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Abstract: We study the initial boundary value problem of a compressible non-Newtonian fluid. The system
describes the motion of the compressible viscous isentropic gas flow driven by the non-Newtonian self-
gravitational force. The existence of strong solutions are derived in one dimensional bounded intervals by
constructing a semi-discrete Galerkin scheme. Moreover, the uniqueness of solutions are also investigated.
The main point of the study is that the viscosity term and potential term are fully nonlinear, and the initial
vacuum is allowed.
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1 Introduction

In mathematical physics, the Navier-Stokes equation is known as one of the most fundamental equations in
fluid mechanics. The compressible isentropic Navier-Stokes equations, which are the basic models describing
the evolution of a viscous compressible fluid in a domain x € 2, read as follows:

pt +div(pu) =0, )
(pu)t +div(pu ® u) — 2div(pD(u)) - V(A divu) + VP(p) =0,

where the unknowns p, u represent the density and the velocity of the fluid, respectively. Here D(u) =
(Vu + (vu)T)/2 is the strain tensor and P(p) = ap”(a > 0,~ > 1) is the pressure, ;. and X are the viscosity
constants which satisfy the physical requirements x > 0 and 2.+ 3\ > 0. The Navier-Stokes equations are the
equations governing the motion of usual fluids like water, air, oil etc., under quite general conditions, and
they appear in the study of many important phenomena, either alone or coupled with other equations. For
instance, they are used in theoretical studies in aeronautical sciences, in meteorology, in thermo-hydraulics,
in the petroleum industry, in plasma physics, etc. From the point of view of continuum mechanics the Navier-
Stokes equations are essentially the simplest equations describing the motion of a fluid, and they are derived
under a quite simple physical assumption, namely, the existence of a linear local relation between stresses
and strain rates. The compressible isentropic Navier-Stokes equations (1.1) are derived from the conservation
laws of mass and the balance of momentum, (for details see [1, 2]). While the physical model leading to the
Navier-Stokes equations is simple, the situation is quite different from the mathematical point of view. In
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particular, because of the nonlinearity, the mathematical study of these equations is difficult and requires
the full power of modern functional analysis. A major question is whether the solution remains smooth all
the time. These and other related questions are interesting not only for mathematical understanding of the
equations but also for understanding the phenomenon of turbulence.

There are huge literatures on the study of the existence and behavior of solutions to Navier-Stokes
equations. Some of the previous relevant works in this direction can be summarized as follows. For instance,
the 1D version of (1) were addressed by Kazhikhov et al. in [3] for sufficiently smooth data, and by Hoff [4]
for discontinuous initial data, where the data is uniformly away from the vacuum; the existence of global
weak solutions for isentropic flow were investigated by Lions in [5] by using the weak convergence method.
In [6], the authors employed a new method to prove the existence and uniqueness of local strong solutions
in the case where the initial data satisfies some compatibility conditions. The dynamics of weak solutions
and vacuum states were investigated in [7] for the 1D compressible Navier-Stokes equations with density-
dependent viscosity in bounded spatial domains or periodic domains. For other results we refer the reader to
[8-13] and the references cited therein.

The above references mainly concerned the fluid which the relation between the stress and rate of
strain is linear, namely, the Newtonian fluid. The study of non-Newtonian fluids (the relation between the
stess and rate of strain is not linear) mechanics is of great significance because such fluids describe more
realistic phenomenon. These flows are frequently encountered in many physical and industrial processes
[14], such as porous flows of oils and gases [15], biological fluid flows of blood [16], saliva and mucus,
penetration grouting of cement mortar and mixing of massive particles and fluids in drug production [17].
Many studies are based on the field of non-Newtonian flows, both theoretically and experimentally. In [18],
Ladyzhenskaya first proposed a special form for the incompressible model, namely that the viscous stress
tensor Iy = (po + /L1|E(Vu)p_2|)Eij(Vu). For uo = 0, if p < 2, it is a pseudo-plastic fluid, and when p > 2,
it is a dilatant fluid (see also [19]). From a Physics point of view, the model captures the shear thinning fluid
for the case of 1 < p < 2, and captures the shear thickening fluid for the case of p > 2. In [20], the trajectory
attractor and global attractor for an autonomous non-Newtonian fluid in dimension two was studied. The
existence and uniqueness of solutions for non-Newtonian fluids were established in [21] by applying the
Ladyzhenskaya’s viscous stress tensor model. Then the global existence and exponential stability of solutions
to the one-dimensional full non-Newtonian fluids were investigated in [22]. Recently, in [23], the authors
present a decoupling multiple-relaxation-time lattice Boltzmann flux solver for simulating non-Newtonian
power-law fluid flows.

On the other hand, another basiclly important case is when the motion of compressible viscous isentropic
flow is driven by a self-gravitational force. However, at the present, little is known yet on the strong solutions
to system (1) with non-Newtonian self-gravitational potential on bounded domain, even in one dimensional
case. In this paper we focus on the following 1D system of compressible non-Newtonian equations

pt + (pu)x = 0,
(pu)e + (puz)x + pPy — /\(|ux|p72ux)x +Py=0, 0
-2 1
(25 + ,uo)qZ by )x = 4ng(p - 7 f pdx)
2
in 27 = 2 x (0, T) with the initial and boundary conditions

(ps w)e=0 = (po, o), X e, 3)
u(x, t)oe = 2(x, t)on = 0, te[0,T]. (4)

Here, p, u, # denote the density, velocity and the non-Newtonian gravitational potential, respectively. P =
ap”(a > 0,7 > 1) is the pressure, the initial density po > O, % < p < 2,q > 2 are given constants. Our
purpose is to some further light on problem (2)-(4). When 1 < p < 2, the second equation of (2) always has
singularity. Secondly, we emphasize that the vacuum of initial density may exist. In the presence of vacuum,
the parabolicity is lost. Moreover, the equations are strongly coupled with each other. We will investigate the
existence and uniqueness of local strong solutions of (2)-(4) by overcoming the above difficulties, and the

proof is inspired by the previous work in [6] and [21].
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We state the main results as follows:
Theorem 1.1. Assume that (po, uo) satisfies the following conditions
0 < po e H'(2),uo € Hy(2) n H*(12).
If there is a function g € L*(2), such that the initial data satisfy the following compatibility condition:
_[|u0x|p72u0x]x +Px(po) = pég, fora.e.x e 2,
then there exist a time T € (0, +o0) and a unique strong solution (p, u, ®) to (2)-(4) such that

peL=([0, T.J; H'(2)), pe € L= ([0, T+ ]; L*(2)), ur € L*(0, To; Hy(2)),
® e L®(0, To; H (2)), B¢ € L=(0, To; H'(R2)), /pur € L= (0, To; L*(2))
u e (0, Tu; WP (2) n H2(2)), ([uxP*ux)x € L*([0, T+ ; L*(£2)).

The rest of the paper is organized as follows. After stating the notations, in Section 2, we first present some
useful lemmas, then the analysis of a priori estimates for smooth solutions are derived. In Section 3, we give
the proof of existence, and finally complete the proof of uniqueness of the main theorem in Section 4.

In what follows, we use the following abbreviations for simplicity of notation:

1 1
H =H (2), LP=1°(2), |le=1lew, [l==]" |-

Throughout this paper, we will omit the variables ¢, x of functions if it does not cause any confusion. We use
C to denote a generic constant that may vary in different estimates.

2 A priori estimates for smooth solutions

In this section, we provide some known facts that will be used in the proof of the main result.
Lemma 2.1 ([24]). Let 2 be bounded setin R', and 1 < q < p < +oo. Then
1_1
lullzacoy < 192[s 77 [ul ).

Lemma 2.2 ([21]). Let po € H'(£2),uo € H3(2) n H*(£2), g € L*(2) and u§ € H}(£2) n H*(£2) be a solution of
the boundary value problem
e 1) 7 !
_[( (uox)2+e ) qu]X +Px(po) = (po):8

Uolag = 0.

Then there is a subsequences {ug"},j =1,2,3-, 0of {ug},ase - 0,
uj »uo in Ho(2)nH(2),

€j\2 2-p
ei(u +1\5" . _ .
(28] (ol Puoe in ().
(Ug)? +¢j X

To prove the existence of strong solutions, we require some more regular estimates. Next, we derive some a
priori estimates for smooth solutions which are crucial to prove the local existence of strong solutions.

Let (p, u, ®) be a smooth solution of (2)-(4) and po > &, where 0 < § « 1 is a positive number, mq :=
f PO (x)dx be initial mass and mg > 0. Throughout the paper, we will denote

Mo =1+p0+uo" +|polm + 82
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As stated above, we need to estimate the uniform bound of the approximate solutions. Now, we consider the
following linearized problem

pe + (pu)x =0, )

(pu)¢ + (pu®)x + p®x + Lyu + Px = 0, (6)
1

Ly® =47g(p— — | pdx @

with the initial and boundary conditions

(P W)le=0 = (po, Uo), x € 2 (8)
u(x, )lon =2(x, t)|on =0,t [0, T] )

where

2 2-p
euy + 1\ 5 a2
Lou=— X Ux| , Lg®=((Dx) + 2 P
P [( u§+5 ) X]x q (( X) NO) X)x

and uo € H) n H? is the smooth solution of the boundary value problem

2—

41\ 7 1
_[( uéiie ) qu]X +Px(po) = P08

Uols = 0.

(10)

We will prove the existence of solutions for (5)-(9) by virtue of the uniform estimates which do not depend on
¢, depending only on My, and prove the limit of the approximate solutions is the solution of problem (2)-(4)
with vacuum.

It follows from (10) and Young’s inequality that there exists a constant C depending only on My, such
that

1 1
|toxx|r2 < C(1 +|pol;-|8lr2 + [Px(po)|r2) 7t < C.
We construct an auxiliary function
() = 1+ |p()lar (22) + (oo + VAUE(S) 22 (22)

Our derivation will be based on the local boundedness of ¥ (t). Before we estimate each term of ¥, we need
to do the estimate of |uxy|;2. Firstly, multiplying (7) by ¢ and integrating over (2 and using Young’s inequality,

f @[ %dx < C(mo). (11)
2

Then, it follows from equation (6) and (5) that

1
p-1

[uxx| < (ux>™ + 1)|pue + puuy + pdx + Pyl.

Taking it by L?-norm, using Young’s inequality, we obtain
[waalf < C[L+ [puelrz + |puttaliz + |ox|r2 + [Px12]
! 81,202 Lot
< C[1 + ol [V/putelz + (lole= s ) 57 + lole= |Pxlra + [Peliz + 5 |l

which along with (11), implies that

o (£)|12 < CO (). 12)
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Estimate for ||y
We are going to estimate the first term of ¥(t). Multiplying (5) by p and integrating over (2 with respect to x,
we obtain from Sobolev inequality

d
2eP(O1L: < ez plz2- (13)

Differentiating (5) with respect to x, multiplying it by px and integrating over {2 on x, and using Sobolev
inequality, we have

d 3
2 [P == [ [Gus(o0)” + poxtind () < 3]oxlf: sl (14)
2 Q
Together with (13),(14) and Gronwall’s inequality, it follows that

t

sup |p(t)[3: < Cexp(C W%(s)ds). (15)
o<t<T
st= 0
Using (5) we obtain
42
(Ol < lox(Oliz[u(O)li + [o(E)]1 [ (£)]12 < CH w5 (2). (16)

Besides, differentiating (7) with respect to time ¢, multiplying it by &; and integrating over 2 with respect to
x and using Young’s inequality, we have

|Pxel72 < COH(2), 17)

where C is a positive constant depending only on M.

Estimate for |u|;»
)

We turn to the second term of ¥ (t). Multiplying (6) by u;, integrating over {2r, together with (5), (10), Sobolev
inequality and Young’s inequality, we obtain

t
[ W)l (s)ds + (O, <[] (ouwead + |paue] + Pt +|Pui])dxds
0 Qr

+/(|Pux|dx+7\Pu§|)dxds+C
2

gC(1+fgps%(s)ds). (18)
2

In the second inequality we have used

Ip(6)lz= + IP(6)]m: < |p(6)lms + Clo(O)}= ()] < CO7(E).

b[|P(t)|zﬁ1dx:Qf|P(0)|lﬁldx+oj;S(pr(s)p‘fldx)ds

<C+ Cf Ip(8) 7= 1P($) 172 [p(8) | [t () 1o ds
2

gC(1+/q/%(s)ds),

2

where C is a positive constant, depending only on Mo.
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Estimate for | /pu¢|;2
We estimate the last term of ¥ (t). Differentiating (6) with respect to t yields
2-p

2

2
euy +1
X ) ux] . = (—ut—uux—fpx)[)t—/)utux—prxt—th-
X

uZ +¢

pUtt + pUUxt — [(

Multiplying it by u; and integrating over (2 with respect to x, we derive

1d 2 cuZ + 1\ 52
= u dx+[ X w ] weedx
2ai ) Q[(u§+5) ] e
:/[Pt(*utfuuxf_déx)fputuxfp@xt]utdx+/Ptuxtdx'
? 1)
Note that
2 2-p
cuy + 1\ 5 b
f[( uzx+5 ) 2 ux:ltux[dXZ (p - 1)/(11)2( +1) 2 [uydx.
N X 2
Let

B=(uj+ 1)¥ .
From (12), it follows that

1 2 2-p 2%” W+4) (p=1) 2-p)y 3y
1B |t = [(ux + 1) # |~ < Clun|, 2 +1) <C¥ 260 < CWos,

Then, from (20) and (5), (19) can be rewritten as

-4 dx+(p-1) [ |unl’d
5q ) Plud’dx+(p-1) [ |fux| dx
2 02
< [ 2ofulludlusldx + [ lpululuslucddx + [ plullusfluldx
2 02 2

+ [Pl + [ Pludluldx + [ ol lucldx
(%} (%} (%

9
+ [ dudiealiuddx s [ plucududdx+ [ plluddx = 31
j=1

o) ko) o)
Using Sobolev inequality, Young’s inequality, (6) and (12), we obtain

3 -1 ELal p-1 2
It < 2|p|fe |ulr=|\/pUe|r2 | Buxe| 2|8 L= < CTF=3 (t) + Tlﬁuxthz’

2 D 1-2 24p 1-2 -1
I < x| fu|zee [ualpy [t oo [ute] e < x|z [ta] o™ [t 2 * | Bt 2] 8™ |1
23y -1
< Clp3pj“ (t) + I7T|/Buxt|i2,
1 0y 22y
I3 < |p| s |u] = ||ux|L [/pute|r. < C¥3=4(2),

- Iy -1
I < |Px|pa[ulp= | Buselp2| 8|1 < Coi () + P

‘Bu){thz}’
p-1
6
Is < |pxliz|ulre x|z [ueli= < |ox]iz x| | ®xlre| Buxlr2 |8~ |1

-1

< CJ/;I%(t) + pT|ﬁuxt|iz,

1 1 18y
I7 < |pl 7 [Ux|re= |Px| 2]\ /PUt|L2 < |plf oo [Uxx|2 | Px|La| /U2 < CE =i (L),

16y
Is < |[\/puelzz|ux|=| < CO»i (1),

_ 22y
Is < C|P|p2|ux|r=|Bux|p2 |8~ 1= < CT3=1 (£) + |Buxe|t,

— 1471

(19)

(20)

1)
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p-1
6

Substituting I;(j = 1, 2, ..., 9) into (21) and integrating over (7, t) c (0, T), we have

_ 18y
Iy < |p|pa|@xelre [uelr= < |pli2|Paelre|Buxel 8 |1= < COr-1 +

t t
Waue(O)lf + (p=1) [ |Buxir(s)ds <€ [ w3 (s)ds + |\/pur(r)lE--

Next, we estimate 1i1r(1) I/ pkuk (7)|2.
T—>

Multiplying (6) by u; and integrating over (2, we obtain

[ plux <2 [ (olulusl? + ple? + 7 Ly + Pof)ax.
0 0

Since (p, u, #) is a smooth solution, we have

tim [ (ol + ol + o7 |Lpu+ Pr)ax
2
= /(po|uo|2|u0x\2+ﬂo|¢0x|2+|g‘2)dx
2

< |polre=[uolz==uox|F> + |polz=|Pox|z2 + |glf--

Then taking a limit on 7 for (22) as 7 — 0, we get
t t
WO + [ |puxli(s)ds < c(1+ [ w3 (s)ds),
0 0
which combined with (12), (15)-(17), (18) and the definition of ¥ (¢t) leads to
t
7 (t) < Cexp(C f w37 (5)ds),
0

where C, C are positive constants, depending only on Mo.
In view of this inequality, we can find a time T. > 0 and a constant C, such that

T*
2
up (ol + [y +l/pudie + o + [ (uee(s)[f2)ds < C,
0

0<t<T,

where C is a positive constant depending only on M.

3 Proof of the existence

|Butxe72.

DE GRUYTER

(22)

(23)

Since a priori estimates for higher regularity have been derived, the existence of strong solutions can be
established by a standard argument, in the case of bounded domains, we construct approximate solutions via
asemi-discrete Galerkin scheme, derive uniform bounds and thus obtain solutions by passing to the limit. Our
method that constructed approximate systems is similar to that in [6]. To implement a semi-discrete Galerkin
scheme, we take our basic function space as X = H}(£2) n H*(£2) and its finite-dimensional subspaces as
X =span{’!,”?,II, ™} c XnC*(Q). Hence ©™ is the mth eigenfunction of the general elliptic operator defined

on X.

Let po, Uo, Po, and f be functions satisfying the hypothes of theorem, assume for the moment that pg €
C(£2) and poé > ¢ in 2 for some constant § > 0. We can construct an approximate solution forany v e X™, ¢ ¢

C*(£2), such that

pi+ (p"u")x =0,
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f(pmuf" +p"umuy + "Dy + Lyu™ + Py )vdx = 0,

(9]
Lyd"gdx = 4rg [ (0" = 22)pdx.
e [T

The initial and boundary conditions are

m
k k 5 s
ug = Y (uo, o )2y > £ (0)=pos p° <lpolr=(y+1,
k=1
5
loo — polai(2y = 0, u"on =" |sp = 0.
Under the hypotheses of the theorem, similarly, for any fixed § > 0, we may get the similar estimate

T,
sup (16" + g+ Ve + o7+ [ (uik()lE)ds < c. (24)
<t<T;

0

Since C does not depend on ¢, § and m (for any m > M, M is dependent on the approximate velocity of
the initial condition). We can deduce from the uniform estimate(24) that (o™, u™, ™) converges, up to an
extraction of subsequences. Let m — co. We obtain the following estimates in the obvious weak sense

0<t<T,

T*
) ) 5.0 4 ) 2
sup (6l + |y e + /B Ui + o2 + [ (ude(o)lf)ds < C.
0

For each small § > 0, p3 = J5 * po + 6 is a mollifier on £2, and u € H}(£2) n H?(02) is the unique solution of
the boundary value problem

53241 2p s
[(FGsme) T U+ Peod) = )8

Ug|a9 =0,

(25)

where g; € Cg°, and [g5]12 () < [8]12(2)> Jim g5 - 8l12 = 0.

We deduce that (p°, u’, #°) is a solution of the following initial and boundary value problem

pe + (pu)x = 0,

(pu)e + (pu?)x + pPx — A(Jux|Pux)x + Py = 0,
(93 + 110) T Ba)x = 4mg(p— 1y [y pilx)
(psW)lt=0 = (5, UQ)>

u(x, t)loo = 2(x, t)|on =0,

where 3 <p<2,q>2.

Together with Lemma 2.2, there is s subsequence {u%"°} of {u°}, as g — 0, {ug"’é} - udin Hy(2) n
H?(£2). Also there is a subsequence {u)'} of {u3}, such that as & - 0", u) — uo in Hy(£2) n H>(£2). With
pd =I5 * po + 8, we have, as & — 0", Px(py)) — (p3)) 85 — Px(po) ~ (po) g in L?(2). By (25), there exists
a subsequence {ugf of {u}}, such that as §; - 0%, (|u§fx|1"2u§;)x — (|uoxP"2uox)x in L*(£2). Hence, uo €
H§(2) n H2(92) satisfies equation —(|uox|” *uox)x + Px(po) = (po)2g for a.e. x € 2 and is a unique solution.
According to above uniform estimates, by the lower semi-continuity of various norms, we have

T«
s (ol + [y + /Acse + oz + [ (uae(s)/F)ds < €
<t<1q

0

where C is a positive constant depending only on M.
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4 Proof of the uniqueness
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We now prove the uniqueness results. Let (p, u, ®), (5, it, ) be two solutions of the problem (2)-(4). Combin-

ing (2)1 and (2)3,
(pu)e + (pu®)x + p®x + (Juxl’ 2ux)x + Px = 0,
(i) + (5 )x + pBx + (|l i1 )x + Py = 0,
we show that
p(u—i)e + pu(u—i)x = [(uxl”*ux)x = (| x)x]
= (p=p)(=ii¢ — itiiy — Px) — (P = P)yx — p(& — D)x — p(u — it) ilx.
(p=p)( Px) = (P=P)x = p(® = P)x — p(u - 1)
Multiplying the above equation by (u — 1) and integrating over {2, we obtain

1d

S p(u—ﬂ)zdx+f(|ux|p_2ux—\ﬂx|p_zﬂx)(u—ﬂ)xdx
2 2

< f{lp— pll = e = ity = Bl [u = | + [P = Pll(u = &)
0]

+pl(@ = B)xlu— @l + plu - || }x
<lp = plrz| = e — Uit — Plp2|u — Uz + [P~ Plp2|(u — @)1
+ |l (S = B)xlp2|u = &2 + |\/p(u = )7 |itx 1~
<lp - pli2(C + Clitelz2) + CIP = Iz + |\/p(u - @)[72 + | (u — #)x|fa-

Since .
_ _ p2._ _ 1 _ - _
f(|ux|p Uy — [P0ty ) (u — 1) dx = Iﬁf(/ |Oux + (1 - 0)ixf? 2d9)(u—u),2(dx
2 2 0
1 1 1 1
Ouy + 1—0up‘zdozf : do = . .
[ s Q0002 [ e 0 =
Thus

f(lux\”‘zux — |axP %) (u — @) xdx
(9]

1 [ - wyiax

> _
([ux|z= (0,650 (1)) + |tx|Le= (0,650 (1)) ) 2P 2
1 _
> c f(u —it)2dx.
I7)

Moreover, from (2)s, by a direct calculation, we have

(% +M0)%2¢X)X - (@2 + MO)%@)X = 47g(p-p).

Multiplying it by (& — &) and integrating over 2, we obtain

f [(@2 + 10) T By — (B2 + 110) ‘T 8] (@ - B)xdlx
2

~ - [ 4ng(p- 5)(@ - )xdx < Clp pliz +£l(® - Bl
0

(26)

@7)
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Note that
/[(qsﬁwo)%‘zqsx_(qsgwo)%qsx](@_@)xdx
1
:f[fw’(@dsx+(1—0)43X)d9](45x—q3x)2dx,
2 0

W (8) = [(5% + 10) T ST = (52 4 o) = (D= 1)5% + o) > pug?

Together with (27) and (28), we arrive at |(# — &)x|7. < Clp — p[}2-
Consequently, (26) can be rewritten as

3 dt|\/_(u 0O+ 5o - i ads
<lo - plz2(C + Claelz:) + C|P—P|%z + Vo - )L
On the other hand, from the conservation of mass equation (2)1, using the identity
(p=p)e+ (p=p)xu+ px(u—1) + (p = p)ux + p(ux — utx) = 0.

Multiplying the above equation by (p - p) and integrating it over (2, we obtain

m[@— )dx+[ (o-p) uxdx+]px<u ) (p - p)dx

+f(p—[)) uxdx+f[)(u—ﬁ)x(p—[))dx:0.
2

9}

Thus

o f (p - 5)?dx < C(Jutxlz=|p — plis + pxlizlut ~ lz=1p - iz

+plLe= (U = W)x|12|p = pli2)
-2 - 2
< Clo = plt + C(&)|(u - W)xf72.

Furthermore, (5); implies
(P-P)¢+(P-P)xit+ Px(u—u) +y(P-Plux +yP(u—-ut)x=0

Multiplying it by (P - P) and integrating over £2, we get
-, i} ) ;
2 = /(P P)2dx /(p P)2uxdx + f Py(u - ) (P - P)dx
0 0
- /(P — P)?updx + v / P(u—-u)x(P-P)dx
0 0

< (Clux|g=|P = P|f2 + C|P|pp: |u — @t|p= |P - P|;2)
< (C(Jux|p= + |P|gs + 1)|P = P|}2)ds + €| (u — it)x| .

From(29)-(32), we obtain
& -0+ (o) + (- PY)ax+ [ (u-widx
(9] (9]

<C((1+ aele + [@xli= + ol + [uxlz= + |Pxlz2)

— 1475

(28)

(29)

(30)

€3

(32)
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(Vpu=w)lz +1(p = p)lfz +1(P - P)I12).

From this and the Grownwall’s inequality, yields

\/p(u—)|i> +|p—plz2 +|P- Pl =0

which means

This complete the proof of the main theorem.

Acknowledgement: The authors would like to thank the anonymous referees for their valuable suggestions
and comments. This work was supported by the National Natural Science Foundation of China (Nos. 11526105;
11572146), the Education Department Foundation of Liaoning Province (No. JQL201715411) and the Natural
Science Foundation of Liaoning Province (No. 20180550585).

References

(1]
(2]
(3]
[4]
[5]
[6]
[7]
(8]
191
[10]
[11]
[12]
[13]

[14]
[15]

[16]

(17]

[18]

[29]

[20]

[21]

Chorin A. )., Marsden J. E., A Mathematical Introduction to Fluid Mechanics, Springer-Verlag, New York, (1993).

Teman R., Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, (1984).

Kazhikhov A. V., Shelukhin V V: Unique global solution with respect to time of initial-boundary value problems for one-
dimensional equations of a viscous gas. J. Appl. Math. Mech., 1977, 41(2), 273-282.

Hoff D., Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans. Amer.
Math. Soc., 1987, 303(1), 169-181.

Lions P. L., Mathematical topics in fluids mechanics, Vol.2 ,0xford Lecture Series in Mathematics and Its Applications,
Vol. 10, Clarendon Press, Oxford, (1998).

Choe H., Kim H., Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, ).Differential
Equations, 2003, 190, 504-523.

LiH. L., LiJ., Xin Z. P., Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,
Commun. Math. Phys, 2008, 281, 401-444.

Xin Z. P., Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure
Appl. Math., 1998, 51, 229-240.

Jiang S., Large-time behavior of solutions to the equations of a one-dimensional viscous polytropic ideal gas in
unbounded domains. Commun. Math. Phys., 1999, 200, 181-193.

Feireisl E., Novotny A., Petzeltova H., On the existence of globally defined weak solution to the Navier-Stokes equations, J.
Math. Fluid Mech., 2001, 3, 358-392.

Jiang S., Zhang P., On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Commun.
Math. Phys., 2001, 215, 559-581.

YinJ. P., Tan Z., Local existence of the strong solutions for the full Navier-Stokes-Poisson equations,Nonlinear Anal., 2009,
71, 2397-2415.

LiJ., Liang Z. L., Some uniform estimates and large-time behavior of solutions to one-dimensional compressible Navier-
Stokes systems in unbounded domains with large data, Arch. Rational Mech. Anal., 2016, 220, 1195-1208.

Chhabra R. P., Richardson J. F., Non-Newtonian Flow and Applied Rheology (Second Edition), Oxford, (2008).

Chevalier T., Rodts S., Chateau X., Chevalier C. and Coussot P., Breaking of non-Newtonian character in flows through a
porous medium, Physical Review E, 2014, 89, 023002.

Yun B. M., Dasi L. P., Aidun C. K. and Yoganathan A. P., Computational modelling of flow through prosthetic heart valves
using the entropic lattice-Boltzmann method, Journal of Fluid Mechanics, 2014, 743, 170-201.

Gachelin J., Mino G., Berthet H., Lindner A., Rousselet A. and Clement E., Non-Newtonian viscosity of Escherichia coli
suspensions, Physical Review Letters, 2013, 110, 268103.

Ladyzhenskaya O. A., New equations for the description of viscous incompressible fluids and solvability in the large of
the boundary value problems for them. In Boundary Value Problems of Mathematical Physics, vol. V, Amer. Math. Soc.,
Providence, RI. (1970) 95-118.

Bohme G., Non-Newtonian fluid Mechanics, Appl.Math.Mech., North-Holland, Amsterdam (1987).

Zhao C., Zhou S., Li Y., Trajectory attractor and global attractor for a two-dimensional incompressible non-Newtonian
fluid. ). Math. Anal. Appl., 2007, 325, 1350-1362.

Yuan H. J., Xu X. J., Existence and uniqueness of solutions for a class of non-Newtonian fluids with singularity and vacuum,
J. Differential Equations, 2008, 245, 2871-2916.



DE GRUYTER The well-posedness of solution to a compressible non-Newtonian fluid — 1477

[22] QinY., Liu X., Yang X., Global existence and exponential stability of solutions to the one-dimensional full non-Newtonian
fluids. Nonlinear Anal., Real World Appl., 2012, 13, 607-633.

[23] WangY., Shu C., Yang L. M., Yuan H. Z., A Decoupling Multiple-Relaxation-Time Lattice Boltzmann Flux Solver for Non-
Newtonian Power-Law Fluid Flows, Journal of Non-Newtonian Fluid Mechanics, 2016, 235, 20-28.

[24] Malek )., Necas )., Rokyta M., Ruzicka M., Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman and Hall,
New York, (1996).



	The well-posedness of solution to a compressible non-Newtonian fluid with self-gravitational potential
	1 Introduction
	2 A priori estimates for smooth solutions
	3 Proof of the existence
	4 Proof of the uniqueness


