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Abstract: In this paper, we discussed a infinitely distributed delayed viral infection model with nonlinear
immune response and general incidence rate. We proved the existence and uniqueness of the equilibria.
By using the Lyapunov functional and LaSalle invariance principle, we obtained the conditions of global
stabilities of the infection-free equilibrium, the immune-exhausted equilibrium and the endemic equilibrium.
Numerical simulations are given to verify the analytical results.
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1 Introduction

During recent decades there has been a lot of research regarding mathematical modelling of viruses’ dynam-
ics via models of ordinary differential equations. The advances in immunology have lead us to better un-
derstand the interactions between populations of virus and the immune system, therefore several nonlinear
sytems of ordinary differential equations have been proposed. Nowak and Bengham [1] study the model

X'(t) = s = dx(t) - Bx(t)v(t), @
y'(t) = Bx(t)v(t) - ay(t) - py(t)z(t), 2
V() = ky(t) —uv(t), €)
Z'(t) = cy(t)z(t) - bz(t). (4)

Where x(t) denotes the number of healthy cells, y(t) denotes the infected cells, v(t) denotes the number of
mature viruses and z(t) denotes the number of CTL (cytotoxic T lymphocyte response) cells. Uninfected target
cells are assumed to be generated at a constant rate s and die at rate d. Infection of target cells by free virus is
assumed to occur at rate 3. Infected cells die at rate a and are removed at rate p by the CTL immune response.
New virus is produced from infected cells at rate k and dies at rate u. The average lifetime of uninfected cells,
infected cells and free virus is thus given by 1/d, 1/a and 1/u, respectively. The parameter ¢ denotes the rate
at which the CTL response is produced and b denotes death rate of the CTL response. All given constants are
assumed to be positive.

*Corresponding Author: Eric Avila-Vales: Universidad Auténoma de Yucatan, Facultad de Matematicas, Anillo Periférico
Norte, Tablaje 13615, C.P. 97119, Mérida, Yucatan, México, E-mail: avila@correo.uady.mx

Abraham Canul-Pech: Universidad Auténoma de Yucatan, Facultad de Matematicas, Anillo Periférico Norte, Tablaje 13615,
C.P. 97119, Mérida, Yucatan, México

Erika Rivero-Esquivel: Universidad Auténoma de Yucatan, Facultad de Matematicas, Anillo Periférico Norte, Tablaje 13615,
C.P. 97119, Mérida, Yucatan, México

3 Open Access. © 2018 Avila-Vales et al., published by De Gruyter. [CEZX2l This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 License.


https://doi.org/10.1515/math-2018-0117

DE GRUYTER Global stability of a distributed delayed viral model with general incidence rate = 1375

Generally, the type of incidence function used in a model has an important role in modeling the dynamics
of viruses. The most common, is the bilinear incidence rate Sxv. However, this rate is not useful all the time.
For instance, bilinear incidence suggests, that the model can not describe the infection process of hepatitis B,
where individuals with small liver are more resistant to infection than the ones with a bigger liver. Recently,
works about models of infections by viruses have used the incidence function of type Beddington-DeAngelis
and Crowley-Martin. In [2] the authors propose a model of infection by virus with Crowley-Martin functional

response %. Li and Fu in [3] study the following system:
N (020
x(6) = s = dx(0) (1+ax(t))(1+bv(t))’ )
oo Bx(t-T1)v(t)e "
y(t) = A ax(t-) A+ bv=1)) ay(t) - py(t)z(t), (6)
V' (t) = ky(t) —uv(t), @)
Z'(t) = cy(t)z(t) - bz(t). (8)

They construct a Lyapunov functional to establish the global dynamics of the system. More recently, in [4],
the authors consider the system

x'(t):s—dx(t)—%, ©)
V(O = T i ~ (O - PY(O=(0), (10)
V(t) = ky(t) - uv(t), (11)
Z'(t) = cy(t - 7)z(t — 1) - bz(t). (12)

They also give also results of global stability as well as, Hopf bifurcation results.
Yang and Wei in [5] consider a more general incidence rate, they study the system

X' (t) = s = dx(t) - x(O)f (v(1)), (13)
y'(t) = x(O)f (v(t)) - ay(t) - py(t)z(t), (14)
V' (t) = ky(t) —uv(t), (15)
Z'(t) = cy(t)z(t) - bz(t), (16)

giving some results about global stability in terms of the basic reproduction number and the immune response
reproduction number. Here the f(v) is assumed to be a continuous function on v that belongs to (0, o) and
satisfies f(0) = 0, f'(v) > 0 for all v greater or equal to 0 and f"(v) < O for all v greater or equal to O.

In [6], the authors consider a more general incidence rate f(x, y, v)v, where f is assumed to be continu-
ously differentiable in the interior of R3 and satisfies the following hypotheses
i) f(O y,v)=0,forally >0,v>0.
ii) (x y,v)>0forallx>0 y>0,v>0.
iii) y(x y,v) <0Oand av(X y,v)<Oforallx>0,y>0,v>0.

In [7], authors analyze an infection model by virus , with general incidence and immune response, which
generalizes the systems [2, 6, 8], namely,

x=s-dx-f(x,y,v)v,
y:f(xyy)v)v_ay_pyzx
v =ky-uv,

z=cyz- bz,

where f(x, y, v) is a continuous and differentiable function in the interior of R3 and satisfies the conditions

(), (i), (iii).
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Another viral infection model is the studied in [9] given by:
X =n(x)-h(x,v),

7= [ AERK(E-7),v(t=1)dr - agi(y) - pw(y. 2),
0
v=k [ f(Day(t-r)dr,
0

2:cff3(7)w(y(t—7),z(t—7))dr—bg3(z).

Where x, y, v, zdenotes the non infected cells, infected cells, virus and specific virus CTL at time ¢ respectively.
Conditions on functions f;,h, w, and g; are specified in [9]. Related works are [10-14].

Based on the discussion above, we will study a delayed viral infection model with general incidence rate
and CTL immune response given by

X =n(x) - f(x(0),y(t), v())v(t), (17)
y= ffl(T)f(X(t—T),Y(f—T),V(f—T))V(f—T)e_alT —api(y(t)) —pw(y(t), 2(1)), (18)
0

f/:kffz(f)e*a%l(y(t-f))-uv(t), (19)
0

fz:cff3(r)w(y(t—7),z(t—7))—bgaz(z(t)). (20)
0

The dynamics of uninfected cells, x, in the absence of infection is governed by x" = n(x). n(x) is the intrinsic
growth rate of uninfected cells accounting for both productions and natural mortality. This is assumed to
satisfy the following:

Hi)n(x) is continuously differentiable, and exist x > 0 such as that n(x) = 0, n(x) > 0 for x € [0, ),
and n(x) < O for x < x. Typical functions appearing in the literature are n(x) = s — dx and n(x) =
s—dx +rx(1-Xx/Xmax)-

H>) ¢; is strictly increasing on [0, 00); ;(0) = 0; ;(0) = 1; limy_,« ¢;(y) = +oo; and there exists k; > 0
such as p;(y) > k;y for any y; > 0.

H3)w(y, z) is continuously differentiable; % >0forye (0,00),2z€[0,00); W(y,z) >0fory e (0,00)
and z € (0, co) with w(y,z) =0ifandifonlyy =0orz = 0.

All parameters are nonnegative and the distributions f; for i = 1, 2 are assumed to satisfy the following (see
[9, 14]) :
- fi(r)20,for 7>0.

fooofi(T)dT =1fori=1,2.

Jo~ f3(r)dr <1and [;~ f3(7)e’"dr < oo for some s > 0.

In addition, the uniqueness and global stability results on the positive equilibrium require the following
assumption:

Hi)w(y,z) = p1(¥)p2(2).

In this paper, we will study the global dynamics model of (17)-(20). Organization is as follows: in section
2, we prove the existence and uniqueness of the infection free equilibrium, the CTL-inactivated infection
equilibrium and the CTL-activated infection equilibrium. In section 3, the conditions that allow the global
stability of each equilibrium are determined and proved. Section 4, provide several numerical simulations
that show the results obtained in section 3 and 4. Finally, in section 5 we summarize the results we have
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obtained, comparing them with previous models studied in literature, and setting the guidelines for possible
future work.

1.1 Positivity and boundedness

For system (17) the suitable space is C* = C x C x C x C, where C is the Banach space of fading memory type
([15D):

C:={¢eC((-o0,0],R), ¢(0)eo¢0 is uniformly continous for 6 € (-c0,0] and ||¢| < oo},

where the norm of a ¢ € C is defined as |¢| = supy., |$(6)|e*?. The nonnegative cone of C is defined as
C+ = C((—OO, O], R+).

Theorem 1.1. Under the initial conditions, all solutions of system (17)-(20) are positive and ultimately uniformly
bounded in X.

Proof. To see that x(¢) is positive, we proceed by contradiction. Let ¢; the first value of time such that x(¢;) =
0. From (17) we see that x'(t;) = n(0) > 0 and x(t1) = 0, therefore there exists ¢ > 0 such that x(t) < 0 for
t € (t1 — ¢, t1), this leads to a contradiction. It follows that x(t) is always positive. With a similar argument
we see that y(t), v(t) and z(t) are positive for t > 0.

The hypotheses (H;) and equation (17) imply that limsup,__, ., x(t) < X.

From (17), (18) and assumption (H;), we obtain

ffl(T)e‘Wx'(t ~)dr+y(t) = f A(D)e ™ n(x(t-7))dr - api(y) < MiGy — akiy, (1)
0 0
where M1 = Sup,.[o ;) (%) and G1 = Jo~ fi(r)e 7 dr.
Lete(t) = [~ fi(r)e" ™" x(t - 7)dr, we have that e(t) < XG for t > 0. Then

(e(t) +y(1))" < M1G1 - akry
=M1G1 + M1G1 - M1Gy - akyy

<2M1Gq - %e(t} - akly
_ i, .My
<2M;1G1 - i(e(t) + y(t)) where i = mln{7, akl},

and thus limsup, _, (e(t) + y(t)) < 245 Since e(t) > 0, we know that limsup,_,_ y(t) < 2416 From

i i
(19), we have that,

f/:kffz(T)e_azTapl(y(t—T))dT—uv(t)
0

< kM>G, - uv(t),

where M, = SUP, [, 11161 ] 1 (v) and Gz = [;° fo()e”**"dr, and thus limsup,_, ,, v(t) < X026,

Using a similar argument, let G3 = [ f3(7)dr, L(t) = %y(t) +2z(t), i = min{ak,, bk}
and M3 = SUP ()< [0,1]x[0, ZMéal 1[0, kMiGz]f(X, ¥, v)v, then

acGs

L'(t) = %Glf(x, Y, V)V - ©1(¥) = €G3p1(¥)p2(2) + €G3p1(¥)p2(2) — bp2(2)

< cG3Gq Ms - acGs kiy - bkyz
p p
CG3 G1

p

<

~ CG3
ooy
p
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B CG3G1

Ms - iL(t),

therefore limsup,__, . L(¢) < %. Since C%y(t) >0, we know that limsup,__,  z(t) <
Therefore, x(t), y(t), v(t) and z(t) are ultimately uniformly bounded in C*. O

cG1G3 M3
pi "

Previous theorem implies that the omega limit set of system (17)-(20) is contained in the following bounded
feasible region:

2M1Gq

vl

kM- G>
<——=, | z|
u

M
F:{(x,y,v,z)ecfﬁ:||x||s5<,||y||s s%}

It can be verified that the region I is positively invariant with respect to model (17)-(20) and that the model
is well posed.

2 Existence and uniqueness of equilibria of system

At any equilibrium we have

n(X)_f(X’y’V)VZOx (22)

Feay v = ga) - Eoy)eaa) =0, 23)
1 1

ker(y) - 4V =0, @4)

1 (Ne(2) - a(2) = 0. @)

System (17)-(20) always has an infection free equilibrium Eo = (X, 0,0, 0). In addition to Eo, the system
could have two types of chronic infection equilibria E1 = (x1, y1,Vv1,0) and E> = (x2,y2, V2, 22) in I', where
the entries of E; and E, are strictly positive. The equilibria E; and E, are called CTL-inactivated infection
equilibrium (CTL-IE) and CTL-activated infection equilibrium (CTL-AE), respectively.
We define the general reproduction number as
_ kG1Gaf (x,y,V)

R(X,)/, V) = T,

which is the ratio of the per capita production and decay rates of mature viruses at an equilibrium (x, y, v, z)
with z = 0. In particular, at the infection free equilibrium, Ey, we denote R(x, 0, 0) by Ry, representing the
basic production number for viral infection:

(26)

Ro = R(%,0,0) = —kGlG”;(X’ 0.0),

u

From assumption (H2) we have that ¢ is invertible, so we can define from equation (25):

a1 i) s _ke1(¥)G,
y=© (CG3 o Ve u )

Define also H(x) = n(x) - f(x,y, V)V, we have H(0) = n(0) > 0 and H(x) = —-f(x, y, V)V, with f(x,y,V) >
f(0,y,¥) = 0 by (ii), so there exists a X € (0, x) such that H(X) = 0. We denote:

Ri =R(%,¥,7), @7

and refer it as the viral reproduction number. From assumptions on f it is easy to see that f(x,0,0) >
f(x,y,v), forall y, v > 0, moreover for all x € [0, x) we have f(x,y, v) < f(X,y, V), so:

Ro=R(x,0,0) >R(x,y,v) >R(x,y,v), Vxe[0,X),y,v>0. (28)



DE GRUYTER Global stability of a distributed delayed viral model with generalincidence rate = 1379

Particularly, Ro > R1. The basic reproduction number for the CTL response is given by:

_cGsp1 (1)

b .
In order to prove of the existence and uniqueness of equilibria, we require two additional assumptions. First,
we define the following sets:

Rerr

Xn={6€[0,x]:(n(x) -n(&))(x-¢§) <0forx#¢&, xe[0,x]},
Xe(y,v) ={€€[0,x]: (f(x,y,v) - f(&y,v))(x - &) <Oforx &, x € [0,X]},
X =0y ve0,5)x 0,0 Xr (V5 V) N Xn.

The following conditions are used to guarantee the uniqueness of the equilibria.
(A1)The system (17)-(20) has an equilibrium E; = (x1, y1, v1, 0) satisfying x; € X.
(A2)The system (17) has an equilibrium E; = (x2, y2, V2, 22) satisfying Xn n X¢(y2, v2).

Theorem 2.1. Assume that i) - iii) and H, — H, are satisfied.
1. IfRo < 1, then Eo = (X0, 0, 0) is the unique equilibrium of the system (17)-(20) .
2. if Ry < 1 < Ry then in addition to Ey, system (17)-(20) has a CTL inactivated infection equilibrium E;.
3. IfRo > Ry > 1 then, in addition to Eq and E1 system (17) has a CTL activated infection equilibrium.

When x = X and y = v = z = 0 the equations (22)-(25)are satisfied, therefore Eo = (xo, 0, 0, 0) is a steady state
called the infection free equilibrium. To prove that it is unique when Ry < 1, we look for the existence of a
positive equilibrium.

To find a positive equilibrium we proceed as follows: from equation (25) ¢2(z) = 0 or p1(y) = %. If
©2(2) = 0 then from assumption (H,) we get, z = 0 and using (22)-(24)

ap1(y) __auv
G1 kG1G>~

n(x) :f(x,y,v)v: (29)

By (H,), we know that ;' exists. Solving n(x) = ‘wclil(y) for y gives us that

Y00 = o) = " (1091,

a
with ¢(X) = 0 and ¢(0) = y° being a unique root of equations n(0) = ‘“’“67(1”0). Solving (24) for v we obtain:

_ kn(x)Gle
- au ‘

v(x)

Note that, from (ii) we have f(x,y,v) > f(0,y,v) = 0, Vx > 0. So if E* = (x*,y*,v*,z") is a positive
equilibrium, then n(x*) = f(x*,y*,v*)v* > 0, s0 x* € (0, X).
Now, using (29) define on the interval [0, X) the function G,

_ n(x)
G(x) =f(x,y(x),v(x)) - o)
=f(x, o(x), n(X)qule ) - k(?luGz’

we have G(0) = -5 <0, G(X) = f(X,0,0) - 5/ = 15-6; (Ro — 1) . Therefore, if Ro > 1, then G(x) has a
root x* € (0, X) such that

n(x*)
v(x*)

FOCy (), v(x™)) -

>

or equivalently
n(x*) = f(x*, y(x"), v(x"))v(x") = 0.
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We conclude that, for Ry > 1, there exists another equilibrium E; = (x1,y1,v1,0) with x; = x* € (0, X),
y1=¢(x1)and vy = MM(’“) Moreover, using the fact that Ro > R(x, y,v), forall x,y,v > 0, when Ry < 1 we
have R(x, y, v) < 1. Using (29) we arrive to

n(x)-f(x,y,v)v>0, Vx,y,v>0,

so equation (22) never holds. Therefore, E; exists iff Rg > 1.

Next we show that E; = (x1, y1, V1, 0) is unique. Suppose, to the contrary, that there exists another CTL-
IE equilibrium ET = (x7, y7, vi, 0). Without loss of generality, we assume that xJ < x;. Then x; € X, implies
that n(x7) > n(x1). By virtue of x; € Xy, we get f(x3,y7,v]) < f(x1,¥1, v1). On the other hand, it follows
from (29) that f(x7,yi,vi) = f(x1,¥1,v1) = au/kG1G,. This is a contradiction, and thus E; is the unique
CTL-IE.

Note that the CTL-AE E; = (X2, Y2, V2, 22) exists if (x2, y2,v2,22) € R? satisfies the equilibrium equations
(22)-(25) and 1 (y) = b/cGs. Therefore according to system (17)-(20) and (H;) we have

ya=¢1 (%) : (30)
Note that the values %, y, ¥ are used to define R;, so they clearly satisfy the equilibrium equations. Solving
the equation (23) for z and using (H2) yields Z = ¢, (W) = ¢3! (@). Using the fact that
goz is defined on [0, oo) we conclude that the CTL-AE E; = (X, ¥, ¥, 2) exists if and only if R1 > 1.

Now we will prove that E; is unique. Suppose that there exists another CTL-AE, E; = (x3,5, V3,25 ). Then
y2 = y5 and v, = v;. Without loss of generality, we assume that x; < x>. Then x; € X, implies n(x3) > n(x2).
Note that n(x3) = f(x3,y2,v2) and n(xz2) = f(x2,y2,v2), implies that f(x3,y2,v2) > f(x2,¥2,Vv2). This
contradicts that x> € X(y2, v2) and hence E; is unique.

3 Global stability

Let Ry and R; be defined as in previous section.
Theorem 3.1. If Ry < 1, then infection free-Equilibrium Eq of model (17)-(20) is globally asymptotically stable.

Proof. Define a Lyapunov functional

f(xo,O O)d a p

Vi=x- il
1=X—Xo+ £(5,0,0) S+ y+kGlev+cGngz

oo t
+GllOfﬁ(r)e‘“”t[f(x(S),J/(s),v(s))v(s)dsdr+ Glan Offz(r)e_a”tf e1(y(s))dsdr

+GfG30ff3(T)t_[ 01(y(5))¢2(2(s))dsdr,

where G; = [;7 fi(7),i=1,2,3.
Calculating the derivative of V; along the positive solutions of system (17)-(20) , it follows that

. f(Xo,O 0) a P .
Vi=[1- il
! ( F,0,0) ) <" y GGy T ¢6165”

HFOG Y V)V - Gi f Fr(r)e TRt - ), y(t =), v(t - 7))dr

+ Gilgm(y) - ﬁ 0/ fo(r)e T o1 (y(t - 7)) dr
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+fsol()’)svz(Z)—7ff3(7)s01(Y(t 7))e2(2(t - 7))dr

_ (1 f(XO’O 0)

f(x,0,0) )(”(X) -f(xy,v)v)

+ Gil ([f1(7')e_a17f(X(t—T),)’(t—T),V(t—T))V(t—T) -ap1(y) —psﬁl(J’)sOZ(Z))
0

+ %162 (koffz(r)eazrm()/(t— 7)) - uv) + CGI:G3 (Coffg(T)gﬁl(y(t— 2 (z(t-7)) - b(‘pz(z))

oo

+f(x,y,v)v-Gil/fl(f)e—“”f(x(t-T),y(t—f),v(t—r))dr
tea0) - gg [ RO e m)dr
0

" G%wl(y)w(z) - GL@ f F(P)er (vt = 1))pa(2(t - 7))dr

Using n(xo) = 0 and simplifying, we get

- f(x0,0,0) au f(x,y,v) f(x0,0,0)kG1G; pb

Vi = (n(x) - n(xo)) (1 " f(x,0,0) )+ kGlev( f(x,0,0) au - 1)  ¢G1G3 #2(2)
B f(x0,0,0) au f(x,y, v) pb
N (H(X) - n(XO)) (1 N f(XO,O,O) ) " kG1sz(f(X o, O) 1) - cG1Gs3 SOZ(Z)

< (n(x) - n(aop) (1= J00 D)y (Ro-1) - BY (e,

Using the following inequalities:

f(XO’ 0, O)
f(x,0,0)
f(x0,0,0)
f(x,0,0)

n(x)-n(xp)<0, 1- >0 forx > xo,

n(x)-n(xo)>0, 1- <0 forx < xo.

We have that

(n(x) - n(xo)) (1 - f(xo,0,0)) <0.

f(x,0,0)

Since Ry < 1, we have V; < 0. Therefore the disease free E; is stable, V; = 0 if and onlyif x = xo,y =0,v =
0, z = 0. So, the largest compact invariant set in {(x,y, v, z) : Vi = 0} is just the singleton E;. From LaSalle
invariance principle , we conclude that E; is globally asymptotically stable. O

Theorem 3.2. If Ry > 1 and Ry < 1, then CTL-IE E1, of model (17) is globally asymptotically stable.

Proof. Consider the following Lyapunov functional:
Vi=L(t)

where

Xf 1 y v
L=x-x1- 7(X1’y1’vl)ds+—f 1—@1()/1) do+ 2 f(l—v—l)da
; f(s,y1,v1) G1 ; v1(0) kG1G, p c

1
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IR [roe [ (ft ) g

J f(x1,y1,vi)va

2502 [ [ (263" aw

s f f5(7) f o1 (Yt - ))pa (2(t - w))duodr.
0 0

At infected equilibrium

n(x1) - f(x1,y1,v1)v1 =0, (31)
f(x1,y1,vi)va = M, (32)
G1
u p1(y1)
%G, - v (33)

Calculating the derivative of L along the positive solutions of (17), we get
: f(x1,y1,v1) p1(y1))., ., a ( Vl). p .
Vi= Sl ) x+—|1- + 1-— v+ z
' ( f(X Y1, Vl) G 501()’) Y kGlGZ 1% cG1Gy
Lo ynvn f fi(r)e
G J

(H( f(x,y,v)v ) (f(X(f ), y(t-71),v(t-7))v(t- T)))
f(x1,y1,vi)va f(x1,y1,v1)v1

o (o 25) ()

+ e - e f ATyt -)ea(z(t-1))dr

_ (1 - (””) (n(x) £ (Y, V)Y)

FO6y1,v1)
+(§1(1 ﬁ((yyl))(/fl(T)e_ale(X(t ), y(t=7),v(t=71))v(t-7) —ap:(y) - psm(y)st(Z))

chlle( )( ffz(T)e Hely-m) - “")

2 (c [ A@e (= D)ea(z(t-1) —bmz))
0

fx,ynLviva [ —anr f(x,y,v)v fx(E=7),y(t—7),v(t-71))v(t-T)
* G1 .[fl(T)e (H(f(X1,)/1,V1)V1) ( f(x1,y1,vi)va ))

- ff( e (i (gfl(%)’H(%Eoyl((tyg))))m

e )e2) - G [ (e (y(E=m))ea(z(t = 7))dr.
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Using (31)-(33), we, get

V1= (n(x) - n(x1)) (1 -

Global stability of a distributed delayed viral model with general incidence rate = 1383

)

f(x1,y1,v1)
f(x,y1,v1)

L ap1(y1) (1_f(x1,y1,v1) f(x,y,v)v )
G1 fx,y1,vi)  f(x,y1,vi)na
ap1(y1) 17 carpr () v(E=T) f(x(t =7, y(t=7),v(t-T)))
TG 1_Gloffl(T)e e1(y) Wi f(x1,y1,v1) )
api(y) [ 1 F o awry (FOCCE=T),y(t=7), v(t=7))v(t - 7)
=G _Gloffl(T)e ln( ooy vom ) ]
apiy) [ 1 Fo o e (10(t=7) fOLy Ve (y)
TG _Gzoffz(T)e ln( 1(y1) d) (f(Xl,yl,Vl)Vlwl()ﬁ))]
pbei(2) (cG3p1(y1)
+c6163( 5o 1)
Therefore
V1 = (n(0) - n(x1)) ( foan.n))

2 (1 T )
a%@)Gl [‘”flme_w (@11<(yy1))v(tv17>f(x<t oRis LG T>>) ]
et

Using the inequalities:

(Xl,)/1,V1)

n(x)-n(xy1)<0, 1- >0 forx>xy,
() =nx) f(x,y1,v1) f !
f(le)/l,Vl)
n(x)-n(xy1)>0, 1-——= <0 forx<x;.
( ) ( 1) f(X,)/1,V1) f 1
We have that
(1_1) 1 f(Xl,)/1,V1))
X1 f(x,y1,v1)
_1_7 f(X y1,Vl) Lf(X,)/,V)
f(X y,v) V1f(X,)/1,V1)
:(1_ (ny’v) )( (X,}/1,V1)_V)SO‘
f(X’yl’Vl) f(X,y,V) Vi
Since R; < 1, we have V; < 0, thus E; is stable. V; = 0 if and only if x = x1,y = y1,v =1,z = 0. So, the

largest compact invariant set in {(x, y, v, z) : V1 = 0} is the singleton E;. From LaSalle invariance principle,
we conclude that E; is globally asymptotically stable. O

Theorem 3.3. Assume that (i) - (iii), H1 — H4 hold and f3(7) = (7). If Ry > 1, then the CTL-AE, E, is Globally
asymptotically stable.
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Proof. Define a Lyapunov functional for E>.

V2=X—X2—

X y v
f(x2,y2,v2) 1 ( ©1(y2) a+pea(z2) ( Vz)
o2 o ds + — 1- 2222 Vdo + — 22722 1--—=)d
% f(S, )/Z,VZ) [ @1(0') 7 kG1G> o ‘

p ©2(22)
+C‘C;1£2/(1_ 4,02(0))d0

Ty L g R (T T

V2

t—71

a+pys(z2) arr e1(y(s))
FTRGiG, P w1(y2 )/fz(T)e [ ( 1 02) )de

The derivative of V, along with the solutions of system (17) is

;o f(x2,y2,v2) Ce1(y2) |, atppa(z2) (V2.
Vz‘( fxy2, w))“ 1(1 gol(y))“ kG1G, (1 v)v

P z @2(22) . oo o
+C(;122/(1— 2 (2) )Z+G1f(Xz,yZ,v2)vsz1(T)e

fey,vv ) (x(t=7),y(t-7),v(t-7))v(t-7)
[H(f(xz,)/bvz)vz) H( f(x2,y2,v2)v2 )]

a+pea(z2) r YT e1(y) [ ery(t-1)) -
g e [ hee (2200 ) (2 ) g,

Applying n(x2) = f(X2, 2, va)Va, f(X2,¥2, V2)Va = & (ag1(y1) + pe1(y1)¢2(22)), ¢1(y1) = 2, 7 = 02,
we obtain

- f(Xz,)/Z,VZ)
V, = (n(x) - n(x1)) (1 - f(x,yz,vz))

L ap1(y2) +pe1(y2)ea(22) (1f(Xz,)’2:V2) L Sy vy )
G1 f(X’YZ’VZ) (X’yZ’VZ)VZ

ap1(y2) +per1(y2)ea(z2) [, 1 [ a1 (y2) v(t=7) fF(x(t =7, y(t-7),v(t-7)))
i G1 ! G1 /fl( e e1(y) w2 f(x1,y2,v2) ) ’

ap1(y2) + pe1(¥2)e2(22) [ 1 7 cagry [ fx(E=7),y(t—7),v(t-7))v(t-T)
+ G Effl(r)e ln( f(x2,y2,v2)v2 ) ]

+asﬁ1(}/z)+P<P1()/2)<Pz(Zz): jo fo(r)e aﬂln(w()’(t T))d) ( fOGy, v)ver(y) )]

1
Gy _CT 3 1(y2) f(x2,y2,v2)va1(y2)

Therefore

- f(x2,y2,v2)
V3 = (n(x) - n(x1)) (1 ~ Fyava) )
ap1(y2) + pe1(y2)e2(z2) v f(xyava) o fxy,v)v
’ G1 (1_+ f(x,y,v) +f(X’y2;V2)V2)
_ap1(y2) + pe1(y2)pa(z2) f(x2,y2,v2) f(xX,y2,v2)
G1 [H(f(x Y2, Vz))+H( fxy,v) )]

am<y2)+pm<yz>m<znl / e (f;((yyzf o) =) 5 T>>) ]
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_ap1(y2) + pe1(y2)e2(22) ey [P (E=T)V2 ) o
G1 [ /f() ( e1(y2)v )d]

Therefore V5 < 0, thus E, is stable. V, = 0 ifand only if x = X2,y = y2, v = v, z = z3. So, the largest compact
invariant setin {(x, y, v, z) : V5 = 0} is the singleton E. From LaSalle invariance principle, we conclude that
E, is globally asymptotically stable. O

4 Numerical simulations

In this section we present some numerical simulations to illustrate the results of stability, obtained in our
theorems from previous sections.

Example 4.1. Consider the functions n(x) = X —dx +rx(1- %), 61(y) = ¥, 62(z) = z,w(y,z) = yz and
flx,y,v) = ayHX-LetTlaTZ € [0, c0) two fixed delays, and set f1(7) = §(7—-71), f2(7) = 6(7=72), f3(7) = 6(7),
where ¢ is the Dirac delta function defined as

oo

[ 8= m)F()dr = F(z).

0

Then, the model takes the form:

)’c:/\—dx+rx(1—£)— Bxv , (34)
K ay +yx
ﬁX(t—Tl)V(l’—T1) —pr
= e "' —ay-pyz, 35
ay(t—71) +yx(t-m1) y-py (5)
v=ke y(t-1) - uv, (36)
z=cyz - bz, (37

Fix the parameters as A\ = 200,d = 0.1,r = 0.6,K = 500,p = 1,k = 0.8, a2 = 0.05,u = 3.5,¢c = 0.03,b =
0.75,71 =5,7 =10, = 0.1, a = v = 0.001. The trivial equilibrium point is given by Eo = (666.6666, 0, 0, 0),
so the basic reproduction number R is obtained by:

kGl GZf(XO, o, 0) _ ke #T1 e_O‘ZTzﬂ
au B auy

Ro = =105.108411763269234744.

Ro < 1iff B < 0.009513986. We set 3 = 0.003 . By Theorem 2.1 i), we have the single equilibrium Ey =
(666.6666, 0, 0,0) which is globally asymptotically stable by Theorem 3.1. Using a constant history function
S =(25,50,10,5) fort € (0,10) and the tool DDE 23 from Matlab, we can compute numerically the solution
of system (34)-(37) for t € (10, 200). The results are shown in Figure 1, where we can see that the solution goes
to the equilibria point Eo.

Example 4.2. Now, set 3 = 0.0096, so Rop > 1. Computing R, from its definition we have R, =
Mf(x y,7), where

Ve ¢272
y=2, 9T n) py =0,

therefore R1 = 0.97091 < 1 and we have then, a second equilibrium
E1 = (659.461141,5.962025,0.826548, 0).

Using the history function from previous example we can plot the solution with Matlab. By Theorem 3.2, E is
globally asymptotically stable as we can see in Figure 2.
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Fig. 1. Global stability of infection free equilibrium for R < 1.
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Fig. 2. Global stability of CTL-IE E; for Rp > 1 > R;.
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Finally, for 3 = 1, we have Ro > 1 and R1 = 6.088529, so there exists an infection free equilibrium Eo and two

equilibria

E1=(1.461792,152.184859,21.098236,0),

and

E, =(1.537198, 25, 3.465889, 4.070823).
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By Theorem 3.3 we have global stability of equilibrium E,. We can see in Figure 3 that the solutions approach to
E>.

Fig. 3. Global stability of CTL-AE E; for Rg > 1, R1 > 1.
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Example 4.3. In order to show that our model, generalizes the previous articles, we propose the following
incidence function to show our results:

f(X’y’V): £x

(1+ay)(1+9v)
This function is not included in the cases studied by [9], since the general form in that work is h(x,v). Our
function f includes the three variables x, y, v and satisfies our conditions (i)-(iii) to be an admisible incidence

rate.
i) f(o,y,v)=0, Vy,v>0.

.e ()f _ B

ll) &—W>O, VX,y,V>O.
if _ Bxa

iii a)ay =~ (D <0 VYx,y,v>0.
sy - Bxy

iiib)5; = D’ S 0, Vx,y,v>0.

Setting the other functions and parameters, as in Example 4.1, then we obtain model:

Bxv

. X
x:)\—dx+rx(1—E)—W,

ﬁX(t— T1)V(l’—7‘1)

V= e " —ay-pyz,
Y= A ayt-m)) A +v(t-m)) yopy
v=ke “y(t-m)-uv,

z=cyz- bz,

The infection free equilibrium is Eq = (666.6666,0, 0, 0) as in previous cases, with Ry = 70.07227458, so
Ro > 1iff 8> 0.01427097. Therefore, if we set 3 = 0.1 then we have Ro > 1, R1 = 4.9234560677357286281
and there exists two more equilibria points,

E1=(115.436331,183.268932, 25.407594,0), E, =(481.791432,25,3.465889,3.138764)
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with E, globally asymptotically stable. Figure 4 shows how the solutions approach to the equilibrium E,.

Fig. 4. Global stability of CTL-AE E; for f(x, y, V) = with Rop > 1, Ry > 1.
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5 Conclusions

In this paper we studied the global properties of a model of infinitely distributed delayed viral infection. That
considers a nonlinear CTL immune response, given by w(y, z) = ¢1(y)#2(z) and a general incidence function
of the form f(x, y, v)v, where w and f satisfy certain conditions derived from previous works and biological
meanings. Even when there exists variety of papers that include the CTL immune response (see for example
[1, 3-5, 7]) and general incidence functions of various types (see [5, 7, 9]), the model proposed in this article
includes a family of the works studied by several authors, and their conclusions can be seen as a particular
case of our theorems. There lies its importance and relevance.

The model always presents an infection free positive equilibrium Eo = (%, 0,0, 0), and two types of
chronic infection equilibria: the CTL inactivated infection equilibrium (CTL-IE) E; = (x1, 1, v1,0) and the
CTL activated infection equilibrium (CTL-AE) E; = (x2,¥2,V2,22). The coexistence of these equilibria is
determined by the basic reproduction number Ry and the viral reproduction number R;. These were defined
in section 2 and are given in terms of parameters and the functions f(x, y, v), fi(7), ¢#1(y) and ¢,(z). The
results show that Rp > R; and the system admits always a positive infection free equilibrium Eo, which is the
unique equilibrium when Ry < 1. If Ro > 1 which in addition to Ey provides only the CTL-IE (when R; < 1),
or the coexistence of the CTL-IE and CTL-AE (R > 1).

We proved, by construction of a Lyapunov function, that whenever the equilibrium Ey is unique (Ro < 1)
and Ry + 1, Ej is globally asymptotically stable. Moreover when Ry > 1 and R; < 1 the CTL-IE, E; is globally
asymptotically stable. In the case of CTL-AE, E, we obtained conditions for global stability only in the case
f3(r) = &(7), i.e., when the equation z does not present delay. The results indicate that in this case, the
equilibrium E; is globally asymptotically stable when R; > 1 and conditions (i) - (iii), H; — H4 hold. It will
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be of interest to find conditions that guarantee the global stability of the E, with a general f3(7), this topic
can be taken as a future work.

Acknowledgement: This article was supported in part by Mexican SNI under grant 15284 and CONACYT
Scholarship 295308.

References

(1

(2]

3]

[4]

(6]

(7]

(8]

91

[10]

[11]

[12]

[13]

[14]

[15]

Nowak M. A. and Bangham C. R. Population dynamics of immune responses to persistent viruses, Science, 1996,
272(5258), 74-79.

Xu S. Global stability of the virus dynamics model with Crowley-Martin functional response. Electron. J. Qual. Theory of
Differ. Eq., 2012, 9, 1-10.

Li X. and Fu S. Global stability of a virus dynamics model with intracellular delay and CTL immune response. Math.
Methods Appl. Sci., 2015, 38(3), 420-430.

Yang Y. Stability and hopf bifurcation of a delayed virus infection model with Beddington—-DeAngelis infection function
and cytotoxic T-lymphocyte immune response. Math. Methods Appl. Sci., 2015, 38(18), 5253-5263.

Yang H. and Wei ). Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes
immune response. Nonlinear Dyn., 2015, 82(1-2), 713-722.

Hattaf K., Yousfi N., and Tridane A. Mathematical analysis of a virus dynamics model with general incidence rate and cure
rate. Nonlinear Anal. Real World Appl., 2012, 13(4), 1866-1872.

Hattaf K., Yousfi N., and Tridane A. Global stability analysis of a generalized virus dynamics model with the immune
response. Can. Appl. Math. Q., 2012, 20(4), 499-518.

Wang X., Tao Y., and Song X. Global stability of a virus dynamics model with Beddington-DeAngelis incidence rate and
CTL immune response. Nonlinear Dyn., 2011, 66(4), 825-830.

Shu H., Wang L., and Watmough J. Global stability of a nonlinear viral infection model with infinitely distributed
intracellular delays and CTL immune responses. SIAM J. Appl. Math., 2013, 73(3), 1280-1302.

Hattaf K. and Yousfi N. A class of delayed viral infection models with general incidence rate and adaptive immune
response. International Journal of Dynamics and Control, 2016, 4(3), 254—265.

JiY.and Liu L. Global stability of a delayed viral infection model with nonlinear immune response and general incidence
rate. Discrete & Continuous Dyn. Syst. Ser.B, 2016, 21(1).

Wang )., Tian X., and Wang X. Stability analysis for delayed viral infection model with multitarget cells and general
incidence rate. Int. J. Biomath., 2016, 9(01), 1650007.

Wang J., Lang J., and Li F. Constructing lyapunov functionals for a delayed viral infection model with multitarget cells,
nonlinear incidence rate, state-dependent removal rate. J. Nonlinear Sci. Appl., 2016, 9, 524-536.

Wang J., Guo M., Liu X., and Zhao Z. Threshold dynamics of HIV-1virus model with cell-to-cell transmission, cell-mediated
immune responses and distributed delay. Appl. Math. Comput., 2016, 291, 149-161.

FV A. and Haddock J. On determining phase spaces for functional differential equations. Funkcialaj Ekvacioj, 1988, 31,
331-347.



	Global stability of a distributed delayed viral model with general incidence rate
	1 Introduction
	1.1 Positivity and boundedness

	2 Existence and uniqueness of equilibria of system
	3 Global stability
	4 Numerical simulations
	5 Conclusions


