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Abstract: In this paper sharp results on operator Young’s inequality are obtained. We �rst obtain sharp
multiplicative re�nements and reverses for the operator Young’s inequality. Secondly, we give an additive
result, which improves a well-known inequality due to Tominaga. We also provide some estimates for the
di�erence A1/2 (A−1/2BA−1/2)

v
A1/2 − {(1 − v)A + vB} for v ∉ [0, 1].
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1 Introduction
This note lies in the scope of operator inequalities. We assume that the reader is familiar with the continuous
functional calculus and the Kubo-Ando theory [1].

It is to be understood throughout the paper that the capital letters present bounded linear operators
acting on a Hilbert spaceH. A is positive (written A ≥ 0) in case ⟨Ax, x⟩ ≥ 0 for all x ∈ H also an operator A
is said to be strictly positive (denoted by A > 0) if A is positive and invertible. If A and B are self-adjoint, we
write B ≥ A in case B − A ≥ 0. As usual, by I we denote the identity operator.

The weighted arithmetic mean∇v, geometric mean ♯v, and harmonic mean !v, for v ∈ [0, 1] and a, b > 0,
are de�ned as follows:

a∇vb = (1 − v) a + vb, a♯vb = a1−vbv , a!vb = {(1 − v)a−1 + vb−1}
−1

.

If v = 1
2 , we denote the arithmetic, geometric, and harmonic means, respectively, by ∇, ♯ and !, for the

simplicity. Like the scalar cases, the operator arithmeticmean, the operator geometricmean, and the operator
harmonic mean for A, B > 0 can be stated in the following form:

A∇vB = (1 − v)A + vB, A♯vB = A
1
2 (A−

1
2 BA−

1
2 )

v
A

1
2 , A!vB = {(1 − v)A−1 + vB−1}

−1
.

The celebrated arithmetic-geometric-harmonic-mean inequalities for scalars assert that if a, b > 0, then

a!vb ≤ a♯vb ≤ a∇vb. (1)

Generalization of the inequalities (1) to operators can be seen as follows: If A, B > 0, then

A!vB ≤ A♯vB ≤ A∇vB.

The last inequality above is called the operator Young inequality. During the past years, several re�nements
and reverses were given for Young’s inequality, see for example [2–4].
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Zuo et al. showed in [5, Theorem 7] that the following inequality holds:

K(h, 2)rA♯vB ≤ A∇vB, r = min{v, 1 − v} , K (h, 2) = (h + 1)2

4h
, h = M

m
(2)

whenever 0 < m′I ≤ B ≤ mI < MI ≤ A ≤ M′I or 0 < m′I ≤ A ≤ mI < MI ≤ B ≤ M′I. As the authors mentioned
in [5], the inequality (2) improves the following re�nement of Young’s inequality involving Specht’s ratio
S (t) = t

1
t−1

e log t
1
t−1

(t > 0, t ≠ 1) (see [6, Theorem 2]),

S (hr)A♯vB ≤ A∇vB.

Under the above assumptions, Dragomir proved in [7, Corollary 1] that

A∇vB ≤ exp [ v (1 − v)
2

(h − 1)2]A♯vB.

We remark that there is no relationship between two constants K(h, 2)r and exp [ v(1−v)2 (h − 1)2] in general.
In [3, 8] we proved some sharp multiplicative reverses of Young’s inequality. In this brief note, as the

continuation of our previous works, we establish sharp bounds for the arithmetic, geometric and harmonic
mean inequalities. Moreover, we shall show some additive-type re�nements and reverses of Young’s inequal-
ity.Wewill formulate our new results in amore general setting, namely the sandwich assumption sA ≤ B ≤ tA
(0 < s ≤ t). Additionally, we present some Young type inequalities for the wider range of v; i.e., v ∉ [0, 1].

2 Main results
In our previous work [8], we gave new sharp inequalities for reverse Young inequalities. In this section we
�rstly give new sharp inequalities for Young inequalities, as limited cases in the �rst inequalities both (i) and
(ii) of the following theorem.

Theorem 2.1. Let A, B > 0 such that sA ≤ B ≤ tA for some scalars 0 < s ≤ t and let fv(x) ≡ (1−v)+vxxv for x > 0,
and v ∈ [0, 1].
(i) If t ≤ 1, then fv(t)A ♯v B ≤ A∇vB ≤ fv(s)A ♯v B.
(ii) If s ≥ 1, then fv(s)A ♯v B ≤ A∇vB ≤ fv(t)A ♯v B.

Proof. Since f ′v(x) = v(1−v)(x−1)x−v−1, fv(x) ismonotonedecreasing for 0 < x ≤ 1andmonotone increasing
for x ≥ 1.

(i) For the case 0 < s ≤ x ≤ t ≤ 1, we have fv(t) ≤ fv(x) ≤ fv(s), which implies fv(t)A ♯v B ≤ A∇vB ≤
fv(s)A ♯v B by the standard functional calculus.

(ii) For the case 1 ≤ s ≤ x ≤ t, wehave fv(s) ≤ fv(x) ≤ fv(t)which implies fv(s)A ♯v B ≤ A∇vB ≤ fv(t)A ♯v B
by the standard functional calculus.

Remark 2.2. It is worth emphasizing that each assertion in Theorem 2.1 implies the other one. For instance,
assume that the assertion (ii) holds, i.e.,

fv (s) ≤ fv (x) ≤ fv (t) , 1 ≤ s ≤ x ≤ t. (3)

Let t ≤ 1, then 1 ≤ 1
t ≤

1
x ≤

1
s . Hence (3) ensures that

fv (
1
t
) ≤ fv (

1
x
) ≤ fv (

1
s
) .

So
(1 − v) t + v

t1−v
≤ (1 − v) x + v

x1−v
≤ (1 − v) s + v

s1−v
.
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Now, by replacing v by 1 − v we get

(1 − v) + vt
tv

≤ (1 − v) + vx
xv

≤ (1 − v) + vs
sv

which means
fv (t) ≤ fv (x) ≤ fv (s) , 0 < s ≤ x ≤ t ≤ 1.

In the same spirit, we can derive (ii) from (i).

Corollary 2.3. Let A, B > 0, m,m′,M,M′ > 0, and v ∈ [0, 1].
(i) If 0 < m′I ≤ A ≤ mI < MI ≤ B ≤ M′I, then

m∇vM
m ♯v M

A ♯
v
B ≤ A∇vB ≤ m′∇vM′

m′ ♯v M′
A ♯

v
B. (4)

(ii) If 0 < m′I ≤ B ≤ mI < MI ≤ A ≤ M′I, then

M∇vm
M ♯v m

A ♯
v
B ≤ A∇vB ≤ M′∇vm′

M′ ♯v m′
A ♯

v
B. (5)

Proof. We use again the function fv(x) = (1−v)+vxxv in this proof.
The condition (i) is equivalent to I ≤ M

m I ≤ A−
1
2 BA−

1
2 ≤ M′

m′ I, so that we get fv(M
m )A ♯v B ≤ A∇vB ≤

fv(M′

m′ )A ♯v B by putting s = M
m and t = M′

m′ in (ii) of Theorem 2.1.
Similarly, the condition (ii) is equivalent to m′

M′ I ≤ A−
1
2 BA−

1
2 ≤ m

M I ≤ I, so that we get fv(m
M )A ♯v B ≤

A∇vB ≤ fv(m′

M′ )A ♯v B by putting s = m′

M′ and t = m
M in (i) of Theorem 2.1.

Note that the second inequalities in both (i) and (ii) of Theorem 2.1 and Corollary 2.3 are special cases of
[8, Theorem A].

Remark 2.4. It is remarkable that the inequalities fv(t) ≤ fv(x) ≤ fv(s) (0 < s ≤ x ≤ t ≤ 1) given in the proof of
Theorem 2.1 are sharp, since the function fv(x) for s ≤ x ≤ t is continuous. So, all results given from Theorem 2.1
are similarly sharp. As a matter of fact, let A = MI and B = mI, then from LHS of (5), we infer

A∇vB = (M∇vm)I and A♯vB = (M♯vm)I.

Consequently,
M∇vm
M♯vm

A♯vB = A∇vB.

To see that the constant m∇vM
m♯vM in the LHS of (4) can not be improved, we consider A = mI and B = MI, then

m∇vM
m♯vM

A♯vB = A∇vB.

By replacing A, B by A−1, B−1, respectively, the re�nement and reverse of non-commutative geometric-
harmonic mean inequality can be obtained as follows:

Corollary 2.5. Let A, B > 0, m,m′,M,M′ > 0, and v ∈ [0, 1].
(i) If 0 < m′I ≤ A ≤ mI < MI ≤ B ≤ M′I, then

m′!vM′

m′♯vM′
A♯vB ≤ A!vB ≤ m!vM

m♯vM
A♯vB.

(ii) If 0 < m′I ≤ B ≤ mI < MI ≤ A ≤ M′I, then

M′!vm′

M′♯vm′
A♯vB ≤ A!vB ≤ M!vm

M♯vm
A♯vB.

Now, we give a new sharp reverse inequality for Young’s inequality as an additive-type in the following.
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Theorem 2.6. Let A, B > 0 such that sA ≤ B ≤ tA for some scalars 0 < s ≤ t, and v ∈ [0, 1]. Then

A∇vB − A♯vB ≤ max{gv (s) , gv (t)}A (6)

where gv (x) ≡ (1 − v) + vx − xv for s ≤ x ≤ t.

Proof. Straightforward di�erentiation shows that g′′v (x) = v(1 − v)xv−2 ≥ 0 and gv(x) is continuous on the
interval [s, t], so

gv (x) ≤ max{gv (s) , gv (t)} .

Therefore, by applying similar arguments as in the proof of Theorem 2.1, we reach the desired inequality (6).
This completes the proof of theorem.

Corollary 2.7. Let A, B > 0 such that mI ≤ A, B ≤ MI for some scalars 0 < m < M. Then for v ∈ [0, 1],

A∇vB − A♯vB ≤ ξA

where ξ = max{ 1
M (M∇vm −M♯vm) , 1

m (m∇vM −m♯vM)}.

Remark 2.8. We claim that if A, B > 0 such that mI ≤ A, B ≤ MI for some scalars 0 < m < M with h = M
m and

v ∈ [0, 1], then
A∇vB − A♯vB ≤ max{gv (h) , gv (

1
h
)}A ≤ L (1, h) log S (h)A

holds, where L (x, y) = y−x
log y−log x (x ≠ y) is the logarithmic mean and the term S (h) refers to the Specht’s ratio.

Indeed, we have the inequalities

(1 − v) + vh − hv ≤ L(1, h) log S(h), (1 − v) + v1
h
− h−v ≤ L(1, h) log S(h),

which were originally proved in [9, Lemma 3.2], thanks to S (h) = S ( 1
h ) and L (1, h) = L (1, 1h ). Therefore, our

result, Theorem 2.6, improves the well-known result by Tominaga [9, Theorem 3.1],

A∇vB − A♯vB ≤ L (1, h) log S (h)A.

Since gv(x) is convex, we can not obtain a general result on the lower bound for A∇vB − A♯vB. However, if
we impose the conditions, we can obtain new sharp inequalities for Young inequalities as an additive-type in
the �rst inequalities both (i) and (ii) in the following proposition. (At the same time, of course, we also obtain
the upper bounds straightforwardly.)

Proposition 2.9. Let A, B > 0 such that sA ≤ B ≤ tA for some scalars 0 < s ≤ t, v ∈ [0, 1], and gv is de�ned as
in Theorem 2.6.
(i) If t ≤ 1, then gv (t)A ≤ A∇vB − A♯vB ≤ gv(s)A.
(ii) If s ≥ 1, then gv (s)A ≤ A∇vB − A♯vB ≤ gv(t)A.

Proof. It follows from the fact that gv (x) is monotone decreasing for 0 < x ≤ 1 and monotone increasing for
x ≥ 1.

Corollary 2.10. Let A, B > 0, m,m′,M,M′ > 0, and v ∈ [0, 1].
(i) If 0 < m′I ≤ A ≤ mI < MI ≤ B ≤ M′I, then

1
m

(m∇vM −m♯vM)A ≤ A∇vB − A♯vB ≤ 1
m′

(m′∇vM′ −m′♯vM′)A.

(ii) If 0 < m′I ≤ B ≤ mI < MI ≤ A ≤ M′I, then

1
M

(M∇vm −M♯vm)A ≤ A∇vB − A♯vB ≤ 1
M′

(M′∇vm′ −M′♯vm′)A.
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In the following we use the notations▽v and ♮v to distinguish from the operator means∇v and ♯v:

A▽vB = (1 − v)A + vB, A♮vB = A
1
2 (A−

1
2 BA−

1
2 )

v
A

1
2

for v ∉ [0, 1]. Notice that, since A, B > 0, the expressions A▽vB and A♮vB are also well-de�ned.

Remark 2.11. It is known (and easy to show) that for any A, B > 0,

A▽vB ≤ A♮vB, for v ∉ [0, 1] .

Assume gv (x) is de�ned as in Theorem 2.6. By an elementary computation we have

⎧⎪⎪⎨⎪⎪⎩

g
′

v (x) > 0 for v ∉ [0, 1] and 0 < x ≤ 1
g
′

v (x) < 0 for v ∉ [0, 1] and x > 1
.

Now, in the same way as above we have also for any v ∉ [0, 1]:
(i) If 0 < m′I ≤ A ≤ mI ≤ MI ≤ B ≤ M′I, then

1
m′

(m′♮vM′ −m′▽vM′)A ≤ A♮vB − A▽vB ≤ 1
m

(m♮vM −m▽vM)A.

On account of assumptions, we also infer

(m′♮vM′ −m′▽vM′)I ≤ A♮vB − A▽vB ≤ (m♮vM −m▽vM)I.

(ii) If 0 < m′I ≤ B ≤ mI ≤ MI ≤ A ≤ M′I, then

1
M

(M♮vm −M▽vm)A ≤ A♮vB − A▽vB ≤ 1
M′

(M′♮vm′ −M′▽vm′)A.

On account of assumptions, we also infer

(M♮vm −M▽vm)I ≤ A♮vB − A▽vB ≤ (M′♮vm′ −M′▽vm′)I.

In addition, with the same assumption to Theorem 2.6 except for v ∉ [0, 1], we have

min{gv(s), gv(t)}A ≤ A▽v B − A ♮
v
B,

since we havemin{gv(s), gv(t)} ≤ gv(x) by g′′v (x) ≤ 0, for v ∉ [0, 1].
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