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Abstract: We study the initial boundary value problem of a compressible non-Newtonian �uid. The system
describes the motion of the compressible viscous isentropic gas �ow driven by the non-Newtonian self-
gravitational force. The existence of strong solutions are derived in one dimensional bounded intervals by
constructing a semi-discrete Galerkin scheme. Moreover, the uniqueness of solutions are also investigated.
The main point of the study is that the viscosity term and potential term are fully nonlinear, and the initial
vacuum is allowed.
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1 Introduction
In mathematical physics, the Navier-Stokes equation is known as one of the most fundamental equations in
�uidmechanics. The compressible isentropicNavier-Stokes equations,which are the basicmodels describing
the evolution of a viscous compressible �uid in a domain x ∈ Ω, read as follows:

{
ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) − 2div(µD(u)) − ∇(λ div u) + ∇P(ρ) = 0,

(1)

where the unknowns ρ, u represent the density and the velocity of the �uid, respectively. Here D(u) =

(∇u + (∇u)T)/2 is the strain tensor and P(ρ) = aργ(a > 0, γ > 1) is the pressure, µ and λ are the viscosity
constants which satisfy the physical requirements µ ≥ 0 and 2µ+3λ ≥ 0. The Navier-Stokes equations are the
equations governing the motion of usual �uids like water, air, oil etc., under quite general conditions, and
they appear in the study of many important phenomena, either alone or coupled with other equations. For
instance, they are used in theoretical studies in aeronautical sciences, in meteorology, in thermo-hydraulics,
in the petroleum industry, in plasma physics, etc. From the point of view of continuummechanics the Navier-
Stokes equations are essentially the simplest equations describing themotion of a �uid, and they are derived
under a quite simple physical assumption, namely, the existence of a linear local relation between stresses
and strain rates. The compressible isentropic Navier-Stokes equations (1.1) are derived from the conservation
laws of mass and the balance of momentum, (for details see [1, 2]). While the physical model leading to the
Navier-Stokes equations is simple, the situation is quite di�erent from the mathematical point of view. In
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particular, because of the nonlinearity, the mathematical study of these equations is di�cult and requires
the full power of modern functional analysis. A major question is whether the solution remains smooth all
the time. These and other related questions are interesting not only for mathematical understanding of the
equations but also for understanding the phenomenon of turbulence.

There are huge literatures on the study of the existence and behavior of solutions to Navier-Stokes
equations. Some of the previous relevant works in this direction can be summarized as follows. For instance,
the 1D version of (1) were addressed by Kazhikhov et al. in [3] for su�ciently smooth data, and by Ho� [4]
for discontinuous initial data, where the data is uniformly away from the vacuum; the existence of global
weak solutions for isentropic �ow were investigated by Lions in [5] by using the weak convergence method.
In [6], the authors employed a new method to prove the existence and uniqueness of local strong solutions
in the case where the initial data satis�es some compatibility conditions. The dynamics of weak solutions
and vacuum states were investigated in [7] for the 1D compressible Navier-Stokes equations with density-
dependent viscosity in bounded spatial domains or periodic domains. For other results we refer the reader to
[8-13] and the references cited therein.

The above references mainly concerned the �uid which the relation between the stress and rate of
strain is linear, namely, the Newtonian �uid. The study of non-Newtonian �uids (the relation between the
stess and rate of strain is not linear) mechanics is of great signi�cance because such �uids describe more
realistic phenomenon. These �ows are frequently encountered in many physical and industrial processes
[14], such as porous �ows of oils and gases [15], biological �uid �ows of blood [16], saliva and mucus,
penetration grouting of cement mortar and mixing of massive particles and �uids in drug production [17].
Many studies are based on the �eld of non-Newtonian �ows, both theoretically and experimentally. In [18],
Ladyzhenskaya �rst proposed a special form for the incompressible model, namely that the viscous stress
tensor Γij = (µ0 + µ1∣E(∇u)p−2

∣)Eij(∇u). For µ0 = 0, if p < 2, it is a pseudo-plastic �uid, and when p > 2,
it is a dilatant �uid (see also [19]). From a Physics point of view, the model captures the shear thinning �uid
for the case of 1 < p < 2, and captures the shear thickening �uid for the case of p > 2. In [20], the trajectory
attractor and global attractor for an autonomous non-Newtonian �uid in dimension two was studied. The
existence and uniqueness of solutions for non-Newtonian �uids were established in [21] by applying the
Ladyzhenskaya’s viscous stress tensormodel. Then the global existence and exponential stability of solutions
to the one-dimensional full non-Newtonian �uids were investigated in [22]. Recently, in [23], the authors
present a decoupling multiple-relaxation-time lattice Boltzmann �ux solver for simulating non-Newtonian
power-law �uid �ows.

On the other hand, another basiclly important case iswhen themotion of compressible viscous isentropic
�ow is driven by a self-gravitational force. However, at the present, little is known yet on the strong solutions
to system (1) with non-Newtonian self-gravitational potential on bounded domain, even in one dimensional
case. In this paper we focus on the following 1D system of compressible non-Newtonian equations

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ρt + (ρu)x = 0,
(ρu)t + (ρu2

)x + ρΦx − λ(∣ux ∣p−2ux)x + Px = 0,
((Φ

2
x + µ0)

q−2
2 Φx)x = 4πg(ρ − 1

∣Ω∣
∫

Ω

ρdx)
(2)

inΩT = Ω × (0, T) with the initial and boundary conditions

(ρ, u)∣t=0 = (ρ0, u0), x ∈ Ω, (3)
u(x, t)∣∂Ω = Φ(x, t)∣∂Ω = 0, t ∈ [0, T]. (4)

Here, ρ, u, Φ denote the density, velocity and the non-Newtonian gravitational potential, respectively. P =

aργ(a > 0, γ > 1) is the pressure, the initial density ρ0 ≥ 0, 4
3 < p < 2, q > 2 are given constants. Our

purpose is to some further light on problem (2)-(4). When 1 < p < 2, the second equation of (2) always has
singularity. Secondly, we emphasize that the vacuum of initial density may exist. In the presence of vacuum,
the parabolicity is lost. Moreover, the equations are strongly coupled with each other. We will investigate the
existence and uniqueness of local strong solutions of (2)-(4) by overcoming the above di�culties, and the
proof is inspired by the previous work in [6] and [21].
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We state the main results as follows:

Theorem 1.1. Assume that (ρ0, u0) satis�es the following conditions

0 ≤ ρ0 ∈ H1
(Ω), u0 ∈ H1

0(Ω) ∩ H2
(Ω).

If there is a function g ∈ L2
(Ω), such that the initial data satisfy the following compatibility condition:

−[∣u0x ∣
p−2u0x]x + Px(ρ0) = ρ

1
2
0 g, for a.e. x ∈ Ω,

then there exist a time T∗ ∈ (0,+∞) and a unique strong solution (ρ, u,Φ) to (2)-(4) such that

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ρ ∈ L∞([0, T∗];H1
(Ω)), ρt ∈ L∞([0, T∗]; L2

(Ω)), ut ∈ L2
(0, T∗;H1

0(Ω)),
Φ ∈ L∞(0, T∗;H2

(Ω)),Φt ∈ L∞(0, T∗;H1
(Ω)),√ρut ∈ L∞(0, T∗; L2

(Ω))

u ∈ �∞
(0, T∗;W1,p

0 (Ω) ∩ H2
(Ω)), (∣ux ∣p−2ux)x ∈ L2

([0, T∗]; L2
(Ω)).

The rest of the paper is organized as follows. After stating the notations, in Section 2, we �rst present some
useful lemmas, then the analysis of a priori estimates for smooth solutions are derived. In Section 3, we give
the proof of existence, and �nally complete the proof of uniqueness of the main theorem in Section 4.

In what follows, we use the following abbreviations for simplicity of notation:

H1
= H1

(Ω), Lp = Lp(Ω), ∣ ⋅ ∣L2 = ∥ ⋅ ∥L2(Ω), ∣ ⋅ ∣L∞ = ∥ ⋅ ∥L∞(Ω).

Throughout this paper, we will omit the variables t, x of functions if it does not cause any confusion. We use
C to denote a generic constant that may vary in di�erent estimates.

2 A priori estimates for smooth solutions
In this section, we provide some known facts that will be used in the proof of the main result.

Lemma 2.1 ([24]). LetΩ be bounded set in R1, and 1 ≤ q ≤ p ≤ +∞. Then

∥u∥Lq(Ω) ≤ ∣Ω∣
1
q−

1
p ∥u∥Lp(Ω).

Lemma 2.2 ([21]). Let ρ0 ∈ H1
(Ω), u0 ∈ H1

0(Ω) ∩ H2
(Ω), g ∈ L2

(Ω) and uε0 ∈ H1
0(Ω) ∩ H2

(Ω) be a solution of
the boundary value problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−[(
ε(u0x)

2
+1

(u0x)2+ε )

2−p
2 u0x]

x
+ Px(ρ0) = (ρ0)

1
2 g

u0∣∂Ω = 0.

Then there is a subsequences {uεj0 }, j = 1, 2, 3⋯, of {uε0}, as εj → 0,

uεj0 → u0 in H1
0(Ω) ∩ H2

(Ω),

[(
εj(u

εj
0x)

2
+ 1

(uεj0x)
2 + εj

)

2−p
2 uεj0x]x

→ (∣u0x ∣
p−2u0x)x in L2

(Ω).

To prove the existence of strong solutions, we require some more regular estimates. Next, we derive some a
priori estimates for smooth solutions which are crucial to prove the local existence of strong solutions.

Let (ρ, u,Φ) be a smooth solution of (2)-(4) and ρ0 ≥ δ, where 0 < δ ≪ 1 is a positive number, m0 ∶=

∫Ω ρ0(x)dx be initial mass and m0 > 0. Throughout the paper, we will denote

M0 = 1 + µ0 + µ
−1
0 + ∣ρ0∣H1 + ∣g∣L2 .
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As stated above, we need to estimate the uniform bound of the approximate solutions. Now, we consider the
following linearized problem

ρt + (ρu)x = 0, (5)

(ρu)t + (ρu2
)x + ρΦx + Lpu + Px = 0, (6)

LqΦ = 4πg(ρ − 1
∣Ω∣
∫

Ω

ρdx) (7)

with the initial and boundary conditions

(ρ, u)∣t=0 = (ρ0, u0), x ∈ Ω (8)
u(x, t)∣∂Ω = Φ(x, t)∣∂Ω = 0, t ∈ [0, T] (9)

where
Lpu = −[(

εu2
x + 1

u2
x + ε

)

2−p
2 ux]

x
, LqΦ = ((Φx)

2
+ µ0)

q−2
2 Φx)x

and u0 ∈ H1
0 ∩ H2 is the smooth solution of the boundary value problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−[(
εu2

0x+1
u2

0x+ε
)

2−p
2 u0x]

x
+ Px(ρ0) = ρ

1
2
0 g

u0∣∂Ω = 0.
(10)

We will prove the existence of solutions for (5)-(9) by virtue of the uniform estimates which do not depend on
ε, depending only on M0, and prove the limit of the approximate solutions is the solution of problem (2)-(4)
with vacuum.

It follows from (10) and Young’s inequality that there exists a constant C depending only on M0, such
that

∣u0xx ∣L2 ≤ C(1 + ∣ρ0∣
1
2
L∞ ∣g∣L2 + ∣Px(ρ0)∣L2)

1
p−1 ≤ C.

We construct an auxiliary function

Ψ(t) = 1 + ∣ρ(s)∣H1(Ω) + ∣u(s)∣W1,p
0 (Ω)

+ ∣
√
ρut(s)∣L2(Ω))

Our derivation will be based on the local boundedness of Ψ(t). Before we estimate each term of Ψ , we need
to do the estimate of ∣uxx ∣L2 . Firstly, multiplying (7) byΦ and integrating overΩ and using Young’s inequality,

∫

Ω

∣Φx ∣
qdx ≤ C(m0). (11)

Then, it follows from equation (6) and (5) that

∣uxx ∣ ≤
1

p − 1
(∣ux ∣2−p + 1)∣ρut + ρuux + ρΦx + Px ∣.

Taking it by L2-norm, using Young’s inequality, we obtain

∣uxx ∣p−1
L2 ≤ C[1 + ∣ρut ∣L2 + ∣ρuux ∣L2 + ∣ρΦx ∣L2 + ∣Px ∣L2]

≤ C[1 + ∣ρ∣
1
2
L∞ ∣

√
ρut ∣L2 + (∣ρ∣L∞ ∣ux ∣

p
2+1
Lp )

2(p−1)
3p−4 + ∣ρ∣L∞ ∣Φx ∣Lq + ∣Px ∣L2 +

1
2
∣uxx ∣p−1

L2

which along with (11), implies that

∣uxx(t)∣L2 ≤ CΨ
6γ

3p−4 (t). (12)
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Estimate for ∣ρ∣H1

We are going to estimate the �rst term of Ψ(t). Multiplying (5) by ρ and integrating over Ω with respect to x,
we obtain from Sobolev inequality

d
dt

∣ρ(t)∣2L2 ≤ ∣uxx ∣L2 ∣ρ∣
2
L2 . (13)

Di�erentiating (5) with respect to x, multiplying it by ρx and integrating over Ω on x, and using Sobolev
inequality, we have

d
dt ∫

Ω

∣ρx ∣
2dx = − ∫

Ω

[
3
2
ux(ρx)2

+ ρρxuxx](t)dx ≤ 3∣ρx ∣2L2 ∣uxx ∣L2 . (14)

Together with (13),(14) and Gronwall’s inequality, it follows that

sup
0≤t≤T

∣ρ(t)∣2H1 ≤ C exp(C
t

∫

0

Ψ
6γ

3p−4 (s)ds). (15)

Using (5) we obtain

∣ρt(t)∣L2 ≤ ∣ρx(t)∣L2 ∣u(t)∣L∞ + ∣ρ(t)∣L∞ ∣uxx(t)∣L2 ≤ CΨ
6γ+2
3p−4 (t). (16)

Besides, di�erentiating (7) with respect to time t, multiplying it by Φt and integrating over Ω with respect to
x and using Young’s inequality, we have

∣Φxt ∣
2
L2 ≤ CΨ4

(t), (17)

where C is a positive constant depending only on M0.

Estimate for ∣u∣W1,p
0

We turn to the second term of Ψ(t). Multiplying (6) by ut, integrating overΩT , together with (5), (10), Sobolev
inequality and Young’s inequality, we obtain

t

∫

0

∣
√
ρut(s)∣2L2(s)ds + ∣ux(t)∣pLp ≤∬

ΩT

(∣ρuuxut ∣ + ∣ρΦxut ∣ + ∣Pxuux ∣ + γ∣Pu2
x ∣)dxds

+ ∫

Ω

(∣Pux ∣dx + γ∣Pu2
x ∣)dxds + C

≤ C(1 + ∫
Ω

Ψ
24γ

3p−4 (s)ds). (18)

In the second inequality we have used

∣ρ(t)∣L∞ + ∣P(t)∣H1 ≤ ∣ρ(t)∣H1 + C∣ρ(t)∣γ−1
L∞ ∣ρ(t)∣H1 ≤ CΨγ(t).

∫

Ω

∣P(t)∣
p

p−1 dx = ∫
Ω

∣P(0)∣
p

p−1 dx +
t

∫

0

∂
∂s

(∫

Ω

P(s)
p

p−1 dx)ds

≤ C + C∫
Ω

∣ρ(s)∣γ−1
L∞ ∣P(s)∣

1
p−1
L∞ ∣ρ(s)∣H1 ∣ux(s)∣Lpds

≤ C(1 + ∫
Ω

Ψ
2γ+1
p−1 (s)ds),

where C is a positive constant, depending only on M0.
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Estimate for ∣√ρut ∣L2
We estimate the last term of Ψ(t). Di�erentiating (6) with respect to t yields

ρutt + ρuuxt − [(
εu2

x + 1
u2
x + ε

)

2−p
2 ux]

xt
= (−ut − uux − Φx)ρt − ρutux − ρΦxt − Pxt .

Multiplying it by ut and integrating overΩ with respect to x, we derive

1
2
d
dt ∫

Ω

ρ∣ut ∣2dx + ∫
Ω

[(
εu2

x + 1
u2
x + ε

)

2−p
2 ux]

t
uxtdx

= ∫

Ω

[ρt(−ut − uux − Φx) − ρutux − ρΦxt]utdx + ∫
Ω

Ptuxtdx. (19)

Note that

∫

Ω

[(
εu2

x + 1
u2
x + ε

)

2−p
2 ux]

t
uxtdx ≥ (p − 1)∫

Ω

(u2
x + 1)

p−2
2 ∣uxt ∣2dx. (20)

Let
β = (u2

x + 1)
p−2

4 .

From (12), it follows that

∣β
−1

∣L∞ = ∣(u2
x + 1)

2−p
4 ∣L∞ ≤ C(∣uxx ∣

2−p
2

L2 + 1) ≤ CΨ
(p+4)(p−1)(2−p)γ

2(3p−4) ≤ CΨ
3γ

3p−4 .

Then, from (20) and (5), (19) can be rewritten as

1
2
d
dt ∫

Ω

ρ∣ut ∣2dx + (p − 1)∫
Ω

∣βuxt ∣2dx

≤ ∫

Ω

2ρ∣u∣∣ut ∣∣uxt ∣dx + ∫
Ω

∣ρx ∣∣u∣2∣ux ∣∣ut ∣dx + ∫
Ω

ρ∣u∣∣ux ∣2∣ut ∣dx

+ ∫

Ω

∣Px ∣∣u∣∣uxt ∣dx + ∫
Ω

γP∣ux ∣∣uxt ∣dx + ∫
Ω

∣ρx ∣∣u∣∣Φx ∣∣ut ∣dx

+ ∫

Ω

ρ∣ux ∣∣Φx ∣∣ut ∣dx + ∫
Ω

ρ∣ut ∣∣ux ∣∣ut ∣dx + ∫
Ω

ρ∣Φxt ∣∣ut ∣dx =
9
∑
j=1

Ij . (21)

Using Sobolev inequality, Young’s inequality, (6) and (12), we obtain

I1 ≤ 2∣ρ∣
1
2
L∞ ∣u∣L∞ ∣

√
ρut ∣L2 ∣βuxt ∣L2 ∣β

−1
∣L∞ ≤ CΨ

16γ
3p−4 (t) + p − 1

6
∣βuxt ∣2L2 ,

I2 ≤ ∣ρx ∣L2 ∣u∣2L∞ ∣ux ∣pLp ∣ux ∣
1− p

2
L∞ ∣ut ∣L∞ ≤ ∣ρx ∣L2 ∣ux ∣2+pLp ∣uxx ∣

1− p
2

L2 ∣βuxt ∣L2 ∣β
−1

∣L∞

≤ CΨ
23γ

3p−4 (t) + p − 1
6

∣βuxt ∣2L2 ,

I3 ≤ ∣ρ∣
1
2
L2 ∣u∣L∞ ∣∣ux ∣2L∞ ∣

√
ρut ∣L2 ≤ CΨ

22γ
3p−4 (t),

I4 ≤ ∣Px ∣L2 ∣u∣L∞ ∣βuxt ∣L2 ∣β
−1

∣L∞ ≤ CΨ
14γ

3p−4 (t) + p − 1
6

∣βuxt ∣2L2 ,

I5 ≤ C∣P∣L2 ∣ux ∣L∞ ∣βuxt ∣L2 ∣β
−1

∣L∞ ≤ CΨ
22γ

3p−4 (t) + p − 1
6

∣βuxt ∣2L2 ,

I6 ≤ ∣ρx ∣L2 ∣u∣L∞ ∣Φx ∣L2 ∣ut ∣L∞ ≤ ∣ρx ∣L2 ∣ux ∣Lp ∣Φx ∣Lq ∣βuxt ∣L2 ∣β
−1

∣L∞

≤ CΨ
14γ

3p−4 (t) + p − 1
6

∣βuxt ∣2L2 ,

I7 ≤ ∣ρ∣
1
2
L∞ ∣ux ∣L∞ ∣Φx ∣L2 ∣

√
ρut ∣L2 ≤ ∣ρ∣

1
2
L∞ ∣uxx ∣L2 ∣Φx ∣Lq ∣

√
ρut ∣L2 ≤ CΨ

18γ
3p−4 (t),

I8 ≤ ∣
√
ρut ∣2L2 ∣ux ∣L∞ ∣ ≤ CΨ

16γ
3p−4 (t),
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I9 ≤ ∣ρ∣L2 ∣Φxt ∣L2 ∣ut ∣L∞ ≤ ∣ρ∣L2 ∣Φxt ∣L2 ∣βuxt ∣β−1
∣L∞ ≤ CΨ

18γ
3p−4 +

p − 1
6

∣βuxt ∣2L2 .

Substituting Ij(j = 1, 2, . . . , 9) into (21) and integrating over (τ , t) ⊂ (0, T), we have

∣
√
ρut(t)∣2L2 + (p − 1)

t

∫
τ

∣βuxt ∣2L2(s)ds ≤ C
t

∫
τ

Ψ
23γ

3p−4 (s)ds + ∣
√
ρut(τ)∣2L2 . (22)

Next, we estimate lim
τ→0

∣
√
ρkukt (τ)∣2L2 .

Multiplying (6) by ut and integrating overΩ, we obtain

∫

Ω

ρ∣ut ∣2dx ≤ 2∫
Ω

(ρ∣u∣2∣ux ∣2 + ρ∣Φx ∣
2
+ ρ

−1
∣Lpu + Px ∣2)dx.

Since (ρ, u,Φ) is a smooth solution, we have

lim
τ→0∫

Ω

(ρ∣u∣2∣ux ∣2 + ρ∣Φx ∣
2
+ ρ

−1
∣Lpu + Px ∣2)dx

= ∫

Ω

(ρ0∣u0∣
2
∣u0x ∣

2
+ ρ0∣Φ0x ∣

2
+ ∣g∣2)dx

≤ ∣ρ0∣L∞ ∣u0∣
2
L∞ ∣u0x ∣

2
L2 + ∣ρ0∣L∞ ∣Φ0x ∣

2
L2 + ∣g∣2L2 .

Then taking a limit on τ for (22) as τ → 0, we get

∣
√
ρut(t)∣2L2 +

t

∫

0

∣βuxt ∣2L2(s)ds ≤ C(1 +
t

∫

0

Ψ
23γ

3p−4 (s)ds), (23)

which combined with (12), (15)-(17), (18) and the de�nition of Ψ(t) leads to

Ψ(t) ≤ C exp(C̃
t

∫

0

Ψ
6γ

3p−4 (s)ds),

where C, C̃ are positive constants, depending only on M0.
In view of this inequality, we can �nd a time T∗ > 0 and a constant C, such that

sup
0≤t≤T1

(∣ρ∣H1 + ∣u∣W1,p
0 ∩H2 + ∣

√
ρut ∣L2 + ∣ρt ∣L2 +

T∗

∫

0

(∣uxt(s)∣2L2)ds ≤ C,

where C is a positive constant depending only on M0.

3 Proof of the existence
Since a priori estimates for higher regularity have been derived, the existence of strong solutions can be
established by a standard argument, in the case of bounded domains,we construct approximate solutions via
a semi-discreteGalerkin scheme, deriveuniformbounds and thus obtain solutions bypassing to the limit. Our
method that constructed approximate systems is similar to that in [6]. To implement a semi-discrete Galerkin
scheme, we take our basic function space as X = H1

0(Ω) ∩ H2
(Ω) and its �nite-dimensional subspaces as

X = span{’1, ’2, Π, ’m
} ⊂ X∩C2

(Ω). Henceϕm is themth eigenfunction of the general elliptic operator de�ned
on X.

Let ρ0, u0,Φ0, and f be functions satisfying the hypothes of theorem, assume for the moment that ρδ0 ∈

C(Ω) and ρ0δ ≥ δ inΩ for some constant δ > 0. We can construct an approximate solution for any v ∈ Xm ,ϕ ∈

C2
(Ω), such that

ρ
m
t + (ρ

mum)x = 0,
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∫

Ω

(ρ
mumt + ρmumumx + ρmΦm

x + Lpum + Pmx )vdx = 0,

∫

Ω

LqΦm
φdx = 4πg∫

Ω

(ρ
m
−
m0

∣Ω∣
)φdx.

The initial and boundary conditions are

um0 ≡
m
∑
k=1

(u0,ϕk
)L2(Ω)ϕ

k , ρ
m
(0) = ρδ0, ρ

δ
< ∣ρ0∣L∞(Ω) + 1,

∣ρ
δ
0 − ρ0∣H1(Ω) → 0, um ∣∂Ω = Φ

m
∣∂Ω = 0.

Under the hypotheses of the theorem, similarly, for any �xed δ > 0, we may get the similar estimate

sup
0≤t≤T1

(∣ρ
m
∣H1 + ∣um ∣W1,p

0 ∩H2 + ∣
√
ρ
mumt ∣L2 + ∣ρ

m
t ∣L2 +

T∗

∫

0

(∣umxt(s)∣2L2)ds ≤ C. (24)

Since C does not depend on ε, δ and m (for any m > M, M is dependent on the approximate velocity of
the initial condition). We can deduce from the uniform estimate(24) that (ρm , um ,Φm

) converges, up to an
extraction of subsequences. Let m →∞. We obtain the following estimates in the obvious weak sense

sup
0≤t≤T1

(∣ρ
δ
∣H1 + ∣uδ ∣W1,p

0 ∩H2 + ∣
√
ρ
δuδt ∣L2 + ∣ρ

δ
t ∣L2 +

T∗

∫

0

(∣uδxt(s)∣2L2)ds ≤ C.

For each small δ > 0, ρδ0 = Jδ ∗ ρ0 + δ is a molli�er on Ω, and uδ0 ∈ H1
0(Ω) ∩ H2

(Ω) is the unique solution of
the boundary value problem

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−[(
ε(uδ0x)

2
+1

(uδ0x)2+ε
)

2−p
2 uδ0x]

x
+ Px(ρδ0) = (ρδ0)

1
2 gδ

uδ0∣∂Ω = 0,
(25)

where gδ ∈ C∞0 , and ∣gδ ∣L2(Ω) ≤ ∣g∣L2(Ω), lim
δ→0+

∣gδ − g∣L2 = 0.

We deduce that (ρδ , uδ ,Φδ) is a solution of the following initial and boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + (ρu)x = 0,
(ρu)t + (ρu2

)x + ρΦx − λ(∣ux ∣p−2ux)x + Px = 0,
((Φ2

x + µ0)
q−2

2 Φx)x = 4πg(ρ − 1
∣Ω∣ ∫Ω ρdx)

(ρ, u)∣t=0 = (ρδ0, uδ0),
u(x, t)∣∂Ω = Φ(x, t)∣∂Ω = 0,

where 4
3 < p < 2, q > 2.

Together with Lemma 2.2, there is s subsequence {uεj ,δ} of {uε,δ}, as εj → 0, {uεj ,δ0 } → uδ0 in H1
0(Ω) ∩

H2
(Ω). Also there is a subsequence {uδj0 } of {uδ0}, such that as δj → 0+, uδj0 → u0 in H1

0(Ω) ∩ H2
(Ω). With

ρδ0 = Jδ ∗ ρ0 + δ, we have, as δj → 0+, Px(ρδj0 ) − (ρ
δj
0 )

1
2 gδj → Px(ρ0) − (ρ0)

1
2 g in L2

(Ω). By (25), there exists
a subsequence {uδj0 } of {uδ0}, such that as δj → 0+, (∣uδj0x ∣

p−2uδj0x)x → (∣u0x ∣
p−2u0x)x in L2

(Ω). Hence, u0 ∈

H1
0(Ω) ∩ H2

(Ω) satis�es equation −(∣u0x ∣
p−2u0x)x + Px(ρ0) = (ρ0)

1
2 g for a.e. x ∈ Ω and is a unique solution.

According to above uniform estimates, by the lower semi-continuity of various norms, we have

sup
0≤t≤T1

(∣ρ∣H1 + ∣u∣W1,p
0 ∩H2 + ∣

√
ρut ∣L2 + ∣ρt ∣L2 +

T∗

∫

0

(∣uxt(s)∣2L2)ds ≤ C

where C is a positive constant depending only on M0.
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4 Proof of the uniqueness
We now prove the uniqueness results. Let (ρ, u,Φ), (ρ̄, ū, Φ̄) be two solutions of the problem (2)-(4). Combin-
ing (2)1 and (2)2,

(ρu)t + (ρu2
)x + ρΦx + (∣ux ∣p−2ux)x + Px = 0,

(ρ̄ū)t + (ρ̄ū2
)x + ρ̄Φ̄x + (∣ūx ∣p−2ūx)x + P̄x = 0,

we show that

ρ(u − ū)t + ρu(u − ū)x − [(∣ux ∣p−2ux)x − (∣ūx ∣p−2ūx)x]
= (ρ − ρ̄)(−ūt − ūūx − Φ̄x) − (P − P̄)x − ρ(Φ − Φ̄)x − ρ(u − ū)ūx .

Multiplying the above equation by (u − ū) and integrating overΩ, we obtain

1
2
d
dt ∫

Ω

ρ(u − ū)2dx + ∫
Ω

(∣ux ∣p−2ux − ∣ūx ∣p−2ūx)(u − ū)xdx

≤∫

Ω

{∣ρ − ρ̄∣∣ − ūt − ūūx − Φ̄x ∣∣u − ū∣ + ∣P − P̄∣∣(u − ū)x ∣

+ ρ∣(Φ − Φ̄)x ∣∣u − ū∣ + ρ∣u − ū∣2∣ūx ∣}dx
≤∣ρ − ρ̄∣L2 ∣ − ūt − ūūx − Φ̄x ∣L2 ∣u − ū∣L∞ + ∣P − P̄∣L2 ∣(u − ū)x ∣L2

+ ∣ρ∣L∞ ∣(Φ − Φ̄)x ∣L2 ∣u − ū∣L2 + ∣
√
ρ(u − ū)∣2L2 ∣ūx ∣L∞

≤∣ρ − ρ̄∣
2
L2(C + C∣ūt ∣2L2) + C∣P − P̄∣2L2 + ∣

√
ρ(u − ū)∣2L2 + ε∣(u − ū)x ∣2L2 . (26)

Since

∫

Ω

(∣ux ∣p−2ux − ∣ūx ∣p−2ūx)(u − ū)xdx = 1
p − 1 ∫

Ω

(

1

∫

0

∣θux + (1 − θ)ūx ∣p−2dθ)(u − ū)2
xdx

1

∫

0

∣θux + (1 − θ)ūx ∣p−2dθ ≥
1

∫

0

1
(∣ux ∣ + ∣ūx ∣)2−p dθ = 1

(∣ux ∣ + ∣ūx ∣)2−p .

Thus

∫

Ω

(∣ux ∣p−2ux − ∣ūx ∣p−2ūx)(u − ū)xdx

≥
1

(∣ux ∣L∞(0,t;L∞(I)) + ∣ūx ∣L∞(0,t;L∞(I)))2−p ∫
Ω

(u − ū)2
xdx

≥
1
C ∫
Ω

(u − ū)2
xdx.

Moreover, from (2)3, by a direct calculation, we have

((Φ
2
x + µ0)

q−2
2 Φx)x − ((Φ̄

2
x + µ0)

q−2
2 Φ̄x)x = 4πg(ρ − ρ̄).

Multiplying it by (Φ − Φ̄) and integrating overΩ, we obtain

∫

Ω

[(Φ
2
x + µ0)

q−2
2 Φx − (Φ̄

2
x + µ0)

q−2
2 Φ̄x](Φ − Φ̄)xdx

= −∫

Ω

4πg(ρ − ρ̄)(Φ − Φ̄)xdx ≤ C∣ρ − ρ̄∣L2 + ε∣(Φ − Φ̄)x ∣L2 . (27)
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Note that

∫

Ω

[(Φ
2
x + µ0)

q−2
2 Φx − (Φ̄

2
x + µ0)

q−2
2 Φ̄x](Φ − Φ̄)xdx

= ∫

Ω

[

1

∫

0

ω
′
(θΦx + (1 − θ)Φ̄x)dθ](Φx − Φ̄x)

2dx, (28)

ω
′
(s) = [(s2

+ µ0)
q−2

2 s]′ = (s2
+ µ0)

p−4
2 ((p − 1)s2

+ µ0) ≥ µ
p−2

2
0 .

Together with (27) and (28), we arrive at ∣(Φ − Φ̄)x ∣2L2 ≤ C∣ρ − ρ̄∣2L2 .
Consequently, (26) can be rewritten as

1
2
d
dt

∣
√
ρ(u − ū)(t)∣2L2 +

1
C
∣ux − ūx ∣2L2 ds

≤∣ρ − ρ̄∣
2
L2(C + C∣ūt ∣2L2) + C∣P − P̄∣2L2 + ∣

√
ρ(u − ū)∣2L2 . (29)

On the other hand, from the conservation of mass equation (2)1, using the identity

(ρ − ρ̄)t + (ρ − ρ̄)xu + ρ̄x(u − ū) + (ρ − ρ̄)ux + ρ̄(ux − ūx) = 0. (30)

Multiplying the above equation by (ρ − ρ̄) and integrating it overΩ, we obtain

1
2
d
dt ∫

Ω

(ρ − ρ̄)
2dx + ∫

Ω

1
2
(ρ − ρ̄)

2uxdx + ∫
Ω

ρ̄x(u − ū)(ρ − ρ̄)dx

+ ∫

Ω

(ρ − ρ̄)
2uxdx + ∫

Ω

ρ̄(u − ū)x(ρ − ρ̄)dx = 0.

Thus

1
2
d
dt ∫

Ω

(ρ − ρ̄)
2dx ≤ C(∣ux ∣L∞ ∣ρ − ρ̄∣

2
L2 + ∣ρx ∣L2 ∣u − ū∣L∞ ∣ρ − ρ̄∣L2

+ ∣ρ̄∣L∞ ∣(u − ū)x ∣L2 ∣ρ − ρ̄∣L2)

≤ C∣ρ − ρ̄∣2L2 + C(ε)∣(u − ū)x ∣2L2 . (31)

Furthermore, (5)1 implies

(P − P̄)t + (P − P̄)x ū + P̄x(u − ū) + γ(P − P̄)ux + γP̄(u − ū)x = 0.

Multiplying it by (P − P̄) and integrating overΩ, we get

1
2
d
dt ∫

Ω

(P − P̄)2dx = 1
2 ∫
Ω

(P − P̄)2uxdx + ∫
Ω

P̄x(u − ū)(P − P̄)dx

− γ ∫
Ω

(P − P̄)2uxdx + γ ∫
Ω

P̄(u − ū)x(P − P̄)dx

≤ (C∣ux ∣L∞ ∣P − P̄∣2L2 + C∣P̄∣H1 ∣u − ū∣L∞ ∣P − P̄∣L2)

≤ (C(∣ux ∣L∞ + ∣P̄∣H1 + 1)∣P − P̄∣2L2)ds + ε∣(u − ū)x ∣2L2 . (32)

From(29)-(32), we obtain

d
dt ∫

Ω

(ρ(u − ū)2
+ (ρ − ρ̄)

2
+ (P − P̄)2

)dx + ∫
Ω

(u − ū)2
xdx

≤C((1 + ∣ūt ∣2L2 + ∣ūx ∣2L∞ + ∣ρ∣
2
H1 + ∣ux ∣L∞ + ∣P̄x ∣2L2)
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(∣
√
ρ(u − ū)∣2L2 + ∣(ρ − ρ̄)∣

2
L2 + ∣(P − P̄)∣2L2).

From this and the Grownwall’s inequality, yields

∣
√
ρ(u − ū)∣2L2 + ∣ρ − ρ̄∣

2
L2 + ∣P − P̄∣2L2 = 0

which means
u = ū, ρ = ρ̄,Φ = Φ̄.

This complete the proof of the main theorem.
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