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Abstract: In this paper, we present an effective algorithm for globally solving quadratic programs with
quadratic constraints, which has wide application in engineering design, engineering optimization, route
optimization, etc. By utilizing new parametric linearization technique, we can derive the parametric linear
programming relaxation problem of the quadratic programs with quadratic constraints. To improve the
computational speed of the proposed algorithm, some interval reduction operations are used to compress the
investigated interval. By subsequently partitioning the initial box and solving a sequence of parametric linear
programming relaxation problems the proposed algorithm is convergent to the global optimal solution of the
initial problem. Finally, compared with some known algorithms, numerical experimental results demonstrate
that the proposed algorithm has higher computational efficiency.
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1 Introduction

This paper considers the following quadratic programs with quadratic constraints:

. n 0 n n 0
min Fo(y) = 121 diyic + Zl kzlpij’iYk
K= = =
. n . n n . .
@)\ st Fi(y) = S diye+ % ¥ Piyiyk < Bi, i=1,...,m,
k=1 j=1k=1
yeYP={yeR":I°<y<u®},

where IO _ (IO IO)T 0 _ 0 ONT, .. i . : . _
=(l,..., ) u = (uj,...,up) 5 Dj di and f3; are all arbitrary real numbers. QP has wide ap

plication in route optimization, engineering design, investment portfolio, management decision, production
programs, etc. In addition, QP usually owns multiple local optimal solutions which are not global optimal
solutions, i.e., in these classes of problems there exist important theoretical difficulties and computational
complexities. Thus, it is necessary to present an efficient algorithm for globally solving QP.

In last several decades, many algorithms have been developed for solving QP and its special cases, such
as duality-bounds algorithm [1], branch-and-reduce methods [2-6], approximation approach [7], branch-and-
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bound approaches [8-10], and so on. Except for the above ones, some algorithms for polynomial programming
[11115] and quadratic fractional programming [16-17] also can be used to solve QP. Although these algorithms
can be used to solve QP and its special cases, less work has been still done for globally solving the investigated
quadratic programs with quadratic constraints.

This paper will present a new global optimization branch-and-bound algorithm for solving QP. First of all,
we derive a new parametric linearization technique. By utilizing this linearization technique, the initial QP
can be converted into a parametric linear programming relaxation problem, which can be used to determine
the lower bounds of the global optimal values of the initial QP and its subproblems. Based on the branch-and-
bound framework, a new global optimization branch-and-bound algorithm is designed for solving QP, the
proposed algorithm is convergent to the global optimal solution of the initial QP by successively subdividing
the initial box and by solving the converted parametric linear programming relaxation problems. To improve
the computational speed of the proposed branch-and-bound algorithm, some interval reduction operations
are used to compress the investigated interval. Finally, compared with some known algorithms, numerical
experimental results show higher computational efficiency of the proposed branch-and-bound algorithm.

The remaining sections of this paper are listed as follows. Firstly, in order to derive the parametric
linear programming relaxation problem of QP, Section 2 presents a new parametric linearization technique.
Secondly, based on the branch-and-bound framework in Section 3, by combing the derived parametric linear
programming relaxation problem with the interval reduction operations, an effective branch-and-bound
algorithm is constructed for globally solving QP. Thirdly, compared with some known methods, some existent
test problems are used to verify the computational feasibility of the proposed algorithm in Section 4. Finally,
some conclusions are obtained.

2 New parametric linearization approach

In this section, we will present a new parametric linearization approach for constructing the parametric
linear programming relaxation problem of QP. The detailed deriving process of the parametric linearization

approach is given as follows. Without loss of generality, we assume that ¥ = {(y1,y2,..., yn)T € R™: i<y <
u,j=1,...,n} € Y° v = (3jk)nxn € R"" is a symmetric matrix, and ~; € {0, 1}.
For convenience in expression, forany y € Y, forany j € {1, 2,...,n}, ke {1,2,...,n},j + k, we define

Yi(vki) = b + i (ur = l) s

V(1 =) = b+ (1 = via) (Ui = L)

fi(¥) = Vis

£ Yoma) = i) 1 + 2yie(va) e = vie () 1,

Frae¥s Yavia) = ieCvma) 12 + 2y (1 = 3 [Vie = Ve (va) 1

Yi(i) = b+ v (uj = 1),

Vi) = I + v (uie = L)

Yi(L =) =i+ (1 =) (w - ),

V(1 =) = L + (1 =) (ux = I),

Vi +yi) (i) = (G + ) + (s + ug = I = ),

Vi +yi) (X =) = (G + L) + (1= v) (W + uge = L = L),

Fr(y) = yyyie = LI

f (Y: Y, yk) = 2{{[()’1 +Yk)(’71k)] +2(yi +yi) (i) i + i = i+ i) (i) 13
()T + 2y, (1 = i) s - i) 1}

~ ~{ e ()]? + 2y(1 = 3) i = ye() 13,

Fies Yor) = 34005+ v) (i) 12+ 205 + yi) (1 = %) s + Vi = (5 + i) (i) 1}
~{ ()1 + 2y () Ly = Y (i) 13
~{ ()T + 2y () e = Vi) 13-
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It is obvious that
yi(0) = Iy yi(1) = ug, (¥j+yi)(0) =L+ L, (¥j+yi)(1) = uj+ ux.

Theorem 2.1. Forany k¢ {1,2,...,n}, foranyy ¢ Y, then we have:
(i) The following inequalities hold:

ikk(y’ Y’ ’Ykk) kak()/) kak(yi Y» '7kk)a

i (i) + 253G v = viGi)] < ¥7 < i (01 + 25(1 = 9 [y = v,
Vi) 1” + 2y () i = v 1 < Vie < (i) 12 + 2vie(1 = ) e - vie () 1
i+ Y0 <[5 +y) ()1 + 205+ vi) (1= ) [yi + vie = 0 + y) () 1»
Wi+ v 2 [0 +y) () 1 + 205 +yi) (i) s + Vi = 5+ vi) ()],

and ~
]jjk(y’ Y, ’ij) Sf]k(y) Sfjk(y’ Y, ’ij)'

(ii) The following limitations hold:

lim [fi(y) —[kk()” Y, v)] =

Jlu-1]-0
Huljlr‘pﬁo[fkk(y, Y, i) — fre(¥)] =
Jim Ty = (i (p0T” + 205G =y )1} =
im0 ) + 2v5(1= 50l = yiG)] - 7 =
Jim = (G0l + 20 Ga) - vidd 1 =
y l_iIrHrLO[[yk(w)]2 +2y(1 = %) [y - v ()] - vil = 0,

([ +yi) (i) 1 + 2@+ vi) (X = %) 5 + V= 05+ ) (i) ] = 0 +vi) ] =

Hu lH -0

[y +vi)? = L5+ y) () 1P+ 2005 + v (i) [+ vi) = 5+ vi) (i) 13 =

Hu lH 0

[f]k(y) f}k(y’ r’Y)k)]

lH 0

and

i JV Fix¥s Yy ) = fx(y)] = 0.
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(1)

(2)

(3)
(4)

(5)

(6)

Proof. (i) By the mean value theorem, for any y ¢ Y, there exists a point & = ayy + (1 - @)y (), Where a €

[0, 1], such that
= [yieCva) 1 + 26k yic = yieCv) -
If i, = 0, then we have
&k 2 I = Yi(e) and yx = y(yk) = Vi = I 2 0.
If vk = 1, then it follows that

& S ug = yi(vir) and yx — yi(vix) = yx — ux < 0.

Thus, we can get that
f(y) = vi
= () 12+ 2&yi - yie(e) ]
> Vit 1 + 2V (via) Vie = Vie(yia) ]
= [V Y i)
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Similarly, if v = 0, then we have

& S Uk = Yi(1 =) and yg — Y (vik) = Yk — I 2 0.

If v = 1, then it follows that

& > I = yi(1 = vix) and yi = yi(vik) = Y — ux < 0.

Thus, we can get that
fuc¥) = yi
= () 1% + 2&yi - yie(rae)]
< [yr(v) 12 + 2va (1 = ) vk = yie(vea)]
= fkk(y’ Y, 'Ykk)'

Therefore, for any y € Y, we have that

foo Vs Yora) < fie(¥) < Frae(ys Yo i) -

From the inequality (1), replacing i by 7jx, and replacing y; by y;, we can get that

i (i) 1” + 2y (0 s = Y ()] <7 < i) 1 + 2y5(1 = 30 [y = i () -

From the inequality (1), replacing i, by ~jx, we can get that

()1 + 2y (i) e = v (i) ] < Vi < e (i) 1 + 20 (1 = %) [y = (i) 1-

From (1), replacing i and yj by v, and (y; + yi), respectively, we can get that
@i+ <[5 +yi) ()] + 205 +yi) (L= ) [ + i) = 3+ v) () ]

Wi +v)” 2 [0+ v (50T + 20+ vi) (i) [+ Yie) = 0 + vi) (i) 1+

From the former several inequalities, it is easy to follow that
V+y) -y} -vi
fix(y) = yjyx = ——=+
> L5 +y) ()1 + 205 +y) (i) s+ vie = (5 +yi) (i) 1}
Ly () 1 + 2y5(1 = ) s - v (i) 13
~{ ()T + 2y(1 = ) i = e (i) 11
= fik()’» Y, k)

and A
fi(y) = yiyk = w
< UL+ y) (i) 1 + 20y + v (1= %) [y + Vi — 5+ vi) (i) 1}
~{ i) + 2y (i) g = vy (i) 13
—{i)]? + 2y (i) Vie = () 11}

:fjk(y’ Y, ’7]'1()'

Therefore, we have
fjk(y’ Y, 'Yik) Sfjk()/) gfjk(y’ Y, 'ij)'

(ii) Since
Fic) = £, Vs Yo i) = Vie = {vama) 1 + 2yx(via) Vi = vie (i) 1}
= (Vi = Yi(m))? (7)
< (u - )%,
we have

Hulfilrunao[fkk(y) ~ L ¥ )] = 0.
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Also since _
Fiaes Yo va) = fiae (V) = ie(via) 12 + 2yi(1 = ) Ve = Vi) 1 = Vi
= (Ve (i) + ¥i) Vi (vex) = Vi)
+2yi(1 = vi) Vi = Vi (ki)
= = Ye(va) 112y, (1 = via) = yie(va) = V] (8)
= [V = YO 1Y (1 = i) = Vie(ie) ]
+[Vie = V() 1y (1 = k) = Y]
< Z(Mk — lk)z.
Therefore, it follows that
lim [fi (¥, Y, ) - fuc(y)] = 0.

lu-t]—0

From the limitations (3) and (4), replacing i and yj by ;x and y;, respectively, we have

m [y} — {[y;()] + 2y (30l - Vi) 1} = 0

li
[u=t]—0
and
”uljllﬁlo[[yi(m)]z +2y5(1 =70y - Y ()] - y71 = 0.
From the limitations (3) and (4), replacing i by ~jx, it follows that
”uflrunﬂo[)/i —{ k()] + 20 () e - yi() 131 = 0
and

Hulfilﬂlo[[yk(’wk)]z +2y5(1 =) [k~ ()] - vi] = 0.

By the limitations (3) and (4), replacing i« and y; by ~;x and (y; + y«), respectively, we can get that

”ulfilfnnéo[[()’i +¥0) () 1” + 20+ vi) (1= %) Y5 + Vi = ¥ +vi) ()] = (0 + v1)*1 = 0
and

Hul_ilf“fl_)O[()’j +y1)* = {15+ v (i) + 205 + y) (i) [y + Ve = (v +yi) () ]3] = 0.

From the inequalities (7) and (8), we have

f)k(y) _]ijk(y’ Y, ’ij) =YYk _ijk(y’ Y, ij)

= O Ik L+ 10 () P
+2(yi + yi) (i) i + e = i+ vi) (i) 1}
~{ i ()T + 2y (1 = %) [y - Vi) 1}
~{ ()1 + 2y(1 = 3 i = e (i) 11
= Ui + 2y5(1 =) s = i) 1} = v7 ]
+ 20 17 + 2y (L= %) i - V(o) 1} - vid
+%{()’i +Y1)° - [y + )/k)(“ﬁk)]2
+2(yi +yi) (i) i + e = i+ vi) (i) 1}
< (u,- - l]')z + (uk - lk)z + %(uk +Uj— l)' - lk)z.

Thus, we can get that

lim [f]k(y) _[jk(y’ Y, Vik)] =0.

[u-1]—0
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Also from the inequalities (7) and (8), we get that

)k(y’ "Y}k) f]k()’) f]k(y’ "Y}k) YiVk

= 2{{[()/] +Yk)('Y}k)]
+2(y; +yi) (L =) i + Ve = Vi + vi) (i) 13
~{ [y ()% + 2y (i) g = vy (i) 13
~{ ()] + 2y () e = V(o) 13
00’y vk

= %{{[(YJ +)’k)(’Yik)]2
+2(y; + v (1= %)y + Vi — 05+ vi) ()] = v + vi)*}

+y7 = L) 1? + 2y () g - vi () 1}
+J’i - {[J/k(%'k)]z +2Yk (i) e = v (v 13
< T - 1)+ 3w - L) + (ue+ w5 — - ).
Thus, it follows that

HullH [ k(y’ r'Y]k) f]k(y)]

O

Without loss of generality, for any Y = [I, u] ¢ Y°, for any parameter matrix = (Yjk)nxn, forany y € Y and

ie{0,1,...,m}, welet
pkkfkk(Y9 s Yk ) s lfpkk >0,

fi (y: Y,’Ykk) :{
Kk Piaf (Vs Y i) 1fpkk <0,

pkkfkk(y’ Y, vik), ifp,'(k >0,

—i
b Y’ =
fkk(y ’Ykk) { kkfkk(y’ ’ ’Ykk) 1fpkk <0,

p;kf]k(y’ "Y]k) lfplk >0,j=k,

fl (ya Y”Y'k):
Tk ! ]kflk(y, a’Y]k) lfp1k<0 ]#k

—i pkfk(y’ ”Y]k) lfpk>0 ]ik
i ) Y’ j = e '
f}k(y 'Y]k) {p;kf Y, 7]7() 1fp]k <0, j+*k.

F%(y;Y,W)—Z(dek+fkk(y, ”Ykk))+2 Z f (y’ r'Y]k)

= j=1k=1,k+j

FiU(y’Y”Y)_Z(dek+fkk(y’ ka1<))+2 Z f;k(yr Y, k).

= j=1k=1,k+j

Theorem 2.2. Foranyy e Y = [l,u] c Y°, for any parameter matrix ~ = (Yjk)nxn, foranyi=0,1,...

can get the following conclusions:
Fi(y,Y,7) < Fi(y) <F{ (v, Y,7),
lim [Fi(y) - Fi(y,Y,7)] =
[u-1]|—0
and
[F{(y,Y,7) - Fi(y)] =

lu-1]—0

Proof. (i) From (1) and (2), for any j, k € {1, ..., n}, we can get that

. . 7i
£ Yo ) < Py < Fiac(ys Yo ).

and '
i i =1
f}k()’, Y, i) < oYy < Fix (V> Ys i) -

9)

(10)
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By (9) and (10), forany y € Y ¢ Y°, we have that

FIL(Y’ Y”Y): Z(d yk+fkk(y’ ”Ykk))*’Z Z f]k(y’ 9’YJk)
]1k 1,k+j
< Z diyic + Z DYk + Z Z p]ky,yk = Fi(y)
<

> (diyic+ Fiays ”Ykk))"’_z > .fjk()/: Y, )
=1 j=1k=1,k+j

FlU(y’ Y, ’Y)'

Therefore, we obtain that
Fi(y,Y,7) <Fi(y) < F{ (,Y,7).

(i)

Fi(y) -Fi(y,Y,7) Z diyi + ZpkkYk

<1
+ kak()/! ”Ykk)

i

[pkkyk _ikk(y’ ’ ’Ykk)]

Il
M=»

k=1

n n . .
+ 2 Z 4[p11'k)/]')’k_fl v, Y, %)l
i=1 k=1,k jk

n

J

Y Pualfiy) =, (v, Yo vm)]

k=1 pkk>0

+ Z Pialfix V) = Frac(¥s Yy v0)]

1,p}y <0

=
Il

+

Op;:k[fjk(Y) _ijk(y’ Y, 'ij)]

=
v

= j*M:

Pilfic(y) = Fi(vs Ya 0]

+

M

i T
M= ,_'.M=

~

I

iR

_~

&

)

1,k#,p} <0

-.

From (3)-(6), we can obtain that lim sy .o [fixc (¥) =, (¥, ¥, via) ] = O, 1imy gy o i (Vs Y i) — fie(¥)] = 0

im0 Ui (v) = £, (v, Y, %) ] = 0 and Yimy gy o fix (Vs Y ) = fir(¥)] = 0
Therefore, we obtain that

Jim [Fi(y) - Fi(y,Y,7)]=

Similarly to the proof above, we can get that

Huilll’”ILO[FlU(y’ Y’ 7) - Fl(y)] =

The proof is completed. O

By Theorem 2.2, we can establish the following parametric linear programming relaxation problem (PLPRP)

of QP over Y:
min F5(y, Y,~),
(PLPRP) : { s.t. FF(y,Y,7)<B;, i=1,...,m,
yeY={y:l<y<u}.

where

FlL(y’Y!’Y)_Z(dek+fkk(y’ r’Ykk))"'Z Z f]k(yr "7]1()

j=1k=1,k+j
Based on the above parametric linearization process, we know that the PLPRP can provide a reliable lower
bound for the minimum value of QP in the region Y. In addition, Theorem 2.2 ensures that the PLPRP will
sufficiently approximate the QP as |u — I| — 0, and this ensures the global convergence of the proposed
branch-and-bound algorithm.
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3 Branch-and-bound algorithm

In this section, a new global optimization branch-and-bound algorithm is presented for solving the QP. In
this algorithm, there are several important operations, which are given as follows.

3.1 Basic operations

Branching Operation: The branching operation will produce a more precise subdivision. Here we select a
rectangle bisection method, which is sufficient to guarantee the global convergence of the branch-and-bound
algorithm. For any selected rectangle Y = [l', u'] c Y% lety € arg max{u} - l;- :j=1,2,...,n}, we can
subdivide Y into two new sub-rectangles Y'and Y? by partitioning interval [X'n, Y;]] into two sub-intervals

v, (v, +¥,)/2]and [y, +7,)/2,,].

Bounding Operation: For each sub-rectangle Y ¢ Y°, which has not been fathomed, determining the lower
bound operation need to solve the parametric linear programming relaxation problem over the corresponding
rectangle, and denote by LBs = min{LB(Y)|Y € (2}, where () is the remaining set of sub-rectangle after
s iterations. Determining the upper bound operation need to judge the feasibility of the midpoint of each
inspected sub-rectangle Y and the optimal solution of the PLPRP over each inspected sub-rectangle Y, where
Y € (2. At the same time, we need to compute the objective function values of these known feasible points of
QP, and we let UBs = min{Fo(Y) : Y € ©} be the best upper bound, where O is the set of the known feasible
points.

Interval Reduction Operation: To enhance the running speed of the proposed algorithm, some interval
reduction operations are given as follows.

For convenience in expression, foranyy € Yandi € {0, 1, ..., m}, welet UB be the current upper bound
of the (QP), and let

n
Fi(y,Y,7) = cii(v)y; +ei(),
i

n
LBi(v) = Y min{cij()l, cii(v)u;} + ei(7).
j=1
Similarly to Theorem 3.1 of Ref.[17], for any investigated sub-rectangle Y = (¥;)1xn S Y°, we have the following
conclusions:
(a) If LBo() > UB, then: the entire sub-rectangle Y can be abandoned.

(b) If LBo(y) < UB and coq(y) > O for some g € {1,2,...,n}, then the region Y, can be replaced by
[, UB- LBO(’Y)"'mm{COq('Y)I ch(v)uq}]mY

(c) If LBo(7y) < UB and coq(y) < O for some g € {1,2,...,n}, then the region Y; can be replaced by
[UB LBU(7)+mm{c0q(7)l COq(’Y)”q} ug]N Yy

(d) If LB; (7) > ﬁl for somei € {1 ., m}, then the entire sub-rectangle Y can be abandoned.
e) If LB;(v) < B; for somei € 1,...,m and cj,(v) > O for some q € {1, 2,...,n}, then the region Y, can
q q
be replaced by [lq ﬁi—LBi(’Y)‘*'min{C&iq()’Y)lqsciq('Y)uq} :| N Yq
> Cig (v :
(f) IfLB;(v) < B for some i € {ql ..,m}and c;4(v) < O for some g € {1, 2, ..., n}, then the region Y, can

be replaced by [/81 —LB; (’Y)*m";{‘"?z/()’”l th('Y)uq} q] N Yq.

From the above conclusions, to improve the convergent speed of the proposed algorithm, we can con-
struct some interval reduction operations to compress the investigated rectangular area.
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3.2 New branch-and-bound algorithm

For any sub-rectangle Y° ¢ YO, let LB(Y?®) be the optimal value of the PLPRP over the sub-rectangle Y°,
and let y° = y(Y®) be the optimal solution of the PLPRP over the sub-rectangle Y*. Combining the former
branching operation and bounding operation with interval reduction operations, a new global optimization
branch-and-bound algorithm is described as follows.

Algorithm Steps:

Step 0. Given the termination error ¢ and the random parameter matrix ~. For the rectangle Y°, solve the
PLPRP to obtain its optimal solution y° and optimal value LB(Y°), let LBy = LB(Y®) be the initial lower
bound. If y° is feasible to the QP, let UB, = Fo(y°) be the initial upper bound, else let the initial upper bound
UBy = +o0. If UBy — LBy < ¢, the algorithm stops, y° is an e-global optimal solution of the QP. Else, let

QO:{YO},A:Qands:l.

Step 1. Let the new upper bound be UBs = UBs_;. By using the branching operation, partition the selected
rectangle Y°~! into two sub-rectangles Y*! and Y*, and let A = A u {Y*"'} be the set of the deleted sub-
rectangles.

Step 2. For each sub-rectangle Y*!, ¢t = 1, 2, use the former interval reduction operations to compress its
interval range, still let Y>! be the remaining sub-rectangle.

Step 3. For each t ¢ {1,2}, solve the PLPRP over the sub-rectangle Y to get its optimal solution y*'
and optimal value LB(Y®"'), respectively. And denote by s = {Y|Y e 253 u {Y*}, Y®?},Y ¢ A} and
LBs = min{LB(Y)|Y € }.

Step 4. If the midpoint y™? of each sub-rectangle Y is feasible to the QP, let © := © u {y™?} and
UBs = min{UBS,Fo(y’"id)}. If the optimal solution y®! of the PLPRP is feasible to the QP, let UBs =
min{UBs, Fo(y>")}, and let y* be the best known feasible point which is satisfied with UBs = Fo(y*).

Step 5. If UBs — LBs < ¢, then the algorithm stops, and y® is an e-global optimal solution of the QP. Otherwise,
lets = s+ 1, and go to Step 1.

3.3 Global convergence

Without loss of generality, let v be the global optimal value of the QP, the global convergence of the proposed
algorithm is proved as follows.

Theorem 3.1. If the presented algorithm terminates after finite s iterations, then y* is an e-global optimal
solution of the QP; if the presented algorithm does not stop after finite iterations, then an infinite sub-sequence
{Y*} of the rectangle Y° will be generated, and its accumulation point will be the global optimal solution of the
QP.

Proof. If after s finite iterations, where s is a finite number such that s > 0, the presented algorithm stops,
then it will follow that UBs < LBs + . From Step 4, we can obtain that there must exist a feasible point y°,
which is satisfied with v < UBs = Fo(y®). By the structure of the presented branch-and-bound algorithm, we
have LBj < v. Combining the above inequalities together, we have

V< UBs=Fo(y’)<LBs+e<v+e.

So that y® is an e-global optimal solution of the QP.
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If the presented algorithm does not stop after finite iterations, since the selected branching operation is
the bisection of rectangle, then the branching process is exhaustive, i.e., the branching operation will ensure
that the intervals of all variables are convergent to O, i.e., |u — I| - 0. From Theorem 2.2, as |u - I| — O, the
optimal solution of the PLPRP will sufficiently approximate the optimal solution of the QP, and this ensures
that lims_, .. (UBs — LBs) = 0, therefore the bounding operation is consistent. Since the subdivided rectangle
which obtains the actual lower bound is selected for further branching operation at the later immediate
iteration, therefore, the proposed selecting operation is bound improving. By Theorem IV.3 in Ref.[18], the
presented algorithm satisfies that the branching operation is exhaustive, the bounding method is consistent
and the selecting operation is improvement, i.e., the presented algorithm satisfies the sufficient condition
for global convergence, so that the presented algorithm is globally convergent to the optimal solution of the
QP. O

4 Numerical experiments

Let the parameter matrix v = (vj)nxn € R™", where ~j € {0, 1}, and the termination error e = 107°.
Compared with the known algorithms, several test problems in literatures are run on microcomputer, and the
program is coded in C++, all parametric linear programming relaxation problems are computed by simplex
method. These test problems and their numerical results are given as follows. In Tables 1 and 2, we denote by
“Iter." and “Time(s)" number of iteration and running time of the algorithm, respectively.

Problem 4.1 (Ref. [11]).

min Fo(y) = y1

s.t. Fi(y) = y1+3V2— 15Vi— Y3 < 1,
Fo(y) = 13V1 + 13V3 - 3V1 - 3y2 < -1,
1<y1<5.5, 1<y, <5.5.

Problem 4.2 (Refs. [4,12]).

min Fo(y) = yi +3
s.t. F1(y) =0.3y1y2 >1,
2<y1 <5, 1<y, <3.

Problem 4.3 (Ref. [11]).

min Fo(y) =y1y2—-2y1+y2+1

s.t. F1(y) = 8y3 - 6y1 — 16y, < -11,
Fa(y) =—y5 +3y1+2y2 < 7,
1<y1<2.5, 1<y, <2.225.

Problem 4.4 (Refs. [4,5,10]).

min Fo(y) = 6y2 + 4y3 + 5y1Y>
s.t. F1(y) = —6y1y» <48,
0<y1,y2<10.

Problem 4.5 (Refs. [12,13]).

min Fo(y) =y1

s.t. F1(y) = 4y, - 4y3 <1,
Fa(y)=-y1-y2<-1,
0.01<y1,y2 <15.
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Problem 4.6 (Refs. [10,15]).

min Fo(y) = —4y> + (y1 - 1)* +y3 — 10y3

sit. Fi(y) =yi+y3+y5<2,
Fa(y)=(y1-2)°+y5+y3<2,
2-V2<y1<V2,0<y2,y3 < V2.

Problem 4.7 (Ref. [14]).

min Fo(y) = -y1+y1¥5° -2

s.t. F1(y) =-6y1+8y; <3,
Fa(y) =3y1-y2<3,
1<y1,y2<1.5.

Table 1. Numerical comparisons for Problems 4.1-4.7

DE GRUYTER

Problem Refs. Global optimal solution Optimal value Iter. Time(s)
1 [11] (1.177124327,2.177124353) 1.177124327 434 1.0000
ours (1.177124344,2.177124344) 1.177124344 20 0.0091

2 [4] (2.000000000, 1.666666667) 6.777778340 30 0.0068
[12] (2.00003, 1.66665) 6.7780 44 0.1800

ours (2.000000000, 1.666666667) 6.777778340 10 0.0018

3 [11] (2.000000, 1.000000) -1.0 24 0.0129
ours (2.000000, 1.000000) -0.999999 22 0.0080

4 [4] (2.555409888, 3.130613160) 118.383672050 49 0.0744
[5] (2.5557793695, 3.1301646393) 118.383756475 210 0.7800

[10] (2.555745855, 3.130201688) 118.383671904 59 0.0385

ours (2.560178568, 3.125000000) 118.392375898 46 0.0189

5 [11] (0.5, 0.5) 0.5 91 0.8500
[13] (0.5, 0.5) 0.5 96 1.0000

ours (0.5, 0.5) 0.5 26 0.0065

6 [10] (1.0,0.181818470, 0.983332113) -11.363636364 420 0.2845
[15] (0.998712,0.196213,0.979216) -10.35 1648 0.3438

ours (1.0,0.181815072, 0.983332745) -11.363636364 97 0.1568

7 [14] (1.5, 1.5) -1.16288 84 0.1257
our (1.5, 1.5) -1.16288 38 0.0658

Problem 4.8 (Ref. [9]).
min Fo(y) = 3(y,Q°y) + {y,d")
s.t. Fi(y) = Hy, Q) + (v, d') < i, 11,
0<yj<10,j=1,...,n.

, m,

Each element of Q° is randomly generated in [0, 1], each element of Q'(i = 1, ---, m) is randomly generated
in [-1, 0], each element of d° is randomly generated in [0, 1], each element of d'(i = 1, -+, m) is randomly
generated in [-1, 0], each element of 3;(i = 1,:--,m) is randomly generated in [-300, -90], and each

element of v = (jx)nxn € R™" is randomly generated from O or 1.

We denote by n the dimension of our problem, our problem and by m the constraint number of our

problem. Numerical results for Problem 4.8 are given in Table 2.

Compared with the known algorithms, numerical experimental results of Problems 4.1-4.8 demonstrate
that the proposed algorithm can globally solve the QP with the higher computational efficiency.
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Table 2. Computational comparisons with Ref. [9] for Problem 4.8

(Dimension, Constraints) | Algorithm of Ref. [9] This paper

(n,m) Time(s) Time(s)
(4,6) 2.37678 1.989758
(5,11) 6.39897 5.234890
(14,6) 9.22732 7.246780
(18,7) 15.8410 12.84189
(20,5) 11.9538 9.527432
(35,10) 74.8853 68.44086
(37,9) 77.1476 69.40288
(45,8) 86.7174 80.51039
(46,5) 44,2502 36.85856
(60,11) 315.659 280.25859

5 Concluding remarks

In this article, based on branch-and-bound framework, we present a new global optimization algorithm for
solving the quadratic programs with quadratic constraints. In this algorithm, a new parametric linearization
technique is derived. By utilizing the parametric linearization technique, we can derive the parametric linear
programming relaxation problem of the QP. In addition, some interval reduction operations are proposed for
improving the computational speed of the proposed branch-and-bound algorithm. The presented algorithm
is convergent to the global optimal solution of the QP by subsequently partitioning the initial rectangle and by
solving a sequence of parametric linear programming relaxation problems. Finally, numerical results show
that the proposed algorithm has higher computational efficiency than those existent algorithms.

Acknowledgement: This paper is supported by the Science and Technology Key Project of Henan Province
(182102310941), the Higher School Key Scientific Research Projects of Henan Province (18A110019).

References

[1] Shen P, Gu M., A duality-bounds algorithm for non-convex quadratic programs with additional multiplicative constraints.
Appl. Math. Comput., 2008, 198: 1-11.

[2] Jiao H., ChenY.-Q, Cheng W.-X., A Novel Optimization Method for Nonconvex Quadratically Constrained Quadratic
Programs. Abstr. Appl. Ana., Volume 2014 (2014), Article ID 698489, 11 pages.

[3] Jiao H., Chen R., A parametric linearizing approach for quadratically inequality constrained quadratic programs. Open
Math., 2018, 16(1): 407-419.

[4] Jiao H., LiuS., Lu N., A parametric linear relaxation algorithm for globally solving nonconvex quadratic programming.
Appl. Math. Comput., 2015, 250: 973-985.

[5] GaoY., Shangy., Zhang L., Abranch and reduce approach for solving nonconvex quadratic programming problems with
quadratic constraints. OR transactions, 2005, 9(2):9-20.

[6] Jiao H., LiuS., An efficient algorithm for quadratic sum-of-ratios fractional programs problem. Numer. Func. Anal. Opt.,
2017, 38(11): 1426-1445.

[71 FuM., Luo Z.Q., YeY., Approximation algorithms for quadratic programming. J. Comb. Optim., 1998, 2: 29-50.

[8] QuS.-).,JiY., ZhangK.-C., A deterministic global optimization algorithm based on a linearizing method for nonconvex
quadratically constrained programs. Math. Comput. Model., 2008, 48: 1737-1743.

[91 QuS.., ZhangK.-C., ]i, Y., A global optimization algorithm using parametric linearization relaxation. Appl. Math.
Comput., 2007, 186: 763-771.

[10] Jiao H., ChenY., A global optimization algorithm for generalized quadratic programming. ). Appl. Math., 2013, Article ID
215312, 9 pages.

[11] Shen P, Jiao H., A new rectangle branch-and-pruning appproach for generalized geometric programming. Appl. Math.
Comput., 2006, 183: 1027-1038.



1312 — S.Tangetal DE GRUYTER

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Wang Y., Liang Z., A deterministic global optimization algorithm for generalized geometric programming. Appl. Math.
Comput., 2005, 168: 722-737.

Wang Y.)., Zhang K.C., Gao Y.L., Global optimization of generalized geometric programming. Comput. Math. Appl., 2004,
48:1505-1516.

Shen P., Linearization method of global optimization for generalized geometric programming. Appl. Math. Comput., 2005,
162: 353-370.

Shen P, Li X., Branch-reduction-bound algorithm for generalized geometric programming. J. Glob. Optim., 2013, 56(3):
1123-1142.

Jiao H., Liu S., Zhao Y., Effective algorithm for solving the generalized linear multiplicative problem with generalized
polynomial constraints. Appl. Math. Model., 2015, 39: 7568-7582.

Jiao H., Liu S., Range division and compression algorithm for quadratically constrained sum of quadratic ratios, Comput.
Appl. Math., 2017, 36(1): 225-247.

Horst R., Tuy H., Global Optimization: Deterministic Approaches, second ed., Springer, Berlin, Germany, 1993.



	An effective algorithm for globally solving quadratic programs using parametric linearization technique
	1 Introduction
	2 New parametric linearization approach
	3 Branch-and-bound algorithm
	3.1 Basic operations
	3.2 New branch-and-bound algorithm
	3.3 Global convergence

	4 Numerical experiments
	5 Concluding remarks


