to
reproduce 14 it must be able to generate polynomials of the same degree as the limit functions for some
initial data. The degree of polynomial reproduction can never exceed the degree of polynomial generation.

Theorem 2.4. If applying the parameter shift T = >*"53", then the subdivision scheme Py, , reproduces 1,
with respect to the parametrization in [15] for all m,n € N and u € R. Moreover, if u = —3;'—2’”, then Pq,,,,
reproduces m5 for allm, n € N.

Proof. Since the condition D(I)Qm,n,y(l) = 5+ m + 3n is verified by the symbol gm,n,u(2) forall y € R, so

polynomial reproduction of Py, , , is 711 with the parameter shift 7 = w We observe that when y = —33*—2’" ,

the following two more conditions
DPgm @)1 = 21T = 1), DD g p(@)]z-1 = 27(r - (T - 2),

are satisfied for all m, n € N. Thus reproduction of Pg, ,, is 713. O

2.3 Monotonicity preservation

Monotonicity preserving plays a key role in the shape preserving properties of subdivision schemes.

Definition 2.1. [18] Univariate data (x;, f;),i=0,1,2,..., n is monotonically increasing if f; < fi,; Vi =
0,1, 2,...,nand the derivative at the data points obey the conditiond; >0V i=0,1,2,...,n.

In the following, we examine monotonicity preservation of binary scheme Py, , .
Theorem 2.5. Let {f?};cz satisfy

0 0 _ f0 0 0 _ 0
o fa<fo << < <fan<fuaee

Denote
Kk ek g dia k K 1 )
di =fin—-fi, 1= , R'=max{r;, =}, k=0, keZ, icZ.
dk i rk
Furthermore, let 0.1 < y < 0.9 and ¢ = —%, & eR. If% <RO<¢, {fi"} is defined by the subdivision scheme

Pg,,,» then

df~‘>0, %stsf, k=0, keZ, icZ. 9)
Proof. We use mathematical induction to prove (9). When k = 0,
d’=f2 -f0>o0, % < RO < ¢, then (9) is true.

i+1
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Suppose that (9) holds for k, d,’-( 1+1 f" >0, 1 ¥ < Rk < £. Next we will prove that (9) holds for k + 1.
Consider

1.1 3 1
dkt = {<§ + 5;1) df + (§ —}1> dfy + (511) dﬁz} .

This implies
This further implies

We know that d¥ > 0 and

dk{(; ;H>+(§_H>§+<1);‘2}>O f0r01<y<09and€__%

This implies that d5;* > 0. Similarly, we see that d5}}; > 0 for 0.1 < p < 0.9 and & = 1. Now we prove that
Fs RM*1 < & First we show that r&1 - & < 0. Since

then

o, B G P(-E Gu- D+ i d)
1y —¢&< % .

i+1 (§ +H) §+ (g}l)}

The denominator and numerator of the right hand side of the above expression are less than and greater than
zero respectively for 0.1 < p<0.9and § = - ..
This implies that

rktt_¢<o.

It implies further that rk:!

< &, Now we show that rglﬂ -&<o.

Ld, {Grmdte Gowdhy s (Br)diy )
rlgl d12<1+1 {(%IO d{( + ( ) d{(+1 + (1 % ) d£(+2
This implies
EI dif{su® - 3§-Gu+ )}
rkit df {(g + W&+ (G - W}
The denominator and numerator of the right hand side of the above expression are less than and greater
than zero respectively for 0.1 < y < 0.9 and ¢ = —%.
This implies that

-é<0
1 60
i

It implies further that rg% < ¢. In the same way, we can get rf, < & and o < &S0 R¥1 < ¢, Since

2i+1

R*! = max,{rk, rik}, it is obvious that R¥*1 > % This completes the proof. O
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2.4 Numerical experiments of univariate schemes

In this section, we present the performance, geometrical behaviour and effect of a parameter on the limit
curves of the schemes. We also present the response of the limit curves produced by the schemes towards the
initial data.

Table 3: Monotone data set [24].

x; |01 ]4]65[10 [15 [25 [40[ 50|62 |65]66
yvil1 |12 [35]55[55][10]10] 1251820

Figure 1: The curves (a), (b), (c) and (d) are generated by the schemes P‘h,o,u' quw, Pquy” and Pqu’y respectively, using the
monotone data set given below.

20

18 O inital data O
— pu=0.1

16 M
—— u=0.05

141 e p=0.01 3

10 20 30 40 50 60 70

@ (b)

O initiai data
— p=0.15
14 —u=0.1
3 c- =0 N&
p=0.06

O initial data

T T
10 20 30 40 50 60 70

(@

70




DE GRUYTER Univariate and bivariate approximating schemes = 1509

Figure 2: Most expanded and most shrinked curves: The curves (a), (b), (c) and (d) are generated by the schemes Py, , ., Pq, , ,»
Py, and [15] respectively.

—-— initial curve
—— n=0.25
— n=-0.25

—-— initial curve
— n=0.3
—— pn=-0.25

—-— initial curve
—— n=0.01
— n=0.06

(m=2,n=2 (dn=2

Figure 3: Interpolating behaviour: The curves (a), (b) and (c) are generated by the schemes Py 00 Par oy and [15] respectively.

— - — initial curve
p=0.06

— — pn=0.03

— p=0.01

— -~ initial curve

— p=-0.15

@m=2,n=0 b)m=1,n=2 ©n=2
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Figure 4: Most expanded and most shrinked curves: The curves (a), (b) and (c) are generated by the schemes Pq, ,, ,, Pq, , , and
[15] respectively.

—-— initial curve| .

—— =027

i — -~ initial curve
—-— initial curve| ! —— p=0.01
—— p=0.35

b)m=1,n=1 on=1

— - —initial curve

— p=0.035

—-— initia curve

— p=-0.12

@m=1,n=0

Figure 1 is produced by using the monotone data set given in Table 3. Figures 1(a)-1(d) are monotone
curves obtained by the schemes Pq, , ,, Pq, , > Pg,,, and Pq, ; , respectively.
The Figure 2-5 shows a comparison of proposed schemes with existing schemes [15]. Dashed dotted lines
indicate the initial polygon. Solid lines show the most expanded curves and dashed lines show the most
shrinked curves. Arrows show the distance between most expanded and most shrinked curves. Figures 2(a)-
2(c) show that the most expanded and most shrinked curves are obtained by the schemes Pg, , ,, Py, ,, and
Py, ,, at different parametric values and Figure 2(d) shows the behaviour of existing scheme of [15].
We can see that the Figures 3(a)-3(b) represent the interpolating behaviour of proposed scheme Pg,,,,
Py, ,, respectively. Figure 3(c) shows the non-interpolating behaviour of [15] at any parametric value. The
proposed schemes Py, , , and Py, ,, show the approximating behaviour as well as the interpolating behaviour
at different parametric values.
The Figures 4(a)-4(c) show the most expanded and most shrinked curves that are generated by the schemes
Pgy 0, Pqi,, and [15] at different parametric values respectively. The limit curves presented in Figures 5(a)-
5(c) show the interpolating behaviour by of schemes Py, ,, ,, P, ,, and [15] respectively.
The schemes Py, ,, and Pg, , , have both approximating and interpolating behaviour while the scheme in [15]
gives only interpolating behaviour.
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3 Algorithm for non-tensor product schemes

By generalizing the algorithm as devised in Section 2, we get a family of non-tensor product approximating
schemes with tension parameter y for quadrilateral meshes. Let Pq, be the family of non-tensor product
bivariate subdivision schemes then we propose the symbol of this family as

U,n (215 22) = (@0aa(21))™ (Beven(22))" yu(z1)1u(22). (10)

By substituting m = 1 and n = 0 in (10), we get symbol of the scheme Pq, ,, as follows:

4 3
1+z 1+z
quo’y(zl,zz) = ( 5 1) ( 5 2) (8]12% +(2-16p)z; + 811) x (11)
(8],12% +(2-16)z; + 8;1) .

The bivariate subdivision scheme Pq, , , has the mask

1
-3H

22 -2+ iy 3 a2 -3+ 2
a1,0,4(21, 22) = Kok At T e TR T A

EELAREI RS T B VA
2,1 2,3 1 2,1 3
uo+gH y+§y+3—2—2}1 +3U+ 33

1,2 12,1 2,3
2K M+ gH Mo+ 3H
-1+ 3n U+ U K

4p? -3p+ 2 -+ tp+ 2 2ut 4 3y . (12)
R VA TR 1A LA B S 1
2t S P dut sy pie g

2+ 3p 12 Ly 12

3.1 Smoothness analysis of bivariate proposed schemes

Here, we use the theory of generating function [22] to derive continuity of non-tensor product schemes.

Theorem3.1. If u € (-0.2215, 0.4785) then the subdivision scheme P‘h,o,u converges to a continuous
surface when starting from any regular quadrilateral mesh. Moreover, if u € (-0.05178, 0.3017) and p €
(-0.0517, 0.25), then the limit surfaces generated by scheme Pq,, , have C! and C?-continuity respectively.
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Proof. From (11), we have
b1,0,u(z1,22) = (Syz% +(2-16p)z, + 8;1) (8;12% +(2-16p)z; + 8,11) .

In view of [22](Theorem 4.30), we can determine the range of the parameter 4 which guarantees the con-

vergence of the scheme Pq, , by checking the contractivity of the scheme. Since the scheme with symbol

3(12) (12) by o (21, 22), 3 (22)" (Y2)? by o u(z1, 72) is contractive for p € (-0.2215, 0.4785) and

then scheme qu,o,u is convergent for u € (-0.2215, 0.4785). In the same way, the scheme with symbol
2 3 3 2 4

3 (FF)7 (F82) brop(e, z2), 3 (F5)7 (F52) browler, 22), 5 (F5)

(142) b1,0,u(21, 22) is contractive for u € (-0.05178, 0.3017) therefore the scheme Pq, , , is C'-continuous.

Again since, the scheme with symbol  (1471) (1’%)3

brow(z1,22), 3 (B2)° (22) by oz, 22), 3 (B2) (22) by o (21, 20), L (22)*

b1,0,u(21, 22) is contractive for u € (-0.0517, 0.25), so the scheme Pq,,, is C?-continuous. O

Table 4: The order of continuity O(C) of proposed non-tensor product schemes with some existing non-tensor product schemes.

Scheme Type 0(0)
Binary non-tensor product [15] Interpolating ct
Binary non-tensor product [15] Approximating | C!
Binary non-tensor product [6] Approximating | C!
Proposed binary non-tensor product Pa.o, Approximating | C?
Proposed binary non-tensor product Pa,1, Approximating | C3

In Table 4, we compare the continuity of proposed non-tensor product schemes with some existing
binary non-tensor product schemes. It is observed that the continuity of proposed schemes is better than
the continuity of existing schemes.

3.2 Response of non-tensor product schemes to polynomial and monotone data

In this section, we investigate the capability of the non-tensor product approximating subdivision schemes
Pq,,, andPq, ,  of generating and reproducing polynomials as well as monotonicity preservation of the data.

Theorem 3.2. The subdivision scheme Py, ,  generates 7, for all y € R and generates i, for p = Tle'

Proof. Letw; = (1,-1), wo = (-1, 1), w3 = (-1, -1) and let D’ with j € N2, denote a directional derivative.

Since (h,o,y(L 1) = 4 and
D(LO)

D(l’o) D(l’o)

ql,O,y(Wl) =0,
D(O’l)ql,o,y(wl) = O’

ql,O,y(WZ) =0,
D(O’l)ql,o,y(wz) = O’

ql,O,y(w3) = O’
D®Vq, 4, (ws) =0,

then scheme Pq, , , generates 77; for all p € R. Again since

p* Vg, ,wi)=0, DVqy 4 ,(w))=0, D™Vq,q ,(ws)=0,
D%, , ,(wi)=0, D*%q, 4, (w))=0, D®%q,,(ws)=0,
D®?q,,,wi)=0, D®?q,, ,(w))=0, D®?q,,,w;)=0,
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then the scheme Pq, , , generates 7, for all u € R. Further

D(Z,l) D(z’l) D(Z,l)

ql,O,y(Wl) = O; q1,o,y(W2) = O’ ql’O,H(WB) = Oa
ql,O,y(Wl) = O; q1,o,y(W2) = O’ ql’O’H(WB) = 03
DB%q, , ,(wi)=0, D%, (w))=0, D®%q,,(w;)=0,

p©3q, ,  (w1) =48u-3, DOVq,, ,(w))=0, D®Vq,,,ws3)=0,

D(LZ) D(LZ) D(LZ)

so the scheme Pq, ,  generates 713 for u = %. Further more

D(Z»Z) D(Z’Z) D(Z’Z)

ql,O,y(Wl) = O, ql’O,y(WZ) = 0’ ql,(),y(Wf}) = 0’
p®Vq, ,,wi)=0, D®Vq,, (w))=0, D®Vq,,,(w;)=0,

D" q 5, (wy) =144 -9, DMVq, 4 ,(wa)=0, DVqy, ,(ws) =0,

D(4,0)q1,0,y(wl) -0, D“O p“*0

D%, o ,(w;) = 48 - 3,

dy,0,,(W2) = 96p - 6,
D(O’4)

q1,0,}1(W3) =0,

a5 ,(w2) =0, DOY

ql,O,y(W:’w) = 0’
so the scheme Pq, , , generates 7, for u = ;. This completes the proof. O

Theorem 3.3. For the parameter shift (11, T,) = (%, %), the subdivision scheme Py, ,  reproduces my with
respect to the parametrization defined in [15] for all y € R.
Proof. Let D/ with j € N?, denote a directional derivative. Since the symbol q, q (21, z,) satisfies the
conditions in Theorem 3.2. Since ql’o’y(l, 1) = 4 and

D", 4 ,(1,1) - 41, =0, DOVq,,(1,1)-41,=0,
then the scheme Pq, , , produced 71; forall y € R. O
Similarly, we can prove the following theorems.

Theorem 3.4. The subdivision scheme Pq, , , generates 1 for all p € R and generates 1, for p = 11—6.

Theorem 3.5. If applying the parameteric shift (11, T,) = (3, 4), the subdivision scheme reproduces m,
with respect to the parametrization in [15] for all yu € R.

Now, we examine monotonicity preservation of the binary non-tensor product approximating subdivision
scheme Pq, , .

Definition 3.1. [18] Bivariate data (x;,y;,f;;), i = 0,1,2,...,nandj = 0,1, 2,...,m, where x; < x; <

. <xpandy; <y, < ... < ym are said to be monotonically increasing if f; ; < fi,1,; and f;; < fi 1 V
i=0,1,2,...,nandj = 0,1, 2,...,m, if the derivative at the data points obey the condition d;; > OV
i=0,1,2,...,nandj=0,1,2,...,m.

Theorem 3.6. Suppose that the initial data {f;} = (x,y}, f{;) are strictly monotonically increasing for all
i,jeZ.
Denote
kK _ ok k k k
dij = fiv1,js1 — fivr,j — fije +fijs

k k
k di k di

_ i1, j+t _ 2t j+t+1
Vijst = dk s Yirljet T k ’
i,j+t i+1,j+t
vk - K 1 vk _ k 1
et =max{yije, o4t Yiejee =max{Vig jop, 55
b i,j+t L] i+1,j+t
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where t=0,1and k>0, ke Z, i,j € Z.

Furthermore, let 0.1 < u < 0.9 and 6 = —%, SeRIf§ < Y2j+t, Ygrl,jﬂ <4, {fi’f]-} is defined by the subdivision
scheme Py, , , then

1 ..
dt; > o, 55 Yt Yy <6, k20, ke Z, i,jeZ. (13)
Proof. We use mathematical induction to prove (13). When k = 0, dﬁ). >0, %< YSM, sz+1,i+t < 6, then (13) is

true.
Suppose that (13) holds for k i.e. dl’-‘,]- >0, <vk,,, vk

i,j+t> ©i+1,j+t

< 6. Next we will prove that (13) holds for k + 1.
First we show that d’z‘;'lzj > 0. Consider

dk+1 _ fk+1 _fk+1 ck+1 k+1
2i,2j = J2i+1,2j+1 ~J2i+1,2j ~J2i,2j+1 T 121,25
After some simplification and substituting 6 = —%, we get

iy =y [Tt 1520 33,0 T B 8L TIL

2,2j 2 8 16 R H "3 T3 T
377 4 105 5 5 19 5
Ten M T3 A 32’“32}'

We know that df;,; > 0 and

(2 130 38,0, T8 By, 8y T

2 g ¥ "6 T3 T3 T h Ty
377 4 105 5 5 19 5
ea M T T 32’”32}>0'

This implies that d&;%; > 0. Similarly, we see that d&f}, 5; > 0, d&%; ;> 0and dif}y ,;,, > 0for0.1<pu<0.9
and § = - 1.

k+1

Now we prove that 1 < YX. , YK < 6. First we show that y5; 5, - § < 0.

i,j+t> ©i+1,j+t
For this, consider

dk+1
k1 o %2ir1,2j
Yaigj— 6= dkrl 6
2i,2j

After some simplification and substituting 6 = —%, we get

i -0 g
where
poof 95,549 0 287 2885 5 53 285 341 1543
VEUTsE T a3 T e E T ey T e T 327 T 3046 16w 32t
_ 821 3461 1679
16u3  64u2 32u [’
and

b= {95, 513,0 635 1615 5 3 69 41 783
27 07sH T T3 R Ten T3 T T 16ps T aph T 313
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859 1743
32u2  64u |-

The denominator and numerator of the right hand side of the above expression are less than and greater than
zero respectively for 0.1 < p < 0.9. This implies that

k+1
Y2inj—6<0.

Further this implies that y’z‘flzj < 8. Now we show that yk%l -6<0.

2i,2j
For this, consider

k
1 5= d3i »j _5.
y’z(flzl dlz(i,2j+1
After some simplification and substituting 6§ = —%, we get
1 X1
——— -6,
y§,*12, X2
where
_ (95,549 , 287 2885 5 29 19 189 449 1111
X1=78H T3 M T e R e 320 T3 T a7 T 1eu®  16p5 3248
821 3461 1679
16u3  64u?  32u [’
and
_[.9,5,513 . 635 1615 5 29 147 177 95 783
X2=178h T 32 32 MY e T3 T 327 T 3046 165 T it 328
L 859 1743
32u2  64u |-

The denominator and numerator of the right hand side of the above expression are greater than and less than
zero respectively for 0.1 < u < 0.9. This implies that

1

k+1
Y2i,2j

-6<0.

Further this implies that ykll < 6.Inthe same way, we canget yA1%. | < 8,y51% < 6,y571, 5.1 <6, <6,
2i,2j 2i,2j+1
1 1 K yk . k Koo1 k k
Yo = and yoi = 6.50 Yijip Yit jue < 6. Since Yy, = maxy j{yj yTI} and Y,y o = max; i{yi.g e
1+1,2) 1+1,2)+ 1,]+

1y s ; k k 1
ﬁ}, itis obvious that Y ;,,, Yi\q ;1 2 5-
1+1,)+

This completes the proof.
O

3.3 Numerical experiments of non-tensor product schemes

In this section, we show the performance, geometrical behaviour and effect of a parameter on the limit
surfaces of the schemes Pq, ,, and Pq, , .

The monotone data set given in Table 5 has been used to produce monotone surfaces. Figure 6(a) is the
initial mesh of the monotone data. Figure 6(b) is the monotone surface generated by the scheme Pg, , , for p =
0.5. Figure 7(a) is the initial control mesh while Figures 7(b)-7(d) are the surfaces produced by the proposed
scheme Pq, ,  at first, second and third subdivision levels with y = 0.1 respectively. Figure 8(a) is the initial
control mesh while Figures 8(b)-8(d) are the surfaces produced by the proposed scheme Pqu’V at first, second
and third subdivision levels with p = 0.15 respectively.
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Figure 6: (a) Initial monotone data. (b) A monotonicity preserving surface obtained by the proposed scheme Pgy o

209 300
200 200

100

@ (b)

Figure 7: (a) Control mesh. (b)-(d) Surfaces obtained by the proposed schemes P‘h,o,u at first, second and third subdivision
levels respectively.

@ (b)

(0 (d)

3.4 Conclusion

In this paper, we have proposed two algorithms to generate the families of univariate and bivariate approx-
imating subdivision schemes with one tension and two integer parameters. The integer parameters identify
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Figure 8: (a) Control mesh. (b)-(d) Surfaces obtained by the proposed schemes qu.u at first, second and third subdivision
levels respectively.

@) (b)

(@ (d)

Table 5: Monotone data set [25].

1 0.6931 9.2104 10.5967 | 11.4076
100 | 9.2104 9.9035 10.8198 | 11.5129
200 | 10.5967 | 10.8198 | 11.2898 | 11.7753
300 | 11.4076 | 11.5129 | 11.7753 | 12.1007

| x/y |1 100 200 300
|
|

members of the proposed family. It has been shown that the proposed schemes have higher continuity and
Holder continuity compared with existing schemes. Comparison of the continuity of proposed non-tensor
product schemes with some of the existing non-tensor schemes has also been given. It has been demonstrated
through several examples that geometrical behaviour of the univariate and bivariate subdivision schemes
depends on the tension parameter. Monotonicity preservation of proposed univariate and bivariate schemes
has been proved. Moreover, polynomial reproduction and generation of the proposed schemes have also been
discussed.
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