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Abstract:A free-form Sudoku puzzle is a square arrangement ofm ×m cells such that the cells are partitioned
into m subsets (called blocks) of equal cardinality. The goal of the puzzle is to place integers 1, . . . ,m in the
cells such that the numbers in every row, column and block are distinct. Represent each cell by a vertex and
add edges between two vertices exactly when the corresponding cells, according to the rules, must contain
di�erent numbers. This yields the associated free-form Sudoku graph. This article studies the eigenvalues
of free-form Sudoku graphs, most notably integrality. Further, we analyze the evolution of eigenvalues and
eigenspaces of such graphs when the associated puzzle is subjected to a ‘blow up’ operation, which scales
the cell grid including its block partition.
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1 Introduction
The recreational game of Sudoku has been popular for several years now. Its classic variant is played on a
board with 9 × 9 cells, subdivided into a 3 × 3 grid of square blocks containing 3 × 3 cells each. Each cell may
be empty or contain one of the numbers 1, . . . , 9. A number of cells of each puzzle will have been pre-�lled
by the puzzle creator. The goal of the puzzle solver is to �ll the remaining cells with the numbers 1, . . . , 9
such that in the completed puzzle the number in each cell occurs only once per row, column and block.

Let us call the classical variant the 3-Sudoku. Its 32×32 board contains 34 cells. One can readily generalize
the game to n-Sudokus played on an n2 × n2 board with n4 cells, subdivided into n2 square blocks with n2

cells in each. The permitted numbers in the cells now range from 1, . . . , n2, but the restrictions for a valid
solution remain the same. The 2-Sudoku is also known as a Shidoku.

Despite the seemingly recreational character of the game, it o�ers a surprising number of mathematical
facets. This makes Sudoku an interesting topic for mathematics lessons [1, 2]. Among the topics touched
by Sudoku are problem solving, latin squares, counting, exhausting symmetry and colouring problems on
graphs (see, for example, the introductory book [3]). Due to this, more and more interesting results about
Sudoku have been published in the recent past. For instance, di�erent approaches for solvers have been
presented in [4–6]. The combinatorial properties of completed Sudoku squares as a family of Latin squares,
in particular the search for orthogonal pairs, have been considered in [7–10]. Other researchers focus on
algebraic aspects of Sudoku, especially groups and rings associated with Sudoku (cf. [11–13]).

One of themost intuitive links betweenSudokuandmathematics is that the processes of solving a Sudoku
can be interpreted as completing a given partial vertex colouring of a certain graph (each preassigned colour
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corresponds to a pre�lled number in a cell, a so-called clue). To this end, we represent each cell of the given
Sudoku square by a single vertex. Two vertices are adjacent if and only if the associated cellsmust not contain
the samenumber (according to the rules of the game). Figure 1 (a) depicts the adjacencies in theneighborhood
of an exemplary vertex of the 2-Sudoku graph. Using this representation, the valid solutions of a given n-
Sudoku can be characterized as proper optimal vertex colourings (using n2 colors each) of the associated
Sudoku graph.

Figure 1: Deriving the graph of a classic and a free-form 2-Sudoku puzzle

(a) (b)

Sudoku graphs have also been studied from the perspective of algebraic graph theory. It has been shown
that every Sudoku graph is integral, i.e., all eigenvalues of its adjacency matrix are integers. This has been
shown algebraically by means of group characters [14], but it also follows from the fact that Sudoku graphs
are actually NEPS of complete graphs. Hence they belong to the class of gcd-graphs, a subclass of the integral
Cayley graphs over abelian groups [15]. Here, NEPS is the common short form of the non-complete extended
p-sum, a generalized graph product that includes many known products [16].

There exist many generalizations and variants of the classic Sudoku, the n-Sudokus being the most
common one. Besides changing the size of a Sudoku one can also try to vary every other aspect of a Sudoku,
e.g. change the rules, introduce additional rules or change the shape of the blocks. The book [3] presents
many such variants. Changing the shape of the blocks leads to the notion of a free-form Sudoku. Given a
square arrangement ofm ×m cells (wherem need not be a square number anymore), we permit the blocks to
be an arbitrary partition T of the cells intom subsets of equal cardinality. Note that the blocks are not required
to be contiguous arrangements of cells. The Sudoku rules remain unchanged, in the sense that we need to
�ll in the numbers 1, . . . ,m such that each row, column and block contains m distinct numbers. We shall
denote the associated graph by FSud(m, T). Figure 1 (b) illustrates the adjacencies in the neighborhood of an
exemplary vertex for the graph of a free-form 2-Sudoku. The cells of the (non-contiguous) block containing
the considered vertex have been shaded.

It seems that free-form Sudokus have not been studied in the literature so far although they are included
in many Sudoku puzzle books that o�er challenging variants. Computer experiments readily indicate that
integrality of the eigenvalues critically depends on the degree of symmetry exhibited by the chosen cell
partition. However, free-form Sudoku graphs are well structured enough to predict the changes of their
spectra and eigenspaces exactly, when they are transformed in certain ways.

2 Integrality
In the following, consider a given free-form Sudoku graph FSud(m, T) and let A be its adjacencymatrix (with
respect to some arbitrary but �xed vertex order). The structure of the adjacency matrix of a free-form Sudoku
graph is governed by the rules of Sudoku:
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Observation 2.1. Two vertices of a free-form Sudoku graph are adjacent if and only if one of the following
mutually exclusive places applies:
(B) The associated cells belong to the same block of the tiling.
(H) The associated cells belong to the same row of the puzzle, but not to the same block.
(V) The associated cells belong to the same column of the puzzle, but not to the same block.

The chosen partition intomutually exclusive cases immediately gives rise to a decomposition of the adjacency
matrix according to these three cases:

A = LB + LH + LV ∈ Rm
2×m2

(1)

In this sense, the graph FSud(m, T) can be interpreted as a composition of three layers of edges, according to
the cases (B), (H), (V). These layers can be viewed and studied as graphs in their own right.

Proposition 2.2. For i, j ∈ {1, . . . ,m} let pij denote the number of cells in the i-th row (resp. column) of the
puzzle that belong to the j-th block of the partition. Then LH (resp. LV) is an adjacency matrix of the union of m
disjoint complete multipartite graphs Kpi1 ,...,pim , i = 1, . . . ,m.

Proof. Consider a �xed row i of the given Sudoku puzzle. We group the cells of the considered row according
to their respective blockmembership. In viewof rule (H)we see that the vertices corresponding to the grouped
cells are adjacent if and only if they belong to di�erent blocks. So the groups of cells formm independent sets
of the respective sizes pi1, . . . , pim, further all edges exist between di�erent groups. The reasoning for LV is
analogous; just consider a �xed column and rule (V).

Proposition 2.3. LB is an adjacency matrix of the union of m disjoint complete graphs Km.

Proof. Group the vertices according to block membership of their associated cells. Since each block contains
m cells the result follows from rule (B).

Proposition 2.4. The following statements are equivalent:
(a) LH (resp. LV) represents a regular graph.
(b) LH (resp. LV) has constant row sum.
(c) LB commutes with LH (resp. LV).

Proof. Statements (a) and (b) are clearly equivalent. Next we show that statement (b) implies (c). To this end,
note that (LH)is(LB)sj = 1 if and only if (LH)is = (LB)sj = 1. This translates to the requirement that the cells
associatedwith vertices i and s are in the same row (but not the same block) and that the cells associatedwith
vertices s and j belong to the same block. Therefore, (LHLB)ij counts the vertices s that meet the mentioned
requirement for given i, j. In a similar manner we see that (LBLH)ij counts the vertices s such that the cells
associated with vertices i and s belong to same block and that the cells associated with vertices s and j are
in the same row (but do not belong to the same block). If, however, LH has constant row sum, then it follows
by rule (H) that each cell has the same common number of cells that are in the same row but not in the same
block as the considered cell. Equivalently, since all rowshave the samenumber of cells, each cell has the same
common number k of cells that are in the same row and in the same block as the considered cell. Therefore,
any block that has cells in a rowmust have exactly k cells in that row. Hence the two countsmentioned before
are identical: (LHLB)ij = (LBLH)ij.

Conversely, assume that statement (c) is true. Consider two vertices i and j such that their associated cells
belong to di�erent rows and di�erent blocks. Then (LBLH)ij = (LHLB)ij implies that these two blocks have the
same number of cells in the two rows. Hence there exists a common number k such that any block that has
cells in a row must have exactly k cells in that row. Considering a single row of LH , it follows that it has row
sum m − k since the puzzle row of the cell associated with that matrix row contains m cells and among them
k cells that belong to the same block as the considered cell.
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Considering the third statement of Proposition 2.4, note that LH and LV neednot commute evenwhenboth LH
and LV have constant row sum, cf. the graph FSud(4, T) for T = {{1, 8, 9, 16}, {3, 6, 10, 15}, {2, 7, 11, 14},
{4, 5, 12, 13}} (here we number the cells from left to right, row after row).

Theorem 2.5 (see [17]). The characteristic polynomial of the complete multipartite graph G = Kp1 ,...,pk is

χ(G) = xn−k
(
xk −

k∑
m=2

(m − 1)σmxk−m
)
,

where σ1 =
∑

1≤i≤k pi, σ2 =
∑

1≤i<j≤k pipj, σ3 =
∑

1≤i<j<l≤k pipjpl and so on up to σk =
∏

1≤i≤k pi.

Corollary 2.6. Let G = Kq,...,q be a complete k-partite graph. Then its spectrum is

σ(G) =
{
0(kq−k), (k − 1)q(1), −q(k−1)

}
.

Proof.

χ(G) = xkq−k
(
xk −

(
k
2

)
q2xk−2 − 2q3

(
k
3

)
xk−3 − 3q4

(
k
4

)
xk−4 − . . . − (k − 1)qk

)

= xkq−k
(
x − (k − 1)q

)(
xk−1 +

(
k − 1
1

)
xk−2q +

(
k − 1
2

)
xk−3q2 + . . . + qk−1

)
= xkq−k(x − (k − 1)q)(x + q)k−1.

Theorem 2.7. Given a free-form Sudoku puzzle, assume that the following conditions are met:
(i) There exists a common number q such that for each cell there exist exactly q cells belonging to the same

row and block as the considered cell (including itself).
(ii) A similar condition holds with ‘row’ replaced by ‘column’.
(iii) For any two cells C1, C2 belonging to di�erent rows and columns, the unique cell lying in the same row as C1

and the same column as C2 belongs to the same block as C1 if and only if the unique cell lying in the same
row as C2 and the same column as C1 belongs to the same block as C2.

Then the associated graph FSud(m, T) is integral.

Proof. Under condition (i) we have pij ∈ {0, q} for all i, j ∈ {1, . . . ,m} in Proposition 2.2. Therefore, LH
represents a union of complete multipartite graphs Kq,...,q. Hence LH is integral by Corollary 2.6. Likewise,
condition (ii) ensures that LV is integral. LB is integral by Proposition 2.3 and Corollary 2.6 (for r = 1).

Wecan conclude fromProposition 2.4 and conditions (i) and (ii) that thepairs LH , LB and LV , LB commute.
Condition (iii) is equivalent to the condition that LH and LV commute. Hence it follows that LH , LV , LB are
simultaneously diagonizable. Thus their sum A = LH + LV + LB is integral as well.

It is easily checked that the classical n-Sudokus ful�ll the conditions of Theorem 2.7. Hence the theorem
provides anewwayof proving integrality of classical Sudokugraphs (e.g. di�erent from theproofs in [14], [15]).
Further, Theorem 2.7 helps us to identify many more integral free-form Sudoku graphs besides the classical
variants.

3 Transformations
In this section we consider a special kind of transformation of Sudoku puzzles and study its spectral
properties. To this end, we de�ne the k-fold blow up of a free-form Sudoku. This is formed by replacing each
cell of the original Sudoku by a k × k arrangement of cells. The block partition T ′ of the new graph is derived
from the original partition T as follows. For each block B ∈ T we create a block B′ ∈ T ′ by collecting the
replacement cells of all the cells in B. In terms of graphs we see that the k-fold blow up transforms FSud(n, T)
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into FSud(kn, T ′). Let us denote the latter graph by FSud↑k(n, T). In Figure 2 the 3-fold blow up of a free-form
2-Sudoku is illustrated. It also sketches the neighborhood of an exemplary vertex of the blown up graph.

Figure 2: 3-fold blow up of the free-form 2-Sudoku puzzle from Figure 1 (b)

Let us now investigate how the adjacency matrix of a blown up Sudoku graph can be determined from
the adjacency matrix of the original graph. To this end, we a assume that a �xed but otherwise arbitrary
numbering of the cells of the original free-form Sudoku is given. The vertices of the associated graph shall be
numbered accordingly. Further, we number the cells of a k-fold blow up of the given puzzle as follows. Let Si
denote the k×k subsquare of the blown up puzzle containing exactly the replacement cells of the original cell
number i. We number the k2n2 cells by subsequently numbering all vertices in S1, then S2 and so on. Inside
each Si we number the cells by starting in the top left corner and proceeding from left to right, advancing row
by row.

Next, note the following facts about the blow up operation:

Observation 3.1.
– If two cells i and j lie in the same row (resp. column) of the original puzzle, then all cells sharing the same

relative row (resp. column) index inside Si and/or Sj lie in the same row (resp. column) of the blown up
puzzle.

– If two cells i and j lie in the same block of the original puzzle, then all cells from Si and Sj lie in the same
block of the blown up puzzle.

In view of these facts and due to the chosen cell numbering of the blown up puzzle we can construct the
adjacency matrix A↑ of FSud↑k(n, T) from the adjacency matrix A = (aij) of FSud(n, T) by replacing each
entry aij of A by a (k2 × k2)-matrix that solely depends on whether (in the original puzzle) cell number j is in
the same block as cell number i, or otherwise in the same row or column as j or lies somewhere else.

For this purpose we de�ne the symbolic template adjacency matrix T(A) = (tij) as follows:
– tii = D,
– tij = B if i ̸= j and cells i, j are in the same block of the original puzzle,
– tij = H if cells i, j are not in the same block but in the same row of the original puzzle,
– tij = V if cells i, j are not in the same block but in the same column of the original puzzle,
– tij = N else.
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The next step is to de�ne thematrices that will be substituted into the templatematrix. But �rst we need some
building blocks. Let Ir denote the identity matrix, Jr the all-ones matrix and Nr the zero matrix of size r × r.
Further, we will make use of the Kronecker product⊗ of real matrices, cf. [18].

Fixing the given blow up factor k, we de�ne the following (k2 × k2)-matrices:

H = Ik ⊗ Jk , V = Jk ⊗ Ik , B = Jk2 , D = Jk2 − Ik2 , N = Nk2 . (2)

The following result should now be self-evident:

Proposition 3.2. Given an n × n free-form Sudoku puzzle with block partition T, the adjacency matrix of
FSud↑k(n, T) (with respect to the vertex numbering mentioned in the second paragraph of this section) can
be obtained from the symbolic template matrix T(A) = (tij) of the adjacency matrix A = (aij) of the graph
FSud(n, T) by replacing each entry tij of T(A) by the contents of the matching matrix from (2) that has the same
name as the symbolic value of tij suggests.

The replacement process canbe expressed bymeans of theKronecker product. Let us take the templatematrix
T(A) and use it to partition the non-zero entries aij of A according to their respective symbols tij. Setting
LD = In2 , the blown up adjacency matrix A↑ can now be expressed as follows:

Proposition 3.3.
A↑ = LB ⊗ B + LH ⊗ H + LV ⊗ V + LD ⊗ D. (3)

Our goal is to study the eigenvalues of blown up free-form Sudokus and express them in terms of the
eigenvalues of the original puzzle.

For the rest of this section, we consider an arbitrary but �xed free-form n × n Sudoku puzzle with tiling
T. Let A be the adjacency matrix of its associated graph FSud(n, T) and let A↑ be the adjacency matrix of
FSud↑k(n, T). We assume that LV , LH , LB etc. denote the matrices appearing in equations (1) and (3). Further,
let Eig(M) represent the set of all eigenvectors of a given matrix (or even a graph)M and let ker(M) be the set
of all eigenvectors of M associated with eigenvalue 0. Note that neither set contains the null vector.

In the following, we will make use of the following properties of the Kronecker product:

Theorem 3.4 (see [18]).
1. (αA)⊗ B = A ⊗ (αB) = α(A ⊗ B) for all α ∈ R, A ∈ Rp×q , B ∈ Rr×s

2. (A ⊗ B)⊗ C = A ⊗ (B ⊗ C) for all A ∈ Rm×n , B ∈ Rp×q , C ∈ Rr×s

3. (A + B)⊗ C = A ⊗ C + B ⊗ C for all A, B ∈ Rp×q , C ∈ Rr×s

4. A ⊗ (B + C) = A ⊗ B + A ⊗ C for all A ∈ Rp×q , B, C ∈ Rr×s

5. (A ⊗ B)(C ⊗ D) = AC ⊗ BD for all A ∈ Rp×q , B ∈ Rr×s , C ∈ Rq×k , D ∈ Rs×l

Note that the Kronecker product formally includes the case where one or both factors are vectors.

Lemma 3.5. Suppose that x and y are eigenvectors of LV and Jk corresponding to the eigenvalues λ and α,
respectively. Then, for any z ∈ ker(Jk), x ⊗ y ⊗ z is an eigenvector of A↑ corresponding to eigenvalue λα − 1.

Proof. We use equations (2), (3) and the facts LVx = λx, Jky = αy, Jkz = 0.

A↑(x ⊗ y ⊗ z)
= (LB ⊗ B + LH ⊗ H + LV ⊗ V + LD ⊗ D)(x ⊗ y ⊗ z)
= (LB ⊗ Jk2 + LH ⊗ Ik ⊗ Jk + LV ⊗ Jk ⊗ Ik

+ LD ⊗ Jk2 − LD ⊗ Ik2 )(x ⊗ y ⊗ z)
= ((LBx)⊗ (Jky)⊗ (Jkz)) + ((LHx)⊗ (Iky)⊗ (Jkz))

+ ((LVx)⊗ (Jky)⊗ (Ikz)) + ((LDx)⊗ (Jky)⊗ (Jkz))
− ((LDx)⊗ (Iky)⊗ (Ikz))
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= (λx)⊗ (αy)⊗ z − x ⊗ y ⊗ z
= (λα − 1)(x ⊗ y ⊗ z).

Lemma 3.6. Suppose that x and z are eigenvectors of LH and Jk corresponding to the eigenvalues λ and α,
respectively. Then, for any y ∈ ker(Jk), x ⊗ y ⊗ z is an eigenvector of A↑ corresponding to eigenvalue λα − 1.

Proof. Similar to the proof of Lemma 3.5.

The previous two lemmas will play a role in the construction of a basis of eigenvectors of a blown up Sudoku
graph. To this end, we need to know the intersection of the spans of the two vector sets mentioned there. In
the following, let 1r denote the all-ones vector of dimension r. Now note the following obvious facts:

Proposition 3.7.
1. The spectrum of Jk is {k(1), 0(k−1)}.
2. The set

KJ := {(1, −1, 0, 0, . . . , 0, 0)T , (1, 0, −1, 0, . . . , 0, 0)T ,

. . . , (1, 0, 0, 0, . . . , 0, −1)T}

is a maximal linearly independent subset of ker(Jk).
3. The set {1k} ∪KJ is a maximal linearly independent subset of Eig(Jk).
4. 1k ⊥ ker(Jn).

For the next lemma we de�ne the following sets:

XH = {x ⊗ y ⊗ z : x ∈ Eig(LH), y ∈ ker(Jk), z ∈ Eig(Jk)},
XV = {x ⊗ y ⊗ z : x ∈ Eig(LV ), y ∈ Eig(Jk), z ∈ ker(Jk)},
X̃H = {x ⊗ y ⊗ z : x ∈ Eig(LH), y, z ∈ ker(Jk)},
X̃V = {x ⊗ y ⊗ z : x ∈ Eig(LV ), y, z ∈ ker(Jk)}.

Lemma 3.8.

span(XH) ∩ span(XV ) = span(X̃H) = span(X̃V ).

Proof. Since ker(Jk) ⊆ Eig(Jk) it is obvious that

span(X̃H) ⊆ span(XH) ∩ span(XV ).

Conversely, note that both LH and LV are symmetric and therefore diagonizable, i.e. span(Eig(LH)) =
span(Eig(LV )) = Rn

2
. Using this we conclude

span(XH) ⊆ Rn
2
⊗ span(ker(Jk))⊗ span(Eig(Jk)),

span(XV ) ⊆ Rn
2
⊗ span(Eig(Jk))⊗ span(ker(Jk)),

span(X̃H) = Rn
2
⊗ span(ker(Jk))⊗ span(ker(Jk)).

Once again employing the fact that ker(Jk) ⊆ Eig(Jk), we arrive at

span(XH) ∩ span(XV ) ⊆ span(X̃H).

Lemma 3.9. Let x ∈ Rn
2
and y, z ∈ ker(Jk). Then x⊗ y⊗ z is an eigenvector of A↑ corresponding to eigenvalue

−1.

Proof.

A↑(x ⊗ y ⊗ z) = (LB ⊗ Jk2 + LH ⊗ Ik ⊗ Jk + LV ⊗ Jk ⊗ Ik
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+ LD ⊗ Jk2 − LD ⊗ Ik2 )(x ⊗ y ⊗ z)
= ((LBx)⊗ (Jky)⊗ (Jkz)) + ((LHx)⊗ (Iky)⊗ (Jkz))

+ ((LVx)⊗ (Jky)⊗ (Ikz)) + ((LDx)⊗ (Jky)⊗ (Jkz))
− ((LDx)⊗ (Iky)⊗ (Ikz))

= −((In2x)⊗ (Iky)⊗ (Ikz))
= −(x ⊗ y ⊗ z).

Lemma 3.10. For any eigenvector x of the matrix k2LB + kLH + kLV corresponding to eigenvalue λ, the vector
x ⊗ 1k2 is an eigenvector of A↑ corresponding to eigenvalue λ + k2 − 1.

Proof.

A↑(x ⊗ 1k2 )
= (LB ⊗ B + LH ⊗ H + LV ⊗ V + LD ⊗ D)(x ⊗ 1k2 )
= ((LBx)⊗ (Jk21k2 )) + ((LHx)⊗ (H1k2 )) + ((LVx)⊗ (V1k2 ))

+ ((LDx)⊗ (Jk21k2 )) − ((LDx)⊗ (Ik21k2 ))
= ((LBx)⊗ (k21k2 )) + ((LHx)⊗ (k1k2 )) + ((LVx)⊗ (k1k2 ))

+ ((LDx)⊗ (k21k2 )) − ((LDx)⊗ 1k2 )
= ((k2LBx)⊗ 1k2 ) + ((kLHx)⊗ 1k2 ) + ((kLVx)⊗ 1k2 )

+ ((k2 − 1)(LDx)⊗ 1k2 )
= ((k2LB + kLH + kLV )x ⊗ 1k2 ) + ((k2 − 1)x ⊗ 1k2 )
= (λ + k2 − 1)(x ⊗ 1k2 ).

Before we present the main result of this section we need one more technical lemma.

Lemma 3.11. Let {Yi}ni=1 be a set of linearly independent vectors. Then, for any set {Xi}mi=1 of nonzero vectors
and any function

ϕ : {1, 2, 3, . . . , n} → {1, 2, 3, . . . ,m},

the set {Xϕ(i) ⊗ Yi}ni=1 is linearly independent.

Proof. Suppose otherwise that
n∑
i=1

ci(Xϕ(i) ⊗ Yi) = 0

for suitable numbers ci ∈ R. Let Xϕ(i) = (x1,ϕ(i), . . . , xr,ϕ(i))T . By the de�nition of the Kronecker product we
have

n∑
i=1

ci(Xϕ(i) ⊗ Yi) =


n∑
i=1
cix1,ϕ(i)Yi

...
n∑
i=1
cixr,ϕ(i)Yi

 = 0.

Thus, for each j we have
n∑
i=1

cixj,ϕ(i)Yi = 0.

Due to the linear independence of the vectors Yi we see that cixj,ϕ(i) = 0 for every j = 1, . . . , r and i = 1, . . . , n.
Now assume that ci* ̸= 0 for some index i*. Then xj,ϕ(i*) = 0 for all j, therefore Xϕ(i*) = 0. But this is impossible
since {Xi}mi=1 is a set of nonzero vectors.
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For what follows, let BV , BH and BM denote arbitrary maximal linearly independent subsets of Eig(LV ),
Eig(LH) and Eig(k2LB + kLV + kLH), respectively. Further, let E = {e1, . . . , en2} be the standard basis of Rn

2
,

where ei denotes the i-th unit vector.

Theorem 3.12. Given a graph FSud(n, T), de�ne the sets

XV = {x ⊗ 1k ⊗ y : x ∈ BV , y ∈ KJ},
XH = {x ⊗ y ⊗ 1k : x ∈ BH , y ∈ KJ},
XE = {x ⊗ y ⊗ z : x ∈ E, y, z ∈ KJ},
XM = {x ⊗ 1k2 : x ∈ BM}.

Then, their union XV ∪ XH ∪ XE ∪ XM forms a maximal linearly independent subset of Eig(FSud↑k(n, T)).

Proof. By construction and Lemma 3.11, each of the sets XV , XH , XE, XM in itself is linearly independent.
Further, by construction and Proposition 3.7, the spans of these four sets are mutually disjoint (neglecting
the null vector). Moreover, Lemmas 3.5, 3.6, 3.9 and 3.11 guarantee that the union contains only eigenvectors
of FSud↑k(n, T). Finally, note that

|BV | = |BH | = |E| = n2, |Kj| = k − 1

so that

|XV | = |XH | = (k − 1)n2, |XE| = (k − 1)2n2, |XM| = n2

and thus

|XV | + |XH | + |XE| + |XM| = 2(k − 1)n2 + (k − 1)2n2 + n2 = k2n2.

Looking closer at Theorem 3.12, we see that if LV , LH , k2LB + kLH + kLV were all integral, then FSud↑k(n, T)
would be integral as well.

Corollary 3.13. Under the conditions stated in Theorem 2.7 it follows that the blown up graph FSud↑k(n, T) is
integral for every k.

Proof. From the proof of Theorem 2.7 it follows that LV , LH and LB are all integral and commute with each
other, hence they are simultaneously diagonizable. Consequently, k2LB + kLH + kLV is integral and therefore
so is FSud↑k(n, T).

Owing to Theorem 3.12, we can use Lemmas 3.5, 3.6, 3.9 and 3.11 to establish the spectrum of a k-fold blow up
from its original. Interestingly, we can predict explicitly that the largest eigenvalue stems from the set XM:

Theorem 3.14. Given a graph FSud(n, T), let λ be the largest eigenvalue of the associated matrix k2LB + kLV +
kLH . Then λ + k2 − 1 is the largest eigenvalue of FSud↑k(n, T).

Proof. For the purposes of this proof we renumber the vertices of FSud(n, T) such that we sequentially
number the vertices with one block, then continue with the next block and so on. The order in which the
vertices are numbered with a single block is arbitrary. With respect to this vertex order thematrix LB assumes
the form In ⊗ Jn − In2 . Clearly, this matrix contains Jn − In as a principal submatrix. Consequently, the matrix
M := k2LB + kLV + kLH contains the matrix k2Jn − k2In as a principal submatrix, the latter having maximum
eigenvalue k2(n − 1). By virtue of eigenvalue interlacing (see e.g. [19]) we conclude that λ > (n − 1)k2.
So, according to Lemma 3.10, the largest eigenvalue of FSud↑k(n, T) originating from the set XM is at least
(n − 1)k2 + k2 − 1 = nk2 − 1. We will now show that the largest eigenvalues originating from XV , XH and XB
are smaller than this bound.

Since the largest eigenvalue of a matrix is bounded from above by the maximum row sum of the matrix,
it is clear that the maximum eigenvalue both of LH and LV can be at most n − 1. Now recall from Proposition
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3.7 that k is themaximum eigenvalue of Jk. Combining these �ndings, it now follows from Lemmas 3.5 and 3.6
that none of the eigenvalues associated with the vectors of the sets XV and XH exceeds (n − 1)k − 1, which is
less than the lower bound given forXM. Finally, Lemma 3.9 tells us that no positive eigenvalue of FSud↑k(n, T)
originates from XB.

4 Conclusion
Up to now, it seems that free-form Sudokus have not been researched at all. Providing a starting point, we
have studied integrality of these graphs. Moreover, we have presented the blow up operation and shown how
to obtain the eigenvalues of blown up free-form Sudokus from their originals. We would like to inspire more
research on this topic, in particular regarding further spectral properties of free-form Sudoku graphs. Let us
therefore close with the following open questions:

1. Can we �nd a precise condition on the tiling that allows us to predict exactly when a free-form Sudoku
graph is integral or not?

2. If a given Sudoku is integral, is its blown up version always integral?
3. Can a blown up free-form Sudoku be integral although its original Sudoku is not?
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