Open Math. 2018; 16: 1478-1482 DE GRUYTER

Open Mathematics

Research Article

Shigeru Furuichi* and Hamid Reza Moradi
On further refinements for Young inequalities

https://doi.org/10.1515/math-2018-0115
Received July 21, 2018; accepted October 18, 2018.

Abstract: In this paper sharp results on operator Young’s inequality are obtained. We first obtain sharp
multiplicative refinements and reverses for the operator Young’s inequality. Secondly, we give an additive
result, which improves a well-known inequality due to Tominaga. We also provide some estimates for the
difference A/2 (A’l/ZBA_l/Z)VAl/2 -{(1-v)A+vB}forv¢[0,1].
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1 Introduction

This note lies in the scope of operator inequalities. We assume that the reader is familiar with the continuous
functional calculus and the Kubo-Ando theory [1].

It is to be understood throughout the paper that the capital letters present bounded linear operators
acting on a Hilbert space . A is positive (written A > 0) in case (Ax, x) > O for all x € H also an operator A
is said to be strictly positive (denoted by A > 0) if A is positive and invertible. If A and B are self-adjoint, we
write B > A in case B — A > 0. As usual, by I we denote the identity operator.

The weighted arithmetic mean Vv, geometric mean ,, and harmonic mean !y, forv e [0, 1] and a, b > 0,
are defined as follows:

avyb=(1-v)a+vb, apb=a 'b’, alb-= {(1 -v)a '+ vbil}_1 .

Ifv = %, we denote the arithmetic, geometric, and harmonic means, respectively, by Vv, { and !, for the
simplicity. Like the scalar cases, the operator arithmetic mean, the operator geometric mean, and the operator
harmonic mean for A, B > 0 can be stated in the following form:
1 _1 _1\V 1 1 1)1
AV\B=(1-v)A+VB, AyB=A*(A":BA1) A%, ALB={(1-v)A"'+vB'|

The celebrated arithmetic-geometric-harmonic-mean inequalities for scalars assert that if a, b > 0, then

a!vb < aﬂvb < ava- (1)
Generalization of the inequalities (1) to operators can be seen as follows: If A, B > 0, then

Al,B < Af,B < AV,B.

The last inequality above is called the operator Young inequality. During the past years, several refinements
and reverses were given for Young’s inequality, see for example [2-4].
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Zuo et al. showed in [5, Theorem 7] that the following inequality holds:

2
(h+1),h:M @

K(h,2)"AjyB<AV\B, r=min{v,1-v}, K(h,2)= n -

whenever 0 < m'I <B<mlI<MI<A<MTor0<m'I<A<ml<MI<B< MI Asthe authors mentioned
in [5], the inequality (2) improves the following refinement of Young’s inequality involving Specht’s ratio

1
S(t) = “‘1% (t>0,t+1) (see[6, Theorem 2]),

elogt

S(h") ApB < AV,B.

Under the above assumptions, Dragomir proved in [7, Corollary 1] that
1-
AV,B < exp [Q(k - 1)2]AﬂvB.

We remark that there is no relationship between two constants K(h, 2)" and exp [@ (h- 1)2] in general.

In [3, 8] we proved some sharp multiplicative reverses of Young’s inequality. In this brief note, as the
continuation of our previous works, we establish sharp bounds for the arithmetic, geometric and harmonic
mean inequalities. Moreover, we shall show some additive-type refinements and reverses of Young’s inequal-
ity. We will formulate our new results in a more general setting, namely the sandwich assumption sA < B < tA
(0 < s < t). Additionally, we present some Young type inequalities for the wider range of v; i.e., v ¢ [0, 1].

2 Main results

In our previous work [8], we gave new sharp inequalities for reverse Young inequalities. In this section we
firstly give new sharp inequalities for Young inequalities, as limited cases in the first inequalities both (i) and
(ii) of the following theorem.

Theorem 2.1. Let A, B > O such that sA < B < tA for some scalars 0 < s < t and let f,(x) = (l‘zﬁ forx >0,
andv € [0, 1].

(i) Ift<1,thenf,(t)A}yB<AV\B<f,(s)A}B.

(i) Ifs > 1, then f,(s)A 4y B < AV\B < f,(t)A v B.

Proof. Sincef,(x) = v(1-v)(x-1)x"""1, f,(x) is monotone decreasing for O < x < 1 and monotone increasing
forx > 1.

(i) For the case 0 < s < x < t < 1, we have f,(t) < fv(x) < fv(s), which implies f,(t)A 4y B < AV\B <
fv(s)A v B by the standard functional calculus.

(ii) Forthecase 1 < s < x < t,wehave f,(s) < fv(x) < f,(t) whichimplies f,(s)A §y B< AVvB < fy(t)A 4 B
by the standard functional calculus. O

Remark 2.2. It is worth emphasizing that each assertion in Theorem 2.1 implies the other one. For instance,
assume that the assertion (ii) holds, i.e.,

) <fi(x)<fH (), 1<s<x<t. (3)

Lett<1,then1 < % < % < % Hence (3) ensures that

(3)er()on(2)

(1—v)t+v< (1—v)x+v< (1-v)s+v

So

tl—v Xl—v - sl—v
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Now, by replacing v by 1 — v we get

1-v)+vt (1-v)+vx (1-v)+vs
v xS s

which means
FO<H LX) (), O<s<x<t<l.

In the same spirit, we can derive (ii) from (i).

Corollary 2.3. Let A,B>0,m,m',M,M' >0,andv ¢ [0, 1].
(i) Ifo<m'I<A<ml<MI<B<MI,then

AYB. (4)

(i) IfO<m'I<B<ml<MI<A<MI,then

Mv,m M'v,m’
AfB<AvVvyB< —A4B.
My, m gr=avy SMm ! ©
(1- v)+vx

Proof. We use again the function f,(x) = in this proof

The condition (i) is equivalent to I < %I < ATPBA™Y < W:I, so that we get fv(%)A tvB < AV\B
fv(%)A fv B by puttings = X and t = fr’f— in (ii) of Theorem 2.1.

Similarlyl, the condition (ii) is eq}livalent to %I < ABAY < I < 1, so that we get f,(§;)A v B
AV\B < fy (35 )A fv B by putting s = 3 and ¢ = 7 in (i) of Theorem 2.1. O

IA

IA

Note that the second inequalities in both (i) and (ii) of Theorem 2.1 and Corollary 2.3 are special cases of
[8, Theorem A].

Remark 2.4. It is remarkable that the inequalities f, (t) < fv(x) < fv(s) (0 < s < x < t < 1) given in the proof of
Theorem 2.1 are sharp, since the function f,(x) for s < x < t is continuous. So, all results given from Theorem 2.1
are similarly sharp. As a matter of fact, let A = MI and B = mlI, then from LHS of (5), we infer

AvVyB=(Mvym)I and Af,B=(Myym)l.

Consequently,
Mvy,m
Af,B=AV,B.
Myym fv Vv
To see that the constant mva in the LHS of (4) can not be improved, we consider A = mI and B = MI, then
mv,M
A4,B = AV\B.
— fv Vv

By replacing A, B by A™, B!, respectively, the refinement and reverse of non-commutative geometric-
harmonic mean inequality can be obtained as follows:

Corollary 2.5. Let A,B >0, m,m',M,M' >0, andv ¢ [0, 1].
(i) Ifo<m'I<A<mI<MI<B<M]I,then

M m! M
-V v
——Af,B<Al,B<
muM’ U 7 mpM

ApB.

(i) If 0 <m'I <B<ml<MI<A<MI, then

I' 7
M1ym AfyB < ALB < My

WA 808 < AL < G AgB.

Now, we give a new sharp reverse inequality for Young’s inequality as an additive-type in the following.
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Theorem 2.6. Let A, B > O such that sA < B < tA for some scalars 0 < s < t,and v € [0, 1]. Then
AvyB-Af,B<max{gy(s),gv(t)} A (6)
whereg, (x)=(1-v)+vx—-x"fors<x<t.

Proof. Straightforward differentiation shows that g}/ (x) = v(1 - v)x"™?

interval [s, t], so

> 0 and gv(x) is continuous on the

gv(x) <max{gv(s),gv(t)}.

Therefore, by applying similar arguments as in the proof of Theorem 2.1, we reach the desired inequality (6).
This completes the proof of theorem. O

Corollary 2.7. Let A, B > 0 such that mI < A, B < MI for some scalars 0 < m < M. Then forv € [0, 1],
AV,B-Af,B<¢A
where ¢ = max { : (MVym - Myym) , - (mv,M - my,M)}.

Remark 2.8. We claim that if A, B > 0 such that mI < A, B < MI for some scalars 0 < m < M with h = % and
€ [0, 1], then

AV,B - Ap,B < max{gv(h) s (%)}A <L(1,h)logS (h) A

holds, where L (x,y) = log)};%fogx (x #y) is the logarithmic mean and the term S (h) refers to the Specht’s ratio.

Indeed, we have the inequalities
(1=v)+vh-h" <L(1,h)logS(h), (1-v) +v% _hY <L(1,h)logS(h),

which were originally proved in [9, Lemma 3.2], thanks to S (h) = S (4 ) and L (1, h) = L (1, 3 ). Therefore, our
result, Theorem 2.6, improves the well-known result by Tominaga [9, Theorem 3.1],

AV,B - A},B <L(1,h)logS (h)A.

Since gy (x) is convex, we can not obtain a general result on the lower bound for AV, B — A}, B. However, if
we impose the conditions, we can obtain new sharp inequalities for Young inequalities as an additive-type in
the first inequalities both (i) and (ii) in the following proposition. (At the same time, of course, we also obtain
the upper bounds straightforwardly.)

Proposition 2.9. Let A, B > O such that sA < B < tA for some scalars 0 < s < t, v € [0, 1], and g, is defined as
in Theorem 2.6.

() Ift<1,theng, (t)A<AV,B-Af,B<g (s)A.

(i) Ifs>1,theng, (s)A < AV,B - Af,B < g,(t)A.

Proof. 1t follows from the fact that g, (x) is monotone decreasing for O < x < 1 and monotone increasing for
x>1. O

Corollary 2.10. Let A,B>0,m,m’, M, M’ >0, andv ¢ [0, 1].
(i) Ifo<m'I<A<mI<MI<B<MI,then

1 1, /
— (mVyM - my,M)A <AV,B-A},B< — (m'v,M -m'y,M") A.
m m’

(i) If 0 <m'I<B<ml<MI<A<M1I, then

% (Mvym - My,m)A < AV,B - Aj,B < % (M'vym' - M'g,m") A.
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In the following we use the notations v, and , to distinguish from the operator means Vv, and f:
1 _1 _1\V 1
Av,B=(1-v)A+VvB, ApB :Az(A :BA ) Az
for v ¢ [0, 1]. Notice that, since A, B > 0, the expressions Ay, B and Ay, B are also well-defined.
Remark 2.11. It is known (and easy to show) that for any A, B > 0,
Av,B<AwB, forv¢[0,1].
Assume g, (x) is defined as in Theorem 2.6. By an elementary computation we have

g,’,(x)>0 forv¢[0,1] andO<x<1
g, (x) <0 forv¢[0,1] andx > 1

Now, in the same way as above we have also for any v ¢ [0, 1]:
(i) Ifo<m'I<A<mI<MI<B<M]I,then

% (m'pM' -m'v,M')A < AyB-Av,B < % (mpyM - mv,M) A.
On account of assumptions, we also infer
(m'yyM' - m',M'")I < Ag,B - Av,B < (mjyM — mv,M)I.
(i) If 0<m'I<B<mI<MI<A<MI, then
% (Mgym - Mv,m)A < ApyB-Av,B < % (M'gym' - M'<,m") A.
On account of assumptions, we also infer
(Mygym - Mv,m)I < Aj,B-Av,B < (M'tym' - M'v,m")I.

In addition, with the same assumption to Theorem 2.6 except for v ¢ [0, 1], we have

min{gv(s),gv(t)}A<AvvB-AYB,

since we have min{g,(s), gv(t)} < gv(x) by g,/ (x) <0, forv ¢ [0, 1].
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