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Abstract: Chaotic meta-Fibonacci sequences which are generated by intriguing examples of nonlinear re-
currences still keep their mystery although substantial progress has been made in terms of well-behaved
solutions of nested recurrences. In this study, a recent generalization of Hofstadter’s famous Q-sequence is
studied beyond the known methods of generational approaches in order to propose a generalized conjec-
ture regarding the existence of infinitely many different solutions for all corresponding recurrences of this
generalization.
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1 Introduction

Since substantial experimental studies have been done by Hofstadter and Huber on certain meta-Fibonacci
sequences which are inspired by original Q-sequence that is defined by Q(n) = Q(n-Q(n-1))+Q(n-Q(n-
2)) with initial conditions Q(1) = Q(2) = 1 [1], there is a wide variety of significant contributions which are
mainly focused on nested recurrence relations in theoretical and empirical literature [2-10]. While empirical
works try to find order signs and some patterns in chaotic meta-Fibonacci sequences, theoretical literature
mainly focuses on properties of slow and quasi-periodic solutions for various types of nested recursions
and some curious concepts such as binary trees and undecidability [11-13]. Despite the complexity of many
inquiries which these contributions have, an essential and natural question about a meta-fibonacci sequence
is whether it is defined for all indices [14, 15]. It is well-known that properties of solutions to meta-Fibonacci
recursions can differ extremely and the answer of this question strongly depends on the selection of initial
conditions in general [16]. While modified nested recurrences can exhibit different properties of solutions
with the same initial conditions, a selected recurrence can also show dissimilar behaviours under certain
initial condition sets [17, 18]. For example, let us define Q(1) = Q(2) = Q(3) = 1, Q(4) = 4, Q(5) = 3, and
forn>5,Q(n)=Q(n-Q(n-1))+Q(n-Q(n-2))+Q(n-Q(n-3)), that is A296413 in OEIS [19]. This
sequence is highly chaotic and finite since Q(509871) = 519293. On the other hand, the same recurrence
can have slow solution with appropriate initial conditions [20] while it can be naturally quasi-periodic for
certain set of initial conditions such as A296518 and A296786 in OEIS [21]. Also, intriguing generational
structures which are analysed by spot-based generation concept appear with a family of initial conditions
forQ(n) =Q(n-Q(n-1))+Q(n-Q(n-2))+ Q(n-Q(n-3)) [21]. This behavioral diversity observed in
three-term Hofstadter Q-recurrence can be interpreted as a sign of difficulty of problems about certain types
of nested recurrences, especially for Hofstadter-like recurrences. On the other hand, the coexistence of order

*Corresponding Author: Altug Alkan: Piri Reis University, Graduate School of Science and Engineering,
34940 Tuzla/Istanbul, Turkey, E-mail: altug.alkan1988@gmail.com, altug.alkan@pru.edu.tr

3 Open Access. © 2018 Alkan, published by De Gruyter. [C)IEZE=EM This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.


https://doi.org/10.1515/math-2018-0124

DE GRUYTER On a conjecture about generalized Q-recurrence = 1491

and chaos in some unpredictable meta-Fibonacci sequences can be recreated experimentally thanks to inital
condition patterns in terms of considerable behavioral similarities. At this point, it would be beneficial to
remember the definition of a generalization of Hofstadter’s Q-sequence [21].

I
Definition 1.1. Let Q4 ¢(n) be defined by the recurrence Qg ¢(n) = > Qu¢(n - Qqe(n—1i))forn>d-¢,¢> 2,
i=1

d > 1, with the initial conditions Qu¢(n) = [“2  for1 <n<d-¢.

Recently, the chaotic generational structures of certain members of Q,,(n) and Qg 3(n) were investigated
thanks to known methods in empirical literature [21-23] in order to search a conjectural global property
for rescaling of amplitudes of successive generations. On the other hand, for ascending values of d and ¢,
behaviours of Qg4 ¢(n) become much more complicated as well as conserving their interesting properties
which are reported in the following sections. At the same time, in order to strengthen and support our intuitive
approach on nature of initial conditions for Q4 ¢(n), it can be beneficial to observe behaviours of similar initial
condition formulation with a provable example.

This paper is structured as follows. In Section 1.1, we give brief notes about an intriguing example of
provable solution family in order to support the naturalness of our intuition. In Section 2, we prove some
properties of Q4 ¢(n) for increasing values of ¢. Then, in Section 3, we do experiments for larger values of
d and ¢ while in Section 4, we propose a conjecture thanks to results that Section 2 and Section 3 provide.
Finally, related concluding remarks are offered in Section 5.

1.1 A motivational new generalization to beginning

In this section, we observe the potential of initial condition patterns in order to construct infinitely many
different solutions for a selected nested recurrence. Although sequences that we focus on in next sections are
not slow, this part suggests that infinitely many different solutions that have strong behavioral similarities
can be really constructed with the formulation of initial conditions, at least for certain recurrences. It is well-
known that Newman generalization on Hofstadter-Conway $10000 sequence (A004001 in OEIS) provides a
variety of interesting results that Fibonacci-type behaviours appear in their generational analysis [23-25].
However, we will generalize Hofstadter-Conway $10000 sequence thanks to its asymptotic property which is
proved by Conway [24]. In order to eliminate duplicate sequences, we define them as below. Note that a1 (n)
is Conway’s original sequence.

Definition 1.2. Let a;(n) = a;(a;(n-1)) +a;(n—a;(n-1)) for n > 4-i, with the initial conditions a;(n) = [ 5]
forit<n<4-i.

Proposition 1.3. a;(n+ 1) — a;(n) € {0, 1} foralln,i > 1 and a;(n) hits every positive integer for all i > 1.
Proposition 1.4. a;(n) > 3 foralli > 1.

Both propositions are easy to prove by induction since initial conditions of the form [ 5 | provide necessary and
sufficient basis to this aim. Based on these basic properties, see Figure 1in order to observe certain members
of a;(n) - . While it provides a fractal-like collection of fractal-like sequences, it clearly suggests that thisis a
new and natural generalization which perfectly guarantees the existence of infinitely many different solutions
and our approach can be potentially applied for some other recurrences. In next sections we search for the
signs of some similar behaviours in terms of existence of solutions for Qg ¢(n) with the stability of noise
levels, although their chaotic nature prevents the perfection which a;(n) exhibits.
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Fig. 1. aye(n) - § for 212 <n<2'3 and 0 < t < 7, respectively.

2 On termination of Q4 (n) for£ >3

DE GRUYTER

In this section, an existence of breaking point for termination of Q4 ,(n) is investigated. It is a relatively easy
fact that Q»,5(n) is a finite sequence due to Q;,3(66) = 73 [21]. On the other hand, our following analysis

confirms that the termination of Q,,3(n) is an exceptional behaviour for Qg ¢(n), at least, in the range of
experiments that the next section focuses on.

Proposition 2.1. Qg ((n) dies for d < w where ¢ > 3.

Proof. 1tis clear that if Qg ¢(d- ¢+ 1) > d- ¢+ 1, then Qg ,(n) dies immediately thereafter. Since Q4 ,(n) =

[#]fornsd%,

fori1<i<d-t.

Qd’g(d‘£+1—l.)=|7

(d-0+1-1i)-(£-1)
S

:[d~£+1—(d+i)+i_71]

:d~E+1—(d+i)+F_£1]

S0 Qq,¢(d- £+ 1) can be expressed as follows:

4
Qqae(d-+1)=> Qqe(d-+1-Qque(d-L+1-1))
i=1

,g(d-£+1—(d-€+1—(d+i)+[i_71b)

Aa+=[57])

¢
=>"Qq
i-1
¢
=>"Qq
i=1

= Qa(d+1) +§Qd,£(d+i)
d+1J = z_l{d+iJ

IDNCEDIEDY

i=1 i=

i=1

:d+1—{
£

~ 0-(0-1) |d+1] &
=d-£+1+ 5 { ’ J

i=1

! d+iJ
|-
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So, the inequality Q4,¢(d- £+ 1) > d - £+ 1 is equivalent to the inequality

EE R

i=1

Ifd = @ in Inequality 1, total value of ¢ terms of the left side is @ for I > 3, and the inequality is not
satisfied. Note that “g_l) = 0 (mod ¢) if ¢ is odd and M =4 5 (mod ¢) if £ is even. So, if d = M -1, the
left side decreases from £ (Z D
from before if ¢ is odd. In the odd case, ifd =
the largest value of d that satisfies Inequality 1 is
£ (17 1)

if ¢is even (thereby satlsfylng the inequality), but the left side does not change

¢ (f 1 - 2, the left side would decrease, though. So, if £ is odd,
% (e 1)

-2, and if ¢ is even, the largest value of d that satisfies

4
Inequality 11is — 1. These two cases can be combined into one inequality: d < % O

Proposition2.2. Qg (d-(+2)=d-(£-1)+ |2 | ford = LDV yhere > 5,

Proof. We follow similar steps with previous proof thanks to its result. So Qg,¢(d - ¢ + 2) can be expressed as
follows:

¢
Qqe(d-€+2) =) Qqu(d-£+2-Qqu(d-t+2-1))
i-1
¢
=Qa(d-£+2-Qqe(d-€+1))+ > Qae(d-£+2-Qqe(d-£+2-1))
im2

Q) S (a2 (d0v2- @ [52]))

i=2

= 1+§:Qd,e(d+i—[i_72-‘)

-1
=1+ Qqge(d+2)+ Z Qq,o(d +1)

1+ [(d+2)£(£ 1)'| ‘[(d+1)€(£ 1)]

M

i=2

:d+3—[d+2J éi(d+l) Z;[dTJ

:d~(£—1)+2+£'(52—1)_ld+2J "ildHJ

Since | &1 | = d+2 forl >5and d = w, from Proposition 2.1,
7 3

S (2] Be) |2

i=2

Thanks to Equation 2, Qg4,+(d - ¢ + 2) can be expressed as follows for [ > 5,

Qd,z(d.£+2):d.(g_1)+2+{d+1J
:d.(é—1)+2+{ 2£ +1|
—a-e-n+ |22
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Proposition2.3. Qg (d-¢+3)=d-(¢-1)+ *ED— D™ ford = LED-L D yhere (> 7.,

Proof. We follow similar steps with the previous proof thanks to result of it. So Q4,¢(d-£+3) can be expressed
as follows:

4
Qqae(d-£+3) =" Qqe(d-£+3-Qqe(d-£+3-1))
i=1
:Qd’Z(d'£+3_Qdye(d'£+2))+od,€(d‘£+3—Qd’g(d-é-f-l))
4
+ 3 Qae(d-€+3-Qqu(d-L+3-1))
i=3

- Qui(d-f+3-d-(1-1) - [(”3)

1) +Qa,(2)
oufers (oo @[ 2))
i=3

24 Quu(d+3- U3 3)) ZQM(‘”’_[%D

(€+3)

=2+Que(d+3-[—=—])+Qq E(d+3)+ZQd€(d+l)

i=3

:2+Qd,ﬁ(d+3—[(ZZB)J)+’V(d+3)é(€_1)-|

+Z[(d+1) (¢- 1)]

—dv5+Quudr3- 12 | 42 gid+”‘§3F%?J

= (0-2) 12+ Que(d+3- |2 B 423

2 2 4
d+i
2|4
Since d*z 443 | for [ > 7 and d = M, from Proposition 2.2,
e 3
0-(0-1) |d+3 f—lld+iJ_ld+1J d+2J
2 {nge‘zﬂz‘ G

Thanks to Equation 3, Q4,¢(d - £ + 3) can be expressed as follows for I > 7,

Quald-0+3)=d-(0-2) + Qu(d+3-| LDy v | 41| 422 ]

l l
0-(0-1)-1+(-1)"
“a-(0-2)+ Quuta+3- |2 o | 2 +1|
. \‘ 18-(6—1)—21+(—1)’Z + 2|
14
“d-(0-2)+ Quetd+3- [y o0 21,

2
In here if ¢ is odd, then d = @ —1and Qg ¢(d- ¢+ 3) can be expressed as follows,

Qd,g(d~ﬁ+3):do(£72)+QM((€_1)2)+£+1
=d-(£L-2)+ [(E Z)]+£+1
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:d-(£—2)+@+£+3
:d-(£—2)+#+3
=d-(t-1)+4.

And if 2 is even, then d = @ and similar way can be used,

(t-1)*+3
2

:d-(€—2)+@+€+3

Qae(d-£+3)=d-(£=2)+Qa( )+4

:d~(z—2)+w+3

=d-(L-1)+3.

o+
These two cases can be combined into one equation thatis Qg ;(d-¢+3)=d-(¢{-1) + “(_271)1 O

Since each computed term Qg ,(d - £ + k) is also determinative for Qg ,(d - ¢ + k + 1) for all k > 1 by definition
of our nested recurrences, the properties of further terms can also be shown with similar propositions.
Table 1 contains some related patterns which guarantee the successive computations of recursions without
termination in these short intervals as below. See also decreasing order of corresponding bursts in Figure 2
for an example Q209,21 (n).

Table 1. Behaviourof Qg ¢(d- £+ k) for£>2-k+1and k <10 whered = w

k  Qge(d-£+k)-Qqe(d-£) Qa,e(d- £+ k)

1 £-(£-1)+1+(-1)%)/2 (B-0-2+2.(-1)%+2))2

2 [(£+3)/2] (2-2-4-02+2.£+(2-£-3)-(-1)¢+7)/4
3 (7+ (-1)8Y) )2 (B-2-22+(£-2)-(-1)*+8)/2
4 9+ (-1)¢Y))2 (£3-2.02+(£-2)-(-1)¢+10)/2
5 5 (3-2.02+(£-1)-(-1)4+11)/2
6 (11 + (-1)%)/2 (B-2.02+2.(-1)¢+12))2

7 7 (-2-02+#£-1)-(-1)%+15)/2
8 8 (B-2.2+(£-1)-(-1)%+17)/2
9 9 (B-2.22+(£-1)-(-1)*+19)/2
10 10 (B-2.22+(£-1)-(-1)%+21))2

3 Experiments for Strange Members of Q4 .(n)

Although previous section is really helpful in order to understand the certain facts about possible termination
cases of Qg,¢(n) sequences for increasing values of ¢ and its relation with d, it is practically impossible to
continue to prove these similar successive propositions forever. At this point, power of computer experiments
may be meaningful in order to see the big picture about behaviours of these chaotic sequences in relatively
long run and indeed this is the case. Our first purpose is the investigation of chaotic behaviours of these
sequences for increasing values of d > w for a selected ¢. To this aim, let (Sd,g(n)> y denotes
the average value of S;s(n) ford-¢+1 < n < N+ d - ¢ where S;,(n) is defined by Equation 4 and
o¢(d) is defined by Equation 5. In our experiments, we focus on N = 10°, 2 < ¢ < 19 although several
other values are also checked. Figure 3 particularly shows fascinating order signs of o3 (d) for such a chaotic
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Fig. 2. Graph of Q209,21 (n) — 22 - n for 4000 < n < 10000.

sequence family Q4 3(n). While o3(d) has a very characteristic distributional behaviour based on d mod 3,
meaningful observations also can be made in Figure 5 and Figure 6 that suggest behaviour of these sequences
has considerable similarities in terms of fluctuations of o, (d).

Fig. 3. Graph of o3(d) for 20 < d < 250.
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This is a strong evidence that there are different branches in scatterplots which are dominated by values
of d in a particular residue class for such chaotic sequences. Indeed, other graphs have also some similar
patterns which are more irregular and weaker than patterns of o3 (d) in terms of their ¢ values. While perfect
explanation of such distributions is very hard to formulate due to chaotic nature of them, the main common
property of them is that they do not tend to increase in terms of general trends. More precisely, trend line
slopes for selected intervals are negative for all of them in the range of our experiments. Additionally, there
are some sharp transitions between some levels of o;(d). In order to observe the meaning of a characteristic
decrease example in o4(d) plot, see Figure 4 that displays line graphs of Ss9,4(n) and Seo,4(n) which small
increase of d notably diminishes the amplitude of generational oscillations. Such a graphical observation
is named as Yosemite Graph similarly in another curious work related to integer sequences [26]. Although
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this behaviour is not always the case for all consecutive values of d, empirical evidences suggest that more
stability is a general tendency of Q4 ¢(n) for ascending d.

Fig. 4. Line graphs of Ss9 4(n) and Sgo,4(n) forn < 10%.
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Our second purpose is understanding the behaviour of Q4 (n) where d = . Section 2 clearly
shows that there is a breaking point for finiteness of Q4 (n). Computer search also confirms this stage of
experimentation since Qg4 ¢(n) is successfully computed up to 5 - 107 without any termination case for all

4 < ¢ <100 whered = w

0-(6-1)-1+(-1)*
2

Sas(m) = Que(m) - P @

oe(d)? = <Sd,e(")2>N— (Sd,é(n))lzv- 5)

4 Discussion and Result

More detailed analysis on these strange recursions can be done thanks to investigation of generational
structures of Q4 ¢(n) but this could be extremely diffucult for all chaotic sequences in the range of our
experiments since the confirmation of generational boundaries necessitates very careful examination of
block structures of each generation for any known generational method [21-23]. On the other hand, Section 2
and Section 3 both fairly conclude that increasing values of d > w tend to stabilize o,(d) levels
which are exhibited by oscillations of Q4 (n) around its conjectural slope for sufficiently large fixed N.
Additionally, these sections suggest that Q4 ¢(n) tends to be well defined where d = w for ¢ > 4.
So following conjectures are proposed based on reasonable heuristic, analysis and these empirical evidences
that previous sections provide.

Conjecture 4.1. Q,,(n) is an infinite sequence for all d > 2.
Conjecture 4.2. There is a m value such that Q4 3(n) is an infinite sequence for all d > m.

: ; . . 0-(0-1)-1+(-1)°
Conjecture 4.3. For any given {, there are infinitely many d > ———5——

sequence.

such that Qg ¢(n) is an infinite
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e
Fig. 5. Logarithmic plots of o, (d) for % +06731 < d < 250 and N = 108 where 2 < ¢ < 10, respectively.
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5 Conclusion

This paper suggests that a generalization Qg ¢(n) tends to provide coexistence of chaos and order that are
recreated by increasing values of d for an arbitrary ¢. The target of our conjecture is finding a reasonable
answer for the most fundamental question about these nested recurrences which this study focuses on.
Understanding the behaviors of generalizations of meta-Fibonacci sequences may be really significant
and helpful in order to discover curious properties of these kinds of nonlinear recurrences and there can
pave the way in this direction due to wealth inheritance of these enigmatic sequences. For example, a
new generalization can also be proposed for slow Hofstadter-Conway $10000 sequence which has curious
fractal-like structure [27] as mentioned in A296816. So nature of generalizations of meta-Fibonaci sequences

and probable unexpected interactions [22] between curious members of these generalizations contain new
enigmatic inquiries for possible future works.
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L
Fig. 6. Logarithmic plots of o, (d) for %

<d <300and N = 10° where 11 < ¢ < 19, respectively.
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