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Abstract: In this paper, we discussed a in�nitely distributed delayed viral infection model with nonlinear
immune response and general incidence rate. We proved the existence and uniqueness of the equilibria.
By using the Lyapunov functional and LaSalle invariance principle, we obtained the conditions of global
stabilities of the infection-free equilibrium, the immune-exhausted equilibriumand the endemic equilibrium.
Numerical simulations are given to verify the analytical results.
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1 Introduction
During recent decades there has been a lot of research regarding mathematical modelling of viruses’ dynam-
ics via models of ordinary di�erential equations. The advances in immunology have lead us to better un-
derstand the interactions between populations of virus and the immune system, therefore several nonlinear
sytems of ordinary di�erential equations have been proposed. Nowak and Bengham [1] study the model

x′(t) = s − dx(t) − βx(t)v(t), (1)
y′(t) = βx(t)v(t) − ay(t) − py(t)z(t), (2)
v′(t) = ky(t) − uv(t), (3)
z′(t) = cy(t)z(t) − bz(t). (4)

Where x(t) denotes the number of healthy cells, y(t) denotes the infected cells, v(t) denotes the number of
mature viruses and z(t)denotes the number of CTL (cytotoxic T lymphocyte response) cells. Uninfected target
cells are assumed to be generated at a constant rate s and die at rate d. Infection of target cells by free virus is
assumed to occur at rate β. Infected cells die at rate a and are removed at rate p by the CTL immune response.
New virus is produced from infected cells at rate k and dies at rate u. The average lifetime of uninfected cells,
infected cells and free virus is thus given by 1/d, 1/a and 1/u, respectively. The parameter c denotes the rate
at which the CTL response is produced and b denotes death rate of the CTL response. All given constants are
assumed to be positive.
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Generally, the type of incidence function used in amodel has an important role inmodeling the dynamics
of viruses. The most common, is the bilinear incidence rate βxv. However, this rate is not useful all the time.
For instance, bilinear incidence suggests, that themodel can not describe the infection process of hepatitis B,
where individuals with small liver are more resistant to infection than the ones with a bigger liver. Recently,
works about models of infections by viruses have used the incidence function of type Beddington-DeAngelis
and Crowley-Martin. In [2] the authors propose a model of infection by virus with Crowley-Martin functional
response βx(t)v(t)

(1+ax(t))(1+bv(t)) . Li and Fu in [3] study the following system:

x′(t) = s − dx(t) − βx(t)v(t)
(1 + ax(t))(1 + bv(t))

, (5)

y′(t) = βx(t − τ)v(t)e−sτ

(1 + ax(t − τ))(1 + bv(t − τ))
− ay(t) − py(t)z(t), (6)

v′(t) = ky(t) − uv(t), (7)
z′(t) = cy(t)z(t) − bz(t). (8)

They construct a Lyapunov functional to establish the global dynamics of the system. More recently, in [4],
the authors consider the system

x′(t) = s − dx(t) − βx(t)v(t)
1 + ax(t) + bv(t)

, (9)

y′(t) = βx(t)v(t)
1 + ax(t) + bv(t)

− ay(t) − py(t)z(t), (10)

v′(t) = ky(t) − uv(t), (11)
z′(t) = cy(t − τ)z(t − τ) − bz(t). (12)

They also give also results of global stability as well as, Hopf bifurcation results.
Yang and Wei in [5] consider a more general incidence rate, they study the system

x′(t) = s − dx(t) − x(t)f(v(t)), (13)
y′(t) = x(t)f(v(t)) − ay(t) − py(t)z(t), (14)
v′(t) = ky(t) − uv(t), (15)
z′(t) = cy(t)z(t) − bz(t), (16)

giving some results about global stability in termsof thebasic reproductionnumber and the immune response
reproduction number. Here the f(v) is assumed to be a continuous function on v that belongs to (0,∞) and
satis�es f(0) = 0, f ′(v) > 0 for all v greater or equal to 0 and f ′′(v) < 0 for all v greater or equal to 0.

In [6], the authors consider a more general incidence rate f(x, y, v)v, where f is assumed to be continu-
ously di�erentiable in the interior of R3

+ and satis�es the following hypotheses
i) f(0, y, v) = 0, for all y ≥ 0, v ≥ 0.
ii) ∂f

∂x (x, y, v) > 0 for all x > 0, y > 0, v > 0.
iii) ∂f

∂y (x, y, v) ≤ 0 and ∂f
∂v (x, y, v) ≤ 0 for all x ≥ 0, y ≥ 0, v ≥ 0.

In [7], authors analyze an infection model by virus , with general incidence and immune response, which
generalizes the systems [2, 6, 8], namely,

ẋ = s − dx − f(x, y, v)v,
ẏ = f(x, y, v)v − ay − pyz,
v̇ = ky − uv,
ż = cyz − bz,

where f(x, y, v) is a continuous and di�erentiable function in the interior of R3
+ and satis�es the conditions

(i), (ii), (iii).
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Another viral infection model is the studied in [9] given by:

ẋ = n(x) − h(x, v),

ẏ =
∞

∫

0

f1(τ)h(x(t − τ), v(t − τ))dτ − ag1(y) − pw(y, z),

v̇ = k
∞

∫

0

f2(τ)g1(y(t − τ))dτ ,

ż = c
∞

∫

0

f3(τ)w(y(t − τ), z(t − τ))dτ − bg3(z).

Where x, y, v, z denotes thenon infected cells, infected cells, virus and speci�c virusCTLat time t respectively.
Conditions on functions fi,h,w, and gi are speci�ed in [9]. Related works are [10-14].

Based on the discussion above, we will study a delayed viral infection model with general incidence rate
and CTL immune response given by

ẋ = n(x) − f(x(t), y(t), v(t))v(t), (17)

ẏ =
∞

∫

0

f1(τ)f(x(t − τ), y(t − τ), v(t − τ))v(t − τ)e−α1τ − aϕ1(y(t)) − pw(y(t), z(t)), (18)

v̇ = k
∞

∫

0

f2(τ)e−α2τϕ1(y(t − τ)) − uv(t), (19)

ż = c
∞

∫

0

f3(τ)w(y(t − τ), z(t − τ)) − bϕ2(z(t)). (20)

The dynamics of uninfected cells, x, in the absence of infection is governed by x′ = n(x). n(x) is the intrinsic
growth rate of uninfected cells accounting for both productions and natural mortality. This is assumed to
satisfy the following:
H1)n(x) is continuously di�erentiable, and exist x̄ > 0 such as that n(x̄) = 0, n(x) > 0 for x ∈ [0, x̄),

and n(x) < 0 for x < x̄. Typical functions appearing in the literature are n(x) = s − dx and n(x) =

s − dx + rx (1 − x/xmax).
H2)ϕi is strictly increasing on [0,∞); ϕi(0) = 0; ϕ′i(0) = 1; limyÐ→∞ ϕi(y) = +∞; and there exists ki > 0

such as ϕi(y) ≥ kiy for any yi ≥ 0.
H3)w(y, z) is continuously di�erentiable; ∂w(y,z)

∂z > 0 for y ∈ (0,∞), z ∈ [0,∞); w(y, z) > 0 for y ∈ (0,∞)

and z ∈ (0,∞) with w(y, z) = 0 if and if only y = 0 or z = 0.

All parameters are nonnegative and the distributions fi for i = 1, 2 are assumed to satisfy the following (see
[9, 14]) :
– fi(τ) ≥ 0, for τ ≥ 0.
– ∫

∞

0 fi(τ)dτ = 1 for i = 1, 2.
– ∫

∞

0 f3(τ)dτ ≤ 1 and ∫
∞

0 f3(τ)esτdτ < ∞ for some s > 0.

In addition, the uniqueness and global stability results on the positive equilibrium require the following
assumption:
H4)w(y, z) = ϕ1(y)ϕ2(z).

In this paper, we will study the global dynamics model of (17)-(20). Organization is as follows: in section
2, we prove the existence and uniqueness of the infection free equilibrium, the CTL-inactivated infection
equilibrium and the CTL-activated infection equilibrium. In section 3, the conditions that allow the global
stability of each equilibrium are determined and proved. Section 4, provide several numerical simulations
that show the results obtained in section 3 and 4. Finally, in section 5 we summarize the results we have
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obtained, comparing themwith previous models studied in literature, and setting the guidelines for possible
future work.

1.1 Positivity and boundedness

For system (17) the suitable space is C4
= C × C × C × C, where C is the Banach space of fading memory type

([15]):

C ∶= {φ ∈ C((−∞, 0],R), φ(θ)eαθ is uniformly continous for θ ∈ (−∞, 0] and ∥φ∥ < ∞},

where the norm of a φ ∈ C is de�ned as ∥φ∥ = supθ≤0 ∣φ(θ)∣eαθ . The nonnegative cone of C is de�ned as
C+ = C((−∞, 0],R+).

Theorem 1.1. Under the initial conditions, all solutions of system (17)-(20) are positive and ultimately uniformly
bounded in X.

Proof. To see that x(t) is positive, we proceed by contradiction. Let t1 the �rst value of time such that x(t1) =

0. From (17) we see that x′(t1) = n(0) > 0 and x(t1) = 0, therefore there exists ε > 0 such that x(t) < 0 for
t ∈ (t1 − ε, t1), this leads to a contradiction. It follows that x(t) is always positive. With a similar argument
we see that y(t), v(t) and z(t) are positive for t ≥ 0.

The hypotheses (H1) and equation (17) imply that lim suptÐ→∞ x(t) ≤ x̄.
From (17), (18) and assumption (H2), we obtain

∞

∫

0

f1(τ)e−α1τ x′(t − τ)dτ + y′(t) =
∞

∫

0

f1(τ)e−α1τ n(x(t − τ))dτ − aϕ1(y) ≤ M1G1 − ak1y, (21)

where M1 = supx∈[0,x̄] n(x) and G1 = ∫
∞

0 f1(τ)e−α1τdτ .
Let e(t) = ∫

∞

0 f1(τ)e−α1τ x(t − τ)dτ , we have that e(t) ≤ x̄G1 for t > 0. Then

(e(t) + y(t))′ ≤ M1G1 − ak1y
= M1G1 +M1G1 −M1G1 − ak1y

≤ 2M1G1 −
M1

x̄
e(t) − ak1y

≤ 2M1G1 − µ̄(e(t) + y(t)) where µ̄ = min{
M1

x̄
, ak1} ,

and thus lim suptÐ→∞(e(t) + y(t)) ≤ 2M1G1
µ̄ . Since e(t) ≥ 0, we know that lim suptÐ→∞ y(t) ≤ 2M1G1

µ̄ . From
(19), we have that,

v̇ = k
∞

∫

0

f2(τ)e−α2τϕ1(y(t − τ))dτ − uv(t)

≤ kM2G2 − uv(t),

where M2 = supy∈[0, 2M1G1
µ̄

]
ϕ1(y) and G2 = ∫

∞

0 f2(τ)e−α2τdτ , and thus lim suptÐ→∞ v(t) ≤ kM2G2
u .

Using a similar argument, let G3 = ∫
∞

0 f3(τ)dτ , L(t) = cG3
p y(t) + z(t), µ̃ = min{ak1, bk2}

and M3 = sup
(x,y,v)∈[0,x̄]×[0, 2M1G1

µ̄
]×[0, kM2G2

u ]
f(x, y, v)v, then

L′(t) = cG3

p
G1f(x, y, v)v −

acG3

p
ϕ1(y) − cG3ϕ1(y)ϕ2(z) + cG3ϕ1(y)ϕ2(z) − bϕ2(z)

≤
cG3G1

p
M3 −

acG3

p
k1y − bk2z

≤
cG3G1

p
M3 − µ̃(

cG3

p
y + z)
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=
cG3G1

p
M3 − µ̃L(t),

therefore lim suptÐ→∞ L(t) ≤ cG1G3M3
pµ̃ . Since cG3

p y(t) ≥ 0, we know that lim suptÐ→∞ z(t) ≤ cG1G3M3
pµ̃ .

Therefore, x(t), y(t), v(t) and z(t) are ultimately uniformly bounded in C4.

Previous theorem implies that the omega limit set of system (17)-(20) is contained in the following bounded
feasible region:

Γ = {(x, y, v, z) ∈ C4
+ ∶∥ x ∥≤ x̄, ∥ y ∥≤ 2M1G1

µ̄
, ∥ v ∥≤ kM2G2

u
, ∥ z ∥≤ cG1G3M3

pµ̃
} .

It can be veri�ed that the region Γ is positively invariant with respect to model (17)-(20) and that the model
is well posed.

2 Existence and uniqueness of equilibria of system
At any equilibrium we have

n(x) − f(x, y, v)v = 0, (22)

f(x, y, v)v − a
G1
ϕ1(y) −

p
G1
ϕ1(y)ϕ2(z) = 0, (23)

kϕ1(y) −
u
G2

v = 0, (24)

cϕ1(y)ϕ2(z) −
b
G3
ϕ2(z) = 0. (25)

System (17)-(20) always has an infection free equilibrium E0 = (x̄, 0, 0, 0). In addition to E0, the system
could have two types of chronic infection equilibria E1 = (x1, y1, v1, 0) and E2 = (x2, y2, v2, z2) in Γ , where
the entries of E1 and E2 are strictly positive. The equilibria E1 and E2 are called CTL-inactivated infection
equilibrium (CTL-IE) and CTL-activated infection equilibrium (CTL-AE), respectively.

We de�ne the general reproduction number as

R(x, y, v) = kG1G2f(x, y, v)
au

,

which is the ratio of the per capita production and decay rates of mature viruses at an equilibrium (x, y, v, z)
with z = 0. In particular, at the infection free equilibrium, E0, we denote R(x̄, 0, 0) by R0, representing the
basic production number for viral infection:

R0 = R(x̄, 0, 0) = kG1G2f(x̄, 0, 0)
au

. (26)

From assumption (H2) we have that ϕ1 is invertible, so we can de�ne from equation (25):

ŷ = ϕ−1
1 (

b
cG3

) , v̂ = kϕ1(ŷ)G2

u
.

De�ne also H(x) = n(x) − f(x, ŷ, v̂)v̂, we have H(0) = n(0) > 0 and H(x̄) = −f(x̄, ŷ, v̂)v̂, with f(x̄, ŷ, v̂) >
f(0, ŷ, v̂) = 0 by (ii), so there exists a x̂ ∈ (0, x̄) such that H(x̂) = 0. We denote:

R1 = R(x̂, ŷ, v̂), (27)

and refer it as the viral reproduction number. From assumptions on f it is easy to see that f(x̄, 0, 0) >

f(x̄, y, v), for all y, v > 0, moreover for all x ∈ [0, x̄) we have f(x, y, v) < f(x̄, y, v), so:

R0 = R(x̄, 0, 0) > R(x̄, y, v) > R(x, y, v), ∀x ∈ [0, x̄), y, v > 0. (28)
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Particularly, R0 > R1. The basic reproduction number for the CTL response is given by:

RCTL =
cG3ϕ1(y1)

b
.

In order to prove of the existence and uniqueness of equilibria, we require two additional assumptions. First,
we de�ne the following sets:

Xn = {ξ ∈ [0, x̄] ∶ (n(x) − n(ξ))(x − ξ) < 0 for x ≠ ξ, x ∈ [0, x̄]},
Xf (y, v) = {ξ ∈ [0, x̄] ∶ (f(x, y, v) − f(ξ, y, v))(x − ξ) < 0 for x ≠ ξ, x ∈ [0, x̄]},

X = ∩y,v∈(0,ȳ)×(0,v̄)Xf (y, v) ∩ Xn .

The following conditions are used to guarantee the uniqueness of the equilibria.
(A1)The system (17)-(20) has an equilibrium E1 = (x1, y1, v1, 0) satisfying x1 ∈ X.
(A2)The system (17) has an equilibrium E2 = (x2, y2, v2, z2) satisfying Xn ∩ Xf (y2, v2).

Theorem 2.1. Assume that i) − iii) and H1 − H4 are satis�ed.
1. If R0 ≤ 1, then E0 = (x0, 0, 0) is the unique equilibrium of the system (17)-(20) .
2. if R1 ≤ 1 < R0 then in addition to E0, system (17)-(20) has a CTL inactivated infection equilibrium E1.
3. If R0 > R1 > 1 then, in addition to E0 and E1 system (17) has a CTL activated infection equilibrium.

When x = x̄ and y = v = z = 0 the equations (22)-(25)are satis�ed, therefore E0 = (x0, 0, 0, 0) is a steady state
called the infection free equilibrium. To prove that it is unique when R0 < 1, we look for the existence of a
positive equilibrium.

To �nd a positive equilibrium we proceed as follows: from equation (25) ϕ2(z) = 0 or ϕ1(y) = b
cG1

. If
ϕ2(z) = 0 then from assumption (H2) we get, z = 0 and using (22)-(24)

n(x) = f(x, y, v)v = aϕ1(y)
G1

=
auv

kG1G2
. (29)

By (H2), we know that ϕ−1
1 exists. Solving n(x) = aϕ1(y)

G1
for y gives us that

y(x) = φ(x) = ϕ−1
1 (

n(x)G1

a
) ,

with φ(x̄) = 0 and φ(0) = y0 being a unique root of equations n(0) = aϕ1(y0
)

G1
. Solving (24) for v we obtain:

v(x) = kn(x)G1G2

au
.

Note that, from (ii) we have f(x, y, v) > f(0, y, v) = 0, ∀x > 0. So if E∗ = (x∗, y∗, v∗, z∗) is a positive
equilibrium, then n(x∗) = f(x∗, y∗, v∗)v∗ > 0, so x∗ ∈ (0, x̄).

Now, using (29) de�ne on the interval [0, x̄) the function G,

G(x) = f(x, y(x), v(x)) − n(x)
v(x)

= f (x, φ(x), n(x)kG1G2

au
) −

au
kG1G2

,

we have G(0) = − au
kG1G2

< 0, G(x̄) = f(x̄, 0, 0) − au
kG1G2

= au
kG1G2

(R0 − 1) . Therefore, if R0 > 1, then G(x) has a
root x∗ ∈ (0, x̄) such that

f(x∗, y(x∗), v(x∗)) − n(x∗)
v(x∗)

= 0,

or equivalently
n(x∗) − f(x∗, y(x∗), v(x∗))v(x∗) = 0.
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We conclude that, for R0 > 1, there exists another equilibrium E1 = (x1, y1, v1, 0) with x1 = x∗ ∈ (0, x̄),
y1 = φ(x1) and v1 =

kG2φ(x1)
u . Moreover, using the fact that R0 > R(x, y, v), for all x, y, v > 0 , when R0 < 1 we

have R(x, y, v) < 1. Using (29) we arrive to

n(x) − f(x, y, v)v > 0, ∀x, y, v > 0,

so equation (22) never holds. Therefore, E1 exists i� R0 > 1.
Next we show that E1 = (x1, y1, v1, 0) is unique. Suppose, to the contrary, that there exists another CTL-

IE equilibrium E∗1 = (x∗1 , y∗1 , v∗1 , 0). Without loss of generality, we assume that x∗1 < x1. Then x1 ∈ Xn implies
that n(x∗1) > n(x1). By virtue of x1 ∈ Xh, we get f(x∗1 , y∗1 , v∗1) < f(x1, y1, v1). On the other hand, it follows
from (29) that f(x∗1 , y∗1 , v∗1) = f(x1, y1, v1) = au/kG1G2. This is a contradiction, and thus E1 is the unique
CTL-IE.

Note that the CTL-AE E2 = (x2, y2, v2, z2) exists if (x2, y2, v2, z2) ∈ R4
+ satis�es the equilibrium equations

(22)-(25) and ϕ1(y) = b/cG3. Therefore according to system (17)-(20) and (H2) we have

y2 = ϕ
−1
1 (

b
cG3

) . (30)

Note that the values x̂, ŷ, v̂ are used to de�ne R1, so they clearly satisfy the equilibrium equations. Solving
the equation (23) for z and using (H2) yields ẑ = φ−1

2 (
kG1G2 f(x̂,ŷ,v̂)−au

pu ) = φ−1
2 (

a(R1−1))
p ). Using the fact that

ϕ−1
2 is de�ned on [0,∞) we conclude that the CTL-AE E2 = (x̂, ŷ, v̂, ẑ) exists if and only if R1 > 1.

Nowwewill prove that E2 is unique. Suppose that there exists another CTL-AE, E∗2 = (x∗2 , y∗2 , v∗2 , z∗2). Then
y2 = y∗2 and v2 = v∗2 . Without loss of generality, we assume that x∗2 < x2. Then x2 ∈ Xn implies n(x∗2) > n(x2).
Note that n(x∗2) = f(x∗2 , y2, v2) and n(x2) = f(x2, y2, v2), implies that f(x∗2 , y2, v2) > f(x2, y2, v2). This
contradicts that x2 ∈ Xf (y2, v2) and hence E2 is unique.

3 Global stability
Let R0 and R1 be de�ned as in previous section.

Theorem 3.1. If R0 < 1, then infection free-Equilibrium E0 of model (17)-(20) is globally asymptotically stable.

Proof. De�ne a Lyapunov functional

V1 = x − x0 +

x

∫
x0

f(x0, 0, 0)
f(s, 0, 0) ds + 1

G1
y + a

kG1G2
v + p

cG1G3
z

+
1
G1

∞

∫

0

f1(τ)e−α1τ
t

∫

t−τ

f(x(s), y(s), v(s))v(s)dsdτ + a
G1G2

∞

∫

0

f2(τ)e−α2τ
t

∫

t−τ

ϕ1(y(s))dsdτ

+
p

G1G3

∞

∫

0

f3(τ)
t

∫

t−τ

ϕ1(y(s))ϕ2(z(s))dsdτ ,

where Gi = ∫
∞

0 fi(τ),i = 1, 2, 3.
Calculating the derivative of V1 along the positive solutions of system (17)-(20) , it follows that

V̇1 = (1 − f(x0, 0, 0)
f(x, 0, 0) ) ẋ + 1

G1
ẏ + a

kG1G2
v̇ + p

cG1G3
ż

+ f(x, y, v)v − 1
G1

∞

∫

0

f1(τ)e−α1τ f(x(t − τ), y(t − τ), v(t − τ))dτ

+
a
G1
ϕ1(y) −

a
G1G2

∞

∫

0

f2(τ)e−α2τϕ1(y(t − τ))dτ



Global stability of a distributed delayed viral model with general incidence rate | 1381

+
p
G1
ϕ1(y)ϕ2(z) −

p
G1G3

∞

∫

0

f3(τ)ϕ1(y(t − τ))ϕ2(z(t − τ))dτ

= (1 − f(x0, 0, 0)
f(x, 0, 0) ) (n(x) − f(x, y, v)v)

+
1
G1

⎛
⎜
⎝

∞

∫

0

f1(τ)e−α1τ f(x(t − τ), y(t − τ), v(t − τ))v(t − τ) − aϕ1(y) − pϕ1(y)ϕ2(z)
⎞
⎟
⎠

+
a

kG1G2

⎛
⎜
⎝
k

∞

∫

0

f2(τ)e−α2τϕ1(y(t − τ)) − uv
⎞
⎟
⎠
+

p
cG1G3

⎛
⎜
⎝
c

∞

∫

0

f3(τ)ϕ1(y(t − τ)ϕ2(z(t − τ)) − bϕ2(z)
⎞
⎟
⎠

+ f(x, y, v)v − 1
G1

∞

∫

0

f1(τ)e−α1τ f(x(t − τ), y(t − τ), v(t − τ))dτ

+
a
G1
ϕ1(y) −

a
G1G2

∞

∫

0

f2(τ)e−α2τϕ1(y(t − τ))dτ

+
p
G1
ϕ1(y)ϕ2(z) −

p
G1G3

∞

∫

0

f3(τ)ϕ1(y(t − τ))ϕ2(z(t − τ))dτ .

Using n(x0) = 0 and simplifying, we get

V̇1 = (n(x) − n(x0))(1 − f(x0, 0, 0)
f(x, 0, 0) ) +

au
kG1G2

v ( f(x, y, v)
f(x, 0, 0)

f(x0, 0, 0)kG1G2

au
− 1) − pb

cG1G3
ϕ2(z)

= (n(x) − n(x0))(1 − f(x0, 0, 0)
f(x, 0, 0) ) +

au
kG1G2

v ( f(x, y, v)
f(x, 0, 0)R0 − 1) − pb

cG1G3
ϕ2(z)

≤ (n(x) − n(x0))(1 − f(x0, 0, 0)
f(x, 0, 0) ) +

au
kG1G2

v (R0 − 1) − pb
cG1G3

ϕ2(z).

Using the following inequalities:

n(x) − n(x0) < 0, 1 − f(x0, 0, 0)
f(x, 0, 0) ≥ 0 for x ≥ x0,

n(x) − n(x0) > 0, 1 − f(x0, 0, 0)
f(x, 0, 0) ≤ 0 for x < x0.

We have that
(n(x) − n(x0))(1 − f(x0, 0, 0)

f(x, 0, 0) ) ≤ 0.

Since R0 ≤ 1, we have V̇1 ≤ 0. Therefore the disease free E1 is stable, V̇1 = 0 if and only if x = x0, y = 0, v =
0, z = 0. So, the largest compact invariant set in {(x, y, v, z) ∶ V̇1 = 0} is just the singleton E1. From LaSalle
invariance principle , we conclude that E1 is globally asymptotically stable.

Theorem 3.2. If R0 > 1 and R1 < 1, then CTL-IE E1, of model (17) is globally asymptotically stable.

Proof. Consider the following Lyapunov functional:

V1 = L̂(t)

where

L̂ = x − x1 −

x

∫
x1

f(x1, y1, v1)

f(s, y1, v1)
ds + 1

G1

y

∫
y1

(1 − ϕ1(y1)

ϕ1(σ)
) dσ + a

kG1G2

v

∫
v1

(1 − v1

σ
) dσ

+
p

cG1G3
z
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+
f(x1, y1, v1)v1

G1

∞

∫

0

f1(τ)e−α1τ
τ

∫

0

H (
f(x(t − ω), y(t − ω), v(t − ω))v(t − ω)

f(x1, y1, v1)v1
) dωdτ

+
aϕ1(y1)

G1G2

∞

∫

0

f2(τ)e−α2τ
τ

∫

0

H (
ϕ1(t − ω)
ϕ1(y1)

) dωdτ

+
p

G1G3

∞

∫

0

f3(τ)
τ

∫

0

ϕ1(y(t − ω))ϕ2(z(t − ω))dωdτ .

At infected equilibrium

n(x1) − f(x1, y1, v1)v1 = 0, (31)

f(x1, y1, v1)v1 =
aϕ1(y1)

G1
, (32)

u
kG2

=
ϕ1(y1)

v1
. (33)

Calculating the derivative of L̂ along the positive solutions of (17), we get

V̇1 = (1 − f(x1, y1, v1)

f(x, y1, v1)
) ẋ + 1

G1
(1 − ϕ1(y1)

ϕ1(y)
) ẏ + a

kG1G2
(1 − v1

v
) v̇ + p

cG1G2
ż

+
f(x1, y1, v1)v1

G1

∞

∫

0

f1(τ)e−α1τ

(H (
f(x, y, v)v

f(x1, y1, v1)v1
) − H (

f(x(t − τ), y(t − τ), v(t − τ))v(t − τ)
f(x1, y1, v1)v1

)) dτ

+
aϕ1(y1)

G1G2

∞

∫

0

f2(τ)e−α2τ (H (
ϕ1(y)
ϕ1(y1)

) − H (
ϕ1(y(t − τ))
ϕ1(y1)

)) dτ

+
p
G1
ϕ1(y)ϕ2(z) −

p
G1G3

∞

∫

0

f3(τ)ϕ1(y(t − τ))ϕ2(z(t − τ))dτ

= (1 − f(x1, y1, v1)

f(x, y1, v1)
) (n(x) − f(x, y, v)v)

+
1
G1

(1 − ϕ1(y1)

ϕ1(y)
)
⎛
⎜
⎝

∞

∫

0

f1(τ)e−α1τ f(x(t − τ), y(t − τ), v(t − τ))v(t − τ) − aϕ1(y) − pϕ1(y)ϕ2(z)
⎞
⎟
⎠

+
a

kG1G2
(1 − v1

v
)
⎛
⎜
⎝
k

∞

∫

0

f2(τ)e−α2τϕ1(y − τ) − uv
⎞
⎟
⎠

+
p

cG1G2

⎛
⎜
⎝
c

∞

∫

0

f3(τ)ϕ1(y(t − τ))ϕ2(z(t − τ)) − bϕ2(z)
⎞
⎟
⎠

+
f(x1, y1, v1)v1

G1

∞

∫

0

f1(τ)e−α1τ (H (
f(x, y, v)v

f(x1, y1, v1)v1
) − H (

f(x(t − τ), y(t − τ), v(t − τ))v(t − τ)
f(x1, y1, v1)v1

)) dτ

+
aϕ1(y1)

G1G2

∞

∫

0

f2(τ)e−α2τ (H (
ϕ1(y)
ϕ1(y1)

) − H (
ϕ1(y(t − τ))
ϕ1(y1)

)) dτ

+
p
G1
ϕ1(y)ϕ2(z) −

p
G1G3

∞

∫

0

f3(τ)ϕ1(y(t − τ))ϕ2(z(t − τ))dτ .
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Using (31)-(33), we, get

V̇1 = (n(x) − n(x1))(1 − f(x1, y1, v1)

f(x, y1, v1)
)

+
aϕ1(y1)

G1
(1 − f(x1, y1, v1)

f(x, y1, v1)
+

f(x, y, v)v
f(x, y1, v1)v1

)

+
aϕ1(y1)

G1

⎛
⎜
⎝

1 − 1
G1

∞

∫

0

f1(τ)e−α1τ ϕ1(y1)

ϕ1(y)
v(t − τ)

v1

f(x(t − τ , y(t − τ), v(t − τ)))
f(x1, y1, v1)

⎞
⎟
⎠
dτ

+
aϕ1(y1)

G1

⎡
⎢
⎢
⎢
⎢
⎣

1
G1

∞

∫

0

f1(τ)e−α1τ ln(
f(x(t − τ), y(t − τ), v(t − τ))v(t − τ)

f(x1, y1, v1)v1
) dτ

⎤
⎥
⎥
⎥
⎥
⎦

+
aϕ1(y1)

G1

⎡
⎢
⎢
⎢
⎢
⎣

1
G2

∞

∫

0

f2(τ)e−α2τ ln(
ϕ1(y(t − τ))
ϕ1(y1)

dτ) − ln(
f(x, y, v)vϕ1(y)

f(x1, y1, v1)v1ϕ1(y1)
)

⎤
⎥
⎥
⎥
⎥
⎦

+
pbϕ1(z)
cG1G3

(
cG3ϕ1(y1)

b
− 1) .

Therefore

V̇1 = (n(x) − n(x1))(1 − f(x1, y1, v1)

f(x, y1, v1)
)

+
aϕ1(y1)

G1
(1 − v

v1
+
f(x, y1, v1)

f(x, y, v) +
f(x, y, v)v

f(x, y1, v1)v1
)

−
aϕ1(y1)

G1
[H (

f(x1, y1, v1)

f(x, y1, v1)
) + H (

f(x, y1, v1)

f(x, y, v) )]

−
aϕ1(y1)

G1

⎡
⎢
⎢
⎢
⎢
⎣

1
G1

∞

∫

0

f1(τ)e−α1τH (
ϕ1(y1)

ϕ1(y)
v(t − τ)

v1

f(x(t − τ), y(t − τ), z(t − τ))
f(x1, y1, v1)

) dτ
⎤
⎥
⎥
⎥
⎥
⎦

−
aϕ1(y1)

G1

⎡
⎢
⎢
⎢
⎢
⎣

1
G2

∞

∫

0

f2(τ)e−α2τH (
ϕ1(y(t − τ))v1

ϕ1(y1)v
) dτ

⎤
⎥
⎥
⎥
⎥
⎦

+
pbϕ1(z)
cG1G3

(R1 − 1) .

Using the inequalities:

n(x) − n(x1) < 0, 1 − f(x1, y1, v1)

f(x, y1, v1)
≥ 0 for x ≥ x1,

n(x) − n(x1) > 0, 1 − f(x1, y1, v1)

f(x, y1, v1)
≤ 0 for x < x1.

We have that
(1 − x

x1
)(1 − f(x1, y1, v1)

f(x, y1, v1)
) ≤ 0,

− 1 − v
v1

+
f(x, y1, v1)

f(x, y, v) +
v
v1

f(x, y, v)
f(x, y1, v1)

= (1 − f(x, y, v)
f(x, y1, v1)

)(
f(x, y1, v1)

f(x, y, v) −
v
v1

) ≤ 0.

Since R1 ≤ 1, we have V̇1 ≤ 0, thus E1 is stable. V̇1 = 0 if and only if x = x1, y = y1, v =1, z = 0. So, the
largest compact invariant set in {(x, y, v, z) ∶ v̇1 = 0} is the singleton E1. From LaSalle invariance principle,
we conclude that E1 is globally asymptotically stable.

Theorem 3.3. Assume that (i)−(iii), H1−H4 hold and f3(τ) = δ(τ). If R1 > 1, then the CTL-AE, E2 is Globally
asymptotically stable.
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Proof. De�ne a Lyapunov functional for E2.

V2 = x − x2 −

x

∫
x2

f(x2, y2, v2)

f(s, y2, v2)
ds + 1

G1

y

∫
y2

(1 − ϕ1(y2)

ϕ1(σ)
) dσ + a + pϕ2(z2)

kG1G2

v

∫
v2

(1 − v2

σ
) dσ

+
p
cG1

z

∫
z2

(1 − ϕ2(z2)

ϕ2(σ)
) dσ

+
1
G1

f(x2, y2, v2)v2

∞

∫

0

f1(τ)e−α1τ
t

∫

t−τ

H (
f(x(s), y(s), v(s))v(s)

f(x2, y2, v2)v2
) dsdτ

+
a + pϕ2(z2)

kG1G2
ϕ1(y2)

∞

∫

0

f2(τ)e−α2τ
t

∫

t−τ

H (
ϕ1(y(s))
ϕ1(y2)

) dsdτ .

The derivative of V2 along with the solutions of system (17) is

V̇2 = (1 − f(x2, y2, v2)

f(x, y2, v2)
) ẋ + 1

G1
(1 − ϕ1(y2)

ϕ1(y)
) ẏ + a + pϕ2(z2)

kG1G2
(1 − v2

v
) v̇

+
p
cG1

z

∫
z2

(1 − ϕ2(z2)

ϕ2(z)
) ż + 1

G1
f(x2, y2, v2)v2

∞

∫

0

f1(τ)e−α1τ

[H (
f(x, y, v)v

f(x2, y2, v2)v2
) − H (

f(x(t − τ), y(t − τ), v(t − τ))v(t − τ)
f(x2, y2, v2)v2

)] dτ

+
a + pϕ2(z2)

kG1G2
ϕ1(y2)

∞

∫

0

f2(τ)e−α2τ [H (
ϕ1(y)
ϕ1(y2)

) − H (
ϕ1(y(t − τ))
ϕ1(y2)

)] dτ .

Applying n(x2) = f(x2, y2, v2)v2, f(x2, y2, v2)v2 =
1
G1

(aϕ1(y1) + pϕ1(y1)ϕ2(z2)), ϕ1(y1) =
b
c ,

u
kG2

=
ϕ1(y2)

v2
,

we obtain

V̇2 = (n(x) − n(x1))(1 − f(x2, y2, v2)

f(x, y2, v2)
)

+
aϕ1(y2) + pϕ1(y2)ϕ2(z2)

G1
(1 − f(x2, y2, v2)

f(x, y2, v2)
+

f(x, y, v)v
f(x, y2, v2)v2

)

+
aϕ1(y2) + pϕ1(y2)ϕ2(z2)

G1

⎛
⎜
⎝

1 − 1
G1

∞

∫

0

f1(τ)e−α1τ ϕ1(y2)

ϕ1(y)
v(t − τ)

v2

f(x(t − τ , y(t − τ), v(t − τ)))
f(x1, y2, v2)

⎞
⎟
⎠
dτ

+
aϕ1(y2) + pϕ1(y2)ϕ2(z2)

G1

⎡
⎢
⎢
⎢
⎢
⎣

1
G1

∞

∫

0

f1(τ)e−α1τ ln(
f(x(t − τ), y(t − τ), v(t − τ))v(t − τ)

f(x2, y2, v2)v2
) dτ

⎤
⎥
⎥
⎥
⎥
⎦

+
aϕ1(y2) + pϕ1(y2)ϕ2(z2)

G1

⎡
⎢
⎢
⎢
⎢
⎣

1
G2

∞

∫

0

f2(τ)e−α2τ ln(
ϕ1(y(t − τ))
ϕ1(y2)

dτ) − ln(
f(x, y, v)vϕ1(y)

f(x2, y2, v2)v2ϕ1(y2)
)

⎤
⎥
⎥
⎥
⎥
⎦

.

Therefore

V̇2 = (n(x) − n(x1))(1 − f(x2, y2, v2)

f(x, y2, v2)
)

+
aϕ1(y2) + pϕ1(y2)ϕ2(z2)

G1
(1 − v

v2
+
f(x, y2, v2)

f(x, y, v) +
f(x, y, v)v

f(x, y2, v2)v2
)

−
aϕ1(y2) + pϕ1(y2)ϕ2(z2)

G1
[H (

f(x2, y2, v2)

f(x, y2, v2)
) + H (

f(x, y2, v2)

f(x, y, v) )]

−
aϕ1(y2) + pϕ1(y2)ϕ2(z2)

G1

⎡
⎢
⎢
⎢
⎢
⎣

1
G1

∞

∫

0

f1(τ)e−α1τH (
ϕ1(y2)

ϕ1(y)
v(t − τ)

v2

f(x(t − τ), y(t − τ), z(t − τ))
f(x2, y2, v2)

) dτ
⎤
⎥
⎥
⎥
⎥
⎦
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−
aϕ1(y2) + pϕ1(y2)ϕ2(z2)

G1

⎡
⎢
⎢
⎢
⎢
⎣

1
G2

∞

∫

0

f2(τ)e−α2τH (
ϕ1(y(t − τ))v2

ϕ1(y2)v
) dτ

⎤
⎥
⎥
⎥
⎥
⎦

.

Therefore V̇2 ≤ 0, thus E2 is stable. V̇2 = 0 if and only if x = x2, y = y2, v = v2, z = z3. So, the largest compact
invariant set in {(x, y, v, z) ∶ V̇2 = 0} is the singleton E2. From LaSalle invariance principle, we conclude that
E2 is globally asymptotically stable.

4 Numerical simulations
In this section we present some numerical simulations to illustrate the results of stability, obtained in our
theorems from previous sections.

Example 4.1. Consider the functions n(x) = λ − dx + rx (1 − x
K ), φ1(y) = y, φ2(z) = z,w(y, z) = yz and

f(x, y, v) = βx
αy+γx . Let τ1, τ2 ∈ [0,∞) two �xed delays, and set f1(τ) = δ(τ −τ1), f2(τ) = δ(τ −τ2), f3(τ) = δ(τ),

where δ is the Dirac delta function de�ned as
∞

∫

0

δ(τ − τi)F(τ)dτ = F(τi).

Then, the model takes the form:

ẋ = λ − dx + rx (1 − x
K
) −

βxv
αy + γx

, (34)

ẏ = βx(t − τ1)v(t − τ1)

αy(t − τ1) + γx(t − τ1)
e−µτ1 − ay − pyz, (35)

v̇ = ke−α2τ2y(t − τ2) − uv, (36)
ż = cyz − bz, (37)

Fix the parameters as λ = 200, d = 0.1, r = 0.6, K = 500, p = 1, k = 0.8,α2 = 0.05, u = 3.5, c = 0.03, b =

0.75, τ1 = 5, τ2 = 10, µ = 0.1,α = γ = 0.001. The trivial equilibriumpoint is given by E0 = (666.6666, 0, 0, 0),
so the basic reproduction numberR0 is obtained by:

R0 =
kG1G2f(x0, 0, 0)

au
=
ke−µτ1e−α2τ2β

auγ
= 105.10841176326923474β.

R0 ≤ 1 i� β ≤ 0.009513986. We set β = 0.003 . By Theorem 2.1 i), we have the single equilibrium E0 =

(666.6666, 0, 0, 0) which is globally asymptotically stable by Theorem 3.1. Using a constant history function
S = (25, 50, 10, 5) for t ∈ (0, 10) and the tool DDE 23 from Matlab, we can compute numerically the solution
of system (34)-(37) for t ∈ (10, 200). The results are shown in Figure 1, where we can see that the solution goes
to the equilibria point E0.

Example 4.2. Now, set β = 0.0096, so R0 > 1. Computing R1 from its de�nition we have R1 =
ke−µτ1 e−α2τ2

au f(x̂, ŷ, v̂), where

ŷ = b
c
, v̂ = ŷke−α2τ2

u
, n(x̂) − f(x̂, ŷ, v̂)v̂ = 0,

therefore R1 = 0.97091 < 1 and we have then, a second equilibrium

E1 = (659.461141, 5.962025, 0.826548, 0).

Using the history function from previous example we can plot the solution with Matlab. By Theorem 3.2, E1 is
globally asymptotically stable as we can see in Figure 2.
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Fig. 1. Global stability of infection free equilibrium forR0 < 1.

Fig. 2. Global stability of CTL-IE E1 forR0 > 1 > R1.

Finally, for β = 1, we have R0 > 1 and R1 = 6.088529, so there exists an infection free equilibrium E0 and two
equilibria

E1 = (1.461792, 152.184859, 21.098236, 0),

and
E2 = (1.537198, 25, 3.465889, 4.070823).
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By Theorem 3.3 we have global stability of equilibrium E2. We can see in Figure 3 that the solutions approach to
E2.

Fig. 3. Global stability of CTL-AE E2 for R0 > 1, R1 > 1.

Example 4.3. In order to show that our model, generalizes the previous articles, we propose the following
incidence function to show our results:

f(x, y, v) = βx
(1 + αy)(1 + γv) .

This function is not included in the cases studied by [9], since the general form in that work is h(x, v). Our
function f includes the three variables x, y, v and satis�es our conditions (i)-(iii) to be an admisible incidence
rate.
i) f(0, y, v) = 0, ∀y, v ≥ 0.
ii) ∂f

∂x =
β

(1+αy)(1+γv) > 0, ∀x, y, v > 0.
iii a) ∂f∂y = −

β xα
(αy+1)2

(γv+1) ≤ 0 ∀x, y, v ≥ 0.
iii b) ∂f∂v = −

β xγ
(αy+1)(γv+1)2 ≤ 0, ∀x, y, v ≥ 0.

Setting the other functions and parameters, as in Example 4.1, then we obtain model:

ẋ = λ − dx + rx (1 − x
K
) −

βxv
(1 + y)(1 + v)

,

ẏ = βx(t − τ1)v(t − τ1)

(1 + y(t − τ1))(1 + v(t − τ1))
e−µτ1 − ay − pyz,

v̇ = ke−α2τ2y(t − τ2) − uv,
ż = cyz − bz,

The infection free equilibrium is E0 = (666.6666, 0, 0, 0) as in previous cases, with R0 = 70.0722745β, so
R0 > 1 i� β > 0.01427097. Therefore, if we set β = 0.1 then we have R0 > 1, R1 = 4.9234560677357286281
and there exists two more equilibria points,

E1 = (115.436331, 183.268932, 25.407594, 0), E2 = (481.791432, 25, 3.465889, 3.138764)
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with E2 globally asymptotically stable. Figure 4 shows how the solutions approach to the equilibrium E2.

Fig. 4. Global stability of CTL-AE E2 for f(x, y, v) = βx
(1+αy)(1+γv) , with R0 > 1, R1 > 1.

5 Conclusions
In this paper we studied the global properties of a model of in�nitely distributed delayed viral infection. That
considers a nonlinear CTL immune response, given byw(y, z) = φ1(y)φ2(z) and a general incidence function
of the form f(x, y, v)v, where w and f satisfy certain conditions derived from previous works and biological
meanings. Even when there exists variety of papers that include the CTL immune response (see for example
[1, 3–5, 7]) and general incidence functions of various types (see [5, 7, 9]), the model proposed in this article
includes a family of the works studied by several authors, and their conclusions can be seen as a particular
case of our theorems. There lies its importance and relevance.

The model always presents an infection free positive equilibrium E0 = (x̄, 0, 0, 0), and two types of
chronic infection equilibria: the CTL inactivated infection equilibrium (CTL-IE) E1 = (x1, y1, v1, 0) and the
CTL activated infection equilibrium (CTL-AE) E2 = (x2, y2, v2, z2). The coexistence of these equilibria is
determined by the basic reproduction number R0 and the viral reproduction number R1. These were de�ned
in section 2 and are given in terms of parameters and the functions f(x, y, v), fi(τ), φ1(y) and φ2(z). The
results show that R0 > R1 and the system admits always a positive infection free equilibrium E0, which is the
unique equilibrium when R0 ≤ 1. If R0 > 1 which in addition to E0 provides only the CTL-IE (when R1 ≤ 1),
or the coexistence of the CTL-IE and CTL-AE (R1 > 1).

We proved, by construction of a Lyapunov function, that whenever the equilibrium E0 is unique (R0 ≤ 1)
and R0 ≠ 1, E0 is globally asymptotically stable. Moreover when R0 > 1 and R1 < 1 the CTL-IE, E1 is globally
asymptotically stable. In the case of CTL-AE, E2 we obtained conditions for global stability only in the case
f3(τ) = δ(τ), i.e., when the equation ż does not present delay. The results indicate that in this case, the
equilibrium E2 is globally asymptotically stable when R1 > 1 and conditions (i) − (iii),H1 − H4 hold. It will
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be of interest to �nd conditions that guarantee the global stability of the E2 with a general f3(τ), this topic
can be taken as a future work.

Acknowledgement: This article was supported in part by Mexican SNI under grant 15284 and CONACYT
Scholarship 295308.

References
[1] Nowak M. A. and Bangham C. R. Population dynamics of immune responses to persistent viruses, Science, 1996,

272(5258), 74-79.
[2] Xu S. Global stability of the virus dynamics model with Crowley-Martin functional response. Electron. J. Qual. Theory of

Di�er. Eq., 2012, 9, 1–10.
[3] Li X. and Fu S. Global stability of a virus dynamics model with intracellular delay and CTL immune response. Math.

Methods Appl. Sci., 2015, 38(3), 420–430.
[4] Yang Y. Stability and hopf bifurcation of a delayed virus infection model with Beddington–DeAngelis infection function

and cytotoxic T-lymphocyte immune response. Math. Methods Appl. Sci., 2015, 38(18), 5253–5263.
[5] Yang H. and Wei J. Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes

immune response. Nonlinear Dyn., 2015, 82(1-2), 713–722.
[6] Hattaf K., Yous� N., and Tridane A. Mathematical analysis of a virus dynamics model with general incidence rate and cure

rate. Nonlinear Anal. Real World Appl., 2012, 13(4), 1866–1872.
[7] Hattaf K., Yous� N., and Tridane A. Global stability analysis of a generalized virus dynamics model with the immune

response. Can. Appl. Math. Q., 2012, 20(4), 499–518.
[8] Wang X., Tao Y., and Song X. Global stability of a virus dynamics model with Beddington–DeAngelis incidence rate and

CTL immune response. Nonlinear Dyn., 2011, 66(4), 825–830.
[9] Shu H., Wang L., and Watmough J. Global stability of a nonlinear viral infection model with in�nitely distributed

intracellular delays and CTL immune responses. SIAM J. Appl. Math., 2013, 73(3), 1280–1302.
[10] Hattaf K. and Yous� N. A class of delayed viral infection models with general incidence rate and adaptive immune

response. International Journal of Dynamics and Control, 2016, 4(3), 254–265.
[11] Ji Y. and Liu L. Global stability of a delayed viral infection model with nonlinear immune response and general incidence

rate. Discrete & Continuous Dyn. Syst. Ser.B, 2016, 21(1).
[12] Wang J., Tian X., and Wang X. Stability analysis for delayed viral infection model with multitarget cells and general

incidence rate. Int. J. Biomath., 2016, 9(01), 1650007.
[13] Wang J., Lang J., and Li F. Constructing lyapunov functionals for a delayed viral infection model with multitarget cells,

nonlinear incidence rate, state-dependent removal rate. J. Nonlinear Sci. Appl., 2016, 9, 524–536.
[14] Wang J., Guo M., Liu X., and Zhao Z. Threshold dynamics of HIV–1 virus model with cell-to-cell transmission, cell-mediated

immune responses and distributed delay. Appl. Math. Comput., 2016, 291, 149–161.
[15] FV A. and Haddock J. On determining phase spaces for functional di�erential equations. Funkcialaj Ekvacioj, 1988, 31,

331–347.


	Global stability of a distributed delayed viral model with general incidence rate
	1 Introduction
	1.1 Positivity and boundedness

	2 Existence and uniqueness of equilibria of system
	3 Global stability
	4 Numerical simulations
	5 Conclusions


