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1 Introduction

The term quantale was suggested by C.J. Mulvey at the Oberwolfach Category Meeting ([1]) as a “quantization”
of the term locale ([2]). An important moment in the development of the theory of quantales was the
realization that quantales give a semantics for propositional linear logic in the same way as Boolean algebras
give a semantics for classical propositional logic ([3, 4]). Quantales arise naturally as lattices of ideals,
subgroups, or other suitable substructures of algebras ([5, 6]).

Algebraic investigations on qutale-like structures, such as quantales, quantale modules, sup-algebras,
S-quantales, etc. have been studied in [5], [7], [8], and [9], respectively. Some categorical considerations are
also taken into account ([10], [6]). S-quantales were firstly introduced by Zhang and Laan in [11], which have
been shown to play an important role in the theory of injectivity on the category of S-posets. The current paper
is devoted to the study of categorical properties of S-quantales.

In this work, S is always a pomonoid, that is, a monoid S equipped with a partial order < such that ss” < ¢t
whenever s < t, s" < t'in S. A poset (4, <) together with a mapping A x S — A (under which a pair (a, s) maps
to an element of A denoted by as) is called an S-poset, denoted by Ag, if forany a, b € As, s, t € S,

1. a(st) = (as)t,
2. al=a,
3. a<b, s<timply that as < bt.

S-poset morphisms are order-preserving mappings which also preserve the S-action. We denote the category
of S-posets with S-poset morphisms by Poss. An S-subposet of an S-poset A is an action-closed subset of Ag
whose partial order is the restriction of the order from As.
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Clearly, S-posets are generalizations of S-acts, whose relying category is denoted by Acts.
Recall that an S-poset As is an S-quantale ([11]) if

(1) the poset A is a complete lattice;

(2) (VM)s = V{ms | m e M} for each subset M of A and each s € S.

An S-quantale morphism is a mapping between S-quantales which preserves both S-actions and arbitrary
joins. An S-subquantale of an S-quantale Ag is exactly the relative S-subposet of As which is closed under
arbitrary joins.

We denote the category of S-quantales with S-quantale morphisms by Quants. This work is devoted
to the presentation of categorical aspects in Quants. We explore limits and colimits, monomorphisms and
epimorphisms, respectively, and exhibit adjoint situations accordingly.

Lemma 1.1. The bottom of an S-quantale is a zero element.

Proof. The result follows by the fact that for the bottom L4, of an S-quantale As, and any s € S,
14,5 = (VD)S = Vaeg(as) = V& = Ly,. O

Since an S-quantale morphism f : As — Bg preserves all joins, it follows by the adjoint functor theorem that
it has a right adjoint f. : Bs — As, satisfying

f(a) <b < a<f.(b), (1)

foralla € As, b € Bs.
Lemma 1.2. Let f : As — Bs be an S-quantale morphism. Then f preserves the bottom.

Proof. Denote by 14, the bottom of As. Then 14, < f«(b), for every b € Bs. By (1), we have f(14,) < b. O

2 Limits and colimits in Quantg

Products and coproducts

Proposition 2.1. The product of a family of S-quantales is their cartesian product with componentwise action,
and order.

Proposition 2.2. The coproduct of a family of S-quantales {X;}icr is (ITie; Xi» (w)jer), Where pj = X; —
[Lic; Xi, j € I, is defined by

i=j,
i#j.

1i(x) = (%:)ier, where X = {1‘ P)
Xi

Proof. Cleatly, ; is an S-quantale morphism for every j € I. Let f; : Xj — Qs, j € I, be S-quantale morphisms.
Define a mapping + : [1;; Xi — Qs by
Y((xi)ier) =\ fi(xi),

iel
for any (x;)ier € [1;er Xi- It is easy to see that ¢ preserves S-actions. For arbitrary indexed set K, we have
l/J(V(Xik)ieI) = ((\/ Xik) ) =\ fi (\/ Xik) =V ¥((xi ier)-
keK keK iel iel keK keK

Moreover, by Lemma 1.2, fi(Lx,) = Lq,, for each i € I. Hence

(i () = ¥((X)ier) = \/Iﬁ(ﬁ) =00,
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foranyjel, x € X;.
Finally, suppose that there exists an S-quantale morphism ¢ : [];;; X; — Qs such that ¢u; = f;, for every
i € I. Then, for each (x;);cs € [1;; Xi, one gets that

o((Xi)ier) = ¢>(\/1ui(xi)) = _\/I¢Hi(xi) = _\/Ifi(xi) = ((Xi)ier)s

and hence ¢ = v as needed. O

Equalizers, coequalizers, pullbacks, and pushouts

Proposition 2.3. Letf, g : As - Bs be morphisms of S-quantales. The equalizer of f and g is given by E = {a ¢
As | f(a) = g(a)}, with action and order inherited from As.

Proof. Clearly, E is an S-poset, and a complete lattice. So it is an S-quantale by the fact that f and g preserve
arbitrary joins. Let . : E — A be the inclusion mapping. For any morphism e : E — A with fe = ge, since
e(E ) c E, it follows that e, which is the codomain restriction of e, is the unique morphism fulfilling e = e. O

By [12] Theorem 12.3, we immediately get that Quantg is complete.
Proposition 2.4. The category Quants is complete.

Let pbe a congruence on S-quantale As. In a natural way, the quotient A/p constitutes an S-quantale equipped
with the order defined by a p-chain, where the joins in A/p are

Vlail, = [\/ ai] , 3)
iel iel p

and the canonical mapping 7 : As — (A/p)s becomes an S-quantale morphism, provided that p = kerr ([9]).
For H ¢ As x Ag, the corresponding S-quantale congruence generated by H, will be denoted by 0(H).

Proposition 2.5. Let f, g : As — Bs be morphisms of S-quantales. The coequalizer of f and g is the quotient
(BJ0(H))s, where H = {(f(a), g(a)) | a  As}.

Proof. Let f,g : As — Bs be morphisms of S-quantales, H = {(f(a),g(a)) | a € As}, = be the canonical
mapping from Bg to (B/0(H))s. Clearly, nf = ng. For any S-quantale morphism h : Bs — Cs satisfying
hf = hg, we obtain that kerr ¢ kerh, since (f(a), g(a)) € kerh, for a € As.

Now define a mapping h : (B/60(H))s — Cs by

h([blocm) = h(b),

for [b]ocwy € (B/0(H))s. Clearly his an S-act morphism and preserves arbitrary joins by (3). It is quite routine
to check that h is the unique morphism satisfying hr = h. O

Proposition 2.6. Letf : As — Cs, g : Bs - Cs be morphisms of S-quantales. The pullback of f and g is the
S-subposet P = {(a,b) € (AxB)s|f(a) =g(b)} of (A x B)s, together with the restricted projections of Ps into
AS and Bs.

Proof. It is known that Ps is an S-quantale. For any S-quantale Qs and an pair of morphisms f; : Qs — As,
f2: Qs » Bswith ff; = gf>, onehasthat (f1(q), f2(q)) € Ps, forany q € Qs. Now define amapping ¢ : Qs — Ps
by

e(q) = (f1(q), f2(q)),

for g € Qs. One gets that
e(q)s = (f1(q),f2(q))s = (f1(q)s, f2(q)s) = (f1(gs), f2(gs)) = ¥(gs),
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foreach g € Qs, s € S, and

@0(\/ qz-) - (f1 (v ql-) 1 (\/ ql-)) - (Vfl(qi), sz<qi>) V(i@ fo(a) = V ol

iel iel iel iel iel
forallg; € Qs, i € I.If 14 : Ps —» As and np : Ps — Bg are the restricted projections, then fry = gnp.
Straightforward checking shows that ¢ is the unique morphism satisfying 74 = f1 and gy = f>. O

Proposition 2.7. Let f : As -~ B1, g : As — B, be morphisms of S-quantales. The pushout of f and g is
((B1 xBy)/0(H))g, together with wpy and wua, where p; © B; — (B1 x Ba)s, i = 1,2, are defined as in
Proposition 2.2,  is the canonical mapping, H = {(p1f(a), u2g(a)) | a € As}.

Proof. Since ((B1 x B2)s, (p11, p2)) is the coproduct of (Bi, B;) by Proposition 2.2, the coequalizer of 1 f
and p»g is the quotient ((B1 x B2)/0(H))g, where H = {(u1f(a), p2g(a)) | a € As}, by Proposition 2.5. The
result follows immediately by [12] Remark 11.31. O

3 Monomorphisms

This section contributes to the presentation of several kinds of monomorphisms in the category Quants. It
is shown that deferent from the case of S-posets (see [13]), monomorphisms in Quantg coincide with order-
embeddings, which are precisely injective morphisms. It thus leads to the strengthening results that these
classes of monomorphisms are also in accordance with those labeled regular and extremal in Quantg, which
are exactly the category-theoretic embeddings when Quantg is considered as a concrete category over Set,
Acts, and Posg, respectively.

Proposition 3.1. Let f : As — Bs be a morphism of S-quantales. Then the following statements are equivalent:
(1) fis a monomorphism;

(2) fisinjective;

(3) fis an order-embedding.

Proof. Itis enough to show the implications (1)= (2) and (1)= (3) hold.
Letf : As > Bs be amonomorphism of S-quantales. Consider S-subquantale kerf of the product (AxA)g,
and the restricted projection mappings h; : kerf — A, i =1, 2. For any (x, y) € kerf, equalities

fhi(xy) =f(x) =f(y) = fha(x, y)

imply that fh; = fh, and hence h; = h, by assumption. Therefore, x = h1(x,y) = h2(x,y) =y, and hence f is
injective as needed.
It remains to prove that f is an order-embedding whenever it is a monomorphism. Suppose that f(a1) <
f(ay) for a1, as € As. Then
f(az) =f(a1) \V/ f(az) =f (a1 a2).
According to the above result of f being injective, we soon obtain that a; < a», and thus f is an order-
embedding. O

Lemma 3.2. Each inclusion mapping in Quantg is a regular monomorphism.

Proof. Suppose that Ag is an S-subquantale of Bs. Let ((B x B)s, (u1, p12)) be the coproduct of (Bg, Bs),
described as in Proposition 2.2. Write

R={((a,1), (1,a))|acAs},
where 1 is the bottom element of Bs. Then the relation p, which is defined by

p:{((X\/a,yvb),(x’va’,ylvb,))|x,y,xl,y’eBs, a,b,a,,b’eAg, va:X'vb’,yva:y’va,}
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is the smallest congruence relation on B x B containing R. So ((B x B)/p)s becomes an S-quantale equipped
with a suitable order defined by a p-chain, and the canonical mapping = : (B x B)s — ((B x B)/p)s given by
m(x,y) =[(x,y)]p, for each (x,y) € (B x B)s, is a morphism.

Next we show that the inclusion mapping ¢4 : A — B is the equalizer of rp; = muy. Suppose that h : Es —
Bgs is any monomorphism satisfying w1 h = muoh. Then for any e € Eg, the equalities

[(h(e), L)]p = w(h(e), L) = mp1h(e) = muah(e) = w(L, h(e)) = [(L, h(e))],

indicate that ((h(e), 1), (1, h(e))) € p. According to the definition of p, we deduce that (h(e), 1) = (x v
a,yvb)and (1, h(e)) = (x' v a’,y' v b') for some x, y, x',y’ € Bg, a, a', b, b e As.Soy=b =1, X =a =1,
and correspondingly,
a:iva:yva:y'va':y'vi:y’,
and
X=xvi=1vbh =b.

Therefore, we have h(e) =xv a =b’ v a e As, i.e., h(E) c As. As a consequence, h=h:E - Aisthe unique
morphism satisfying t4h = h. O

Theorem 3.3. Let f : As — Bs be a morphism of S-quantales. Then the following assertions are equivalent:
(1) fis aregular monomorphism;

(2) fis an extremal monomorphism;

(3) fis a monomorphism;

(4) fis aQuants-embedding over Set;

(5) fis aQuants-embedding over Acts;

(6) fis aQuants-embedding over Poss.

Proof. (1) = (2) = (3) are general category-theoretic results.
(3) = (4). Suppose that f : Ag -~ Bs is a monomorphism. Let g : Cs - As be a mapping with fg : Cs - Bg
being an S-quantale morphism. Then g preserves arbitrary joins by the fact that for a; € Cs, i € I,

fg(\/ ai) =\ fg(ai) :f(\/g(ai)) ,
iel iel iel
and f being injective by Proposition 3.1. Similarly, we get that g preserves S-actions. Thus f is initial and then
an S-quantale embedding over Set.

(4) = (3), (4) = (5) = (6) are clear.

(6) = (4). Let f : As — Bs be a Quantg-embedding over Posg, g : Cs — Ag a mapping provided that
fg : Cs — Bg is a morphism in Quants. We are going to show that g is an S-poset morphism. This is the case
since

fg(as) = fg(a)s = f(g(a)s),

foranya € As,s € S, and

fg(ax) =fg(ar1V @) = fg(a1) \V/ fg(az) = f (8(a1) V 8(a2)) ,

for a1 < ay in Ag. Note that the monomorphisms in Posg are just the S-poset morphisms with injective
underlying mappings, we immediately achieve that g(as) = g(a)s and g(a1) < g(a>). Therefore, g is an
S-poset morphism as required.

(3) = (1). This follows by [12] Proposition 7.53 (2) and Lemma 3.2. O

4 Epimorphisms

Dual to discussions on monomorphisms studied in Section 3, this section is intended to motivate our inves-
tigation on relationships between various type of epimorphisms in Quants. However, the characterization of
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epimorphisms in Quantg is quite complicated. So we merely cite the result and the reader is suggested to find
complete illustrations in [14].

Proposition 4.1 ([14] Th. 4.2). Epimorphisms in Quantg are exactly onto morphisms.

Theorem 4.2. For a morphism f : As — Bs of S-quantales, the following statements are equivalent:
(1) fis aregular epimorphism;

(2) fis an extremal epimorphism;

(3) fis an epimorphism;

(4) fisaQuants-quotient morphism over Set;

(5) fis aQuants-quotient morphism over Acts;

(6) fis aQuantgs-quotient morphism over Poss.

Proof. (1) = (2) = (3) are clear.

(3) = (1) follows by [14] Corollary 14.

(3) = (4). Let g : Bs — Cs be a mapping between S-quantales such that gf is an S-quantale morphism.
Let us verify that g is an S-quantale morphism, as well. It is easy to see that g is an S-poset morphism. Since
f is an epimorphism, it is onto by Proposition 4.1. Hence we may assume that for any M < Bs, V M = f(a) for
some a € As. By the reason that f preserves arbitrary joins, we have

flay=\/M=V f(X)=f( V x)-

xef~1(M) xef71(M)
Consequently,
g (VM) =gf(a) =gf( V X) =V &)=\ g(m).
xef~1 (M) xef~1(M) meM
(4) = (3), (4) = (5) = (6) are clear.
(6) = (2). Let f : As — Bs be a Quantg-quotient morphism over Posgs. Suppose that g : As - Cs and
h : Cs - Bg are S-quantale morphisms such that f = hg and h is a monomorphism. Then h is injective by
Proposition 3.1. Note that f is a Poss-epimorphism by hypotheses, and hence is surjective. So h is surjective,

as well, and thus bijective. Now, considering the inverse mapping h~! with g = h™f, we remain to show that
h~!is an S-poset morphism. In fact, f bing onto indicates that k™! is action-preserving. Observe that

h (h‘l(b) \/h‘l(b’)) =hh ' (b)\/hh " (b") =b\/ b’ = hh™*(b’),

forany b < b’in Bs. Thus h™*(b) V h™'(b") = h™*(b"), which expresses that h ' is an S-poset morphism, and
hereby an S-quantale morphism by assumption. O

5 Adjoint situations

The final part is devoted to observation on the adjoint situation between Pos and Quants. By a free S-quantale
on a poset P we mean an S-quantale Qs together with a monotone mapping ) : P — Qs with the universal
property that given any S-quantale As and a monotone mapping f : P — Ag, there exists a unique S-quantale
morphism f : Qs — Ag such that f can be factored through.

Lemma 5.1 ([13] Th.10). For a given poset P and a pomonoid S, the free S-poset on P is given by P x S, with
componentwise order and the action (x, s)t = (x, st), foreveryx € P, s, t € S.

Let (P x S)s be the free S-poset presented in Lemma 5.1. Write

Q(PxS)={D<PxS|D=D|},
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where D| is the down-set of D for D ¢ P x S, more precisely,
D, ={(p,s)ePxS|(p,s) < (p1,s1) for some (p1,s1) € D}.

Note that (p| x s})| = pl x s} provides that p| x s} € Q(P x S) for every element p € P, s € S. Define an action
+on Q(P x S) by
Dx+t:={(p,s)ePxS|(p,s) < (p1,sit) for some (p1,s1) € D},

for t € S. Then itis clear that D x t = (Dt)|. We claim that (Q(P x S)s, *, ) is the free object in Quants.
Proposition 5.2. Let S be a pomonoid, P be a poset. Then (Q(P x S)s, *, €) is an S-quantale.

Proof. Observe first that

(Dxt1)»t, ={(p,s) e PxS|(p,s) < (p1,s1t2) for some (p1,51) e D* t1}
={(p,s) e PxS|(p,s) <(p1,s1t2), (P1,51) < (p2, S2t1) for some (p2, s,) € D}
={(p,s) e PxS|(p,s) < (p2,S2t1t2), for some (p,,s2) € D}
=D * (t1t2)
forany t1,t; € S, D € Q(P xS),and D = 1 = (D1)| = D. This shows that (Q(P x S), %) is an S-act. Clearly,

D1 s c D, *t,whenever D; € D, in Q(P x S),and s < tin S. So Q(P x S) is an S-poset. It is straightforward
to check that (Uje; Di) * t = Ujer(D; + t) forevery D; € Q(P x S),i€l, teS. O

Lemma 5.3 comes true directly by the definition of Q(P x S).

Lemma 5.3. Let S be a pomonoid, P be a poset. ThenD = U (p| xs|) forevery D e Q(P x S).
(p,s)eD

Lemma5.4. Let S be a pomonoid, P be a poset. Then p| x t| = (pl x 1|) * t holds in Q(P x S)s for every
peP, teS.

Proof. 1t is clear that (g,s) € (pl x 1|) = t for every (g,s) € pl x t|, since (gq,s) < (p, t). On the other
hand, for any (g, s) € (pl x 1)) * t, (g,s) < (p1,s1t) = (p1, S1)t for some (p1,s1) € pl x 1|, it follows that
(g,s) <(p,1)t=(p,t). Hence (q,s) € pl x t|. O

Theorem 5.5. Let S be a pomonoid, P be a poset. Then the free S-quantale on P is given by the S-quantale
Q(PxS)s.

Proof. Define amapping 7: P - Q(PxS)sbyr(p) = pl x 1| for every p € P. Obviously, 7 is order-preserving.
Let Qs be an S-quantale, f : P - Qs be any monotone mapping. Define a mapping f : Q(P x S)s — Qs by

f(D)=\/{f(p)s| (p,s) e D},

for every D € Q(P x S)s. We claim that f is the unique S-quantale morphism with the property that fr = f.
It is clear that f preserves S-actions. Take D; € Q(P x S)s, i € I, then equalities

HUp) -V s | 0.9 < U -V (Vir@)s| .5 200} - V7o
indicate that f preserves arbitrary joins. Evidently, for any p € P,
fr(p) =f(pdx 1) = V{f(a)s| (¢, 5) e pb x L} <f(p),

while the fact that f(p) being one of the terms in the sup that defines f(p) guarantees the opposite
implication. Suppose that f : Q(P x S)s — Qs is an S-quantale morphism such that f 7 = f. Then by Lemma
5.3 and Lemma 5.4, we achieve that

f'(D)=f'( U (PlXSl))= V fplxs)= \V f((pix1l)xs)

(p,s)eD (p,s)eD (p,s)eD
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=V flx1)s= \ frp)s= \V f(p)s=f(D),
(p,s)eD (p,s)eD (p,s)eD

for every D € Q(P x S)s, which finishes our proof. O
Corollary 5.6. The category Quantg has a separator.

Proof. Let f,g : As — Bgs be a pair of morphisms in Quants with f # g. Then there exists a € Ag such that
f(a) # g(a). Let P be a poset. Define a mapping k : P — As by k(p) = a, Vp € P. We are aware that k is
a morphism in Pos. Hence there is a unique S-quantale morphism k : Q(P x S)s — Ags with kr = k, where
7:P - Q(PxS)sis defined as in Theorem 5.5. This yields that fk # gk, and consequently gives that Q(P x S)s
is a separator. O

We thereby obtain a free functor from the category of posets into the category of S-quantales, which is shown
to be left adjoint to the forgetful functor.

Proposition 5.7. There is a free functor F : Pos — Quantg given by

P——FP
T
QHFQy

where FP = Q(P x S)s, and

Ff(D) ={(x,¥y) €QxS|(x,y) < (f(p),s) forsome (p,s) e D},

for any monotone mapping f : P - Q and D € FP.
Theorem 5.8. The free functor F : Pos — Quants is left adjoint to the forgetful functor | | : Quants — Pos.

Proof. Let us prove that 7 : idpes — | |F withnp : P - |Q(P x S)s|, where P is a Pos-object, np(p) = p | x14,
Vp € P, is a natural transformation. Suppose that f : P — P is a morphism in Pos. Then

Ff onp(p) = Ff(pl x 11) = {(x,y) € P x S| (x,y) < (f(B), s) forsome (p,s) e pl x 1|}
={(6,y) €P xS| (x,¥) < (f(B),5) < (F(P), 1), (B, s) e pb x 11},

for p € P, and
(npr o f)(P) =np (f(P)) =f(P) x 1.

Itresultsin Ffonp = np of as needed. Now, by Theorem 5.5 and [12] 19.4(2), we obtain that F is leftadjoint to | |.
O
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