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1 Introduction and statement of results

Let k be an integer greater than 1 and let N be a positive integer. The space of cusp forms of weight 2k
for I'v(N) is denoted by S,x(N). Throughout this paper let p = 1 or a prime number. For x € Z + % we
denote by M., (I'h(4p)) the space of weakly holomorphic modular forms of weight « on I'h(4p). As usual,
M,.(Io(4p)) (resp. Sx(Io(4p))) stands for the space of weight x modular forms (resp. cusp forms) on I'h(4p).
Let H,(Io(4p)) be the space of weight x harmonic weak Maass forms on I'y(4p). Let M, (p) (resp. Hy_(p))
denote the subspace of M. (I0(4p)) (resp. H_(Io(4p))), in which each form satisfies Kohnen’s plus space
condition, that is, its Fourier expansion is supported only on those n € Z for which (—1)”‘*% n =0 (mod 4p).
Let s = k+ 1 and M (p) (resp. Sk (p)) denote the subspace of M. (Io(4p)) (resp. Sx(Ib(4p))), in which each
form satisfies Kohnen’s plus space condition.

Let A(7) € S12(1) be the Ramanujan’s Delta function. The famous Lehmer’s conjecture states that the
Fourier coefficients of A(7) never vanish. Concerning this conjecture, Ono [1] related the algebraicity of
Fourier coefficients of weight —10 mock modular form whose shadow is A(7) to the vanishing of Fourier
coefficients of A(7). Generalizing Ono’s results, Boylan [2] related the algebraicity of Fourier coefficients of
weight 2 -2k mock modular forms to the vanishing of Fourier coefficients of their shadows when dim Sy, (1) =
1. In this paper we will extend their works to the half-integral weight case. In the following we recall some
known facts.

Fact 1. By Shimura correspondence [3, Proposition 1] we have
dimSk+% (1) =dim S5 (1),
which implies that

dimS;,:(1)=1 < k=6,8,9,10,11,13 «<— 1-k=-5,-7,-8,-9,-10,-12.
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Now we assume that k € {6,8,9,10,11,13}. For x > 2 there is an antilinear differential operator &, :
Ha_(Io(4p)) — Sk(Io(4p)) defined by

. —-K a
Gn (D)= 20 3L
=
Fact2. Forke{6,8,9,10, 11, 13}, it follows from [4, Theorem 1.1-(iii) and Lemma 4.2-(c)] that

&yt Hs 1 (1) > Si,1(1) is surjective.
2 2 2

Forany s € Z + %, the Duke-Jenkins basis [5] for ML@ = Mi@ (1) is constructed as follows. Let 2k — 1 = 124,; + k'
with uniquely determined ¢,; € Z and k" € {0, 4, 6, 8,10, 14}. If A,. denotes the maximal order of a non-zero
f e M., at ioo, then by the Shimura correspondence [3] one has

_(_1\~-1/2 :
A, - 24— (-1) if ¢, is ?dd, W
24, otherwise.
A basis for M, then consists of functions of the form
fem(r)=q"+ Y ax(m,n)q", @

n>A,
where m > — A, satisfies (—1)"“3/ m=0,1 (mod 4). Using (1) and (2) we deduce the following facts.
Fact3. For x = % - k with k € {6,8,9,10,11, 13}, the maximal order A,. of a non-zero f « Mi,i at ico is

given by A, = —4. Thus for each m > 4 satisfying (—1)" m = 0,1 (mod 4), there exist unique modular forms
f3 km (1) e M!;,k with Fourier development

fram™=a"+ Y as (mn)q",

n>-3

which form a basis for the space M!;,k-
2

Fact 4. Fork =k + % with k € {6,8,9,10, 11, 13}, the space S, is spanned by
fr= fk,—a

where « is given by
1, keven,

a=ar=Ar=4A;, 1=
S {3, k odd,

and f; has the form q* + 0(q").

Fact5. Letr = k+3 andf(z) € H.(Io(4p)) with Fourier expansion f(7) = ez ¢(y; n)e*™ ™ where r = x +iy.
For each prime [ with gcd (1, 4p) = 1, the I>-th Hecke operator is defined by

fIeT(P)(r) =3 (c(y/lz; nl*) + ((‘11)](”) e(y;n) + P te(Py; n/lz))) eminx

nez

Then for each M € H,_,.(p), we obtain from [6, (2.6)] or [7, (7.2)] that for x > 2,
G- (M) T(?) = "2 Gaee(M2-n T(I)).

As a corollary of Fact 5, one has thatif f(z) =Y,  w as(n)q" €Sy, 1, then
) 2

(-1)kn=0,1

feaTB) = 3 a2 (-1)*n jt 2k-1 2\ n
! = (I°n) + — P ap(n) + 17 ap(n/l”) | q eS,H%.

nx1
(-1)kn=0,1 (4)
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(or see [3, Theorem 1-(i)].)

Let (V, Q) be a non-degenerate rational quadratic space of signature (b*, b™) and L an even lattice with
dual L'. Denote the standard basis elements of the group algebra C[L’ /L] by ¢, fory € L’ /L. Let Mp, (Z) denote
the integral metaplectic group, which consists of pairs (v, ¢), where ~ = ( a 3 ) €SLy(Z)and ¢: $H —» Cisa
holomorphic function with ¢(7)* = c7 + d. It is well known that Mp, (Z) is generated by S = (( 2 &' ), V/7)
and T = (( 31),1). Then there is a unitary representation p; of the group Mp,(Z) on C[L’/L], the so-called

Weil representation, which is defined by
pL(T)(ey) = e(Q(7))ey,

_e((b”-b")/8) ~
pL(S)(ey) = ~ oo &%:ﬂ e(—(7,96))es,

where e(z) := e*™#and (X, Y) := Q(X+Y)-Q(X)-Q(Y) is the associated bilinear form. One has the relations
S*=(ST’ =2 (Z=((3 %),0)
from which we note that )
pr(Z)ey =i e, 3
We write < -, - > for the standard scalar product on C[L’/L], i.e.

< DT My, D paty>= Y ATy

~yeL'/L el /L ~yeL//L

For+,5 e L'/L and (M, ¢) € Mp,(Z) the coefficient p.,5(M, ¢) of the representation p; is defined by

p’y&(M’ ¢) =< PL(M’ ¢))e§; ey >

Following [9], for an integer r we denote by H,.,, ,,, (resp. M, 2, pL), the space of C[L’/L]-valued harmonic
weak Maass forms (resp. weakly holomorphic modular forms) of weight r + 1/2 and type pr.

Let L, be the lattice 2pZ of signature (1, 0) (resp. (0, 1)) when r is even (resp. odd) equipped with the
quadratic form Q,(x) = (-1)"x?/4p. Then its dual lattice L; is equal to Z. For a vector valued modular form
F =%, Fyey, we define a map ¢ by

&(F)(7) := ZFW(ltpT). (4)
Bt

It then follows from [8, Theorem 1] that the map & defines an isomorphism from H,, 1/, ,,, to H,,1/,(p) since

er = er+1 *
For a C[L’/L]-valued function f and (M, ¢) € Mp,(Z) we define the Petersson slash operator by

(Flrer2 (M, ) (1) = 6(7) " oL (M, ¢) " f(Mr).

Let L := L and Q := Q. Following [9] we define the vector valued cuspidal Poincaré series ngn (1) as follows:
foreach 3 e Z/2pZ and n € Z + Q(B) withn > 0,
1
Pon(r)=5 3 es(nm)le(M, 9).

(M,¢)el\Mp, (Z)

Then we know from [9] that Pf;,n(r) belongs to the space Sk, ,,. Let ©; denote the set of all integers D such
that (-1)*D > 0 and D is congruent to a square modulo 4p.

Theorem 1.1 ([4, Theorem 1.1]). For an integer k > 2 we let = k + % and L := Ly. For each D € Dy, we define

L
PB = @(Pﬂ H)’
"7p

where 3 is an integer such that D = 3* (mod 4p). Then the following assertions are true.
(i) P}, € Si.(p) and the defintion of P}, does not depend on the choice of 3.
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(ii) Foreach f = ¥ .51 ap(n)q" € Sx(p), we have

(f, cxpPp) = ar(D)
where (-, -) denotes the Petersson inner product and

(4npp™"t  s(D)

I(r-1) " 3 ° ifp=1
Ck,p = (l}:r(E'_)l) . ﬁ’ lfp =2

n[DD Tt s(D) .

zzr(n&) e, fp>2

1, ifp|D,
with s(D) = i
2, otherwise.

(iii) The set {P}, | D € ©,} spans the space S, (p). Moreover, if we let t := dim S, (p) and {f1, f>,...,ft} bea
basis for S, (p) satisfying f; = ¢'”!! + 0(q®*') for some D; e Dy (i =1,...,t) and 0 < |D1| < |D;| < - < |D¢l,
then the set

{Pp,,Pp,,..., P}

forms a basis for Sy (p).

(iv) Let I be a nonempty finite subset of N. Then the following two conditions are equivalent.
(@) Yy iPp (1) = 0 for some o; € C and D; € Dy.
(b) There exists g ¢ Mb_,.(p) with the principal part ¥;.; &|D;|* " q~'"'l.

Remark 1.2. Let p = 1 and take

1, if k is even
Dy =
-3, ifkisodd.

Then in Theorem 1.1 one can choose 3 = 1 and

L
Pp, = <15(P1"M ).
Sk

Welet s :=< T >. We define fors e Cand y ¢ R - {0}:

M;s(y) = y7(27m)/2M—(2—n)/2,s—1/2(y) (y>0),
W (y) = |)/|_(2_5)/2 WZ’T’“sgn(y),s—l/Z(lﬂ)

where M, ,,(z) and W, ,(z) denote the usual Whittaker functions. Now we take x = k+ 1/2 > 2, L := Ly 4,
and Q := Q;_. Foreach 3 € Z/2pZ and m € Z + Q(B) with m < 0, modifying the Poincaré series in [9, (1.35)]
we define the vector valued Maass Poincaré series F fa,m of index (3, m) by

1
Fom(r8) = 5p5g L [Ms(amimly)es(mo)lz- (M, ¢)
(M, p)el'oc\Mp, (Z)

where 7 = x +iy e and s = o + it € C with o > 1. Indeed, since M;(4n|m|y)eg(mx) is invariant under slash
operator |, T, the Maass Poincaré series is well defined. This series has desirable properties as follows. As
in Section 1.3 in [9] it converges normally for 7 ¢ Hand s = o + it € C with o > 1 and hence defines a Mp, (Z)-
invariant function on H under the slash operator |,_,. Moreover, ngm (7, s) is an eigenfunction of A,_, with
an eigenvalue s(1 - s) + x(x — 2) /4. Since eg(7)|2-xZ = ¢e_g by (3), the invariance of Fé,m under the action of
Z implies Fé’m = Ffﬁ,m.

Letk = k + % and L = L,_; with k an integer > 2. For each 8 € Z/2pZ and m € Z + Q(B) with m < 0, we
obtain from [4, Corollary 1.5] that F ém (7, %) belongs to the space Hy_p, -

Let

Q=Q(kz) = @(Fij;k% (T, g)) L0t 40"
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where Q* = Q" (k; z) is the holomorphic part of Q(k;z) and Q- = Q (k; z) is the nonholomorphic part of
Q(k; z). Let Q(k; z) have the Fourier development as follows:

Qlk;z) =2 " +co(0)+ > cp(mg"+ Y co(n)I'(k-1,4mny)q "

n>1 nx>1
(-1)k=1n=0,1 (4) (-1)kn=0,1 (4)

Now we are ready to state our main results.

Theorem 1.3. With the same notations as above the following assertions are true.
(1) Let
filies s T(1*) = M(P)fe

for some A\ (I?) € C. Then one has
_1\k
M(B) = a, (Pa) + (“l)a) k1,

(2) We have
Qi T =P ()Q = Qi T() = M) QT My

Theorem 1.4. For an odd prime 1, the following assertions are true.

(1) We have

b0 « L2 ¢ ey,

(2) Assume that c5( 5y ) is irrational. Then
Q

ag (e =1 (S22 - () prandonyres o <

l l
(3) Assume that (‘Tﬁk) = () and c(By) is irrational. Then
ag, (P o) = 0 if and only if ¢ (I i) € Q.

Remark 1.5. For simplicity, we dealt with the case p = 1 in our main results. But we remark that they can be
extended to higher level cases whenever dim S, 41 (p)=1.

2 Proof of Theorem 1.3

First we are in need of two lemmas and one more fact.

Lemma 2.1 ([4, Lemma 4.1]). Let s = k + % for an integer k > 2 and let D € Dy. Then the following assertions
are true.
(a) For each G ¢ Haipy, ,» We have

(4p)" '@ 0 &2-4(G) = &2- 0 B(G).
(b) Foreachf = 3,5, cf(n)q" € Sc(p),
sy cr(DD),  ifp=1
K— -k o .
(2 (4p)" " Pa-e(F oy (70 3))) = Y ity (D), ifp =2
(%) -cr(1D), ifp>2.

»
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Lemma 2.2 ([4, Lemma 4.2]). With the same notations as in Lemma 2.1, we have the following assertions.
(a) For a vector valued function h = hg(7)eg, one has

E-n(R5E(M, ) = (E2-x ()2 (M, ¢).

(b) &2 (I'(k - 1, 4mny)) = —(4mn)" " te 4™V,
(c)Letm = —%. Then one has

(4r|m])""

& (Fin(r ) = “Foeny

Lflml(r).

Fact6. Letp=1landr=k+ 3.
(1) It follows from Lemmas 2.1 and 2.2 that

k=1 k-1
(e (o (- 2)))@((}1'(’3’“) Py () - S0 () e

(2) We obtain from Theorem 1.1-(ii) that

(fka Ck,DkPBk) = afk(‘DkD =1

N CE 1) M -

where ¢y p, = 3T (ro1)

Fork e {6,8,9, 10, 11, 13}, it follows from Fact 3, Fact 4, and Theorem 1.1-(iii), (iv) that P,J_f,k does not vanish
and
Pp, = cifx

for some ¢, € C*. Thus one has from Fact 6 (2) that

1 = (fi, Ckp Cifi) = Syl

which implies

¢k = Ciep, Ifil|
We compute that
&-n(Q:2)) = - (Fi2y (7. 5))
k-1 L K
= 45 e, H( T ( E)) by Lemma 2.1-(a)
k-1
%ppkm by Fact 6 (1)
4| Di)™
- oD b 1
= 3[Ifill fi )
Since

2y _ 2 (-1)*n\ s 2k-1 2\ n
filies 1 T(T) > ar,(I'n) + | —— | "ap () + " a5 (n/U) | q

nx1
(-1kn=0,1 (4)

= M (P)fis

one has

() =gy P+ (CH ),
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which proves the first assertion. Hence for all n > 1 with (-1)*n =0, 1 (mod 4)

k
(afk(lza) + ((_11)1(05) lk_l) as (n) = ap, (n) + ((—11)") tag, (n) + P tag, (n/1%). (6)
It follows from (5) that

3Ifi fi(2) = &2-w(Qlks2)) == > (47n)"'cy(n)q",

nzo
(-1)kn=0,1 (4)

which implies that
ca(n) = =3|Ifil > - (4mn) ™" - ag, (n). @)

Now we put dy := —3||f|| "2 - (47)'~". We obtain that for all positive integers n with (-1)*n =0, 1 (mod 4),
1=k [ =92\ g2N k=1, 2k=1 =/ 32 2ot ((CDFNY g - k-1
n co(nI?) ()" " + 17" "co(n/I7)(n/I)" " + — I"“cqo(n)n
PR
ot (an o) ag ) (S0 ) by )

_n (afk(zza) ; (“I)k“) 1"‘1) az(n) by (6)
=M (1)cg(n).

Thus we have

nez

QT () =Y (ca(nzz) + (Hl)k”) I cg(n) + 11—2"c5(n/12)) I'(k-1,4mny)q ™"

= 1755 (g (nity ! (1) n\ k1 - — 2 B -n
= o(nl)Hl + i I"“co(n) + cq(n/1°) | I'(k - 1, 47ny)q

nez

k
= 1%k > dyn'™" (cé(nlz)(rilz)“_ld;1 + ((_11) n ) l’<_1r1“_1c‘5(n)d;1 + n“_lcé(n/lz)dlzl)

nez
I'(k—-1,4mny)q ™"

vk
=1 gt (afk(nlz) + ((11)”) ag (n) + le_lafk(n/lz)) I'(k-1,4mny)q ™"

nez

=12 () eg(mI (s - 1, 4mny)g ™ since fi Ty s (1) = M) fi
nez

= n()Q . ®)
We obtain that
P26 (Qa-n T(1%)) = (2-x(Q))|=T(?) by Fact5
= 3|l *filw T(?) by (5)
= 3|Ifill M ()i
= &on(M(1)Q) since A (%) e R.

Indeed, we observe that

M(P) = ap (Pa) + ((_11)%[) ez,

Thus we have
P2 Qo T(P) = M(1P)Q € My,

which combined with (8) yields the second assertion.
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3 Proof of Theorem 1.4

We observe that

Qs T(1) =1 M) Q = Q| T() - 1 A () Q"

Sl Y b |1 T

nx=1
(-1)k=1p=0,1 (4)

SN 267+ ch(0)+ Y co(n)d”

nx>1
(-1)k=1n=0,1 (4)

, _1\k
- zllfqu*al +2 (((]-I)CK) I*k _ lleAk(lz)) q—a + CE(O)(l + Il—zk _ ll*ZkAk(IZ))

_1\k-1
+ > (ca(lzn) + ((1)1n
(—1)"-1"'20,1 (4)

) I ch(n) + 2 ey (/1) - l”"Ak(F)ca(n)) q"

1-2k .
=21 3 _kop Since-—ax -3.

So we find that
2 = P Q T () - M()QT

has integral coefficients and for all positive integers n with (-1)**n =0, 1 (mod 4),
2U-1_+ (32 (-D)"'n\ e o +o2 24+
I cq(n) + A " cq(n) + co(n/l7) = Me(1%)cq(n)

= co(n) (((_1);(_1’1) [ ((—11)"04) - afk(lza)) + P (Pn) + ch(n/1?) € 27

Then for n = B with

B = 3, keven,
““11, kodd,

we obtain that

co(Bx) ((( (_1);_1ﬁk) - ((‘1I)k0‘)) e afk(lzoz)) + P (1P By) € 22,

As a consequence of the above identity we get the assertions.
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