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Abstract: Due to resource limitation, nonlinear impulsive control tactics related to integrated pest manage-
ment have been proposed in a generalized pest-natural enemy model, which allows us to address the e�ects
of nonlinear pulse control on the dynamics and successful pest control. The threshold conditions for the
existence and global stability of pest-free periodic solution are provided by Floquet theorem and analytic
methods. The existence of a nontrivial periodic solution is con�rmed by showing the existence of nontrivial
�xedpoint of the stroboscopicmappingdeterminedby time snapshot,which equals to the common impulsive
period. In order to address the applications of generalized results and to reveal how the nonlinear impulses
a�ect the successful pest control, as an example the model with Holling II functional response function is
investigated carefully. Themain results reveal that the pest free periodic solution and a stable interior positive
periodic solution can coexist for a wide range of parameters, which indicates that the local stability does not
imply the global stability of the pest free periodic solution when nonlinear impulsive control is considered,
and consequently the resource limitation (i.e. nonlinear control) may result in di�culties for successful pest
control.

Keywords: Pest-natural enemymodel, Nonlinear impulsive e�ect, Threshold condition, Bifurcation, Nontriv-
ial periodic solution

MSC: 34A37, 92D25

1 Introduction
Over the past decade, controlling insect pests and other arthropods in agriculture became an increasing
important issue. How to reduce losses due to insect pests becomes a great concern for entomologists and
the society. To realize this purpose, a wide range of pest control strategies are available to farmers [1,2]. In
particular, integrated pest management (IPM) has been proposed and designed which is a long term man-
agement strategy with aims to minimize economic, health and environmental risks by combining biological,
chemical, cultural and physical tools [3-6].

With the development of the theory and application of impulsive di�erential equations [7,8], it is possible
to depict the control strategies involved in IPM by establishingmathematical models. In particular, impulsive
di�erential equations can accurately depict the dynamic process of spraying insecticides and releasing
natural enemies [8-14]. For example, we can assume that the pesticide is applied at each �xed period, and a
certain proportion of pests will be killed instantly after each spray. Similarly, the natural enemy is released
simultaneously, where a constant amount of a natural enemy is administered at each �xed period. Note that
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the impulsive di�erential equations with �xedmoments can provide a natural description for above assump-
tions, which can assist in the design and understanding of the ecological systems including the pests, their
natural enemies, the surrounding environment and their inter-relationships. Moreover, theoretical analyses
can provide valuable information about how to determine the optimal times or application frequencies of
spraying pesticides, releasing natural enemies and infected pests [10-15].

Recently, many mathematical models concerning IPM have been developed and investigated [16-23]. In
particular, the special prey-predatormodelswith various functional response functions have been employed,
and the main assumptions for those models are as follows: a proportion of pest population is killed after a
pesticide is applied and simultaneously a natural enemy is released [24-28]. Based on those assumptions,
the pest-natural enemy ecological systems with linear IPMmeasures have been extensively investigated, and
almost all of thoseworks focused on the existence and stability of pest free periodic solution. In particular, the
threshold conditions under which the pest free periodic solution is locally or globally stable were provided,
and this could help us to evaluate the e�ectiveness of pesticide and its application period on the successful
pest control. Moreover, extensively numerical investigations revealed that those models could involve very
complex dynamics including the coexistence of multiple attractors, chaotic solutions and period-doubling
bifurcations.

The existence and stability of periodic solution for some generalized prey-predator model with linear
or constant pulse actions studied so far [29-32] have provided some analytical techniques to deal with the
generalized models. However, all of the previous works are basically assuming that the control strategy is
linear or constant, which is not consistent with the actual situation. In fact, due to the resources limitation
and the saturation e�ect of pesticide e�ciency, the instant killing rate is a monotonic increasing function
of pest population which should be a saturation function with a maximal killing rate. Similarly, the number
of natural enemies is released depending on current pest density, which means that the larger the natural
enemy, the fewer natural enemy is released and vice versa.

Therefore, the main purpose of this paper is to construct and investigate the dynamics of a quite
generalized predator-prey model with nonlinear impulsive control due to resource limitation. By using
Floquet theorem and qualitative techniques, it is proved that there exists a globally stable pest-free periodic
solution under certain threshold conditions. By employing an operator theoretic approachwhich reduces the
existence of the nontrivial periodic solutions to a �xed point and bifurcation problem, we show the existence
and stability of positive periodic solution once the pest-free periodic solution loses its stability. In order to
apply the main results, we choose the classical pest-natural enemy model with Holling type II functional
response function andnonlinear impulsive control, then the exact thresholds for the local and global stability
of pest free periodic solution are obtained. The results show that local stability does not imply the global
stability which is con�rmed by the bi-stability, and this is a novel result comparing with the model under the
linear pulse perturbations [19-25].

2 The pest-natural enemy model with nonlinear pulse control
The generalized prey-predator model or pest-natural enemy model employed in the present paper is as
follows:

⎧⎪⎪
⎨
⎪⎪⎩

dx(t)
dt = x(t)g(x(t)) − p(x(t))y(t),

dy(t)
dt = cp(x(t))y(t) − Dy(t),

(1)

where x(t), y(t) represent the densities of prey and predator populations, respectively. The function g(x)
represents the intrinsic growth rate of the pest in the absence of natural enemy, p(x) denotes the predator
response function, c is the e�ciency rate, and D is the death rate of the predator population. In order to
use our main results for a wide range of biological systems which have been investigated in the literature, we
made the following assumptions related to the function p(x) and g(x). Let g(x) and p(x) be locally Lipschitz
functions on R+ such that:
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(i) There exists a positive constant K > 0 such that g(x) > 0 for 0 ≤ x < K, g(K) = 0 and g(x) < 0 for K < x.
(ii) The functional response function satis�es p(0) = 0, p′(0) > 0 and p(x) > 0 for all x > 0.
(iii) The function xg(x)

p(x) is upper bounded for all x > 0.

The �rst condition means that the pest population follows the density dependent growth in the absence of
the natural enemy, and the second condition indicates that the functional response function is positive and
monotonically increasing for small pest populations. The last one shows that the pest population can not
increase in�nitely once the biological control is introduced, and, on the other hand, if the density of pest
population is too large then the biological control is impossible.

We assume that the IPM strategy is applied at every time point nT at which the natural enemies are
released and pesticides are applied simultaneously, where T denotes the period of control actions and n ∈ N ,
which denotes the positive integer set. Moreover, the nonlinear saturation functions or density dependent
functions are employed to depict the e�ects of resource limitation on the pest control, i.e. we choose

x(t+) = [1 − δx(t)
x(t) + h

] x(t), y(t+) = y(t) + λ

1 + θy(t) , t = nT,

where δ ≥ 0 and h ≥ 0 represent the maximal fatality rate and the half saturation constant for the pest
with δ < 1, λ ≥ 0 is the release amount of the natural enemy, and θ ≥ 0 denotes the shape parameter. We
assume that the densities of both the pest and natural enemy populations are updated to (1 − δx(t)

x(t)+h )x(t)
and y(t) + λ

1+θy(t) at every discrete time point nT and n ∈ N , respectively.
Taking the control measures shown as the above and model (1) into account, one yields the following

di�erential equation model with IPM strategies:

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = x(t)g(x(t)) − p(x(t))y(t),

dy(t)
dt = cp(x(t))y(t) − Dy(t),

⎫⎪⎪
⎬
⎪⎪⎭

t ≠ nT,

x(t+) = [1 − δx(t)
x(t)+h ] x(t),

y(t+) = y(t) + λ
1+θy(t) ,

⎫⎪⎪
⎬
⎪⎪⎭

t = nT .
(2)

The positivity and boundedness of solutions of model (2) are useful for the coming analyses, and we have:

Lemma 2.1. The solutions of model (2) are positive and bounded.

Proof. The positivity of solutions can be easily shown as the control actions do not in�uence the positivity of
the solutions, thus the positive initial conditions indicate the positivity of the solutions. For the boundedness,
it is easy to show that x(t) < max{K, x(0+)} due to x(nT+) < x(nT) and assumption (i).

In order to show the boundedness of y-component, we denote V(t) = cx(t) + y(t), then when t ≠ nT we
have

D+V(t) + DV(t) = cx(t)(g(x(t)) + D) ≤ M0

with M0 = max{cx(t)(g(x(t) + D)}. When t = nT we have

V(nT+) = c [1 − δx(nT)
x(nT) + h

] x(nT) + y(nT) + λ

1 + θy(nT)
≤ cx(nT) + y(nT) + λ
= V(nT) + λ.

Therefore, for t ∈ (nT, (n + 1)T], we have

V(t) ≤ V(0) exp(−Dt) +
t

∫

0

M0 exp(−D(t − s))ds + ∑
0<kT<t

λ exp(−D(t − kT))
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= V(0) exp(−Dt) + M0(1 − exp(−Dt))
D

+λ
exp(−D(t − T)) − exp(−D(t − (n + 1)T))

1 − exp(DT)

→
M0

D
+

λ exp(DT)
exp(DT) − 1 , (t →∞).

Thus, V(t) is uniformly ultimately bounded. According to the de�nition of V(t) we can see that y(t) is
bounded.

One of themain purposes of implementation IPM is to eradicate the pest population when the �xedmoments
are applied at every period T. To address this, the existence and stability of the pest free periodic solution are
crucial for this point. Thus, we �rst consider the following subsystem

⎧⎪⎪
⎨
⎪⎪⎩

dy(t)
dt = −Dy(t), t ≠ nT,

y(t+) = y(t) + λ
1+θy(t) , t = nT . (3)

Subsystem (3) is a simple linear growth model with nonlinear control, which can be analytically solved, and
we have the following main result.

Theorem 2.2. If θ ≠ 0, then model (3) has a globally stable positive periodic solution

yp(t) = y∗ exp(−D(t − nT)), t ∈ (nT, (n + 1)T],

where y∗ =
−1+
√
1+4λθ exp(−DT)(1−exp(−DT))−1

2θ exp(−DT) is a positive constant and is determined by all the coe�cients of
model (3).

Proof. Without loss of generality, considering any time interval (nT, (n + 1)T] and integrating the �rst
equation of model (3), one has

y(t) = y(nT+) exp(−D(t − nT)), nT < t ≤ (n + 1)T .

At time point (n + 1)T, the solution experiences one time pulse action resulting in

y((n + 1)T+) = y(nT+) exp(−DT) + λ

1 + θy(nT+) exp(−DT) .

Denote Yn = y(nT+), it follows from the above equation that we have the following stroboscopic map for
system (3)

Yn+1 = Yn exp(−DT) +
λ

1 + θYn exp(−DT)
≜ F(Yn), (4)

and it is easy to see that if θ ≠ 0, then equation (4) has a unique positive �xed point

y∗ =
−1 +

√
1 + 4λθ exp(−DT)(1 − exp(−DT))−1

2θ exp(−DT) .

For the local stability of y∗, since F′(y) = (1 − θλ
(1+θy exp(−DT))2 ) exp(−DT), we have

F′(y∗) = exp(−DT) − θλ exp(−DT)
(1 + θy∗ exp(−DT))2

< exp(−DT) < 1

and

F′(y∗) > −θy
∗ exp(−DT)(1 − exp(−DT))

1 + θy∗ exp(−DT)

> −
θy∗ exp(−DT)

1 + θy∗ exp(−DT) > −1.
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All those con�rm that ∣F′(y∗)∣ < 1, i.e. the �xed point y∗ of equation (4) is locally stable.
In the following we show the global attractivity of y∗. By simple calculation we have

F′′(Y) = 2λθ2 exp(−2DT)
(1 + θY exp(−DT))3 ,

and solving equation F′(Y) = 0 yields two stationary points, denoted by Y1 and Y2, i.e.

Y1 =
−
√
λθ − 1

θ exp(−DT) < 0, Y2 =
√
λθ − 1

θ exp(−DT) .

Here Y2 is the local minimum of the function F(Y)with F(Y2) = 2
√
λθ−1
θ , F(0) = λ, and the function F′′(Y) >

0 for Y > 0. Based on the sign of Y2 and the positional relations between Y2 and y∗, we consider the following
three possible cases for the global attractivity of y∗.

Case (i) Y2 < 0 < y∗.
For this case we have 0 < λθ < 1, and F(Y) is a monotonically increasing and concave function for Y > 0,

and y∗ is a unique positive �xed point of function F(Y) = Y.
Denote Fn(Y) = F(Fn−1(Y)) for n = 2, 3,⋯. If 0 < Y0 < y∗, it follows from the concavity of the F(Y) that

Fn(Y0) is monotonically increasing as n increases due to F(Y) > Y with limn→+∞ Fn(Y0) = y∗. If Y0 > y∗,
then Fn(Y0) is monotonically decreasing as n increases because of F(Y) < Y with limn→+∞ Fn(Y0) = y∗.

Case (ii) 0 < Y2 < y∗.
For this case we have λθ > 1, and the function F(Y) is a monotonically decreasing function for

0 < Y < Y2 and increasing concave function for Y > Y2. Thus, similar processes applied to case (i) yield
limn→+∞ Fn(Y0) = y∗ for any Y2 ≤ Y0 < y∗ or Y0 > y∗.

If 0 < Y0 < Y2, then according to the properties of function F(Y) we can see that there exists a
smallest positive integer n1 such that Y2 ≤ Fn1(Y0) < y∗ or Fn1(Y0) > y∗, and consequently we have
limj→+∞ Fn1+j(Y0) = y∗.

Case (iii) 0 < y∗ < Y2.
For this case, it is easy to know that F(Y) is a monotonically decreasing and concave function for Y ∈

[0, Y2], and is an increasing function for Y ∈ (Y2,∞). Based on the properties of function F(Y), we conclude
that there must exist a positive integer m such that Fm(Y) ∈ [y∗, Y2] for any Y > 0, which indicates that we
only need to show limn→+∞ Fn(Y0) = y∗ for any Y0 ∈ (y∗, Y2].

To do this, we �rst de�ne G(Y) = F(F(Y))
Y and address its properties. It follows from

G′(Y) = F′(F(Y))F′(Y)Y − F(F(Y))
Y2

that F(Y) is a monotonically decreasing and concave function for any Y ∈ (y∗, Y2], and F′(Y) is a monoton-
ically increasing function because of F′′(Y) > 0 for Y > 0. Thus, for any Y ∈ (y∗, Y2]

F′(Y)Y + F(Y) = 2Y exp(−2DT) + λ

(1 + θY exp(−DT))2
> 2Y exp(−2DT) > 0
⇒ −F(Y) < F′(Y)Y ≤ 0

and

F′(F(Y))F(Y) + F(F(Y)) > 2F(Y) exp(−2DT) > 0.

Since 0 < F(Y) < F(y∗) = y∗ and F′(Y) < 0 for Y ∈ (y∗, Y2], we have

−
F(F(Y))
F(Y)

< F′(F(Y)) < 0.
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It is easy to show F′(F(Y))F′(Y)Y < F(Y) F(F(Y))
F(Y) = F(F(Y)) for any Y ∈ (y∗, Y2], which means that G′(Y) <

0 for any Y ∈ (y∗, Y2]. Therefore, G(Y) is a monotonically decreasing function in interval Y ∈ (y∗, Y2].
Furthermore, we have G(y∗) = F(F(y∗))

y∗ = 1 and

G(Y) < G(y∗) = 1⇔ F(F(Y)) < Y .

Thus, we conclude that F2n(Y0) is monotonically decreasing as n increases for Y0 ∈ (y∗, Y2], and y∗ is a
unique positive �xed point, which means that limn→+∞ F2n(Y0) = y∗, and the monotonicity of F2n−1(Y0)
follows as well.

Based on the above relations, there exists a positive integer m such that Fm(Y0) ∈ (y∗, Y2] for any Y0 >
0, which indicates that limj→+∞ Fm+j(Y0) = y∗. Thus, the �xed point y∗ of equation (4) is globally stable.
Further, according to the relations between a �xed point of the stroboscopicmap (4) and the periodic solution
ofmodel (3), we conclude thatmodel (3) has a globally stable positive periodic solution yp(t) = y∗ exp(−D(t−
nT)), t ∈ (nT, (n + 1)T]. This completes the proof.

In particular, if θ = 0 then model (3) has a globally stable positive periodic solution

yp(t) = y∗ exp(−D(t − nT)), t ∈ (nT, (n + 1)T],

where y∗ = λ
1−exp(−DT) .

Therefore, we obtain the general expression of the unique pest-free periodic solution of model (2), i.e.

(xp(t), yp(t)) = (0, y∗ exp(−D(t − nT))), t ∈ (nT, (n + 1)T],

where y∗ = −1+
√
1+4λθ exp(−DT)(1−exp(−DT))−1

2θ exp(−DT) when θ ≠ 0 or y∗ = λ
1−exp(−DT) when θ = 0.

As mentioned before, one of the main purposes of IPM is to design suitable control measures such that
the pest population dies out eventually, i.e. the pest free periodic solution (xp(t), yp(t)) is globally stable.
Thus, the threshold conditions underwhich the pest free periodic solution is globally stable are crucial in this
work. To do this, we �rst show the local stability, and consider the behavior of small amplitude perturbations
of the solution.

{
x̃(t) = x(t) − xp(t),
ỹ(t) = y(t) − yp(t),

where x̃(t) and ỹ(t) are small perturbations, then model (1) becomes

{
˙̃x = x̃g(x̃) − p(x̃)(ỹ + yp(t)),
˙̃y = cp(x̃)(ỹ + yp(t)) − Dỹ.

(5)

The impulsive e�ects on x̃ are unchanged because of xp(t) = 0, so we have

x̃(nT+) = (1 − δx̃(nT)
x̃(nT) + h

)x̃(nT).

The impulsive e�ects on ỹ are de�ned as follows:

ỹ(nT+) = y(nT) + λ

1 + θy(nT) − yp(nT) −
λ

1 + θyp(nT)

= (1 − λθ

(1 + θ(ỹ(nT) + yp(nT)))(1 + θyp(nT))
)ỹ(nT).

The linear approximation of the deviation system of model (5) around the periodic solution (xp(t), yp(t)) is
as follows:

{
˙̃x = (g(0) − p′(0)yp(t))x̃,
˙̃y = cp′(0)yp(t)x̃ − Dỹ.

(6)

In the following, we will show the su�cient condition for the global stability of pest-free periodic solution
(xp(t), yp(t)) of model (2), and we have the following main results for model (2).
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Theorem 2.3. The pest-free periodic solution (xp(t), yp(t)) is locally stable provided

R0 =
g(0)DT

y∗(1 − exp(−DT))p′(0) < 1 (7)

and it is globally attractive if
R1 =

MsDT
y∗(1 − exp(−DT)) < 1, (8)

where Ms = supx≥0
xg(x)
p(x) .

Proof. To prove the local stability of the solution (xp(t), yp(t)) of model (2), we let Φ(t) be the fundamental
matrix of (2), and then Φ(t) satis�es

Φ(T) = (
exp(∫

T
0 (g(0) − p′(0)yp(t))dt) 0

* exp(∫
T
0 −Ddt)

) ,

where Φ(0) = I represents the identity matrix and the term ∗ is not necessary for the next analyses. The
linearization of the impulsive e�ects of model (2) can be calculated as follows:

(
x̃(nT+)
ỹ(nT+)

) =
⎛

⎝

1 0
0 1 − λθ

(1+θyp(T))2

⎞

⎠
(
x̃(nT)
ỹ(nT)

) = B(T)( x̃(nT)
ỹ(nT)

) .

Therefore, if the module of both eigenvalues of the following matrix

M = B(T)Φ(T)

=
⎛

⎝

exp(∫
T
0 (g(0) − p′(0)yp(t))dt) 0

0 (1 − λθ
(1+θyp(T))2 ) exp(−DT)

⎞

⎠

is less than one, then the periodic solution (xp(t), yp(t)) is locally stable. In fact, the eigenvalues of M can
be calculated as follows:

∣λ1∣ = exp(
T

∫

0

(g(0) − p′(0)yp(t))dt), ∣λ2∣ = ∣(1 − λθ

(1 + θyp(T))2
)∣ exp(−DT)

and it is easy to see that ∣λ2∣ = ∣1 − λθ
(1+θy∗ exp(−DT))2 ∣ exp(−DT) < 1 holds true. All those con�rm that the

pest-free solution (xp(t), yp(t)) is locally stable if and only if ∣λ1∣ < 1, i.e.

T

∫

0

(g(0) − p′(0)yp(t))dt < 0.

It follows from the Theorem 2.2 that ∫
T
0 yp(t)dt =

y∗(1−exp(−DT))
D , and consequently the periodic solution

(xp(t), yp(t)) is locally stable provided that

R0 =
g(0)DT

y∗(1 − exp(−DT))p′(0) < 1.

For the global attractivity of the periodic solution (xp(t), yp(t)), we only need to show that any solution
(x(t), y(t)) of model (2) tends to (xp(t), yp(t)) as t goes to in�nity. If R1 =

MsDT
y∗(1−exp(−DT)) < 1, then we can

choose small enough ε > 0 such that ∫
T
0 (Ms − (yp(s) − ε))ds < 0. It follows from model (2) that we have

⎧⎪⎪
⎨
⎪⎪⎩

dy(t)
dt ≥ −Dy(t), t ≠ nT,

y(t+) = y(t) + λ
1+θy(t) , t = nT .

According to Theorem 2.2 and the impulsive di�erential comparison theory, we have the following inequality

y(t) ≥ yp(t) − ε
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for t large enough. To simplify the discussion, we assume, without loss of generality, y(t) ≥ yp(t) − ε holds
true for all t ≥ 0.

Then, it follows from the �rst equation of model (2) that
ẋ

p(x)
=
xg(x)
p(x)

− y

and integrating both sides yields
x(t)

∫
x0

dx
p(x)

=

t

∫

t0

(
x(s)g(x(s))
p(x(s))

− y) ds.

Since p(x) ≈ p′(0)x with p′(0) > 0 for x small enough, the left side of the above equation goes to −∞ if only
if x converges to zero. De�ne

G(x) =
x

∫

δ

1
p(s)

ds

for δ > 0. Thus, it is easy to see that the pest population goes to extinction if G(x) → −∞ as t →∞. Therefore,
the G function satis�es

dG(x)
dt

=
1

p(x)
ẋ = xg(x)

p(x)
− y.

Considering any impulsive interval (nT, (n + 1)T], we have

G(x(n + 1)T+) =
x((n+1)T+)

∫

δ

1
p(s)

ds

=

x((n+1)T)

∫

δ

1
p(s)

ds +
x((n+1)T+)

∫

x((n+1)T)

1
p(s)

ds

= G(x((n + 1)T)) +
x((n+1)T+)

∫

x((n+1)T)

1
p(s)

ds

≤ G(x(nT+)) +
(n+1)T

∫

nT

(
x(s)g(x(s))
p(x(s))

− (yp(s) − ε)) ds

+

x((n+1)T+)

∫

x((n+1)T)

1
p(s)

ds

≤ G(x(nT+)) +
(n+1)T

∫

nT

(Ms − (yp(s) − ε)) ds.

For any t > 0, there exists an integer l such that for all t ∈ (lT, (l + 1)T] we have

G(x(t)) − G(x0) ≤
t

∫

0

(Ms − (yp(s) − ε)) ds

= l
T

∫

0

(Ms − (yp(s) − ε))ds +
t

∫

lT

(Ms − (yp(s) − ε))ds.

It is clear that the second term of the right-hand side is upper bounded due to the periodicity of yp(t) with
period T. Note that l →∞ as t →∞. Thus, if

T

∫

0

(Ms − (yp(s) − ε))ds < 0,
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then we have G(x̃) → −∞ as t →∞, i.e. x(t) converges to 0 as t →∞. That is

R1 =
MsDT

y∗(1 − exp(−DT)) < 1.

Nowwe prove that y(t) → yp(t) as well. Since x(t) goes to zero, there exists a �nite time t1 such that p(x) < ε
for all t > t1. Therefore, for all t > t1 we have

−Dy(t) ≤ dy
dt

≤ y(t)(cε − D).

Considering the following comparison equation
⎧⎪⎪
⎨
⎪⎪⎩

dz(t)
dt = (cε − D)z(t), t ≠ nT,

z(t+) = z(t) + λ
1+θz(t) , t = nT, (9)

and by employing the same methods as those in proof of Theorem 2.2, we see that model (9) has a positive
periodic solution zp(t), which is globally attractive and

zp(t) = z∗ exp[−(D − cε)(t − nT)], t ∈ (nT, (n + 1)T],

where z∗ = −1+
√
1+4λθ exp(−(D−cε)T)(1−exp(−(D−cε)T))−1

2θ exp(−(D−cε)T) .
It follows from the comparison theorem of impulsive di�erential equations that

yp(t) ≤ y(t) ≤ z(t).

Moreover, z(t) → zp(t) and zp(t) → yp(t) as t →∞. Consequently, there exists a t2 for ε1 small enough such
that t2 ≥ t1 > 0 and

yp(t) − ε1 < y(t) < zp(t) + ε1

for t > t2. Let ε→ 0, then yp(t)−ε1 < y(t) < yp(t)+ε1. Therefore, y(t) → yp(t) as t →∞, which indicates that
the pest free periodic solution (xp(t), yp(t)) ofmodel (2) is globally asymptotically stable. This completes the
proof.

Comparing the formula of both R0 and R1 shown in equations (7) and (8) we can see that the conditions for
the local and global stability of the pest free periodic solution are di�erent, which depends on the relations
betweenMs = sup xg(x)

p(x) and g(0)
f ′(0) . Note that limx→0

xg(x)
p(x) =

g(0)
f ′(0) due to l’Hospital rule, andMs =

g(0)
f ′(0) ⇔ R0 =

R1 as x → 0. In general, the globally attractive condition is stronger than the local stability condition due to
Ms ≥

g(0)
f ′(0) ⇔ R0 ≤ R1. The question is whether the local stability implies the global stability of the pest free

periodic solution, which will be discussed in more detail in the application section.

3 Threshold condition of bifurcation
For the existence of interior periodic solutions of model (2), we can investigate the bifurcation near the pest
free periodic solution, i.e. (xp(t), yp(t)). To do this, for computation convenience we �rst exchange the
variables x(t) and y(t), and denote u(t) = y(t) and v(t) = x(t), then system (2) becomes as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(t)
dt = cp(v(t))u(t) − Du(t),

dv(t)
dt = v(t)g(v(t)) − p(v(t))u(t),

⎫⎪⎪
⎬
⎪⎪⎭

t ≠ nT,

u(t+) = u(t) + λ
1+θu(t) ,

v(t+) = (1 − δv(t)
v(t)+h )v(t),

⎫⎪⎪
⎬
⎪⎪⎭

t = nT .
(10)

We let Φ be the �ow associated to the �rst two equations of (10), and the fundamental solution matrix of (10)
is X(t) = Φ(t, X0) with X0 = X(0) = (u(0+), v(0+)) and Φ = (Φ1,Φ2). We employ the notations used in this
section as those in [33], then we can de�ne the mapping Θ1,Θ2 ∶ R2

→ R2 as follows

Θ1(u, v) = u + λ
1+θu ,Θ2(u, v) = (1 − δv

v+h )v
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and the mapping F1, F2 ∶ R2
→ R2 by

F1(u, v) = cp(v)u − Du, F2(u, v) = vg(v) − p(v)u.

Furthermore, we de�ne Ψ ∶ [0,+∞) × R2
→ R2 by

Ψ(T, X0) = Θ(Φ(T, X0));Ψ(T, X0) = (Ψ1(T, X0), Ψ2(T, X0)).

Based on the above notations we can see that Ψ is determined by the values of solutions at impulsive points
0 and T, which is called as stroboscopic map of model (10) and T is the stroboscopic time snapshot. We know
that X = (u, v) is a periodic solution of (10) with period T if and only if its initial value X0 = X(0) is a �xed
point for map Ψ(T, ⋅). Therefore, in order to establish the existence of nontrivial periodic solutions of (10),
we should prove the existence of the nontrivial �xed points of Ψ .

For model (10), it follows from the discussion in the previous section that model (10) has a stable
boundary T periodic solution, denoted by

ζ(t) = (us(t), 0) = (y∗ exp(−D(t − nT)), 0), t ∈ (nT, (n + 1)T],

where y∗ = −1+
√
1+4λθ exp(−DT)(1−exp(−DT))−1

2θ exp(−DT) is a positive constant. In order to employ the analytical methods
developed in [33,34], we now consider the bifurcation of nontrivial periodic solutions near (us(t), 0) with
initial value X(0) = (us(0+), 0).

In order to obtain a nontrivial periodic solution of period τ with initial value X(0), we have only to �nd
the �xed point problem X = Ψ(τ , u). Denoting τ = T + τ̃ , X = X0 + X̃, and the �xed point problem X = Ψ(τ , u)
equals to

X0 + X̃ = Ψ(T + τ̃ , X0 + X̃).

De�ning
N(τ̃ , X̃) = (N1(τ̃ , X̃), N2(τ̃ , X̃)) = X0 + X̃ − Ψ(T + τ̃ , X0 + X̃), (11)

so X0 + X̃ is a �xed point of Ψ(T, ⋅) if N(τ̃ , X̃) = 0.
According to the variational equations of the �rst two equations of (10), we have

d
dt

(Φ(t, X0)) = F(Φ(t, X0)),

which relates to the dynamics of the �rst two equations in (10). So we obtain that

d
dt

(DX(Φ(t, X0))) = DXF(Φ(t, X0))(DX(Φ(t, X0))) (12)

with the condition DX(Φ(0, X0)) = I2, which is the identity matrix in M2(R). Thus, it follows from equation
(10) that we have the particular form

d
dt

(

∂Φ1
∂u

∂Φ1
∂v

∂Φ2
∂u

∂Φ2
∂v

)(t, X0) =
⎛

⎝

∂F1(ζ(t))
∂u

∂F1(ζ(t))
∂v

∂F2(ζ(t))
∂u

∂F2(ζ(t))
∂v

⎞

⎠
(

∂Φ1
∂u

∂Φ1
∂v

∂Φ2
∂u

∂Φ2
∂v

)(t, X0)

=(
−D cp′(0)us(t)
0 g(0) − p′(0)us(t)

)(

∂Φ1
∂u

∂Φ1
∂v

∂Φ2
∂u

∂Φ2
∂v

)(t, X0)

with initial value DX(Φ(0, X0)) = I2.
According to the initial value ∂Φ2(0,X0)

∂u = 0, we obtain the following

∂Φ2(t, X0)

∂u
= exp

⎛
⎜
⎝

t

∫

0

(g(0) − p′(0)us(v))dv
⎞
⎟
⎠

∂Φ2(0, X0)

∂u
,

i.e. ∂Φ2(t,u0)
∂u = 0 for all t > 0. Further, we obtain

d
dt

∂Φ1(t, u0)
∂u

= −D ∂Φ1(t, u0)
∂u

,
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d
dt

∂Φ1(t, u0)
∂v

= −D ∂Φ1(t, u0)
∂v

+ cp′(0)us(t)
∂Φ2(t, u0)

∂v
d
dt

∂Φ2(t, u0)
∂v

= (g(0) − p′(0)us(t))
∂Φ2(t, u0)

∂v
.

According to the initial condition DX(Φ(0, X0)) = I2, we obtain that

∂Φ1(t, u0)
∂u

= exp(−Dt),

∂Φ1(t, u0)
∂v

= cp′(0)
t

∫

0

exp(−D(t − v))us(v)ρ(v))dv,

∂Φ2(t, u0)
∂v

= ρ(t)

for all 0 ≤ t ≤ T, where ρ(t) = exp ∫
t
0 (g(0) − p′(0)us(v))dv.

We then compute the derivation of N according to (11), and observe the following matrix

DXN(τ̃ , X̃) =(
a′ b′

c′ d′
)

=

⎛
⎜
⎜
⎜
⎜
⎝

1 −(∂Θ1
∂u

∂Φ1
∂u +

∂Θ1
∂v

∂Φ2
∂u ) −(

∂Θ1
∂u

∂Φ1
∂v +

∂Θ1
∂v

∂Φ2
∂v )

−(
∂Θ2
∂u

∂Φ1
∂u +

∂Θ2
∂v

∂Φ2
∂u ) 1−(∂Θ2

∂u
∂Φ1
∂v +

∂Θ2
∂v

∂Φ2
∂v )

⎞
⎟
⎟
⎟
⎟
⎠
(T+τ̃ ,X0+X̃)

.

Letting a′ = a′0, b′ = b′0, c′ = c′0 and d′ = d′0 when (τ̃ , X̃) = (0, (0, 0)), at which ∂Θ1
∂v =

∂Θ2
∂u =

∂Φ2
∂u = 0, then we

have

DXN(0, (0, 0)) = (
1 − ∂Θ1

∂u
∂Φ1
∂u −

∂Θ1
∂u

∂Φ1
∂v

0 1 − ∂Θ2
∂v

∂Φ2
∂v

)

(T,X0)

. (13)

Thus, by simple calculations we have

a′0 = 1 − (1 − θλ

(1 + θy∗ exp(−DT))2 ) exp(−DT) > 0,

b′0 = −(1 −
θλ

(1 + θy∗ exp(−DT))2 )cp
′
(0)y∗ exp(−DT)

T

∫

0

ρ(v)dv,

c′0 = 0

and

d′0 = 1 − exp(

T

∫

0

(g(0) − p′(0)us(t))dt

= 1 − ρ(T).

Based on the above equations, we can see that DXN(0, (0, 0)) is an upper triangular matrix with a′0 > 0.
Thus, the necessary condition for the bifurcation of nontrivial solution is

det[DXN(0, (0, 0))] = 0,

which reduces to d′0 = 0. By simple calculation, we can see that d′0 = 0 is equivalent to R0 = 1. Therefore, in
the followingwe focus on d′0 = 0and address the su�cient condition for the bifurcation of nontrivial solution.

Note that dim(ker(DXN(0, (0, 0)))) = 1 and a basis of ker(DXN(0, (0, 0))) is (−
b′0
a′0
, 1). Thus, the

equation N(τ̃ , X̃) = 0 is equivalent to

N1(τ̃ , aY0 + zE0) = 0, N2(τ̃ , aY0 + zE0) = 0,
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where E0 = (1, 0), Y0 = (−
b′0
a′0
, 1) and X̃ = aY0 + zE0 represents the direct summation decomposition of X̃

using the projections onto ker(DXN(0, (0, 0))) (i.e. the central manifold) and Im(DXN(0, (0, 0))) (i.e. the
stable manifold).

Now, we de�ne

f1(τ̃ , a, z) = N1(τ̃ , aY0 + zE0), f2(τ̃ , a, z) = N2(τ̃ , aY0 + zE0),

and consequently we have
∂f1
∂z

(0, 0, 0) = ∂N1

∂u
(0, (0, 0))∂u

∂z
= a′0 > 0.

Therefore, based on the implicit function theorem, we con�rm that there exists a unique continuous z as a
functionof τ̃ and a such that z = z(τ̃ , a) and z(0, 0) = 0,which canbe solved from the equation f1(τ̃ , a, z) = 0
near (0, (0, 0)). Furthermore, we have

f1(τ̃ , a, z(τ̃ , a)) = N1(τ̃ , aY0 + z(τ̃ , a)E0) = 0

and
∂N1(0, 0)

∂u
(−

b′0
a′0

) +
∂N1(0, 0)

∂u
∂z
∂a

(0, 0) + ∂N2(0, 0)
∂v

= 0.

Thus, we have
∂z
∂a

(0, 0) = −(∂N1(0, 0)
∂u

)

−1 ∂N1(0, 0)
∂v

+
b′0
a′0

= 0.

It follows from (11) that

∂z
∂τ̃

(0, 0) = 1
a′0

∂Θ1

∂u
∂Φ1(T, X0)

∂τ̃

=
1
a′0

(1 − θλ

(1 + θus(T))2
)u̇s(T).

Therefore, we conclude that N(τ̃ , X̃) = 0 if and only if

f2(τ̃ , a) = N2(τ̃ , aY0 + z(τ̃ , a)E0) = 0, (14)

and the number of its roots equals the number of periodic solutions of model (10).
For convenience, we denote

f(τ̃ , a) = f2(τ̃ , a)

with f(0, 0) = N2(0, (0, 0)) = 0. In order to study the properties of the function f , we �rst compute the
derivatives of f around (0, 0). To do this, we compute the �rst order partial derivatives ∂f

∂τ̃ (0, 0) and
∂f
∂a (0, 0).

Denote η(τ̃) = T + τ̃ , η1(τ̃ , a) = x0 − b′0
a′0
a + z(τ̃ , a) and η2(τ̃ , a) = a, then we have

∂f(τ̃ , a)
∂a

=
∂
∂a

(η2 −Θ2(Φ(η, η1, η2)))

= 1 − ∂Θ2

∂v
(
∂Φ2(η, η1, η2)

∂u
(−

b′0
a′0
+
∂z(τ̃ , a)

∂a
)+

∂Φ2(η, η1, η2)
∂v

)

= 1 − ∂Φ2(η, η1, η2)
∂v

.

So, we have ∂f(0,0)
∂a = 1 − ρ(T). It follows from d′0 = 1 − ρ(T) that d′0 = 0 indicates that ∂f

∂a (0, 0) = 0.
Similarly, we obtain that

∂f
∂τ̃

(τ̃ , a) = ∂
∂τ̃

(η2 −Θ2(Φ(η, η1, η2)))(τ̃ , a)

= −
∂Θ2

∂v
(
∂Φ2(η, η1, η2)

∂τ̃
+
∂Φ2(η, η1, η2)

∂u
∂z
∂τ̃

).
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It follows from ∂Φ2(η,η1 ,η2)
∂τ̃ = 0 at (τ̃ , a) = (0, 0) that

∂f
∂τ̃

(0, 0) = ∂f
∂a

(0, 0) = 0.

Furthermore, denote A =
∂2 f(0,0)

∂τ̃2 , B =
∂2 f(0,0)
∂τ̃∂a and C =

∂2 f(0,0)
∂a2 . In the following, we should calculate the

second-order partial derivatives in term of the parameters of the equation.

∂2f(τ̃ , a)
∂τ̃2

=
∂
∂τ̃

( −
∂Θ2

∂v
(
∂Φ2(η, η1, η2)

∂τ̃
+
∂Φ2(η, η1, η2)

∂u
∂z
∂τ̃

))

= −
∂2Θ2

∂v2
(
∂Φ2(η, η1, η2)

∂τ̃
+
∂Φ2(η, η1, η2)

∂u
∂z
∂τ̃

)

2

−
∂Θ2

∂v
(
∂2Φ2(η, η1, η2)

∂τ̃2
+ 2∂

2Φ2(η, η1, η2)
∂u∂τ̃

∂z
∂τ̃

+
∂2Φ2(η, η1, η2)

∂u2
(
∂z
∂τ̃

)
2
+
∂Φ2(η, η1, η2)

∂u
∂2z
∂τ̃2

).

Since ∂2Φ2
∂u2 =

∂Φ2
∂τ̃ =

∂Φ2
∂u =

∂2Φ2
∂u∂τ̃ = 0 for (τ̃ , a) = (0, 0), we have

A =
∂2f(0, 0)

∂τ̃2
= −

∂2Φ2(T, X0)

∂τ̃2
.

According to ∂2Φ2(t,X0)
∂t2 = 0 for all 0 ≤ t ≤ T, we have

∂2Φ2(T, X0)

∂τ̃2
= 0,

which indicates that A = 0. By the same methods as shown above, we have

∂2f(τ̃ , a)
∂a2

=
∂
∂a

(1 − ∂Θ2

∂v
(
∂Φ2(η, η1, η2)

∂u
(−

b′0
a′0
+
∂z(τ̃ , a)

∂a
)+

∂Φ2(η, η1, η2)
∂v

))

=−
∂2Θ2

∂v2
(
∂Φ2(η, η1, η2)

∂u
( −

b′0
a′0

+
∂z
∂a

) +
∂Φ2(η, η1, η2)

∂v
)

2

−
∂Θ2

∂v
(
∂2Φ2(η, η1, η2)

∂u2
( −

b′0
a′0

+
∂z
∂a

)

2

)

−2∂Θ2

∂v
∂2Φ2(η, η1, η2)

∂v∂u
( −

b′0
a′0

+
∂z
∂a

)

−
∂Θ2

∂v
(
∂Φ2(η, η1, η2)

∂u
∂2z
∂a2

+
∂2Φ2(η, η1, η2)

∂v2
).

According to ∂Θ2
∂v = 1, ∂

2Θ2
∂v2 = − 2δ

h for (τ̃ , a) = (0, 0), in order to calculate C, we only need to calculate two
terms, i.e. ∂2Φ2(t,X0)

∂u∂v and ∂2Φ2(t,X0)
∂2v .

Then, it follows that

d
dt

(
∂2Φ2(t, X0)

∂u∂v
)=(

∂F2(ζ(t))
∂v

+
∂F2(ζ(t))

∂u
)(

∂2Φ2(t, X0)

∂u∂v
)

+
∂2F2(ζ(t))
∂u∂v

∂Φ2(t,X0)

∂v
+
∂2F2(ζ(t))

∂u2
∂Φ1(t, X0)

∂v

=(g(0) − p′(0)us(t))
∂2Φ2(t, X0)

∂u∂v
− p′(0)ρ(t)
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with initial condition ∂2Φ2(0,X0)
∂u∂v = 0. So, we have

∂2Φ2(T, X0)

∂u∂v
= −p′(0)

T

∫

0

ρ(u) exp(

T

∫
u

(g(0) − p′(0)us(v))dv)du

= −p′(0)ρ(T)T .

In order to obtain the formula for ∂2Φ2(t,X0)
∂v2 , we have the following di�erent equation

d
dt

(
∂2Φ2(t, X0)

∂v2
)=

∂F2(ζ(t))
∂v

(
∂2Φ2(t, X0)

∂v2
) +

∂2F2(ζ(t))
∂v2

∂Φ2(t, X0)

∂v

+
∂2F2(ζ(t))

∂v∂u
∂Φ1(t, X0)

∂v
+
∂F2(ζ(t))

∂u
∂2Φ1(t, X0)

∂v2

= (g(0) − p′(0)us(t))
∂2Φ2(t, X0)

∂v2
+(2g′(0) − p′′(0)us(t))ρ(t)

−p′(0)
t

∫

0

exp(−D(t − v))cp′(0)us(v)ρ(v))dv

with initial condition ∂2Φ2(0,X0)
∂v2 = 0. Integrating the above equation one yields

∂2Φ2(t, x0)
∂v2

=

t

∫

0

exp(
t

∫
v

(g(0) − p′(0)us(ξ))dξ)(2g′(0) − p′′(0)us(v))ρ(v)dv

−cp′2(0)
t

∫

0

{ exp(

t

∫
v

(g(0) − p′(0)xs(ξ))dξ)}

⋅{

v

∫

0

exp(−D(v − θ))us(θ)ρ(θ)dθ}dv.

Therefore, we already deduce that

C=2δ
h

(
∂Φ2(T, X0)

∂v
)

2

+ 2b
′
0

a′0
∂2Φ2(T, X0)

∂u∂v
−
∂2Φ2(T, X0)

∂v2

=ρ(T)(2δρ(T)
h

−
2b′0p′(0)T

a′0
−2g′(0)T+ y

∗p′′(0)(1 − exp(−DT))
D

)

+cp′2(0)y∗
T

∫

0

{ exp(

T

∫
v

(g(0) − us(t))dt)e−Dv
v

∫

0

ρ(θ)dθ}dv.

For calculation of B, once again as above we have

∂2f(τ̃ , a)
∂τ̃∂a

=
∂
∂a

( −
∂Θ2

∂v
(
∂Φ2(η, η1, η2)

∂τ̃
+
∂Φ2(η, η1, η2)

∂u
∂z
∂τ̃

))

= −
∂2Θ2

∂v2
(
∂Φ2(η, η1, η2)

∂τ̃
+
∂Φ2(η, η1, η2)

∂u
∂z
∂τ̃

)

×(
∂Φ2(η, η1, η2)

∂u
( −

b′0
a′0

+
∂z
∂a

) +
∂Φ2(η, η1, η2)

∂v
)

−
∂Θ2

∂v
(
∂2Φ2(η, η1, η2)

∂τ̃∂u
+
∂2Φ2(η, η1, η2)

∂u2
∂z
∂τ̃

)( −
b′0
a′0

+
∂z
∂a

)

−
∂Θ2

∂v
(
∂2Φ2(η, η1, η2)

∂τ̃∂v
+
∂2Φ2(η, η1, η2)

∂u∂v
∂z
∂τ̃

)
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−
∂Θ2

∂v
∂Φ2(η, η1, η2)

∂u
∂2z
∂τ̃∂a

.

It follows from

∂2Φ2(t, X0)

∂v∂τ̃
=
∂F(ζ(t))

∂v
exp(

t

∫

0

∂F(ζ(t))
∂v

dt),

= (g(0) − p′(0)us(t))ρ(t)

and

∂z(0, 0)
∂τ̃

= −
D
a′0

(1 − θλ

(1 + θus(T))2
)us(T)

that

B = −
∂2Φ2(T, X0)

∂τ̃∂v
−
∂2Φ2(T, X0)

∂u∂v
∂z(0, 0)

∂τ̃

= −ρ(T)(g(0) − p′(0)us(T) +
p′(0)TDus(T)

a′0
(1 − λθ

(1 + θus(T))2
)).

Furthermore, we study the Taylor expansion of f(τ̃ , a) near (τ̃ , a) = (0, 0). Since A =
∂2 f(0,0)

∂τ̃2 , B =
∂2 f(0,0)
∂τ̃∂a ,

and C =
∂2 f(0,0)

∂a2 , we have

f(τ̃ , a) = Baτ̃ + C a
2

2 + o(τ̃ , a)(τ̃2 + a2) = a
2 f̃(τ̃ , a),

where f̃(τ̃ , a) = 2Bτ̃ + Ca + 1
a o(τ̃ , a)(τ̃

2
+ a2), ∂f̃(0,0)

∂τ̃ = 2B and ∂f̃(0,0)
∂a = C.

For B ≠ 0 (C ≠ 0), in order to employ the implicit function theorem about f(τ̃ , a) = 0, we deduce that
there exists a unique function τ̃ = σ(a) (a = γ(τ̃)) near 0, which ensures that for all a (τ̃ ) near 0 there exists
a σ(a) (γ(τ̃)) such that f̃(σ(a), a) = 0 (f̃(τ̃ , γ(τ̃)) = 0) and σ(0) = 0 ( γ(0) = 0).

Therefore, equation (14) is equivalent to

2Bτ̃ + Ca + 1
a
o(τ̃ , a)(τ̃2 + a2) = 0.

If BC ≠ 0, solving the above equation, we have a
τ̃ ≃ − 2B

C . If BC = 0, then the above equation can not be solved
with relation to the interesting parameters. It is necessary to expand f to the third or a higher order if BC = 0,
which is challenge for calculations. Finally, we have the following theorem

Theorem 3.1. Assume that d′0 = 0. If BC ≠ 0, then in model (2) there occurs bifurcation at the threshold
parameter values which satisfy d′0 = 0, and the bifurcation is supercritical provided BC < 0 and it is subcritical
if BC > 0.

Although Theorem 3.1 reveals the existence and stability of nontrivial periodic solution of model (2), the
conditions including the sign BC are quite complex. This indicates that it is hard to clarify the e�ects of
impulsive period and nonlinear pulse on the pest control. Therefore, in order to verify our main results we
choose the Holling Type II functional response curve as an example in the coming section.

4 Application of the main results
In order to show the applications of the main results and discuss the biological implications of the threshold
conditions, we assume that the pest population follows the logistic growth in the absence of predator, i.e.
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g(x) = r(1− x
K ), and choose the Holling Type II functional response function for p(x), i.e. p(x) = αx

1+ωx . Thus,
model (2) becomes as the following special system with nonlinear impulsive control

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = rx(t)(1 − x(t)

K ) −
αx(t)

1+ωx(t) y(t),
dy(t)
dt =

cαx(t)
1+ωx(t) y(t) − Dy(t),

⎫⎪⎪
⎬
⎪⎪⎭

t ≠ nT,

x(t+) = (1 − δx(t)
x(t)+h )x(t),

y(t+) = y(t) + λ
1+θy(t) ,

⎫⎪⎪
⎬
⎪⎪⎭

t = nT,
(15)

where r, K,α,ω, c and D are positive constants, respectively.
It follows fromTheorem 2.2 that we obtain the pest-free periodic solution ofmodel (15) for θ > 0 as follows

(xp(t), yp(t)) = (0, y∗ exp(−D(t − nT))), t ∈ (nt, (n + 1T)]

with y∗ = −1+
√
1+4λθ exp(−DT)(1−exp(−DT))−1

2θ exp(−DT) .
In particular, if θ = 0, then model (15) has a pest-free periodic solution

(xp(t), yp(t)) = (0, y∗ exp(−D(t − nT))), t ∈ (nt, (n + 1T)]

with y∗ = λ
1−exp(−DT) .

For the stability of pest free periodic solution we employ the main results shown in Theorem 2.3, from
which we can see that the pest-free periodic solution of model (15) is locally stable provided

R0 =
rDT

α(1 − exp(−DT))y∗ < 1

and is globally attractive if

R1 =
rDT

αy∗(1 − exp(−DT)) supx≥0
(1 − x

K
) (1 + ωx) < 1.

Furthermore, the relations between R0 and R1 are as follows:

R1 = R0 sup
x≥0

(1 − x
K
)(1 + ωx).

Note that if Kw < 1 then supx≥0 (1 − x
K )(1 + ωx) = 1, and if Kw ≥ 1 then

sup
x≥0

(1 − x
K
)(1 + ωx) = (Kω + 1)2

4Kω .

Therefore, we conclude that
(i) If Kω < 1 then the pest-free periodic solution (xp(t), yp(t)) of model (15) is globally stable provided

R0 = R1 =
rDT

α(1 − exp(−DT))y∗ < 1,

which indicates that the local stability implies the global stability.
(ii) If Kω ≥ 1 then the pest-free periodic solution (xp(t), yp(t)) of model (15) is locally stable provided

R0 =
rDT

α(1 − exp(−DT))y∗ < 1

and it is globally attractive if

R1 =
rDT(Kω + 1)2

4Kωαy∗(1 − exp(−DT)) = R0
(Kω + 1)2

4Kω < 1.

It is easy to see that (Kω + 1)2 ≥ 4Kω and the equals sign holds true only for Kω = 1, which indicates that
R1 > R0 when Kω ≠ 1. Therefore, if Kω > 1, then the local stability can not ensure the global stability of
the pest-free periodic solution, and a stronger condition (i.e. R1 < 1) is needed. So the interesting question
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is whether the condition R0 < 1 can ensure the global stability of the pest free periodic solution or not when
Kω > 1. To answer this question numerically, we consider the following three possible cases (as shown in
Fig. 1(A)):

(i) R0 < R1 < 1; (ii) R0 < 1 ≤ R1; (iii) 1 ≤ R0 ≤ R1.

Fig. 1

If we �xed all parameter values as those shown in Fig. 1(B) and (C), thenwe have R0 < 1 < R1, which indicates
that the pest free periodic solution is locally stable. However, if we chose two di�erent initial values (1, 10)
and (15, 20) in (B) and (C), respectively, we can see that the pest populationwill die out eventually in (B) and
oscillates periodically in (C), i.e. the pest free periodic solution and a stable interior positive periodic solution
can coexist. All those con�rm that the local stability does not imply the global stability, and the condition
R1 < 1 is necessary for the global attractivity. If we �xed the parameter values as those shown in Fig. 1(D),
then we have 1 ≤ R0 ≤ R1, and consequently both the pest and natural enemy populations can oscillate as a
positive periodic solution.

The e�ects of maximal releasing constant λ on oscillations of the both pest and natural enemy popula-
tions have been shown in Fig. 2, from which we can see that the oscillation patterns of the pest population
can be signi�cantly a�ected by the variations of biological control (i.e. releasing natural enemies). The results
reveal that the larger releasing constant is, the fewer outbreak has, as shown in Fig. 2(A) and (C), although
the maximal amplitude of the pest population is quite similar. The pest population will die out once the
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releasing constantλ exceeds some threshold values such as 5.5, as shown in Fig. 2(E),while the natural enemy
population can oscillate with a small size (Fig. 2(F)).

Fig. 2

The numerical bifurcation analyses of model (15) with respect to the bifurcation parameter h for di�erent
impulsive period T have been shown in Fig. 3, from which we can see that the parameters related to the IPM
strategies can strongly in�uence on thedynamics ofmodel (15). Comparing themain results shown inFig. 3(A)
and (B), we conclude that a slightly changing the parameters h and T can signi�cantly a�ect the variations
of the pest population, and the pest population could periodically or quasi-periodically oscillate for a wide
range of parameters.
Based on the main results shown in Theorem 3.1 we can theoretically address the bifurcations for model (15),
and we have the following main results.

Theorem 4.1. If R0 = 1 (i.e. d′0 = 0) and Kω < 1, then the pest-free periodic solution (xp(t), yp(t)) can
bifurcate to another periodic solution as parameter varies, which is supercritical for Case (i) and Case (ii) shown
in Theorem 2.2.

Proof. To discuss the bifurcation of nontrivial periodic solution of system (15), we denote

F1(x, y) = cαy
1+ωy x − Dx, F2(x, y) = ry(1 − y

K ) −
αy

1+ωy x,
Θ1(x, y) = x + λ

1+θx , Θ2(x, y) = (1 − δy
y+h )y.

Therefore, according to Theorem 3.1, a necessary condition for the bifurcation of the nontrivial periodic
solutions near the trivial periodic solution (xp(t), yp(t)) is d′0 = 0, and by simple calculation we have

d′0 = 1 − exp(rT − αy
∗
(1 − exp(−DT))

D
)

with y∗ = −1+
√
1+4λθ exp(−DT)(1−exp(−DT))−1

2θ exp(−DT) . This indicates that if the parameter space satis�es d′0 = 0⇔ R0 =

1, then the stability of the pest-free periodic solution is lost. Thus, in order to address the bifurcation, without
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Fig. 3

loss of generality, we assume that d′0 = 0 holds true. For example, if we choose T as a bifurcation parameter,
then the critical value of T is the root of d′0 = 0.

According to the formula (13), we have that

a′0 = 1 − (1 − θλ

(1 + θy∗ exp(−DT))2 ) exp(−DT) > 0,

b′0 = −cαy∗ exp(−DT)(1 −
θλ

(1 + θy∗ exp(−DT))2 )
T

∫

0

ρ(v)dv,

where ρ(t) = exp(rt − αy∗(1−exp(−Dt))
D ) and ρ(T) = 1 .

Further, according to the initial condition, we obtain that

∂Φ2(T, X0)

∂y
= ρ(T),

∂2Φ2(T, X0)

∂x∂y
= −αT < 0,

∂2Φ2(T, X0)

∂y∂τ
= r − αy∗ exp(−DT),

∂Φ1(T, X0)

∂τ̃
= −Dy∗ exp(−DT) < 0,

∂2Φ2(T, X0)

∂y2
= 2rT(ω − 1

K
) − cα2y∗

T

∫

0

exp(−Dv) exp(r(T − v)

−
αy∗(exp(−Dv) − exp(−DT))

D
)

⋅{

v

∫

0

exp(rθ − αy
∗
(1 − exp(−Dθ))

D
dθ)}dv.
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Based on Theorem 3.1, we have

C =
2δ
h

(
∂Φ2(T, X0)

∂y
)

2

+ 2b
′
0

a′0
∂2Φ2(T, X0)

∂x∂y
−
∂2Φ2(T, X0)

∂y2

=
2δ
h
−
2b′0αT
a′0

−
∂2Φ2(t, x0)

∂y2

and

B = −
∂2Φ2(T, X0)

∂τ̃∂y
−
∂2Φ2(T, X0)

∂x∂y
∂z(0, 0)

∂τ̃

= −(r − αy∗ exp(−DT) + αTDy
∗ exp(−DT)
a′0

(1 − λθ

(1 + θyp(T))2
)).

In order to determine the sign of B, let g(t) = r − αy∗ exp(−Dt), then g′(t) = αDy∗ exp(−Dt) > 0, which
means that g(t) is strictly increasing. Further, we have

T

∫

0

g(t)dt = rT − αy
∗
(1 − exp(−DT))

D
= 0,

which indicates that g(T) = r−αy∗ exp(−DT) > 0. Moreover, for Case (i), we have 1− λθ
(1+θyp(T))2 > 0 because

of λθ < 1. For Case (ii), we get 1− λθ
(1+θyp(T))2 > 0 because 0 < Y2 < y∗⇔ λθ < (1+ θyp(T))2. Therefore, B < 0

and b′0 < 0 for Case (i) and Case (ii), and if Kω < 1 then we have ∂2Φ2(T,X0)
∂y2 < 0, and consequently C > 0 holds

true. This completes the proof.

In particular, if θ = 0, then we have the following theorem:

Theorem 4.2. If R0 = 1 (i.e. d′0 = 0) and Kω < 1, then the pest-free periodic solution (xp(t), yp(t)) can
bifurcate to another periodic solution as parameter varies, which is supercritical.

5 Conclusion
In the present work, a generalized predator-preymodel with nonlinear impulsive control strategy is proposed
and investigated. The existence and local stability of the pest free periodic solution have been addressed
in more detail, and some new methods for the proof of local stability are provided, which depends on the
di�erence equation determined by the impulsive point series. For the global stability of the pest free periodic
solution, our main results reveal that the local stability does not imply the global stability, which means that
a stronger su�cient condition is needed, i.e. there exists another threshold condition R1 such that the pest
free periodic solution is globally stable provided R0 ≤ R1 < 1. Note that if Ms =

g(0)
f ′(0) , then we have R0 = R1,

which reveals that for some classical Lotka-Volterra systems the local stability implies the global stability of
the pest free periodic solution.

In order to verify the main results and con�rm that the stronger threshold condition R1 < 1 is necessary
for global attractivity of the pest free periodic solution, we further consider the Holling type II functional
response function in application section. As discussed on Section 4, for the parameter values �xed as those in
Fig.1(B) and (C), it is easy to see that the inequalities R0 < 1 < R1 hold true, and the pest free periodic solution
is locally stable. It is interesting to note that for this parameter set,model (15) can have two periodic solutions,
one is the pest free periodic solution and the other is the interior periodic solution, which can coexist. This
reveals that the local stability does not imply the global stability, and the condition R1 < 1 is necessary for
the global attractivity. Therefore, we conclude that in the present work we provide some analytical methods
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to analyze the generalized models with nonlinear impulsive control, and the threshold conditions are useful
for designing the IPM strategy. Furthermore, it is believed that the techniques of investigating the generalized
models could be applied to population dynamics in relation to: chemotherapeutic treatment of disease[33] or
vaccination strategies in epidemiology [35].

We should emphasize here that the density dependent releasing function considered in this paper only
depends on the density of natural enemies. However, a more realistic case is that it should depend on the
density of the pest population, i.e. the density dependent releasing function could be a saturation function
of the pest population, which will bring di�culties for theoretical analysis. We will work on this in the near
future.
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