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1 Introduction and statement of results
Let k be an integer greater than 1 and let N be a positive integer. The space of cusp forms of weight 2k
for Γ0(N) is denoted by S2k(N). Throughout this paper let p = 1 or a prime number. For κ ∈ Z + 1

2 we
denote by M!

κ(Γ0(4p)) the space of weakly holomorphic modular forms of weight κ on Γ0(4p). As usual,
Mκ(Γ0(4p)) (resp. Sκ(Γ0(4p))) stands for the space ofweight κmodular forms (resp. cusp forms) onΓ0(4p).
Let Hκ(Γ0(4p)) be the space of weight κ harmonic weak Maass forms on Γ0(4p). LetM!

κ(p) (resp.H2−κ(p))
denote the subspace ofM!

κ(Γ0(4p)) (resp. H2−κ(Γ0(4p))), in which each form satis�es Kohnen’s plus space
condition, that is, its Fourier expansion is supported only on those n ∈ Z for which (−1)κ−

1
2 n ≡ ◻ (mod 4p).

Let κ = k+ 1
2 andMκ(p) (resp. Sκ(p)) denote the subspace ofMκ(Γ0(4p)) (resp. Sκ(Γ0(4p))), in which each

form satis�es Kohnen’s plus space condition.
Let ∆(τ) ∈ S12(1) be the Ramanujan’s Delta function. The famous Lehmer’s conjecture states that the

Fourier coe�cients of ∆(τ) never vanish. Concerning this conjecture, Ono [1] related the algebraicity of
Fourier coe�cients of weight −10 mock modular form whose shadow is ∆(τ) to the vanishing of Fourier
coe�cients of ∆(τ). Generalizing Ono’s results, Boylan [2] related the algebraicity of Fourier coe�cients of
weight 2−2kmockmodular forms to the vanishing of Fourier coe�cients of their shadowswhendim S2k(1) =
1. In this paper we will extend their works to the half-integral weight case. In the following we recall some
known facts.

Fact 1. By Shimura correspondence [3, Proposition 1] we have

dimSk+ 1
2
(1) = dim S2k(1),

which implies that

dimSk+ 1
2
(1) = 1 ⇐⇒ k = 6, 8, 9, 10, 11, 13 ⇐⇒ 1 − k = −5,−7,−8,−9,−10,−12.
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Now we assume that k ∈ {6, 8, 9, 10, 11, 13}. For κ > 2 there is an antilinear di�erential operator ξ2−κ ∶
H2−κ(Γ0(4p)) → Sκ(Γ0(4p)) de�ned by

ξ2−κ(f)(τ) ∶= 2iy2−κ ⋅ ∂f
∂τ̄

.

Fact 2. For k ∈ {6, 8, 9, 10, 11, 13}, it follows from [4, Theorem 1.1-(iii) and Lemma 4.2-(c)] that

ξ 3
2−k

∶ H 3
2−k

(1) → Sk+ 1
2
(1) is surjective.

For any κ ∈ Z+ 1
2 , the Duke-Jenkins basis [5] forM!

κ ∶=M!
κ(1) is constructed as follows. Let 2κ−1 = 12`κ + k′

with uniquely determined `κ ∈ Z and k′ ∈ {0, 4, 6, 8, 10, 14}. If Aκ denotes the maximal order of a non-zero
f ∈M!

κ at i∞, then by the Shimura correspondence [3] one has

Aκ = {2`κ − (−1)κ−1/2 if `κ is odd,
2`κ otherwise.

(1)

A basis forM!
κ then consists of functions of the form

fκ,m(τ) = q−m + ∑
n>Aκ

aκ(m, n)qn , (2)

where m ≥ −Aκ satis�es (−1)κ−3/2m ≡ 0, 1 (mod 4). Using (1) and (2) we deduce the following facts.

Fact 3. For κ = 3
2 − k with k ∈ {6, 8, 9, 10, 11, 13}, the maximal order Aκ of a non-zero f ∈ M!

κ at i∞ is
given by Aκ = −4. Thus for each m ≥ 4 satisfying (−1)km ≡ 0, 1 (mod 4), there exist unique modular forms
f 3

2−k,m
(τ) ∈M!

3
2−k

with Fourier development

f 3
2−k,m

(τ) = q−m + ∑
n≥−3

a 3
2−k

(m, n)qn ,

which form a basis for the spaceM!
3
2−k

.

Fact 4. For κ = k + 1
2 with k ∈ {6, 8, 9, 10, 11, 13}, the space Sκ is spanned by

fk ∶= fκ,−α

where α is given by

α = αk = Aκ = Ak+ 1
2
=
⎧⎪⎪⎨⎪⎪⎩

1, k even,
3, k odd,

and fk has the form qα + O(q4).

Fact 5. Let κ = k+ 1
2 and f(z) ∈ Hκ(Γ0(4p))with Fourier expansion f(τ) = ∑n∈Z c(y; n)e2πinx where τ = x+ iy.

For each prime l with gcd(l, 4p) = 1, the l2-th Hecke operator is de�ned by

f ∣κT(l2)(τ) = ∑
n∈Z

(c(y/l2; nl2) + ((−1)kn
l

) lk−1c(y; n) + l2k−1c(l2y; n/l2))) e2πinx .

Then for eachM ∈ H2−κ(p), we obtain from [6, (2.6)] or [7, (7.2)] that for κ > 2,

ξ2−κ(M)∣κT(l2) = l2κ−2
ξ2−κ(M∣2−κT(l2)).

As a corollary of Fact 5, one has that if f(z) = ∑ n≥1
(−1)k n≡0,1 (4)

af (n)qn ∈ Sk+ 1
2
, then

f ∣k+ 1
2
T(l2) = ∑

n≥1
(−1)k n≡0,1 (4)

(af (l2n) + ((−1)kn
l

) lk−1af (n) + l2k−1af (n/l2)) qn ∈ Sk+ 1
2
.
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(or see [3, Theorem 1-(i)].)
Let (V , Q) be a non-degenerate rational quadratic space of signature (b+, b−) and L an even lattice with

dual L′. Denote the standardbasis elements of thegroupalgebraC[L′/L]by eγ forγ ∈ L′/L. LetMp2(Z)denote
the integral metaplectic group, which consists of pairs (γ, φ), where γ = ( a b

c d ) ∈ SL2(Z) and φ ∶ H → C is a
holomorphic function with φ(τ)2 = cτ + d. It is well known that Mp2(Z) is generated by S = (( 0 −1

1 0 ) ,
√
τ)

and T = (( 1 1
0 1 ) , 1). Then there is a unitary representation ρL of the groupMp2(Z) onC[L′/L], the so-called

Weil representation, which is de�ned by

ρL(T)(eγ) ∶= e(Q(γ))eγ ,

ρL(S)(eγ) ∶=
e((b− − b+)/8)√

∣L′/L∣
∑

δ∈L′/L
e(−(γ, δ))eδ ,

where e(z) ∶= e2πiz and (X, Y) ∶= Q(X+Y)−Q(X)−Q(Y) is the associated bilinear form. One has the relations

S2 = (ST)3 = Z (Z = (( −1 0
0 −1 ) , i))

from which we note that
ρL(Z)eγ = ib

−
−b+

e−γ . (3)

We write < ⋅, ⋅ > for the standard scalar product on C[L′/L], i.e.

< ∑
γ∈L′/L

λγeγ , ∑
γ∈L′/L

µγeγ >= ∑
γ∈L′/L

λγµγ .

For γ, δ ∈ L′/L and (M, φ) ∈ Mp2(Z) the coe�cient ργδ(M, φ) of the representation ρL is de�ned by

ργδ(M, φ) =< ρL(M, φ)eδ , eγ > .

Following [9], for an integer r we denote by Hr+1/2,ρL (resp.M
!
r+1/2,ρL

), the space ofC[L′/L]-valued harmonic
weak Maass forms (resp. weakly holomorphic modular forms) of weight r + 1/2 and type ρL.

Let Lr be the lattice 2pZ of signature (1, 0) (resp. (0, 1)) when r is even (resp. odd) equipped with the
quadratic form Qr(x) = (−1)rx2/4p. Then its dual lattice L′r is equal to Z. For a vector valued modular form
F = ∑γ Fγeγ , we de�ne a map Φ by

Φ(F)(τ) ∶= ∑
γ

Fγ(4pτ). (4)

It then follows from [8, Theorem 1] that the map Φ de�nes an isomorphism from Hr+1/2,ρLr
toHr+1/2(p) since

ρ̄Lr = ρLr+1 .
For a C[L′/L]-valued function f and (M, φ) ∈ Mp2(Z) we de�ne the Petersson slash operator by

(f ∣Lr+1/2(M, φ))(τ) = φ(τ)−2r−1
ρL(M, φ)−1f(Mτ).

Let L ∶= Lk and Q ∶= Qk. Following [9] we de�ne the vector valued cuspidal Poincaré series PLβ,n(τ) as follows:
for each β ∈ Z/2pZ and n ∈ Z + Q(β) with n > 0,

PLβ,n(τ) ∶=
1
2 ∑
(M,φ)∈Γ̃∞/Mp2(Z)

eβ(nτ)∣κ(M, φ).

Then we know from [9] that PLβ,n(τ) belongs to the space Sκ,ρL . Let Dk denote the set of all integers D such
that (−1)kD > 0 and D is congruent to a square modulo 4p.

Theorem 1.1 ([4, Theorem 1.1]). For an integer k > 2 we let κ = k + 1
2 and L ∶= Lk. For each D ∈ Dk, we de�ne

P+D ∶= Φ(PLβ, ∣D∣4p
),

where β is an integer such that D ≡ β2 (mod 4p). Then the following assertions are true.
(i) P+D ∈ Sκ(p) and the de�ntion of P+D does not depend on the choice of β.
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(ii) For each f = ∑n≥1 af (n)qn ∈ Sκ(p), we have

(f , ck,DP+D) = af (∣D∣)

where (⋅, ⋅) denotes the Petersson inner product and

ck,D =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(4π∣D∣)κ−1

Γ (κ−1) ⋅ s(D)3 , if p = 1
(4π∣D∣)κ−1

Γ (κ−1) ⋅ s(D)4 , if p = 2
(4π∣D∣)κ−1

Γ (κ−1) ⋅ s(D)6 , if p > 2

with s(D) =
⎧⎪⎪⎨⎪⎪⎩

1, if p∣D,
2, otherwise.

(iii) The set {P+D ∣ D ∈ Dk} spans the space Sκ(p). Moreover, if we let t ∶= dimSκ(p) and {f1, f2, . . . , ft} be a
basis for Sκ(p) satisfying fi = q∣Di ∣ + O(q∣Di ∣+1) for some Di ∈ Dk (i = 1, . . . , t) and 0 < ∣D1∣ < ∣D2∣ < ⋯ < ∣Dt ∣,
then the set

{P+D1 , P
+

D2 , . . . , P
+

Dt}

forms a basis for Sκ(p).
(iv) Let I be a nonempty �nite subset of N. Then the following two conditions are equivalent.

(a)∑i∈I αiP+Di
(τ) ≡ 0 for some αi ∈ C and Di ∈ Dk.

(b) There exists g ∈M!
2−κ(p) with the principal part∑i∈I ᾱi ∣Di ∣1−κq−∣Di ∣.

Remark 1.2. Let p = 1 and take

Dk =
⎧⎪⎪⎨⎪⎪⎩

1, if k is even
−3, if k is odd.

Then in Theorem 1.1 one can choose β = 1 and

P+Dk ∶= Φ(P
Lk
1, ∣Dk ∣4p

).

We let Γ̃∞ ∶=< T >. We de�ne for s ∈ C and y ∈ R − {0}:

Ms(y) = y−(2−κ)/2M−(2−κ)/2,s−1/2(y) (y > 0),

Ws(y) = ∣y∣−(2−κ)/2W 2−κ
2 sgn(y),s−1/2(∣y∣)

where Mν ,µ(z) and Wν ,µ(z) denote the usual Whittaker functions. Now we take κ = k + 1/2 > 2, L ∶= L1−k,
and Q ∶= Q1−k. For each β ∈ Z/2pZ andm ∈ Z+Q(β)withm < 0, modifying the Poincaré series in [9, (1.35)]
we de�ne the vector valued Maass Poincaré series FLβ,m of index (β,m) by

FLβ,m(τ , s) ∶=
1

2Γ(2s) ∑
(M,φ)∈Γ̃∞/Mp2(Z)

[Ms(4π∣m∣y)eβ(mx)]∣L2−κ(M, φ)

where τ = x + iy ∈ H and s = σ + it ∈ Cwith σ > 1. Indeed, sinceMs(4π∣m∣y)eβ(mx) is invariant under slash
operator ∣2−κT, the Maass Poincaré series is well de�ned. This series has desirable properties as follows. As
in Section 1.3 in [9] it converges normally for τ ∈ H and s = σ+ it ∈ Cwith σ > 1 and hence de�nes a Mp2(Z)-
invariant function onH under the slash operator ∣2−κ. Moreover, FLβ,m(τ , s) is an eigenfunction of∆2−κ with
an eigenvalue s(1− s) + κ(κ−2)/4. Since eβ(τ)∣2−κZ = e−β by (3), the invariance of FLβ,m under the action of
Z implies FLβ,m = FL

−β,m.
Let κ = k + 1

2 and L = L1−k with k an integer > 2. For each β ∈ Z/2pZ and m ∈ Z + Q(β) with m < 0, we
obtain from [4, Corollary 1.5] that FLβ,m (τ , κ

2 ) belongs to the space H2−κ,ρL .
Let

Q = Q(k; z) ∶= Φ(FL1−k
1,−α

4
(τ , κ

2
)) = Q+ + Q−
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where Q+ = Q+(k; z) is the holomorphic part of Q(k; z) and Q− = Q−(k; z) is the nonholomorphic part of
Q(k; z). Let Q(k; z) have the Fourier development as follows:

Q(k; z) = 2q−α + c+Q(0) + ∑
n≥1

(−1)k−1n≡0,1 (4)

c+Q(n)q
n + ∑

n≥1
(−1)k n≡0,1 (4)

c−Q(n)Γ(κ − 1, 4πny)q−n .

Now we are ready to state our main results.

Theorem 1.3. With the same notations as above the following assertions are true.
(1) Let

fk ∣k+ 1
2
T(l2) = λk(l2)fk

for some λk(l2) ∈ C. Then one has

λk(l2) = afk(l
2
α) + ((−1)kα

l
) lk−1.

(2) We have
Q∣ 3

2−k
T(l2) − l1−2k

λk(l2)Q = Q+∣ 3
2−k

T(l2) − l1−2k
λk(l2)Q+ ∈M!

3
2−k

.

Theorem 1.4. For an odd prime l, the following assertions are true.
(1) We have

c+Q(l
2
βk) ∈

Z[c+Q(βk)]
l2k−1 ⊆ Q(c+Q(βk)).

(2) Assume that c+Q(βk) is irrational. Then

afk(l
2
αk) = lk−1 (((−1)k−1βk

l
) − ((−1)kαk

l
)) if and only if c+Q(l

2
βk) ∈ Q.

(3) Assume that (−βk
l ) = (αk

l ) and c+Q(βk) is irrational. Then

afk(l
2
αk) = 0 if and only if c+Q(l

2
βk) ∈ Q.

Remark 1.5. For simplicity, we dealt with the case p = 1 in our main results. But we remark that they can be
extended to higher level cases whenever dimSk+ 1

2
(p) = 1.

2 Proof of Theorem 1.3
First we are in need of two lemmas and one more fact.

Lemma 2.1 ([4, Lemma 4.1]). Let κ = k + 1
2 for an integer k > 2 and let D ∈ Dk. Then the following assertions

are true.
(a) For each G ∈ H2−κ,ρL1−k

, we have

(4p)κ−1
Φ ○ ξ2−κ(G) = ξ2−κ ○ Φ(G).

(b) For each f = ∑n≥1 cf (n)qn ∈ Sκ(p),

(f , (4p)κ−1
Φξ2−κ(FL1−k

β,− ∣D∣4p

(τ , κ
2
))) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3
s(D) ⋅ cf (∣D∣), if p = 1

4
s(D) ⋅ cf (∣D∣), if p = 2

6
s(D) ⋅ cf (∣D∣), if p > 2.
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Lemma 2.2 ([4, Lemma 4.2]). With the same notations as in Lemma 2.1, we have the following assertions.
(a) For a vector valued function h = hβ(τ)eβ , one has

ξ2−κ(h∣L1−k
2−κ(M, φ)) = (ξ2−κ(h))∣Lkκ (M, φ).

(b) ξ2−κ(Γ(κ − 1, 4πny)) = −(4πn)κ−1e−4πny .
(c) Let m = − ∣D∣4p . Then one has

ξ2−κ(FL1−k
β,m(τ , κ

2
)) = (4π∣m∣)κ−1

Γ(κ − 1)
PLkβ,∣m∣(τ).

Fact 6. Let p = 1 and κ = k + 1
2 .

(1) It follows from Lemmas 2.1 and 2.2 that

Φ(ξ2−κ (FL1−k

1,− ∣Dk ∣4

(τ , κ
2
))) = Φ((π∣Dk ∣)κ−1

Γ(κ − 1)
PLk

1, ∣Dk ∣4

(τ)) = (π∣Dk ∣)κ−1

Γ(κ − 1)
P+Dk(τ) ∈ Sk+ 1

2
.

(2) We obtain from Theorem 1.1-(ii) that

(fk , ck,DkP
+

Dk) = afk(∣Dk ∣) = 1

where ck,Dk =
(4π∣Dk ∣)

κ−1

3Γ (κ−1) ∈ R.

For k ∈ {6, 8, 9, 10, 11, 13}, it follows from Fact 3, Fact 4, and Theorem 1.1-(iii), (iv) that P+Dk
does not vanish

and
P+Dk = ck fk

for some ck ∈ C×. Thus one has from Fact 6 (2) that

1 = (fk , ck,Dk ck fk) = ckck,Dk ∣∣fk ∣∣
2,

which implies
ck = c−1

k,Dk ∣∣fk ∣∣
−2.

We compute that

ξ2−κ(Q(k; z)) = ξ2−κΦ(FL1−k
1,−α

4
(τ , κ

2
))

= 4κ−1
Φξ2−κ (FL1−k

1,−α
4
(τ , κ

2
)) by Lemma 2.1-(a)

= (4π∣Dk ∣)κ−1

Γ(κ − 1)
P+Dk(τ) by Fact 6 (1)

= (4π∣Dk ∣)κ−1

Γ(κ − 1)
c−1
k,Dk ∣∣fk ∣∣

−2fk

= 3∣∣fk ∣∣−2fk . (5)

Since

fk ∣k+ 1
2
T(l2) = ∑

n≥1
(−1)k n≡0,1 (4)

(afk(l
2n) + ((−1)kn

l
) lk−1afk(n) + l2k−1afk(n/l

2)) qn

= λk(l2)fk ,

one has

λk(l2) = afk(l
2
α) + ((−1)kα

l
) lk−1,



On the algebraicity of coe�cients of half-integral weight mock modular forms | 1341

which proves the �rst assertion. Hence for all n ≥ 1 with (−1)kn ≡ 0, 1 (mod 4)

(afk(l
2
α) + ((−1)kα

l
) lk−1) afk(n) = afk(l

2n) + ((−1)kn
l

) lk−1afk(n) + l2k−1afk(n/l
2). (6)

It follows from (5) that

3∣∣fk ∣∣−2fk(z) = ξ2−κ(Q(k; z)) = − ∑
n≥α

(−1)k n≡0,1 (4)

(4πn)κ−1c−Q(n)q
n ,

which implies that
c−Q(n) = −3∣∣fk ∣∣−2 ⋅ (4πn)1−κ ⋅ afk(n). (7)

Now we put dk ∶= −3∣∣fk ∣∣−2 ⋅ (4π)1−κ. We obtain that for all positive integers n with (−1)kn ≡ 0, 1 (mod 4),

n1−κ (c−Q(nl
2)(nl2)κ−1 + l2k−1c−Q(n/l

2)(n/l2)κ−1 + ((−1)kn
l

) lk−1c−Q(n)n
κ−1)

=n1−κdk (afk(nl
2) + afk(n/l

2)l2k−1 + ((−1)kn
l

) lk−1afk(n)) by (7)

=n1−κdk (afk(l
2
α) + ((−1)kα

l
) lk−1) afk(n) by (6)

=λk(l2)c−Q(n).

Thus we have

Q−∣T 3
2−k

(l2) = ∑
n∈Z

(c−Q(nl
2) + ((−1)kn

l
) l−kc−Q(n) + l1−2kc−Q(n/l

2))Γ(κ − 1, 4πny)q−n

= l1−2k∑
n∈Z

(c−Q(nl
2)l2k−1 + ((−1)kn

l
) lk−1c−Q(n) + c−Q(n/l

2))Γ(κ − 1, 4πny)q−n

= l1−2k∑
n∈Z

dkn1−κ (c−Q(nl
2)(nl2)κ−1d−1

k + ((−1)kn
l

) lk−1nκ−1c−Q(n)d
−1
k + nκ−1c−Q(n/l

2)d−1
k )

Γ(κ − 1, 4πny)q−n

= l1−2k∑
n∈Z

dkn1−κ (afk(nl
2) + ((−1)kn

l
) lk−1afk(n) + l2k−1afk(n/l

2))Γ(κ − 1, 4πny)q−n

= l1−2k∑
n∈Z

λk(l2)c−Q(n)Γ(κ − 1, 4πny)q−n since fk ∣Tk+ 1
2
(l2) = λk(l2)fk

= l1−2k
λk(l2)Q−. (8)

We obtain that

l2κ−2
ξ2−κ(Q∣2−κT(l2)) = (ξ2−κ(Q))∣κT(l2) by Fact 5

= 3∣∣fk ∣∣−2fk ∣κT(l2) by (5)

= 3∣∣fk ∣∣−2
λk(l2)fk

= ξ2−κ(λk(l2)Q) since λk(l2) ∈ R .

Indeed, we observe that

λk(l2) = afk(l
2
α) + ((−1)kα

l
) lk−1 ∈ Z.

Thus we have
l2κ−2Q∣2−κT(l2) − λk(l2)Q ∈M!

2−κ,

which combined with (8) yields the second assertion.
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3 Proof of Theorem 1.4
We observe that

Q∣ 3
2−k

T(l2) − l1−2k
λk(l2)Q = Q+∣ 3

2−k
T(l2) − l1−2k

λk(l2)Q+

=
⎛
⎜⎜
⎝

2q−α + c+Q(0) + ∑
n≥1

(−1)k−1n≡0,1 (4)

c+Q(n)q
n
⎞
⎟⎟
⎠
∣ 3

2−k
T(l2)

− l1−2k
λk(l2)

⎛
⎜⎜
⎝

2q−α + c+Q(0) + ∑
n≥1

(−1)k−1n≡0,1 (4)

c+Q(n)q
n
⎞
⎟⎟
⎠

= 2l1−2kq−αl
2
+ 2(((−1)kα

l
) l−k − l1−2k

λk(l2)) q−α + c+Q(0)(1 + l1−2k − l1−2k
λk(l2))

+ ∑
n≥1

(−1)k−1n≡0,1 (4)

(c+Q(l
2n) + ((−1)k−1n

l
) l−kc+Q(n) + l1−2kc+Q(n/l

2) − l1−2k
λk(l2)c+Q(n)) q

n

= 2l1−2k f 3
2−k,αl

2 since −α ≥ −3.

So we �nd that
2f 3

2−k,αl
2 = l2k−1Q+∣ 3

2−k
T(l2) − λk(l2)Q+

has integral coe�cients and for all positive integers n with (−1)k−1n ≡ 0, 1 (mod 4),

l2k−1c+Q(l
2n) + ((−1)k−1n

l
) lk−1c+Q(n) + c+Q(n/l

2) − λk(l2)c+Q(n)

= c+Q(n)((
(−1)k−1n

l
) lk−1 − ((−1)kα

l
) lk−1 − afk(l

2
α)) + l2k−1c+Q(l

2n) + c+Q(n/l
2) ∈ 2Z.

Then for n = βk with

βk =
⎧⎪⎪⎨⎪⎪⎩

3, k even,
1, k odd,

we obtain that

c+Q(βk)(((
(−1)k−1βk

l
) − ((−1)kα

l
)) lk−1 − afk(l

2
α)) + l2k−1c+Q(l

2
βk) ∈ 2Z.

As a consequence of the above identity we get the assertions.
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