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1 Introduction
The term quantalewas suggested by C.J. Mulvey at the Oberwolfach CategoryMeeting ([1]) as a “quantization”
of the term locale ([2]). An important moment in the development of the theory of quantales was the
realization that quantales give a semantics for propositional linear logic in the sameway as Boolean algebras
give a semantics for classical propositional logic ([3, 4]). Quantales arise naturally as lattices of ideals,
subgroups, or other suitable substructures of algebras ([5, 6]).

Algebraic investigations on qutale-like structures, such as quantales, quantale modules, sup-algebras,
S-quantales, etc. have been studied in [5], [7], [8], and [9], respectively. Some categorical considerations are
also taken into account ([10], [6]). S-quantales were �rstly introduced by Zhang and Laan in [11], which have
been shown to play an important role in the theory of injectivity on the category of S-posets. The current paper
is devoted to the study of categorical properties of S-quantales.

In thiswork, S is always a pomonoid, that is, amonoid S equippedwith a partial order ⩽ such that ss′ ⩽ tt′

whenever s ⩽ t, s′ ⩽ t′ in S. A poset (A, ⩽) together with amapping A×S → A (under which a pair (a, s)maps
to an element of A denoted by as) is called an S-poset, denoted by AS, if for any a, b ∈ AS , s, t ∈ S,

1. a(st) = (as)t,
2. a1 = a,
3. a ⩽ b, s ⩽ t imply that as ⩽ bt.

S-poset morphisms are order-preserving mappings which also preserve the S-action. We denote the category
of S-posets with S-poset morphisms by PosS. An S-subposet of an S-poset AS is an action-closed subset of AS

whose partial order is the restriction of the order from AS.
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Clearly, S-posets are generalizations of S-acts, whose relying category is denoted by ActS.
Recall that an S-poset AS is an S-quantale ([11]) if

(1) the poset A is a complete lattice;
(2) (⋁M)s = ⋁{ms ∣ m ∈ M} for each subset M of A and each s ∈ S.

An S-quantale morphism is a mapping between S-quantales which preserves both S-actions and arbitrary
joins. An S-subquantale of an S-quantale AS is exactly the relative S-subposet of AS which is closed under
arbitrary joins.

We denote the category of S-quantales with S-quantale morphisms by QuantS . This work is devoted
to the presentation of categorical aspects in QuantS. We explore limits and colimits, monomorphisms and
epimorphisms, respectively, and exhibit adjoint situations accordingly.

Lemma 1.1. The bottom of an S-quantale is a zero element.

Proof. The result follows by the fact that for the bottom �AS of an S-quantale AS, and any s ∈ S,

�AS s = (∨∅)s = ∨a∈∅(as) = ∨∅ = �AS .

Since an S-quantale morphism f ∶ AS → BS preserves all joins, it follows by the adjoint functor theorem that
it has a right adjoint f∗ ∶ BS → AS, satisfying

f(a) ⩽ b⇐⇒ a ⩽ f∗(b), (1)

for all a ∈ AS, b ∈ BS.

Lemma 1.2. Let f ∶ AS → BS be an S-quantale morphism. Then f preserves the bottom.

Proof. Denote by �AS the bottom of AS . Then �AS ⩽ f∗(b), for every b ∈ BS . By (1), we have f(�AS) ⩽ b.

2 Limits and colimits in QuantS
Products and coproducts

Proposition 2.1. The product of a family of S-quantales is their cartesian product with componentwise action,
and order.

Proposition 2.2. The coproduct of a family of S-quantales {Xi}i∈I is (∏i∈I Xi , (µj)j∈I), where µj ∶ Xj →
∏i∈I Xi , j ∈ I, is de�ned by

µj(x) = (x̃i)i∈I , where x̃i =
⎧⎪⎪⎨⎪⎪⎩

x i = j,
�Xi i ≠ j.

(2)

Proof. Clearly, µj is an S-quantale morphism for every j ∈ I. Let fj ∶ Xj → QS , j ∈ I, be S-quantale morphisms.
De�ne a mapping ψ ∶ ∏i∈I Xi → QS by

ψ((xi)i∈I) = ⋁
i∈I
fi(xi),

for any (xi)i∈I ∈ ∏i∈I Xi. It is easy to see that ψ preserves S-actions. For arbitrary indexed set K, we have

ψ (⋁
k∈K

(xik)i∈I) = ψ ((⋁
k∈K

xik)
i∈I

) = ⋁
i∈I
fi (⋁

k∈K
xik) = ⋁

k∈K
ψ((xik)i∈I).

Moreover, by Lemma 1.2, fi(�Xi) = �QS , for each i ∈ I. Hence

ψ(µj(x)) = ψ((x̃i)i∈I) = ⋁
i∈I
fi(x̃i) = fj(x),
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for any j ∈ I, x ∈ Xj .
Finally, suppose that there exists an S-quantale morphism φ ∶ ∏i∈I Xi → QS such that φµi = fi , for every

i ∈ I. Then, for each (xi)i∈I ∈ ∏i∈I Xi , one gets that

φ((xi)i∈I) = φ(⋁
i∈I
µi(xi)) = ⋁

i∈I
φµi(xi) = ⋁

i∈I
fi(xi) = ψ((xi)i∈I),

and hence φ = ψ as needed.

Equalizers, coequalizers, pullbacks, and pushouts

Proposition 2.3. Let f , g ∶ AS → BS be morphisms of S-quantales. The equalizer of f and g is given by E = {a ∈
AS ∣ f(a) = g(a)}, with action and order inherited from AS .

Proof. Clearly, E is an S-poset, and a complete lattice. So it is an S-quantale by the fact that f and g preserve
arbitrary joins. Let ι ∶ E ↪ A be the inclusion mapping. For any morphism e ∶ E

′

→ A with fe = ge, since
e(E

′

) ⊆ E, it follows that e,which is the codomain restrictionof e, is theuniquemorphism ful�lling ιe = e.

By [12] Theorem 12.3, we immediately get that QuantS is complete.

Proposition 2.4. The category QuantS is complete.

Let ρbea congruenceon S-quantaleAS. In anaturalway, thequotientA/ρ constitutes an S-quantale equipped
with the order de�ned by a ρ-chain, where the joins in A/ρ are

⋁
i∈I

[ai]ρ = [⋁
i∈I
ai]

ρ

, (3)

and the canonical mapping π ∶ AS → (A/ρ)S becomes an S-quantale morphism, provided that ρ = kerπ ([9]).
For H ⊆ AS × AS , the corresponding S-quantale congruence generated by H, will be denoted by θ(H).

Proposition 2.5. Let f , g ∶ AS → BS be morphisms of S-quantales. The coequalizer of f and g is the quotient
(B/θ(H))S, where H = {(f(a), g(a)) ∣ a ∈ AS}.

Proof. Let f , g ∶ AS → BS be morphisms of S-quantales, H = {(f(a), g(a)) ∣ a ∈ AS}, π be the canonical
mapping from BS to (B/θ(H))S. Clearly, πf = πg. For any S-quantale morphism h ∶ BS → CS satisfying
hf = hg, we obtain that kerπ ⊆ kerh, since (f(a), g(a)) ∈ kerh, for a ∈ AS.

Now de�ne a mapping h̄ ∶ (B/θ(H))S → CS by

h̄ ([b]θ(H)) = h(b),

for [b]θ(H) ∈ (B/θ(H))S . Clearly h̄ is an S-act morphism and preserves arbitrary joins by (3). It is quite routine
to check that h̄ is the unique morphism satisfying h̄π = h.

Proposition 2.6. Let f ∶ AS → CS , g ∶ BS → CS be morphisms of S-quantales. The pullback of f and g is the
S-subposet P = {(a, b) ∈ (A×B)S ∣ f(a) = g(b)} of (A×B)S, together with the restricted projections of PS into
AS and BS.

Proof. It is known that PS is an S-quantale. For any S-quantale QS and an pair of morphisms f1 ∶ QS → AS ,
f2 ∶ QS → BS with �1 = gf2, onehas that (f1(q), f2(q)) ∈ PS , for any q ∈ QS . Nowde�ne amappingϕ ∶ QS → PS
by

ϕ(q) = (f1(q), f2(q)),

for q ∈ QS . One gets that

ϕ(q)s = (f1(q), f2(q))s = (f1(q)s, f2(q)s) = (f1(qs), f2(qs)) = ϕ(qs),
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for each q ∈ QS , s ∈ S, and

ϕ(⋁
i∈I
qi) = (f1 (⋁

i∈I
qi) , f2 (⋁

i∈I
qi)) = (⋁

i∈I
f1(qi),⋁

i∈I
f2(qi)) = ⋁

i∈I
((f1(qi), f2(qi)) = ⋁

i∈I
ϕ(qi),

for all qi ∈ QS , i ∈ I. If πA ∶ PS → AS and πB ∶ PS → BS are the restricted projections, then fπA = gπB .
Straightforward checking shows that ϕ is the unique morphism satisfying πAϕ = f1 and πBϕ = f2.

Proposition 2.7. Let f ∶ AS → B1, g ∶ AS → B2 be morphisms of S-quantales. The pushout of f and g is
((B1 × B2)/θ(H))S, together with πµ1 and πµ2, where µi ∶ Bi → (B1 × B2)S , i = 1, 2, are de�ned as in
Proposition 2.2, π is the canonical mapping, H = {(µ1f(a), µ2g(a)) ∣ a ∈ AS}.

Proof. Since ((B1 × B2)S , (µ1, µ2)) is the coproduct of (B1, B2) by Proposition 2.2, the coequalizer of µ1f
and µ2g is the quotient ((B1 × B2)/θ(H))S, where H = {(µ1f(a), µ2g(a)) ∣ a ∈ AS}, by Proposition 2.5. The
result follows immediately by [12] Remark 11.31.

3 Monomorphisms
This section contributes to the presentation of several kinds of monomorphisms in the category QuantS. It
is shown that deferent from the case of S-posets (see [13]), monomorphisms in QuantS coincide with order-
embeddings, which are precisely injective morphisms. It thus leads to the strengthening results that these
classes of monomorphisms are also in accordance with those labeled regular and extremal in QuantS, which
are exactly the category-theoretic embeddings when QuantS is considered as a concrete category over Set,
ActS , and PosS, respectively.

Proposition 3.1. Let f ∶ AS → BS be a morphism of S-quantales. Then the following statements are equivalent:
(1) f is a monomorphism;
(2) f is injective;
(3) f is an order-embedding.

Proof. It is enough to show the implications (1)⇒ (2) and (1)⇒ (3) hold.
Let f ∶ AS → BS be amonomorphismof S-quantales. Consider S-subquantale kerf of the product (A×A)S,

and the restricted projection mappings hi ∶ kerf → A, i = 1, 2. For any (x, y) ∈ kerf , equalities

�1(x, y) = f(x) = f(y) = �2(x, y)

imply that �1 = �2 and hence h1 = h2 by assumption. Therefore, x = h1(x, y) = h2(x, y) = y, and hence f is
injective as needed.

It remains to prove that f is an order-embedding whenever it is a monomorphism. Suppose that f(a1) ⩽
f(a2) for a1, a2 ∈ AS. Then

f(a2) = f(a1)⋁ f(a2) = f (a1⋁ a2) .
According to the above result of f being injective, we soon obtain that a1 ⩽ a2, and thus f is an order-
embedding.

Lemma 3.2. Each inclusion mapping in QuantS is a regular monomorphism.

Proof. Suppose that AS is an S-subquantale of BS. Let ((B × B)S , (µ1, µ2)) be the coproduct of (BS , BS),
described as in Proposition 2.2. Write

R = {((a, ⊥), (⊥, a)) ∣ a ∈ AS},

where ⊥ is the bottom element of BS . Then the relation ρ, which is de�ned by

ρ = {((x ∨ a, y ∨ b), (x
′

∨ a
′

, y
′

∨ b
′

)) ∣ x, y, x
′

, y
′

∈ BS , a, b, a
′

, b
′

∈ AS , x ∨ b = x
′

∨ b
′

, y ∨ a = y
′

∨ a
′

}
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is the smallest congruence relation on B × B containing R. So ((B × B)/ρ)S becomes an S-quantale equipped
with a suitable order de�ned by a ρ-chain, and the canonical mapping π ∶ (B × B)S → ((B × B)/ρ)S given by
π(x, y) = [(x, y)]ρ, for each (x, y) ∈ (B × B)S , is a morphism.

Next we show that the inclusion mapping ιA ∶ A ↪ B is the equalizer of πµ1 = πµ2. Suppose that h ∶ ES →
BS is any monomorphism satisfying πµ1h = πµ2h. Then for any e ∈ ES , the equalities

[(h(e), ⊥)]ρ = π(h(e), ⊥) = πµ1h(e) = πµ2h(e) = π(⊥, h(e)) = [(⊥, h(e))]ρ

indicate that ((h(e), ⊥), (⊥, h(e))) ∈ ρ. According to the de�nition of ρ, we deduce that (h(e), ⊥) = (x ∨
a, y ∨ b) and (⊥, h(e)) = (x

′

∨ a
′

, y
′

∨ b
′

) for some x, y, x
′

, y
′

∈ BS , a, a
′

, b, b
′

∈ AS . So y = b =⊥, x
′

= a
′

=⊥,
and correspondingly,

a =⊥ ∨a = y ∨ a = y
′

∨ a
′

= y
′

∨ ⊥= y
′

,

and
x = x∨ ⊥=⊥ ∨b

′

= b
′

.

Therefore, we have h(e) = x ∨ a = b′ ∨ a ∈ AS , i.e., h(E) ⊆ AS. As a consequence, h̃ = h ∶ E → A is the unique
morphism satisfying ιA h̃ = h.

Theorem 3.3. Let f ∶ AS → BS be a morphism of S-quantales. Then the following assertions are equivalent:
(1) f is a regular monomorphism;
(2) f is an extremal monomorphism;
(3) f is a monomorphism;
(4) f is a QuantS-embedding over Set;
(5) f is a QuantS-embedding over ActS;
(6) f is a QuantS-embedding over PosS.

Proof. (1)⇒ (2)⇒ (3) are general category-theoretic results.
(3)⇒ (4). Suppose that f ∶ AS → BS is a monomorphism. Let g ∶ CS → AS be a mapping with fg ∶ CS → BS

being an S-quantale morphism. Then g preserves arbitrary joins by the fact that for ai ∈ CS , i ∈ I,

fg (⋁
i∈I
ai) = ⋁

i∈I
fg(ai) = f (⋁

i∈I
g(ai)) ,

and f being injective by Proposition 3.1. Similarly, we get that g preserves S-actions. Thus f is initial and then
an S-quantale embedding over Set.

(4)⇒ (3), (4)⇒ (5)⇒ (6) are clear.
(6) ⇒ (4). Let f ∶ AS → BS be a QuantS-embedding over PosS, g ∶ CS → AS a mapping provided that

fg ∶ CS → BS is a morphism in QuantS. We are going to show that g is an S-poset morphism. This is the case
since

fg(as) = fg(a)s = f(g(a)s),

for any a ∈ AS , s ∈ S, and

fg(a2) = fg (a1⋁ a2) = fg(a1)⋁ fg(a2) = f (g(a1)⋁ g(a2)) ,

for a1 ⩽ a2 in AS . Note that the monomorphisms in PosS are just the S-poset morphisms with injective
underlying mappings, we immediately achieve that g(as) = g(a)s and g(a1) ⩽ g(a2). Therefore, g is an
S-poset morphism as required.

(3)⇒ (1). This follows by [12] Proposition 7.53 (2) and Lemma 3.2.

4 Epimorphisms
Dual to discussions on monomorphisms studied in Section 3, this section is intended to motivate our inves-
tigation on relationships between various type of epimorphisms in QuantS . However, the characterization of
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epimorphisms inQuantS is quite complicated. So wemerely cite the result and the reader is suggested to �nd
complete illustrations in [14].

Proposition 4.1 ([14] Th. 4.2). Epimorphisms in QuantS are exactly onto morphisms.

Theorem 4.2. For a morphism f ∶ AS → BS of S-quantales, the following statements are equivalent:
(1) f is a regular epimorphism;
(2) f is an extremal epimorphism;
(3) f is an epimorphism;
(4) f is a QuantS-quotient morphism over Set;
(5) f is a QuantS-quotient morphism over ActS;
(6) f is a QuantS-quotient morphism over PosS.

Proof. (1)⇒ (2)⇒ (3) are clear.
(3)⇒ (1) follows by [14] Corollary 14.
(3)⇒ (4). Let g ∶ BS → CS be a mapping between S-quantales such that gf is an S-quantale morphism.

Let us verify that g is an S-quantale morphism, as well. It is easy to see that g is an S-poset morphism. Since
f is an epimorphism, it is onto by Proposition 4.1. Hence we may assume that for anyM ⊆ BS,⋁M = f(a) for
some a ∈ AS. By the reason that f preserves arbitrary joins, we have

f(a) = ⋁M = ⋁
x∈f−1(M)

f(x) = f
⎛
⎝ ⋁
x∈f−1(M)

x
⎞
⎠
.

Consequently,

g (⋁M) = gf(a) = gf
⎛
⎝ ⋁
x∈f−1(M)

x
⎞
⎠
= ⋁

x∈f−1(M)
gf(x) = ⋁

m∈M
g(m).

(4)⇒ (3), (4)⇒ (5)⇒ (6) are clear.
(6)⇒ (2). Let f ∶ AS → BS be a QuantS-quotient morphism over PosS. Suppose that g ∶ AS → CS and

h ∶ CS → BS are S-quantale morphisms such that f = hg and h is a monomorphism. Then h is injective by
Proposition 3.1. Note that f is a PosS-epimorphism by hypotheses, and hence is surjective. So h is surjective,
as well, and thus bijective. Now, considering the inverse mapping h−1 with g = h−1f , we remain to show that
h−1 is an S-poset morphism. In fact, f bing onto indicates that h−1 is action-preserving. Observe that

h (h−1(b)⋁ h−1(b′)) = hh−1(b)⋁ hh−1(b′) = b⋁ b′ = hh−1(b′),

for any b ⩽ b′ in BS. Thus h−1(b)⋁ h−1(b′) = h−1(b′), which expresses that h−1 is an S-poset morphism, and
hereby an S-quantale morphism by assumption.

5 Adjoint situations
The �nal part is devoted to observation on the adjoint situation between Pos andQuantS. By a free S-quantale
on a poset P we mean an S-quantale QS together with a monotone mapping ψ ∶ P → QS with the universal
property that given any S-quantale AS and amonotone mapping f ∶ P → AS, there exists a unique S-quantale
morphism f̄ ∶ QS → AS such that f can be factored through.

Lemma 5.1 ([13] Th.10). For a given poset P and a pomonoid S, the free S-poset on P is given by P × S, with
componentwise order and the action (x, s)t = (x, st), for every x ∈ P, s, t ∈ S.

Let (P × S)S be the free S-poset presented in Lemma 5.1. Write

Q(P × S) = {D ⊆ P × S ∣ D = D↓},
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where D↓ is the down-set of D for D ⊆ P × S, more precisely,

D↓ = {(p, s) ∈ P × S ∣ (p, s) ⩽ (p1, s1) for some (p1, s1) ∈ D}.

Note that (p↓× s↓)↓ = p↓× s↓ provides that p↓× s↓ ∈ Q(P× S) for every element p ∈ P, s ∈ S. De�ne an action
∗ on Q(P × S) by

D ∗ t ∶= {(p, s) ∈ P × S ∣ (p, s) ⩽ (p1, s1t) for some (p1, s1) ∈ D},
for t ∈ S. Then it is clear that D ∗ t = (Dt)↓. We claim that (Q(P × S)S , ∗, ⊆) is the free object in QuantS.

Proposition 5.2. Let S be a pomonoid, P be a poset. Then (Q(P × S)S , ∗, ⊆) is an S-quantale.

Proof. Observe �rst that

(D ∗ t1) ∗ t2 = {(p, s) ∈ P × S ∣ (p, s) ⩽ (p1, s1t2) for some (p1, s1) ∈ D ∗ t1}
= {(p, s) ∈ P × S ∣ (p, s) ⩽ (p1, s1t2), (p1, s1) ⩽ (p2, s2t1) for some (p2, s2) ∈ D}
= {(p, s) ∈ P × S ∣ (p, s) ⩽ (p2, s2t1t2), for some (p2, s2) ∈ D}
= D ∗ (t1t2)

for any t1, t2 ∈ S, D ∈ Q(P × S), and D ∗ 1 = (D1)↓ = D. This shows that (Q(P × S), ∗) is an S-act. Clearly,
D1 ∗ s ⊆ D2 ∗ t, whenever D1 ⊆ D2 in Q(P × S), and s ⩽ t in S. So Q(P × S) is an S-poset. It is straightforward
to check that (⋃i∈I Di) ∗ t = ⋃i∈I(Di ∗ t) for every Di ∈ Q(P × S), i ∈ I, t ∈ S.

Lemma 5.3 comes true directly by the de�nition of Q(P × S).

Lemma 5.3. Let S be a pomonoid, P be a poset. Then D = ⋃
(p,s)∈D

(p↓ × s↓) for every D ∈ Q(P × S).

Lemma 5.4. Let S be a pomonoid, P be a poset. Then p↓ × t↓ = (p↓ × 1↓) ∗ t holds in Q(P × S)S for every
p ∈ P, t ∈ S.

Proof. It is clear that (q, s) ∈ (p↓ × 1↓) ∗ t for every (q, s) ∈ p↓ × t↓, since (q, s) ⩽ (p, t). On the other
hand, for any (q, s) ∈ (p↓ × 1↓) ∗ t, (q, s) ⩽ (p1, s1t) = (p1, s1)t for some (p1, s1) ∈ p↓ × 1↓, it follows that
(q, s) ⩽ (p, 1)t = (p, t). Hence (q, s) ∈ p↓ × t↓.

Theorem 5.5. Let S be a pomonoid, P be a poset. Then the free S-quantale on P is given by the S-quantale
Q(P × S)S.

Proof. De�ne amapping τ ∶ P → Q(P× S)S by τ(p) = p↓×1↓ for every p ∈ P. Obviously, τ is order-preserving.
Let QS be an S-quantale, f ∶ P → QS be any monotone mapping. De�ne a mapping f̄ ∶ Q(P × S)S → QS by

f̄(D) = ⋁{f(p)s ∣ (p, s) ∈ D},

for every D ∈ Q(P × S)S . We claim that f is the unique S-quantale morphism with the property that f τ = f .
It is clear that f̄ preserves S-actions. Take Di ∈ Q(P × S)S , i ∈ I, then equalities

f̄ (⋃
i∈I
Di) = ⋁{f(p)s ∣ (p, s) ∈ ⋃

i∈I
Di} = ⋁

i∈I
{⋁{f(p)s ∣ (p, s) ∈ Di}} = ⋁

i∈I
f̄(Di)

indicate that f̄ preserves arbitrary joins. Evidently, for any p ∈ P,

f̄ τ(p) = f̄(p↓ × 1↓) = ⋁{f(q)s ∣ (q, s) ∈ p↓ × 1↓} ⩽ f(p),

while the fact that f(p) being one of the terms in the sup that de�nes f̄ τ(p) guarantees the opposite
implication. Suppose that f

′

∶ Q(P × S)S → QS is an S-quantale morphism such that f
′

τ = f . Then by Lemma
5.3 and Lemma 5.4, we achieve that

f
′

(D) = f
′ ⎛
⎝ ⋃
(p,s)∈D

(p↓ × s↓)
⎞
⎠
= ⋁
(p,s)∈D

f
′

(p↓ × s↓) = ⋁
(p,s)∈D

f
′

((p↓ × 1↓) ∗ s)
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= ⋁
(p,s)∈D

f
′

(p↓ × 1↓)s = ⋁
(p,s)∈D

f
′

τ(p)s = ⋁
(p,s)∈D

f(p)s = f̄(D),

for every D ∈ Q(P × S)S , which �nishes our proof.

Corollary 5.6. The category QuantS has a separator.

Proof. Let f , g ∶ AS → BS be a pair of morphisms in QuantS with f ≠ g. Then there exists a ∈ AS such that
f(a) ≠ g(a). Let P be a poset. De�ne a mapping k ∶ P → AS by k(p) = a, ∀p ∈ P. We are aware that k is
a morphism in Pos. Hence there is a unique S-quantale morphism k̄ ∶ Q(P × S)S → AS with k̄τ = k, where
τ ∶ P → Q(P×S)S is de�ned as in Theorem 5.5. This yields that f k̄ ≠ gk̄, and consequently gives thatQ(P×S)S
is a separator.

We thereby obtain a free functor from the category of posets into the category of S-quantales, which is shown
to be left adjoint to the forgetful functor.

Proposition 5.7. There is a free functor F ∶ Pos→ QuantS given by

P //

f
��

FP

Ff
��

Q // FQ,

where FP = Q(P × S)S, and

Ff(D) = {(x, y) ∈ Q × S ∣ (x, y) ⩽ (f(p), s) for some (p, s) ∈ D},

for any monotone mapping f ∶ P → Q and D ∈ FP.

Theorem 5.8. The free functor F ∶ Pos→ QuantS is left adjoint to the forgetful functor ⌊ ⌋ ∶ QuantS → Pos.

Proof. Let us prove that η ∶ idPos → ⌊ ⌋F with ηP ∶ P → ⌊Q(P × S)S⌋, where P is a Pos-object, ηP(p) = p ↓ ×1↓,
∀p ∈ P, is a natural transformation. Suppose that f ∶ P → P

′

is a morphism in Pos. Then

Ff ○ ηP(p) = Ff(p↓ × 1↓) = {(x, y) ∈ P
′

× S ∣ (x, y) ⩽ (f(p̃), s) for some (p̃, s) ∈ p↓ × 1↓}

= {(x, y) ∈ P
′

× S ∣ (x, y) ⩽ (f(p̃), s) ⩽ (f(p), 1), (p̃, s) ∈ p↓ × 1↓},

for p ∈ P, and
(ηP′ ○ f)(p) = ηP′ (f(p)) = f(p)↓ × 1↓.

It results in Ff ○ηP = ηP′ ○f as needed.Now, by Theorem5.5 and [12] 19.4(2),we obtain that F is left adjoint to ⌊ ⌋.
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