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Abstract: In this paper, we consider the definition of "useful" Csiszar divergence and "useful" Zipf-Mandelbrot
law associated with the real utility distribution to give the results for majorization inequalities by using
monotonic sequences. We obtain the equivalent statements between continuous convex functions and Green
functions via majorization inequalities, "useful" Csiszar functional and "useful" Zipf-Mandelbrot law. By
considering "useful" Csiszar divergence in the integral case, we give the results for integral majorization
inequality. Towards the end, some applications are given.
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1 Introduction and Preliminaries

Zipf’s law [13] and the power laws in general [4-6] have and continue to attract considerable attention in a
wide variety of disciplines from astronomy to demographics to software structure to economics to zoology,
and even to warfare [7]. Typically one is dealing with integer-valued observables (number of objects, people,
cities, words, animals, corpses), with n € {1, 2,3,...}. As given in [8], sometimes the range of values is
allowed to be infinite (at least in principle), sometimes a hard upper bound N is fixed (e.g., total population
if one is interested in subdividing a fixed population into sub-classes). Particularly interesting probability
distributions are the probability laws of the form:

o Zipf’slaw: pn < 1/n;

e power laws: p, o< 1/n%;

e hybrid geometric/power laws: p, o< w"/n”.

Distance or divergence measures are of key importance in different fields like theoretical and applied sta-
tistical inference and data processing problems such as estimation, detection, classification, compression,
recognition, indexation, diagnosis and model selection etc. Traditionally, the information conveyed by
observing X is measured by the entropy which is defined as (see [9, p.111])

H(p) := ) pilog, 1/pi,

i=1
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and is associated with the distribution p, p; > 0 (1 <i < n), where ¥ ; p; = 1. A generalization of this is to
attach a utility g; > O to the outcome x; (1 < i < n) and speak of the "useful" information measure

n
H(p;q) := Y. qipilog, 1/p;,
i=1

which is associated with the utility distribution q = (g1, ..., gn)-
Bhaker and Hooda [10] (see also [9, p.112]) introduced the measures

k-1 qiPrlog, 1/py

E(p;q) := 4]
(p;) k=1 9xPk
and
1 22:1 ‘Ikp?
E.(p;q) := 1 , 0 1, 2
(p;q) = 7 —— ngzz:lqkpk <a# @

which have a number of useful properties. It is readily verified that these alternations leave intact the property
that (2) reduces to (1) when o — 1. Also, if u = 1 so that there are effectively no utilities, (1) and (2) reduce to
Renyi’s entropies of order 1 and «, respectively.

Csiszar introduced the functional in [11] and later discussed it in [12]. Here, we consider "useful" Csiszar
divergence (see [13, p.3], [9, 14, 15]):

Definition 1.1 ("Useful" Csiszar divergence). Assume J c R be an interval, and let f : ] — R be a function
with distribution p := (p1, ..., Pn), associated with the utility distributionu := (us, ..., Un), where p;, u; € R for
1<i<n,andq:=(q1,...,qn) € |0, oo[" be such that

Pi oy i-1,..n, 3)
qi

then we denote the "useful" Csiszar divergence
u Di
I (paw) = S uiaif (2). @)
i-1 qi
Remark 1.2. One can easily seen that if we substitute u = 1, then (4) becomes

B a0 =) 00 - Saf(2).
i=1

1

One can see the various results in information theory in [3, 16, 17].
The following theorem is a generalization of the Classical Majorization Theorem known as Weighted
Majorization Theorem and was proved by Fuchs in [19] (see also [20], [21, p.323]):

Theorem 1.3 (Weighted Majorization Theorem). Let x = (X1, ..., Xn),¥ = (1, ..., ¥n) be two decreasing real
n-tuples such that x;, y; € J fori =1, ...,n. Let W = (W1, ..., wn) be a real n-tuple such that

j
Wiyi < > WiXi, 5)
i-1

-

forj=1,2,...,n-1and
n n
Y Wiy = Y wix. (6)
i=1 i=1

Then for every continuous convex function f : ] — R, we have the following inequality

Zn:Wif(yi) < Zn:Wif(Xi). )
i=1 i=1
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The following theorem is valid ([22, p.32]):

Theorem 1.4. Let f : ] — R be a continuous convex function on an interval J, w be a positive n-tuple and x, y
e J" satisfying

k k
Ywiyi < Y wix; for k=1,...,n-1, 8)
i=1 i=1
and
n
Wiyi = Y WiX;. )
i=1 i=1
(a) If yis a decreasing n-tuple, then
n n
owif (i) < Yowif (xi). (10)
i=1 i=1
(b) If x is an increasing n-tuple, then
n n
Ywif (xi) < Y wif (vi)- (11)
i=1 i=1

If f is strictly convex and X # v, then (10) and (11) are strict.

One can see the various generalizations of the majorization inequality and bounds for Zipf-Mandelbrot
entropy in [23-25].

Benoit Mandelbrot in [26] gave generalization of Zipf’s law, now known as the Zipf-Mandelbrot law which
gave improvement in account for the low-rank words in corpus where k < 100 [27]:

C
f(k) = m,
and when g = 0, we get Zipf’s law.
ForneN,g>0,s>0,ke{1,2,...,n}, in a more clear form, the Zipf-Mandelbrot law (probability mass
function) is defined with
1/(k+q)° n 1

where Hpgs:= ).

k,n,q,s):= , - ,
f( q ) Hn,q,s = (l + q)s

neN,g>0,s>0,ke{1,2,...,n}.

Application of the Zipf-Mandelbrot law can also be found in linguistics [27], information sciences [28, 29]
and ecological field studies [30].

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random
variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less
than or equal to x and we often denote CDF as the following ratio:

Hk,t,s

CDF := .
Hn,t,s

(12)

The cumulative distribution function is an important application of majorization.
We consider the following definition of "useful" Zipf-Mandelbrot law (see [9, 11, 12, 14, 15]):

Definition 1.5 ("Useful" Zipf-Mandelbrotl law). Assume J c R be an interval, and f : ] — R be a function with
ne{1,2,3,...}, t1 > 0. Let also distribution q, > 0 and associated with the utility distribution u; € R for
(i=1,...,n) such that
1
ql(l + tl)slH"yfl,Sl

eJ, i=1,...,n, (13)

then we denote "useful" Zipf-Mandelbrot law as

n 1
I " at ) » Y, = i1 ] ’
pimtsnan) = Suaf (4o )
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Remark 1.6. One can easily seen that for u = 1, then

L 1
Ir(i,n, t1,51,9,1) = I (i,n, t1,51,q) := ; . .
f( 1,51,9,1) = If ( 1,51,4) ;qlf(qi(l+t1)slHn,t1,sl)

If we substitute q; = , then

1
(+6)5 Huy sy

. - n 1 (i+t3)53Hn,t3,53

Iy (i,n, t1,t3,81,83) := ; i+ t3)s3Hn,t3,53f( (i + 1) Hng,.s, ) .

This paper is oragnised as follows. In section 2, we give the results as the connection between useful Csisar
divergence, useful Zipf-Mandelbrot law and majorization inequality for one monotonic sequence or both of
them. We obtain some corollaries for our obtained results. In section 3, we present the equivalent statements
between continuous convex functions and defined Green functions. In section 4, we give the results for
integral majorization inequality for considering the integral form of useful Csisar divergence. Finally, in
section 5 we give some applications for obtained results.

2 Main results

Assume p and q be n-tuples such that g; > 0 (i = 1, ..., n) and define

P _ (12 p2 &)

a \q1 ¢ "7 gn
We start with the following theorem which provides the connection between "useful" Csiszar divergence and
weighted majorization as one sequence is monotonic:

Theorem 2.1. Assume ] c R be an interval, f : ] — R be a continuous convex function, p;, r; (i = 1, ...,n) be
real numbers and q;, u; (i = 1, ..., n) be positive real numbers such that

k k
Zuiri < Zu,-pi for k=1,...,n-1, (14)
i=1 i=1

and
n

n
Yuiri = Y uipi, (15)
i-1

i=1
with ’;i;, ;— e] (i=1,...,n).
(a) If ﬁ is decreasing, then

I (r,q.u) <I; (p,q. u). (16)
(b) If g is increasing, then

Ir(r,q,u) > Ir (p,q,u). 17)
If f is a continuous concave function, then the reverse inequalities hold in (16) and (17).

Proof. (a): We use Theorem 1.4 (a) with substitutions x; := %, yi = %, wi=u;q;asq; >0, (i=1,...,n) then
we get (16).
We can prove part (b) with the similar substitutions in Theorem 1.4 (b). O

We present the following theorem as the connection between "useful" Csiszar divergence and weighted
majorization theorem as both sequences are decreasing:

Theorem 2.2. Assume ] c R be an interval, f : ] — R be a continuous convex function, p;, r;, u; (i =1, ..., n)
be real numbers and q; (i = 1, ..., n) be positive real numbers such that % and é be decreasing satisfying (14)
and (15) with %, ;— eJ] (i=1,...,n),then

If (l‘, q, ll) < If (p: q, U) . (18)
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Proof. We use Theorem 1.3 with substitutions x; := %, yi = ;— and w; = u;q;as q; > 0(i = 1,...,n) then we
get (18). O

The following two theorem gives the connection between "useful" Zipf-Mandelbrot law and weighted ma-

jorization inequality:

Theorem 2.3. Assume ] c R be an interval, f : ] — R be a continuous convex function with u; > 0, n €
{1,2,3,...}, t1, t2 >0and s1, S2 > 0 such that satisfying

k k
Ui Hnyt,,s, Uu;
- < - , k=1,...,n-1, 19)
l; (i+t2)%2 = Hpypy,s, 1; (i+t1)%
and
Hn t2,S2 ! Ui
2 - , (20)
Z 7 (i + tz)SZ Hn,tl,sl (i+t)%
andalsolet q; >0, (i=1,...,n) with
1 1
- , - e] (i=1,...,n).
qi(l+t1)slHYht1,51 qi(l+t2)szH"yt2,Sz ( )
(a) If (l(ﬁizt)z)zsz < q("]*il (i=1,...,n), then
n 1
Ir(i,n, t2,s2,q,u) := » U;q; ,
f( 2,52, ) ; lqlf(qi(l+t2)san,tz,Sz)
) L (1)
<Ir(i,n, t1,S1,q,1) := » U;g; - . 21
f( 1,81, 9 ) ; lqlf(qi(l+t1)slHn,[1,Sl)

(b) If (5l > 41 (=1, ..., n), then

i+1+t1 )1
X 1
Zuiqif( — )
i=1

ql(l + tZ)SZHn,tz,sz

2zn:uiqif( B ) 7))
i=1

qi(l + tl)slHYl,fl,Sl

|
S

If f is continuous concave function, then the reverse inequalities hold in (21) and (22).

Proof. (a) Let us consider that p; := and r; = then

1 1
(i+t1)51Hn,[1,51 (i+t2)san,t2.52 ’

Supis= Lk
g (1+t1)slHntlsl " Hutys, S+t

and similarly

Zk:wr--— ! Zk: i k=1 n-1
& L Hn’tz,sz = (1+ tz)sz ’ 9 ooy s

leading to

Zk:u~r‘<zk:u‘p‘ = Z H"tzszzk: Ui k=1,..,n-1
P i = : iFi (14_1,2)52 Hn st o (l+l’1)51 5 eeey .

One can see easily that is decreasing over i = 1,..., n and similarly r; too. Now, we find the

1
(i+t1)slHn,[1,sl
behaviour ofé forg;>0(i=1,2,...,n), take

LI ! and L 1
qgi qi(i+t2)S2Hny,s, gis1 Gin1(i+1+6)2Hnts,
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Tis1 ri 1 1 1

Gis1 @ Huos | Gin(i+1+6)%  qi(i+6)*

- (i+1t)™ < qi+1
(i+1+t)%2 " gq;

1)

which shows that i is decreasing. So, all the assumptions of Theorem 2.1 (a) are true, then by using (16) we
get (21).
(b) If we switch the role of r; to p; in the first part (a), then by using (17) in Theorem 2.1 (b) we get (22). O

Theorem 2.4. Assume ] c R be an interval, f : ] — R be a continuous convex function with u; € R, n €
{1,2,3,...}, t1, to >0and s1, sz > 0, such that satisfying (19), (20) and

(i+t;)" i+ -
Grsyr S 4 (i=1,..,n),
(i+t)*2 i+ -
ey <2 (i=1, )’
hold and also let q, >0, (1 ., n) with

1 1
qi(i + tl)slHn,tl,sl ’ qi(i + tZ)SZHn,tz,sz

e] (i=1,...,n),

then the following inequality holds

n 1
Ir (i,n, t2,82,Q,0) = ) U;q; i
 ( 2,52,q, 1) 1:21 ’q’f(q,-(1+tz)52Hn,tz,52)

n 1
<If(i,n,t1,s1,q,1) := iqi - . 23
f (l n,t,s1,q ) ;ulqu(ql'(l 4 tl)slHn,tl,sl ) ( )

1
(lthl)SlHn t1,81

we get y = r/q is decreasing <> (l(lﬁizt)z;z < ql';il , for (i =1, ..., n), similarly we can prove that x = p/q is also

Proof. Let us consider that p; := and r; = , S0 as given in the proof of Theorem 2.3,

1
(ithZ)SZ Hn,tz,sz

decreasing < % < q’“ for (i =1, ..., n).So, all the assumptions of Theorem 2.2 are true, then by using

(18) we get (23). O

The following two corollaries obtain form Theorem 5 and Theorem 6 respectively but we use three the Zipf-
Mandelbrot laws for different parameters:

Corollary 2.5. Assume ] c R be an interval, f : ] — R be a continuous convex function with u; > 0, n «
{1,2,3,...}, t1, t2 >0and s1, sz > 0 such that satisfying (19) and (20) and

(i+ t3)s3Hn,[3,s3 (i+ 1'3)531'1,”3,53
(i + tl)slHﬂ,tl,Sl ’ (i + tZ)SZHn,lz,Sz

e] (i=1,...,n).

(a) Ifﬁﬂiggi < 8:?;52 (i=1,...,n), then

If (i,n, t2, $2, t3,83,U) =

Z (l+ t3)s3Hn,t3’s3
(1+t3)53Hn t3,53 (i+t2)SZHny[2,sz

n

. Ui (i+1t3)” Huyty s,
<If (i, n, t1,51,t3,83,0) := ; i o) #
f( 1>°1,83, 3 ) ; (1+t3)S3Hn,f3,S3f((l+t1)slH"’t1'Sl o

(b) If Uil 5 ()2 (G _ 9, then

(i+1+t3)%3 = (i+t3)"3

Zn: (l+ t3)53Hn,t3,53
iz (1+t3) 3Hn t5,53 (i+t2)52Hn,t2,52

(i+ l’3)53Hn,t3,33
t3)S3Hn t3,53 (l + tl)slHn,t1,51 )

M:
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If f is continuous concave function, then the reverse inequalities hold in (24) and (25).

. 1 R 1 e 1 . . i
Proof. (a) Let p; := i 9 TR and r; := 5 s, here p;, g; and r; are decreasing
overi =1, ..., n. Now, we investigate the behaviour of é, take

ﬁ _ (l + tz)SZHn,[Z,SZ
qi (i+13)S3Hpus,

Tig1 (i+1+t2)Hnp,s,

and = )
di+1 (l +1+ t3)s3Hn,t3,s3

riew i (i+1+6)%Hn,s, i+ t2)%Hn,,s,

qdi+1  qi - (i+1+ t3)53Hn,[3,53 (i+ t3)53Hn,t3,s3 ’

rier i Hugs, [(i+ 1+6)%  (i+ tz)SZJ

qi+1 _a - Hn,t3’53 (i+1+f3)s3 (i+t3)s3

the R. H. S. is non-positive by using the assumption, which shows that c£1 is decreasing, therefore using
Theorem 5(a) we get (24).
(b) If we switch the role of é with g in the part (a) and using Theorem 5(b), we get (25). O

Corollary 2.6. Assume ] c R be an interval, f : ] — R be a continuous convex function with u; € R, n €

{1,2,3,...}, t1, t >0and s1, s> > 0, such that satisfying (19) and (20) and
(i+t1)°1 (i+t3)°3

(i+1+t1)51 = (i+1+t3)% (i =1 n)’

(i+t;)%2 (i+t3)°3 .

(i+1+2t2)52 < (i+1+3t3)53 (i=1,..,n),
hold with

(i + t3)s3Hn,[3,53 (l + t3)S3Hn,[3,53
(i + tl)slHn,tl’sl ’ (l + l’z)SZHn,tz,sz

e] (i=1,...,n),

then the following inequality holds

I; (i, n, t2, 82, t3,83,10) := - d
f( ) ; (1 + 1‘3,)53]{”,&,33 (1 + tZ)san,tz,sz

n U; f((i+t3)s3Hn,t3,33 )

n

. Ui (i+1t)”Hys, )
<Ir(i,n, t1, 1, t3, S3,1) := . : e P (26)
f( 1,51, 13,53 ) ; (l T t3)S3Hn,t3,s3f((l I tl)slHn,tl,sl

Proof. (a) Let us consider that p; : and r; : , S0 as given in the proof of Corollary

(i+t)%2 (i+t3)%3 .
i+ )7 S (b)) for (i = 1,...,n),
similarly we can prove that x = p/q is also decreasing <> (i(gilt)l)ln < (l.(ﬁfjg )353 for (i = 1, ..., n). Therefore,

all the assumptions of Theorem 2.4 are true, then by using (23) we get (26). O

_ 1 _ 1
T (i+t1)%1Hpyy 5, (i+t2)52Hp,t, 5,

2.5 for g; > O where (i = 1, 2, ....,n), we get y = r/q is decreasing <

Remark 2.7. We can give Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4, Corollary 2.5 and Corollary 2.6
foru := 1 as special case, some of them has been given in [14].

3 "Useful" information measure via Green functions

Consider the Green function G; defined on [¥1, 92] x [91, 92] by

(u=02)(v=9,) .
Gi(u,v) =1 _gz)—(ﬁl_ﬂ ) » isusys -
=, usv <

The function G; is convex in v, it is symmetric, so it is also convex in u. The function G; is continuous in v
and continuous in u.
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For any function f : [91,92] = R, f € C*([¢¥1, ¥2]), we can easily show by integrating by parts that the

following is valid
L)

)+ [ G vy,

CA!

2—uf(’[91)+ u-—91

9
f(u)_ﬁz—q% 9y — 91

where the function G, is defined as above in (27) ([31]).
Let [91,92] c Rand d = 2, 3, 4, 5. Recently in (2017), Mehmood et al. [32] (also see [33]) introduced some
new types of Green functions, G : [9¥1,92] x [91, 2] — R and give Lemma 1, which are defined as follows:

Y1-v), Y1<v<u,

Ga(u,v) = (1 =v) ' (28)
(’191—11), u<v<i,,
u-9), v1<v<u,

Gs(u,v) = ( 2) ! (29)
(V—’l?z), u<v<i,,
u-91), Y1<v<u,

Ga(u,v) = ( 1) ! (30)
(V—ﬁl), u<v<i,,
th-v), h<v<u,

Gs(uvy=| 27 G1)
(92 -u), u<v<s.

Lemma3.1. Letf : [91,92] — R such that f € CZ([191,192]) and G4 (d = 2,3,4,5) be Green functions as
defined in (28), (29), (30) and (31), then we have the following identities.

Y2
FQu) = f(n) + =00 (02) + [ Ga(u, V)" (vV)av, (2
Ca!
LA
Fu) = f02) + (u=02)f (@) + [ Ga(u,v)f" (), (3
Y1
L
F) = F(2) = (02 = 00)f 02) + (=) () + [ Gaw,v)f" (V)av, G4)
Y1
92
F) =F(92) + (92 = 90)f (02) = W2 =wf (92) + [ Gs(uwv)f" (V)av. (9)
91

The following theorem gives the equivalent statements between continuous convex functions and Green
functions via majorization inequality and "useful" Csiszar divergence.

Theorem 3.2. Assume ] c R be an interval, p;, r; (i = 1, ..., n) be real numbers and q;,u; (i = 1,...,n) be
positive real numbers such that satisfying

n n
Zuiri = Zuipi, (36)
i=1 i=1

with %, ;— e] (i=1,..,n). Ifﬁ is decreasing and G4 (d = 1,2, 3, 4, 5) be defined as in (27)-(31), then we
have following equivalent statements.

(i) For every continuous convex function f : [91, 92] — R, we have

Ir(p,q,u) - If (r,q,u) > 0. 37)
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(ii) Forallv € [91, 9], we have
Ig, (p,q,u) - I, (r,q,u) >0, d=1,2,3,4,5. (38)

Moreover, if we change the sign of inequality in both inequalities (37) and (38), then the above result still holds.

Proof. The scheme of proof is similar for each d = 1, 2, 3, 4, 5, therefore we will only give the proof for d = 5.
(i) = (ii): Let statement (i) holds. As the function Gs : [91, 9¥2] x[¥1, ¥2] - Ris convex and continuous,
so it will satisfy the condition (37), i.e.,

Is; (P, q,u) - I, (r,q,u) > 0.

(ii) = (i): Let f : [91,92] = R be a convex function such that f ¢ CZ([191, 9,]), and further, assume that the
statement (ii) holds. Then by Lemma 3.1, we have

L7
FO) = F(91) + (92— 9NF (91) — (92 = x))f (92) + [ Gs (xi, V)" (v)dv, (39)
91
Yz
FO) = F@00) + (92 =0)f (92) = (02 =y)f 02) + [ Gs(yuw)f” W)av. (40)
L2

From (39) and (40), we get

I (p,q,u) - I; (r, q,u) = zulqlf(q) zulqlf( )

:—ZuiQi( 2—*)f (192)+Z“1f11( 2—%)f/(192)

[Zn:ulqus( 4 ) Zu,qus(a v)]f”(v)dv. (41)

i=1

Using (36), we have

Ir(p,q,u) - I (r,q,u) = /ﬁz[i uiq;Gs (Z ) ZulquS ( ) )]f"(V)dV (42)

LAl

As f is convex function, therefore f”/(v) > 0 for all v € [¢1, 92 ]. Hence using (38) in (42), we get (37).

Note that the condition for the existence of second derivative of f is not necessary ([21, p.172]). As it is
possible to approximate uniformly a continuous convex function by convex polynomials, so we can directly
eliminate this differentiability condition. O

The following theorem gives equivalent statements between continuous convex functions and Green func-
tions via majorization inequality and "useful" Zipf-Mandelbrot law.

Theorem 3.3. Assumen e {1,2,3,...}, t1, t >0and s1,s; > 0 such that satisfying

Z Hn,tz,sz 1 125}
(1 + tz)sZ Hn,t1,31 i-1 (1 + tl)sl

, (43)

with
1 1
qi(i+t1)S Hne,s, qi(i +t2)52Hnyty s,

e] (i=1,...,n).

I ) L (i = 1,...,n) and Gq (d = 1,2,3, 4,5) be defined as in (27)-(31), then we have following

(i+1+t)%2 =
equivalent statements.
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(i) For every continuous convex function f : [91,92] — R, we have
If (i, n, t1,51,9,u) — I (i, n, t2,52,q,u) > 0. (44)
(ii) Forallv € [91,92], we have
Ig, (i,n, t1,51,q,u) - I, (i,n, t2,52,9,u) >0, d=1,2,3,4,5. (45)
Moreover, if we change the sign of inequality in both inequalities (44) and (45), then the above result still holds.

Proof. (i) = (ii): The proof is similar to the proof of Theorem 3.2.

(ii) = (i): Let f : [¢91,92] — R be a convex function such that f € C*([¢1, ¥2]), and further, assume that
the statement (ii) holds. Then by Lemma 3.1, we have (39) and (40).

From (39) and (40), we get

n n
It (i,n, t1,s1,q,u) = If (i, n, t2, 52, @, w) = Y wiqif (Ai) = Y, wiqif (i)

i-1 i=1
n n
==Y wiqi (92— ) f'(92) + Y uiqi (92 — i) f'(92)
i=1 i=1
U2 n n ”
+ f [ u;q;iGs (\i, v) = ) uiqiGs (i, v) | f7 (v)dv,
7 Lis1 i=1
where,
! s and Mi = !

Aj = - - .
" gi(i+ t)Si Hpyey s, qi(i+t2)2Hny, s,

Using (43), we have

U2 n n
If(i,n,h,sl,q,u)—If(i,n,tz,Sz,q,u):f[Zuiins (i V) = D uigiGs (i, v) |/ (v)dv.  (46)
9, i=1 i=1

As f is convex function, therefore f(v) > 0 for all v € [91, 92 ]. Hence using (45) in (46), we get (44). O

4 "Useful" information measure in integral form

The following theorem is a slight extension of Lemma 2 in [34] which is proved by Maligranda et al. (also see
[35]):

Theorem 4.1. Let w, x and y be positive functions on [a, b]. Suppose that f : [0, co) — R is a convex function
and that

v

/y(t)w(t) dt < fx(t)w(t) dt, velab] and

a

b

b
[ vweyae = [ x(ywe)a.

a

(i) Ifyis a decreasing function on [a, b], then

b b
[ @) wtyde < [ ) weya. (47)
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(ii) If x is an increasing function on [a, b], then

b b
[ r@)ywwyde < [ ) wea. (48)
a a

If f is strictly convex function and x + y (a.e.), then (47) and (48) are strict.

We consider "useful" Csiszar functional [11, 12] in integral form:

Definition 4.2 ("Useful" Csiszar divergence as integral form). Assume J := [«a, 3] c R be an interval, and let
f:] — R be a function with densities p : [a, b] - ], q : [a, b] — (0, c0) and associated with the utility density
u:[a,b] — J such that

r(x)
q(x)

then we denote "useful" Csiszar divergence in integral form as

€], VYxela,b],

T1(p.q,u) - [ uacor (40 ae. o)

Remark 4.3. One can easily seen that if we substitute u(t) = 1 forall t € [a, b], then (49) becomes

Ir(p,g,1) = I (p, q)fq(t)f( Eg)

Theorem 4.4. Assume ] := [0, o) c R be an interval, f : ] — R be a convex functionand p, q,r,u : [a, b] —
(0, o0) such that

fu(t)r(t)dts/u(t)p(t)dt, vela,b] (50)
and
b b
/u(t)r(t)dt:fu(t)p(t)dt, (1)
with
p(t) r(t)
q(t)’q(t)ej’ Vte[a,b].

@ If ;((?) is a decreasing function on [a, b], then

Ir(r.q,u) < Ir(p, g, u). (52)

(ii) If 2 2 s an increasing function on [a, b], then the inequality is reversed, i.e.
q(t)

Ie(r,q,u) > I(p, q, u). (53)

If f is strictly convex function and p(t) + r(t) (a.e.), then strict inequality holds in (52) and (53).
If f is concave function then the reverse inequalities hold in (52) and (53). If f is strictly concave and p(t) +
r(t) (a.e.), then the strict reverse inequalities hold in (52) and (53).

Proof. (i): We use Theorem 4.1 (i) with substitutions x(t) := 58 y(t) = ;((?), w(t) == u(t)q(t) >0V te[a,b]
’( ) s

and also using the fact that 0] is a decreasing function then we get (52).

(ii) We can prove with the similar substitutions as in the first part by using Theorem 4.1 (ii) that is the fact
that ’;E t; is an increasing function. O
Remark 4.5. We can give Theorem 4.4 for u(t) := 1 forall t € [a, b] as special case which has been given in

[36].
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5 Applications

Here, we present several special cases of the previous results as applications.
The first case corresponds to the entropy of a continuous probability density (see [18, p.506]):

Definition 5.1 (Shannon Entropy). Letp : [a, b] — (0, oo) be a positive probability density, then the Shannon
entropy of p(x) is defined by

b
H(p(x),u(x)) = = [ u(x)p(x)logp(x)dx, (54)

a
and is associated with the utility density u : [a, b] - R, whenever the integral exists.
Note that there is no problem with the definition in the case of a zero probability, since

lim xlog x = 0. (55)
x—0

Corollary 5.2. Assumep,q,r,u:[a,b] — (0, o) be functions such that satisfying (50) and (51) with

p() r(t)
q(t)’ q(t)

@ If % is a decreasing function and the base of 10g is greater than 1, then we have estimates for the Shannon
entropy of q(t) associated with utility density u(t)

eJ:=(0,00), Vte[a,b].

; r(t)
[ utacoyog (X% ) > rater. uco). (56

If the base of log is in between 0 and 1, then the reverse inequality holds in (56).
@) If 2 s an increasing function and the base of 1og is greater than 1, then we have estimates for the Shannon

q(t)
entropy of q(t) associated with utility density u(t)

a

b

H(a(0.u(0) < [ u(ta(oyog (25 ). 7

If the base of log is in between 0 and 1, then the reverse inequality holds in (57).

a

Proof. (i): Substitute f(x) := —logx and p(t) := 1, Vt € [a, b] in Theorem 4.4 (i) then we get (56).
(ii) We can prove by switching the role of p(t) with r(¢t) i.e., r(t) := 1V t € [a, b] and f(x) := —logx in
Theorem 4.4 (ii) then we get (57). O

The second case corresponds to the relative entropy or the Kullback-Leibler divergence between two proba-
bility densities associated with the utility density u(¢):

Definition 5.3 (Kullback-Leibler Divergence). Let p, q : [a, b] — (0, o0) be a positive probability densities,
then the Kullback-Leibler (K-L) divergence between p(t) and q(t) is defined by

b

Lp(0:a(0.u(0) = [ w60 (240 ) .

and is associated with the utility density u : [a, b] — R.

Corollary 5.4. Assumep,q,r,u:[a,b] — (0, oo) be functions such that satisfying (50) and (51) with

p() r(t)

OO (0,00), Vtel[a,b].



DE GRUYTER Majorization, "useful" Csiszar divergence and "useful" Zipf-Mandelbrot law —— 1369

) If ;((tt)) is a decreasing function and the base of log is greater than 1, then

7(—logx)(r9 q, u) 2 j(—logx)(p’ q, u)-

If the base of log is in between 0 and 1, then the reverse inequality holds in (58).

@) If ’% is an increasing function and the base of log is greater than 1, then

7(—logx) (r» q, u) < j(—logx) (p’ q, u)-
If the base of log is in between 0 and 1 then the reverse inequality holds in (59).

Proof. (i): Substitute f(x) := —log x in Theorem 4.4 (i) then we get (58).
(ii) We can prove with substitution f(x) := —log x in Theorem 4.4 (ii).

(58)

(59)

O

In Information Theory and Statistics, various divergences are applied in addition to the Kullback-Leibler

divergence.

Definition 5.5 (Variational Distance). Let p,q : [a,b] — (0, o) be a positive probability densities, then

variation distance between p(t) and q(t) is defined by

b
L (p(t), a(t), u(t)) = f u(t) |p(t) - q(t)lat,

and associated with the utility density u : [a, b] - R

Corollary 5.6. Assumep,q,r,u:[a,b] — (0, o) be functions such that satisfying (50) and (51) with

PO 1) 6
a0 a(0) = (0), Vielab].

) If ;((?) is a decreasing function, then

L (r(t), q(t), u(t)) < 1o (p(8), q(t), u(t)).

(i) If2 D is an increasing function, then the inequality is reversed, i.e.

a(t)
I, (r(6), (&), u(t)) > I (p(1), q(6), u(t)) .

(60)

(61)

Proof. (i): Since f(x) := |x - 1| be a convex function for x ¢ R*, therefore substitute f(x) := |x - 1| in Theorem

4.4 (i) then
b

[ u©a

b b
Ir(t) - q(b)] p(t) - q(b)]
a[ u(0a(0) e < [ u(0a(t) P Sty

() ; p(t)
(0—1‘ dt < afu(t)q(t)‘(t)—l‘dt,

since g(t) > 0 then we get (60).
(ii) We can prove with substitution f(x) := |x — 1| in Theorem 4.4 (ii).

O

Definition 5.7 (Hellinger Distance). Let p,q : [a,b] — (0, oo) be a positive probability densities, then the

Hellinger distance between p(t) and q(t) is defined by

b
I (p(0), a(0), u(0) = [u() [VpO - Va®] dt

and is associated with the utility density u : [a, b] - R
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Corollary 5.8. Assumep,q,r,u:[a,b] — (0, oo) be functions such that satisfying (50) and (51) with

p() @61:: (0,00), VYtel[a,b].

qa(t)” q(t)
@ If % is a decreasing function, then

Iy (r(t), q(t), u(t)) < Tn (p(t), q(t), u(t)). (62)
(ii) If2 Eg is an increasing function, then the inequality is reversed, i.e.

I (r(8), q(t), u()) > T (1), g(t), u(t)). (63)

Proof. (i): Since f(x) = (v/X - 1)2 is a convex function for x € R, therefore substituting f(x) = (v/x - 1)2

in Theorem 4.4 (i)
2 b 2
[u(t)q(t)[ r((tt)) 1] dt < fu(t)q(t)[\ pétg—l] dt,

since g(t) > O then we get (62).
(ii) We can prove with substitution f(x) := (v/X - 1)2 in Theorem 4.4 (ii). O

Definition 5.9 (Bhattacharyya Distance). Let p,q : [a, b] — (0, oo) be a positive probability densities, then
the Bhattacharyya distance between p(t) and q(t) is defined by

b
I (p(0), a(6), u(0) = [ u(OVp(Oa(®at,

and associated with the utility density u : [a, b] > R

Corollary 5.10. Assume p,q,r,u:[a, b] — (0, o) be functions such that satisfying (50) and (51) with

M @e]::(O,oo), Vtela,b].

a(t)” q(t)
@ If % is a decreasing function, then
-TB (p(t)’q(t)’u(t)) < -TB (r(t)’ q(t)’u(t)) (64)
(ii) IfE Eg is an increasing function, then the inequality is reversed, i.e.
I (p(t), q(t), u(t)) = Iz (r(t), q(t), u(t)). (65)
Proof. (i): Since f(x) := —/x be a convex function for x € R*, therefore substitute f(x) := —\/x in Theorem
4.4 (i) then
f () i p(t)
f u(t)q(t) (— 20 ) dt < f u(t)q(t) (— o0 ) dt,
a
we get (64).
(ii) We can prove with substitution f(x) := —/x in Theorem 4.4 (ii). O

Definition 5.11 (Jeffreys Distance). Let p,q : [a, b] — (0, o) be a positive probability densities, then the
Jeffreys distance between p(t) and q(t) is defined by

b

) - p(t)
I (p(0. a(0,u(0) = [ u(®) [p(0) - “mm{ajm

a

and associated with the utility density u : [a, b] - R
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Corollary 5.12. Assume p,q,r,u:[a, b] — (0, o) be functions such that satisfying (50) and (51) with

p(t) @61:2(0,00)’ Vtela,b].

q(t)” q(t)
G) If ;((?) is a decreasing function, then
I (r(6), q(6), u(t)) < Iy (p(t), a(t), u(t)) . (66)
(i) If2 Eg is an increasing function, then the inequality is reversed, i.e.
L (r(t), a(t), u(t)) = I (p(1), q(£), u(t)) . (67)
Proof. (i): Since f(x) := (x— 1) In x be a convex function for x € R*, therefore substituting f(x) := (x— 1) Inx
in Theorem 4.4 (i)
rt) r(t)
Joono (8 2)e(55)
p(t) _ p(t)
 Jrmo (35 )o20)
we get (66).
(ii) We can prove with substitution f(x) := (x — 1) In x in Theorem 4.4 (ii). O

Definition 5.13 (Triangular Discrimination). Let p,q : [a, b] — (0, oo) be a positive probability densities,
then the triangular discrimination between p(t) and q(t) is defined by

p() -a(O)

b
I (), a()u(t) = [ u(t) = o

and is associated with the utility density u : [a, b] > R

Corollary 5.14. Assumep,q,r,u:[a,b] — (0, oo) be functions such that satisfying (50) and (51) with

p(O) 1O 1 (0,00), Vite[a,b].

qa(t)” q(t)
) If ;((?) is a decreasing function, then
Ia (r(t), q(t), u(t)) < Ta (p(t), q(t), u(t)) . (68)
(i) If % is an increasing function, then the inequality is reversed, i.e.
Ia (r(6), q(t), u(t)) > Ta (p(1), q(t), u(t)). (69)

Proof. (i): Since f(x) := (X 1) be a convex function for x > 0, therefore substitute f(x) := (X 1) in Theorem
4.4 (i) then

b b
(r(t)/a() - 1)’ (p(0)/a() ~1)’
J 00 ey 4= [ H0a0 e

b b
((r(®) - a(®)/a(1))® ((p(0) —a(t)/a(t))*
J w090 St a4 = ] 090 G amyiam
we get (68).
(ii) We can prove with substitution f(x) := (’; +11> in Theorem 4.4 (ii). O

Remark 5.15. We can give all the results of section 5 for u(t) = 1 for all t € [a, b] as a special case, which has
been given in [36].
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