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1 Introduction and statement of main results
Beam equations have historical importance, as they have been the focus of attention for prominent scientists
such as Leonardo da Vinci (14th Century) and Daniel Bernoulli (18th Century) [9]. In this article, we study the
existence of solutions to boundary value problem (BVP) of discrete generalized beam equation

∆
4x(t − 2) −∆ (r(t − 1)∆x(t − 1)) = f(t, x(t)), t ∈ [1, T]Z, (1.1)

with boundary value conditions

∆
kx(−1) = ∆kx(T − 1), k = 0, 1, 2, 3, (1.2)

where 1 ≤ T ∈ N, ∆ is the forward di�erence operator de�ned by ∆x(t) = x(t + 1) − x(t), ∆kx(t) =

∆(∆k−1x(t)) (2 ≤ k ≤ 4), ∆0x(t) = x(t), de�ne [1, T]Z ∶= [1, T] ∩ Z, r(t) ∈ RT+1 with r(0) = r(T),
f(t, x) ∈ C([1, T]Z ×R,R).

(1.1) and (1.2) can be considered as a discrete analogue of

x(4)
(s) − [r(s)x′(s)]′ = f(s, x(s)), s ∈ (0, 1), (1.3)

with boundary value conditions
x(k)(0) = x(k)(1), k = 0, 1, 2, 3. (1.4)
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(1.3) is a generalization of the beam equation

x(4)
(s) = f(s, x(s)), s ∈ R.

Practical applications of the beam equations [9] are evident inmechanical structures built under the premise
of beam theory. In recent years, many researchers [6,10,12,21,22] have paid a lot of attention to equations
similar to (1.3).

Di�erence equations [1-5,7,11,13-15,17-20,23,24,26,27] are widely found in mathematics itself and in its
applications to combinatorial analysis, quantum physics, chemical reactions and so on. Many authors were
interested in di�erence equations and obtained many signi�cant conclusions.

Cabada and Dimitrov [4] studied the following nonlinear singular and non-singular fourth-order di�er-
ence equation

x(t + 4) +Mx(t) = λg(t)f(x(t)) + c(t), t ∈ {0, 1,⋯, T − 1},

coupledwith periodic boundary value conditions. They obtained some su�cient conditions on existence and
nonexistence theorems.

In 2010, He and Su [11] considered boundary value problems of the fourth order nonlinear di�erence
equation

∆
4x(t − 1) + η∆2x(t − 1) − ξx(t) = λf(t, x(t)), t ∈ Z[a + 1, b + 1],

with three parameters by using the critical point theory and monotone operator theory. They obtained some
existence, multiplicity, and nonexistence of nontrivial solutions.

By using the Dancer’s global bifurcation theorem, Ma and Lu [15] investigated the boundary value
problem to the following fourth order nonlinear di�erence equation

∆
4x(t − 2) = λh(t)f(x(t)), t ∈ {2, 3,⋯, T},

and gave the existence and multiplicity of positive solutions.
Fang and Zhao [7] in 2009 established a su�cient condition for the existence of nontrivial homoclinic

orbits for fourth order di�erence equation

∆
4x(t − 2) − r(t)x(t) + f(t, x(t + 1), x(t), x(t − 1)) = 0, t ∈ Z,

by using Mountain Pass Theorem, a weak convergence argument and a discrete version of Lieb’s lemma.
There are numerous papers dealing with similar problems to the one that we study (nonlinear di�erence

equation with semide�nite linear parts, periodic boundary value problems) and many of these use similar
techniques-matrix formulation in RN with various variational methods (see, e.g., [3, 8, 19, 25]) and in many
cases even the saddle point theorem (e.g., [17, 23]). In this article, the boundary value problems of a discrete
generalized beam equation are explored. Applying the critical point theory, we establish some criteria for the
existence of the solutions for (1.1) and (1.2). The eigenvalues of some symmetric matrix associated with the
problem are used in proving main results. The motivation for this article comes from the recent article [11]
since it deals with boundary value problem to the fourth order di�erence equation by using the critical point
theory.

Let

G(t, x) =
x

∫

0

f(t, s)ds,

for any (t, x) ∈ [1, T]Z ×R.
The rest of this article is organized as follows. In Section 2,we state somepreliminary lemmasand transfer

the existence of the BVP of (1.1) and (1.2) into the existence of the critical points of some functionals. Ourmain
results are given in Section 3. In Section 4, we prove our main results by making use of variational methods.
Two examples are presented to illustrate our main results in Section 5.
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2 Preliminary lemmas
Let Q and R be Banach spaces, and P ⊂ Q be an open subset of Q. A function I ∶ P → R is called Fréchet
di�erentiable at x ∈ P if there exists a bounded linear operator Lx ∶ Q → R such that

lim
h→0

∥I(x + h) − I(x) − Lx(h)∥R
∥h∥Q

= 0.

We write I′(x) = Lx and call it the Fréchet derivative of I at x.
Let X be a real Banach space and I ∈ C1

(X,R) be a continuously Fréchet di�erentiable functional de�ned
on X. As usually, I is said to satisfy the Palais-Smale condition if any sequence {xk}∞k=1 ⊂ X for which
{I (xk)}∞k=1 is bounded and I′ (xk) → 0 as k → ∞ possesses a convergent subsequence. Here, the sequence
{xk}∞k=1 is called a Palais-Smale sequence.

Let X be a real Banach space. We denote by the symbol Br the open ball in X about 0 of radius r, ∂Br its
boundary, and B̄r its closure.

Denote a space X as

X ∶= {x ∶ [−1, T + 2]Z → R∣∆
kx(−1) = ∆kx(T − 1), k = 0, 1, 2, 3}.

For any x ∈ X, we de�ne

(x, y) ∶=
T
∑
t=1

x(t)y(t), ∀x, y ∈ X,

and

∥x∥ ∶= (
T
∑
t=1

x2
(t))

1
2

, ∀x ∈ X.

Denote the norm ∥ ⋅ ∥q on X by

∥x∥q = (
T
∑
t=1

∣x(t)∣q)
1
q

, (2.1)

for all x ∈ X and q > 1.
As usual, we use ∥x∥ = ∥x∥2 for the Euclidean norm. Since ∥x∥q and ∥x∥ are equivalent, there are numbers

τ1, τ2 such that τ2 ≥ τ1 > 0, and
τ1∥x∥ ≤ ∥x∥q ≤ τ2∥x∥, ∀x ∈ X. (2.2)

Remark 2.1. For any x ∈ X, it is obvious that

x(−1) = x(T − 1), x(0) = x(T), x(1) = x(T + 1), x(2) = x(T + 2). (2.3)

In fact, X is isomorphic toRT . In the later sections of this article, when we write x = (x(1), x(2),⋯, x(T)) ∈ RT ,
we always imply that x can be extended to a vector in X so that (2.3) is satis�ed.

For any x ∈ X, we denote the functional I by

I(x) ∶= −1
2

T
∑
t=1

(∆
2x(t − 2))

2
−

1
2

T
∑
t=1

r(t)(∆x(t))2
+

T
∑
t=1

G(t, x(t)). (2.4)

Hence I ∈ C1
(X,R). By computing, we have

∂I
∂x(t)

= −∆
4x(t − 2) +∆ (r(t − 1)∆x(t − 1)) + f(t, x(t)), t ∈ [1, T]Z.

Accordingly, I′(x) = 0 if and only if

∆
4x(t − 2) −∆ (r(t − 1)∆x(t − 1)) = f(t, x(t)), t ∈ [1, T]Z.
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As a result, a function x ∈ X is a critical point of the functional I on X if and only if x is a solution of the BVP
(1.1) and (1.2). For convenience, we de�ne two T × T matrices as follows.

When T = 1, de�ne A = B = (0).
When T = 2, de�ne

A = (
8 −8
−8 8

) ,

and

B = (
r(0) + r(1) −r(0) − r(1)
−r(0) − r(1) r(0) + r(1)

) .

When T = 3, de�ne

A =

⎛
⎜
⎜
⎝

6 −3 −3
−3 6 −3
−3 −3 6

⎞
⎟
⎟
⎠

.

When T = 4, de�ne

A =

⎛
⎜
⎜
⎜
⎜
⎝

6 −4 2 −4
−4 6 −4 2
2 −4 6 −4
−4 2 −4 6

⎞
⎟
⎟
⎟
⎟
⎠

.

When T ≥ 5, de�ne

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

6 −4 1 0 0 ⋯ 0 0 1 −4
−4 6 −4 1 0 ⋯ 0 0 0 1
1 −4 6 −4 1 ⋯ 0 0 0 0
0 1 −4 6 −4 ⋯ 0 0 0 0
0 0 1 −4 6 ⋯ 0 0 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 0 ⋯ 6 −4 1 0
0 0 0 0 0 ⋯ −4 6 −4 1
1 0 0 0 0 ⋯ 1 −4 6 −4
−4 1 0 0 0 ⋯ 0 1 −4 6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

When T ≥ 3, de�ne

B =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r(0) + r(1) −r(1) 0 ⋯ −r(0)
−r(1) r(1) + r(2) −r(2) ⋯ 0

0 −r(2) r(2) + r(3) ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 ⋯ −r(T − 1)
−r(0) 0 0 ⋯ r(T − 1) + r(0)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

LetΩ ∶= A + B. Consequently, the functional I(x) can be rewritten as

I(x) = −1
2
x∗Ωx +

T
∑
t=1

G(t, x(t)). (2.5)

Lemma 2.2 (Saddle Point Theorem [16]). Let X be a real Banach space, X = X1 ⊕ X2, where X1 ≠ {0} and is
�nite dimensional. Assume that I ∈ C1

(X,R) satis�es the Palais-Smale condition and
(I1) there exist two constants σ, ρ > 0 such that I∣∂Bρ∩X1 ≤ σ;
(I2) there exists e ∈ Bρ ∩ X1 and a constant ω > σ such that Ie+X2 ≥ ω.

Then I possesses a critical value c ≥ ω, where

c = inf
h∈Γ

max
x∈Bρ∩X1

I(h(x)), Γ = {h ∈ C(B̄ρ ∩ X1, X) ∣ h∣∂Bρ∩X1 = id}

and id denotes the identity operator.
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3 Main results
We shall give our main results in this section.

Theorem 3.1. Suppose that the following conditions are satis�ed:
(r) for any t ∈ [0, T]Z, r(t) ≥ 0;
(G1) there is a positive constant c1 such that

∣f(t, x)∣ ≤ c1, ∀(t, x) ∈ [1, T]Z ×R;

(G2) G(t, x) → +∞ uniformly for t ∈ [1, T]Z as ∣x∣ → +∞.
Then the BVP (1.1), (1.2) possesses at least one solution.

Remark 3.2. Condition (G1) means that there is a positve constant c2 such that
(G′1) ∣G(t, x)∣ ≤ c1∣x∣ + c2, ∀(t, x) ∈ [1, T]Z ×R.

Theorem 3.3. Suppose that (r) and the following conditions are satis�ed:
(G3) there are two constants 1 < µ < 2 and δ > 0 such that

0 < xf(t, x) ≤ µG(t, x), ∀t ∈ [1, T]Z, ∣x∣ ≥ δ;

(G4) there are three constants c3 > 0, c4 > 0 and 1 < ν ≤ µ such that

G(t, x) ≥ c3∣x∣ν − c4, ∀(t, x) ∈ [1, T]Z ×R.

Then the BVP (1.1), (1.2) possesses at least one solution.

Remark 3.4. Condition (G3) means that there are two positve constants c5 and c6 such that
(G′3) G(t, x) ≤ c5∣x∣µ + c6, ∀(t, x) ∈ [1, T]Z ×R.

In the case that f(t, x) is independent of x, we study the autonomous fourth order discrete system

∆
4x(t − 2) −∆ (r(t − 1)∆x(t − 1)) = f(x(t)), t ∈ [1, T]Z, (3.1)

where f ∈ C(R,R).

Corollary 3.5. Suppose that (r) and the following conditions are satis�ed:
(H1) there is a function H(x) ∈ C1

(R,R) such that

H′
(x) = f(x);

(H2) there is a positive constant κ1 such that

∣f(x)∣ ≤ κ1, ∀x ∈ R;

(H3) H(x) → +∞ as ∣x∣ → +∞.
Then the BVP (3.1), (1.2) possesses at least one solution.

Corollary 3.6. Suppose that (r), (H1) and the following conditions are satis�ed:
(H4) there are two constants 1 < µ̃ < 2 and δ̃ > 0 such that

0 < xf(x) ≤ µ̃H(x), ∀∣x∣ ≥ δ̃;

(H5) there are three constants κ2 > 0, κ3 > 0 and ν̃ with 1 < ν̃ ≤ µ̃ such that

H(x) ≥ κ2∣x∣ν̃ − κ3, ∀x ∈ R.

Then the BVP (3.1), (1.2) possesses at least one solution.
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LetΩ satisfy:
(A1)Ω is a symmetric and positive semide�nite matrix;
(A2) λ1 = 0 is a simple eigenvalue ofΩ with multiplicity one and with the eigenvector e1 = [1, 1,⋯, 1]⊺.

Remark 3.7.
(i) Our results could be extended to other problems with matrices satisfying (A1) − (A2). For example, it is
obvious that we can also use the discrete beam equation with Neumann initial conditions.
(ii) On the other hand, we can directly use results from other papers for other nonlinearities and obtain, for
example, multiplicity results for the beam equation with bistable nonlinearities [17] or nonlinearities satisfying
Landesman-Lazer type conditions [23].

4 Proofs of the main results
In this section, we shall prove our main results by using variational methods.

Throughout this section,Ω is a symmetric and positive semide�nite matrix, 0 is a simple eigenvalue with
multiplicity one and with the eigenvector (1, 1,⋯, 1)⊺. We denote the eigenvalues ofΩ by λ1, λ2,⋯, λT .

Denote
λ = min{λi ∣λi ≠ 0, i = 1, 2,⋯, T} , (4.1)

and
λ̄ = max{λi ∣λi ≠ 0, i = 1, 2,⋯, T} . (4.2)

Set X2 = {(d, d,⋯, d)⊺ ∈ X∣d ∈ R}. Obviously, X2 is an invariant subspace of X. We denote a subspace X1 of
X by

X = X1 ⊕ X2.

Proof of Theorem 3.1. Let {xk}k∈N ⊂ X be such that {I (xk)}k∈N is bounded and I′ (xk) → 0 as k → ∞.
Accordingly, for any k ∈ N, there is a number c7 > 0 such that

−c7 ≤ I (xk) ≤ c7.

Let xk = x(1)
k + x(2)

k ∈ X1 ⊕ X2. On one hand, for k large enough, since

−∥x∥ ≤ (I′ (xk) , x) = −(Ωxk , x) +
T
∑
t=1

f (t, xk(t)) x(t),

combining with (G1), we have

(Ωxk , x(1)
k ) ≤

T
∑
t=1

f (t, xk(t)) x(1)
k (t) + ∥x(1)

k ∥

≤ c1
T
∑
t=1

∣x(1)
k ∣ + ∥x(1)

k ∥

≤ (c1
√
T + 1) ∥x(1)

k ∥ .

On the other hand, we have
(Ωxk , x(1)

k ) = (Ωx(1)
k , x(1)

k ) ≥ λ ∥x(1)
k ∥

2
.

Consequently, we have
λ ∥x(1)

k ∥
2
≤ (c1

√
T + 1) ∥x(1)

k ∥ . (4.3)

(4.3) means that {x(1)
k }

∞

k=1
is bounded.
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Then, we shall prove that {x(2)
k }

∞

k=1
is bounded.

As a matter of fact,

c7 ≥ I (xk) = −
1
2
x⊺kΩxk +

T
∑
t=1

G (t, xk(t))

= −
1
2
(x(1)

k )
⊺

Ωx(1)
k +

T
∑
t=1

[G (t, xk(t)) − G (t, x(2)
k (t))] +

T
∑
t=1

G (t, x(2)
k (t)) .

Thus,
T
∑
t=1

G (t, x(2)
k (t)) ≤ c7 +

1
2
(x(1)

k )
⊺

Ωx(1)
k +

T
∑
t=1

∣G (t, xk(t)) − G (t, x(2)
k (t))∣

≤ c7 +
λ̄

2
∥x(1)

k ∥
2
+

T
∑
t=1

∣f (t, x(1)
k (t) + ξx(2)

k (t))∣ ⋅ ∣x(1)
k (t)∣

≤ c7 +
λ̄

2
∥x(1)

k ∥
2
+ c1

√
T ∥x(1)

k (t)∥ ,

which means that {
T
∑
t=1

G (t, x(2)
k (t))} is bounded. Here ξ ∈ (0, 1).

It comes from condition (G2) that {x(2)
k }

∞

k=1
is bounded. If not, assume that ∥x(2)

k ∥ → +∞ as k → ∞. In

that there are ck ∈ R, k ∈ N, such that x(2)
k = (ck , ck ,⋯, ck)⊺ ∈ X, then

∥x(2)
k ∥ = (

T
∑
t=1

∣x(2)
k (t)∣

2
)

1
2

= (
T
∑
t=1

∣ck ∣2)
1
2

=
√
T ∣ck ∣ → +∞, k →∞.

Since G (t, x(2)
k (t)) = G (t, ck), then G (t, x(2)

k (t)) → +∞ as k → ∞. This contradicts the fact

{
T
∑
t=1

G (t, x(2)
k (t))} is bounded. Therefore, the functional I(x) satis�es the Palais-Smale condition. Therefore,

it su�ces to prove that I(x) satis�es the conditions (I1) and (I2) of Saddle Point Theorem.
First, we shall prove the condition (I2). For any x(2)

∈ X2, x(2)
= (x(2)

(1), x(2)
(2),⋯, x(2)

(T))
⊺

, there
is c ∈ R such that

x(2)
(i) = c,∀i ∈ [1, T]Z.

It comes from (G2) that there is a constant c8 > 0 such that G(t, c) > 0 for t ∈ Z and ∣c∣ > c8.
Set

c9 = min
n∈[1,T]Z , ∣c∣≤c8

G(t, c), c10 = min{0, c9}.

Thus,
G(t, c) ≥ c10, ∀(t, c) ∈ [1, T]Z ×R.

Then

I (x(2)
) =

T
∑
t=1

G(t, x(2)
(t)) =

T
∑
t=1

G(t, c) ≥ Tc10, ∀x(2)
∈ X2.

Next, we shall prove the condition (I1). For any x(1)
∈ X1, by (G′1), we have

I (x(1)
) = −

1
2
(x(1)

)
⊺

Ωx(1)
+

T
∑
t=1

G (t, x(1)
(t))

≤ −
λ

2
∥x(1)

∥
2
+ c1

T
∑
t=1

∣x(1)
(t)∣ + Tc2

≤ −
λ

2
∥x(1)

∥
2
+ c1

√
T ∥x(1)

∥ + Tc2.
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Take
ω = Tc10.

Then, there exists a constant ρ > 0 large enough such that

I (x(1)
) ≤ ω − 1 = σ < ω, ∀x(1)

∈ X1, ∥x(1)
∥ = ρ.

The conditions of (I1) and (I2) of Saddle Point Theorem are satis�ed. In the light of Saddle Point Theorem,
Theorem 3.1 holds.

Proof of Theorem 3.3. Let {xk}k∈N ⊂ X be such that {I (xk)}k∈N is bounded and I′ (xk) → 0 as k → ∞.
Accordingly, for any k ∈ N, there is a number c11 > 0 such that

−c11 ≤ I (xk) ≤ c11.

For k large enough, it comes from lim
k→∞

I′ (xk) = 0 that

∣(I′ (xk) , xk)∣ ≤ ∥xk∥ .

Since

(I′ (xk) , xk) = −x⊺kΩxk +
T
∑
t=1

f (t, xk(t)) xk(t).

Accordingly, for k large enough, we have

c11 +
1
2
∥xk∥ ≥ I (xk) −

1
2
(I′ (xk) , xk)

=
T
∑
t=1

[G (t, xk(t)) −
1
2
f (t, xk(t)) xk(t)] .

Denote
Γ1 = {t ∈ [1, T]Z ∶ ∣xk(t)∣ ≥ δ} ;

Γ2 = {t ∈ [1, T]Z ∶ ∣xk(t)∣ < δ} .

Combining with (G3), we have

c11 +
1
2
∥xk∥ ≥

T
∑
t=1

G (t, xk(t)) −
1
2

T
∑
t∈Γ1

f (t, xk(t)) xk(t) −
1
2

T
∑
t∈Γ2

f (t, xk(t)) xk(t)

≥
T
∑
t=1

G (t, xk(t)) −
µ

2

T
∑
t∈Γ1

G (t, xk(t)) −
1
2

T
∑
t∈Γ2

f (t, xk(t)) xk(t)

= (1 − µ
2
)

T
∑
t=1

G (t, xk(t)) +
1
2

T
∑
t∈Γ2

[µG (t, xk(t)) − f (t, xk(t)) xk(t)] .

Set
L(t, x) = µG (t, x) − f (t, x) x.

By the continuity of L(t, x) with respect to the �rst and second variables, we have that there is a constant
c12 > 0 such that

L(t, x) ≥ −c12,

for all t ∈ [1, T]Z and ∣x∣ ≥ δ. Hence,

c11 +
1
2
∥xk∥ ≥ (1 − µ

2
)

T
∑
t=1

G (t, xk(t)) −
1
2
Tc12, ∣x∣ ≥ δ.
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It follows from (G4) and (2.2) that

c11 +
1
2
∥xk∥ ≥ (1 − µ

2
) c3

T
∑
t=1

∣xk(t)∣ν − (1 − µ
2
) c4T −

1
2
Tc12

≥ (1 − µ
2
) c3τ

ν
1 ∥xk∥ν − (1 − µ

2
) c4T −

1
2
Tc12.

Let
c13 = −(1 − µ

2
) c4T −

1
2
Tc12.

Then,
c11 +

1
2
∥xk∥ ≥ (1 − µ

2
) c3τ

ν
1 ∥xk∥ν + c13.

Thus,
(1 − µ

2
) c3τ

ν
1 ∥xk∥ν −

1
2
∥xk∥ ≤ c11 − c13,

whichmeans that {∥xk∥}∞k=1 is bounded. For the reason that X is a �nite dimensional space, {xk}∞k=1 possesses
a convergent subsequence. Accordingly, the Palais-Smale condition is proved.

To exploit the Saddle Point Theorem,we shall prove that the functional I satis�es the conditions (I1) and
(I2).

First, we shall prove that the functional I satis�es the condition (I2). For any x(2)
∈ X2, in thatΩx(2)

= 0,
we have

I (x(2)
) =

T
∑
t=1

G (t, x(2)
(t)) .

On account of (G4),

I (x(2)
) ≥ c3

T
∑
t=1

∣x(2)
(t)∣

ν
− c4T ≥ −c4T .

Then, we shall prove the condition (I1). For any x(1)
∈ X1, combining with (G4), we have

I (x(1)
) = −

1
2
(x(1)

)
⊺

Ωx(1)
+

T
∑
t=1

G (t, x(1)
(t))

≤ −
λ

2
∥x(1)

∥
2
+ c3

T
∑
t=1

∣x(1)
(t)∣

ν
+ Tc4

≤ −
λ

2
∥x(1)

∥
2
+ c3τ

ν
2
√
T ∥x(1)

∥
ν
+ Tc4.

Take
ω = −c4T .

Owing to 1 < ν < 2, there exists a constant ρ > 0 large enough such that

I (x(1)
) ≤ ω − 1 = σ < ω, ∀x(1)

∈ X1, ∥x(1)
∥ = ρ.

Hence, the condition (I1) is satis�ed.
As a result of Saddle Point Theorem, the BVP (1.1), (1.2) possesses at least one solution. The proof is

complete.

Remark 4.1. In the light of Theorems 3.1 and 3.3, the results of Corollaries 3.5 and 3.6 are obviously true.
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5 Example
In this section, an example is given to illustrate our main result.

Example 5.1. For t ∈ [1, 3]Z, suppose that

∆
4x(t − 2) − 2∆ ((t − 2)2

∆x(t − 1)) = νx(t)∣x(t)∣ν−2
+ µx(t)∣x(t)∣µ−2, (5.1)

satis�es the boundary value conditions

x(−1) = x(2), ∆x(−1) = ∆x(2), ∆2x(−1) = ∆2x(2), ∆3x(−1) = ∆3x(2). (5.2)

We have
r(t) = 2t2, t ∈ [1, 3]Z,

with
r(0) = 18,

and
f(t, x) = νx∣x∣ν−2

+ µx∣x∣µ−2, G(t, x) = ∣x∣ν + ∣x∣µ.

Besides,

Ω =

⎛
⎜
⎜
⎝

26 −5 −21
−5 16 −11
−21 −11 32

⎞
⎟
⎟
⎠

,

and the eigenvalues of Ω are λ1 = 0, λ2 = 23 and λ3 = 51. It is obvious that all the conditions of Theorem 3.3
are satis�ed and then the BVP (5.1), (5.2) possesses at least one nontrivial solution.
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